Universidad “Fermín Toro”. Facultad de Ciencias Económicas y Sociales. Análisis de Problemas y Toma de Decisiones.
Autor: John Guillén
Febrero de 2013
INTRODUCCIÓN. Un modelo determinista es un modelo matemático donde las mismas entradas producirán invariablemente las mismas salidas, no contemplándose la existencia del azar ni el principio de incertidumbre. Está estrechamente relacionado con la creación de entornos simulados a través de simuladores para el estudio de situaciones hipotéticas, o para crear sistemas de gestión que permitan disminuir la incertidumbre. Los modelos determinista sólo pueden ser adecuados para sistemas deterministas, para sistemas azarosos y caóticos los modelos deterministas no pueden predecir adecuadamente la mayor parte de sus características. La inclusión de mayor complejidad en las relaciones con una cantidad mayor de variables y elementos ajenos al modelo determinístico hará posible que éste se aproxime a un modelo probabilístico o de enfoque estocástico. El método Simplex es un procedimiento iterativo que permite ir mejorando la solución a cada paso. El proceso concluye cuando no es posible seguir mejorando más dicha solución. Se basa en la siguiente propiedad: si la función objetivo, f, no toma su valor máximo en el vértice A, entonces hay una arista que parte de A, a lo largo de la cual f aumenta. Los modelos de programación lineal por su sencillez son frecuentemente usados para abordar una gran variedad de problemas de naturaleza real en ingeniería y ciencias sociales, lo que ha permitido a empresas y organizaciones importantes beneficios y ahorros asociados a su utilización. La Teoría de Juegos consiste en razonamientos circulares, los cuales no pueden ser evitados al considerar cuestiones estratégicas. Por naturaleza, a los humanos no se les da muy bien pensar sobre los problemas de las relaciones estratégicas, pues generalmente la solución es la lógica a la inversa.
Es un modelo matemático donde las mismas entradas producirán invariablemente las mismas salidas, no contemplándose la existencia del azar ni el principio de incertidumbre. Está estrechamente relacionado con la creación de entornos simulados a través de simuladores para el estudio de situaciones hipotéticas, o para crear sistemas de gestión que permitan disminuir la incertidumbre. Los modelos deterministas sólo pueden ser adecuados para sistemas deterministas, para sistemas azarosos y caóticos los modelos deterministas no pueden predecir adecuadamente la mayor parte de sus características.
Por ejemplo: La planificación de una línea de producción, en cualquier proceso industrial, es posible realizarla con la implementación de un sistema de gestión de procesos que incluya un modelo determinístico en el cual estén cuantificadas las materias primas, la mano de obra, los tiempos de producción y los productos finales asociados a cada proceso.
La inclusión de mayor complejidad en las relaciones con una cantidad mayor de variables y elementos ajenos al modelo determinístico hará posible que éste se aproxime a un modelo probabilístico o de enfoque estocástico. Un conjunto de ecuaciones diferenciales de un sistema físico macroscópico constituye un modelo determinista que puede predecir la evolución determinista en el tiempo de un buen número de magnitudes características del sistema.
1
Es una de las herramientas más utilizadas en la Investigación Operativa debido a que por su naturaleza se facilitan los cálculos y en general permite una buena aproximación de la realidad. Ciertos símbolos se usan de manera convencional para denotar las distintas componentes de un modelo de programación lineal. Estos símbolos se enumeran a continuación, junto con su interpretación para el problema general de asignación de recursos a actividades. Z = valor de la medida global de efectividad xj = nivel de la actividad j (para j = 1,2,...,n) cj = incremento en Z que resulta al aumentar una unidad en el nivel de la actividad j bi = cantidad de recurso i disponible para asignar a las actividades (para i = 1,2,...,m) aij = cantidad del recurso i consumido por cada unidad de la actividad j
El objetivo de la programación lineal es encontrar las condiciones en que se maximiza la denominada función objetivo, una ecuación que determina, por ejemplo, el ingreso que se obtendrá produciendo determinadas mercancías; dicha función está sujeta a ciertas restricciones, constituidas por un grupo de ecuaciones lineales que indican el consumo de los diversos factores productivos que se necesitan para obtener un determinado producto. De este modo se establece que pueden producirse ciertas cantidades de los bienes, cada uno de los cuales produce un ingreso determinado. La programación lineal indica entonces la combinación óptima de bienes a producir para obtener el máximo beneficio a partir de un conjunto finito de recursos.
2
Es una de las principales ramas de la Investigación Operativa. En esta categoría se consideran todos aquellos modelos de optimización donde las funciones que lo componen, es decir, función objetivo y restricciones, son funciones lineales en las variables de decisión. Los modelos de programación lineal por su sencillez son frecuentemente usados para abordar una gran variedad de problemas de naturaleza real en ingeniería y ciencias sociales, lo que ha permitido a empresas y organizaciones importantes beneficios y ahorros asociados a su utilización.
3
Se plantea como un modelo matemático desarrollado durante la Segunda Guerra Mundial para planificar los gastos y los retornos, a fin de reducir los costos al ejército y aumentar las pérdidas del enemigo. Se mantuvo en secreto hasta 1947. En la posguerra, muchas industrias lo usaron en su planificación diaria. Los fundadores de la técnica son George Dantzig, quien publico el algoritmo simplex, en 1947, John Von Neumman, que desarrollo la teoría de la dualidad en el mismo año, y Leonid Kantorovich, un matemático ruso, que utiliza técnicas similares en la economía antes de Dantzig y gano el premio nobel en economía en 1975. En 1979, otro matemático ruso, Leonid Khachinyan, demostró que el problema de la programación lineal era resoluble en tiempo polinomial. Más tarde, Narendra Karmarkar introduce un nuevo método del punto interior para resolver problemas de programación lineal, lo que constituirá un enorme avance en los principios teóricos y prácticos en el área.
4
El método Simplex es un procedimiento iterativo que permite ir mejorando la solución a cada paso. El proceso concluye cuando no es posible seguir mejorando más dicha solución. Partiendo del valor de la función objetivo en un vértice cualquiera, el método consiste en buscar sucesivamente otro vértice que mejore al anterior. La búsqueda se hace siempre a través de los lados del polígono (o de las aristas del poliedro, si el número de variables es mayor). Cómo el número de vértices (y de aristas) es finito, siempre se podrá encontrar la solución. El método Simplex se basa en la siguiente propiedad: si la función objetivo, f, no toma su valor máximo en el vértice A, entonces hay una arista que parte de A, a lo largo de la cual f aumenta. Deberá tenerse en cuenta que este método sólo trabaja para restricciones que tengan un tipo de desigualdad "≤" y coeficientes independientes mayores o iguales a 0, y habrá que estandarizar las mismas para el algoritmo. En caso de que después de éste proceso, aparezcan (o no varíen) restricciones del tipo "≥" o "=" habrá que emplear otros métodos, siendo el más común el método de las Dos Fases.
5
Es la forma que pueden tomar un conjunto de datos obtenidos de muestreos de datos con comportamiento que se supone aleatorio. Pueden ser modelos probabilísticos discretos o continuos. Los primeros, en su mayoría se basan en repeticiones de pruebas de Bernoulli. Los más utilizados son: Modelo de Bernoulli, Modelo Binomial, Modelo Geométrico, Modelo Binomial negativo, Modelo Hipergeométrico, Modelo de Poisson. El objetivo de una lógica probabilística (o la lógica de probabilidad) debe combinar la capacidad de teoría de probabilidad para manejar la incertidumbre con la capacidad de lógica deductiva para explotar la estructura. El resultado es un formalismo más rico y más expresivo con una amplia gama de áreas posibles de aplicación. La lógica probable es una extensión natural de mesas de verdad tradicionales lógicas: los resultados que ellos definen son sacados por expresiones probables en cambio. La dificultad con lógicas probables es que ellos tienden a multiplicar las complejidades computacionales de sus componentes probables y lógicos.
6
El teorema de Bayes es un resultado enunciado por Thomas Bayes en 1763 que expresa la probabilidad condicional de un evento aleatorio A dado B en términos de la distribución de probabilidad condicional del evento B dado A y la distribución de probabilidad marginal de sólo A. En términos más generales y menos matemáticos, el teorema de Bayes es de enorme relevancia puesto que vincula la probabilidad de A dado B con la probabilidad de B dado A. Es decir que sabiendo la probabilidad de tener un dolor de cabeza dado que se tiene gripe, se podría saber -si se tiene algún dato más-, la probabilidad de tener gripe si se tiene un dolor de cabeza, muestra este sencillo ejemplo la alta relevancia del teorema en cuestión para la ciencia en todas sus ramas, puesto que tiene vinculación íntima con la comprensión de la probabilidad de aspectos causales dados los efectos observados.
7
La Teoría de Juegos consiste en razonamientos circulares, los cuales no pueden ser evitados al considerar cuestiones estratégicas. Por naturaleza, a los humanos no se les da muy bien pensar sobre los problemas de las relaciones estratégicas, pues generalmente la solución es la lógica a la inversa. En la Teoría de Juegos la intuición no educada no es muy fiable en situaciones estratégicas, razón por la que se debe entrenar tomando en consideración ejemplos instructivos, sin necesidad que los mismos sean reales. Por lo contrario en muchas ocasiones disfrutaremos de ventajas sustanciales estudiando juegos, si se eligen cuidadosamente los mismos. En estos juegos-juegos, se pueden desentender de todos los detalles. La Teoría de Juegos fue creada por Von Neumann y Morgenstern en su libro clásico The Theory of Games Behavior, publicado en 1944. Otros habían anticipado algunas ideas. Los economistas Cournot y Edgeworth fueron particularmente innovadores en el siglo XIX.
El principal objetivo de la teoría de los juegos es determinar los papeles de conducta racional en situaciones de "juego" en las que los resultados son condicionales a las acciones de jugadores interdependientes. Un juego es cualquier situación en la cual compiten dos o más jugadores. Igualmente, en una gran variedad de juegos, el resultado es una variable aleatoria cuya distribución de probabilidades debe ser establecida para que pueda ser posible una solución para el juego. A este respecto, debe observarse que las decisiones de los jugadores interdependientes no se toman en un vacío y que los pagos resultantes de estas decisiones dependen de las acciones emprendidas por todos los jugadores.
8
El Modelo de transporte es una clase especial de problema de Programación Lineal. Trata la situación en la cual se envía un bien de los puntos de origen (fábricas), a los puntos de destino (almacenes, bodegas, depósitos). El objetivo es determinar las cantidades a enviar desde cada punto de origen hasta cada punto de destino, que minimicen el costo total de envío, al mismo tiempo que satisfagan tanto los límites de la oferta como los requerimientos de la demanda. El modelo supone que el costo de envío de una ruta determinada es directamente proporcional al número de unidades enviadas en esa ruta. Sin embargo, algunas de sus aplicaciones importantes (como la Programación de la Producción) de hecho no tienen nada que ver con el transporte. El algoritmo de transporte sigue los pasos exactos del método simplex. Sin embargo, en vez de utilizar la tabla simplex regular, aprovechamos la estructura especial del modelo de transporte para presentar el algoritmo en una forma más conveniente.
Esta técnica es particularmente usada en organizaciones que producen el mismo producto en numerosas plantas y que envía sus productos a diferentes destinos (Centros de distribución, almacenes). También se aplica en distribución, análisis de localización de plantas y programación de la producción. Se han desarrollado diferentes enfoques para resolver este problema de distribución, tales como: El método de la esquina noroeste, el método modificado de la esquina noroeste (celda mínima), método del trampolín (Cruce de arroyo, stepping stone), método de la distribución modificada (MODI), método de aproximación de Vogel y el método simplex.
9
Es una técnica matemática computarizada que permite tener en cuenta el riesgo en análisis cuantitativos y tomas de decisiones. Esta técnica es utilizada por profesionales de campos tan dispares como los de finanzas, gestión de proyectos, energía, manufacturación, ingeniería, investigación y desarrollo, seguros, petróleo y gas, transporte y medio ambiente. La simulación Monte Carlo ofrece a la persona responsable de tomar las decisiones una serie de posibles resultados, así como la probabilidad de que se produzcan según las medidas tomadas. Muestra las posibilidades extremas los resultados de tomar la medida más arriesgada y la más conservadora así como todas las posibles consecuencias de las decisiones intermedias. La simulación Monte Carlo realiza el análisis de riesgo con la creación de modelos de posibles resultados mediante la sustitución de un rango de valores una distribución de probabilidad para cualquier factor con incertidumbre inherente. Luego, calcula los resultados una y otra vez, cada vez usando un grupo diferente de valores aleatorios de las funciones de probabilidad. 10
La simulación Monte Carlo produce distribuciones de valores de los resultados posibles. El análisis de riesgo se puede realizar cualitativa y cuantitativamente. El análisis de riesgo cualitativo generalmente incluye la evaluación instintiva o por corazonada de una situación, y se caracteriza por afirmaciones como eso parece muy arriesgado o probablemente obtendremos buenos resultados. El análisis de riesgo cuantitativo trata de asignar valores numéricos a los riesgos, utilizando datos empíricos o cuantificando evaluaciones cualitativas. Vamos a concentrarnos en el análisis de riesgo cuantitativo. Mediante el uso de distribuciones de probabilidad, las variables pueden generar diferentes probabilidades de que se produzcan diferentes resultados. Las distribuciones de probabilidad son una forma mucho más realista de describir la incertidumbre en las variables de un análisis de riesgo.
11