A Hybrid Plithogenic Decision-Making Approach with Quality Function Deployment for Selecting Supply

Page 1

AHybridPlithogenicDecision-MakingApproach withQualityFunctionDeploymentforSelecting SupplyChainSustainabilityMetrics

MohamedAbdel-Basset 1,*,RehabMohamed 1,AbdEl-NasserH.Zaied 1 andFlorentinSmarandache 2

1 DepartmentofOperationsResearch,FacultyofComputersandInformatics,ZagazigUniversity, Sharqiyah44159,Egypt

2 Math&ScienceDepartment,UniversityofNewMexico,Gallup,NM87301,USA

* Correspondence:analyst_mohamed@zu.edu.eg

Received:20June2019;Accepted:4July2019;Published:11July2019

Abstract: Supplychainsustainabilityhasbecomeoneofthemostattractivedecisionmanagement topics.Therearemanyarticlesthathavefocusedonthisfieldpresentingmanydifferentpointsof view.Thisresearchiscentredontheevaluationofsupplychainsustainabilitybasedontwocritical dimensions.Thefirstistheimportanceofevaluationmetricsbasedoneconomic,environmental andsocialaspects,andthesecondisthedegreeofdifficultyofinformationgathering.Thispaper aimstoincreasetheaccuracyoftheevaluation.Theproposedmethodisacombinationofquality functiondeployment(QFD)withplithogenicaggregationoperations.Theaggregationoperation isappliedtoaggregate:Firstly,thedecisionmaker’sopinionsofrequirementsthatareneededto evaluatethesupplychainsustainability;secondly,theevaluationmetricsbasedontherequirements; andlastly,theevaluationofinformationgatheringdifficulty.Tovalidatetheproposedmodel,this studypresentedarealworldcasestudyofThailand’ssugarindustry.Theresultsshowedthemost preferredandthelowestpreferredmetricsinordertoevaluatethesustainabilityofthesupply chainstrategy.

Keywords: supplychainsustainabilitymetrics;plithogeny;aggregationoperations;neutrosophicset; qualityfunctiondeployment

1.Introduction

Supplychainsustainabilityhasbeenoneofthemostattractiveanddynamicresearchtopicsinthe domainofsupplychainmanagementforalongtime.Theinfluenceofmanufacturingactivitiesto globalwarmingandtheconsumptionofnaturalresourcesassistedtheresearchersinconsideringthe importanceofthesupplychainoperation’ssustainability[1].Asaresultofincreasingcompetition, globalization,technologicalgrowthandhugecustomerexpectations,thesustainablesupplychain isasignificantgoaltoeachsupplychainineveryfield.Thesupplychainsustainabilitycanbe describedasthecapabilityofoperatingthebusinesswiththelongtermgoalofpreservingeconomic, environmentandsocietalwelfare[2].Amoregeneraldefinitionofsustainablesupplychaincouldbethe managementofsupplychainactivitiesinordertoimprovetheprofitabilitybytakingintoconsideration theenvironmentalimpactsandsocialaspects.Therefore,supplychainsustainabilityguarantees successandachievementsofthewholesupplychainmanagementinthelongterm.Underthe uncertaintycomponent,supplychainsustainabilitybecameamoreimportantgoalforcompanies.This explainswhymeasuringsupplychainsustainabilitymeanstoidentifypossiblestrategicdecisions undervarioussituations[3].

Symmetry 2019, 11,903;doi:10.3390/sym11070903

www.mdpi.com/journal/symmetry

symmetry SS Article

Theevaluationofsupplychainsustainabilityisaninterestingtopicbasedonmetricsin economic,environmentalandsocialscopes.Measuringsustainabilityofthesupplychainguides firmsinthedirectionofriskeliminationandstandards/guidelinesfollowing[4].Moreover, theadvantagesofevaluatingsupplychain(SC)sustainabilityarereducingcosts,increasingcompetence, supportingcompetitiveadvantagesandimprovingoperationalperformance[5].Thechallengesof measuringsupplychainsustainabilityare[6]:Themanagerialandorganizationalabsenceofthe inter-organizationalmetrics;thevarietyoftheorganization’sgoalsandobjectivesproducingdifferent measures;andthedifficultyinnon-traditionaldatagatheringthatreducetheSCperformance.

Thereareseveralstudiesinsupplychainsustainabilityassessmentincludingsupplychain sustainabilityriskandassessment[7],literaturereviews[8],multi-objectivemathematicalmodels forsustainablesupplychainmanagement[9]anddecisionmakingmodelsforasustainablesupply chain[10].Evaluatingsupplychainsustainabilityisamulti-criteriadecisionmaking(MCDM)problem, thereforetheevaluationmetricsmaybethecriteria,andthealternativesmaybeselectedbasedon thesesetsofmetrics.TherearesomelimitationsofSCsustainabilitystudies,suchasthefactthatthe researchersdonotconsiderthedifficultyofcollectingtheinformationforthemetricsthatwillmeasure thesustainability.Inaddition,onlyafewstudiesusethelinguisticvariablestoevaluatethemetrics, leadingtolessconsiderationontheuncertaintyorlackofinformation[11].Also,thereisthematterof thedecisionmaker’sprioritiesandcontradictiondegreebetweenmetricswhichleadstolessaccuracy ofresults.Inthecomicalindustry,Rajeev(2019)proposedaframeworktodescribetheevolutionof asustainablesupplychain[12].

Inthisresearch,mostoftheselimitationswereprocessedbytheproposedMCDMmodelthat assistsinmetricsselectionandtheweightingofsustainablesupplychain.Theproposedmodelis basedonacombinationofplithogenicaggregationoperationswithqualityfunctiondeployment(QFD). ThedetailsofthemodelhavebeenexplainedinSection 3.

QFDisoneofthemostpopulartechniquestoimprovequalityinordertomeetcustomer expectations.Thistoolcombinesallcustomerneedsineveryaspectoftheproduct,transformingthem intotechnicalrequirementssotheycanmeettheirexpectations[13].QFDrecordsgreatresultsin manyfields,suchasratingengineeringcharacteristics[14],thedesignofbuildingstructures[15], servicelevelmeasurements[16],industrydevelopment[17],productdevelopment[18],orsupplier selectionproblems[19].

Plithogenyreferstothecreation,developmentandprogressionofnewentitiesfromcomposition ofcontradictoryornon-contradictorymultipleoldentities[20].ItwasintroducedbySmarandache in2017asageneralizationofneutrosophy.Aplithogenicset(asageneralizationofcrisp,fuzzy, intuitionisticfuzzy,andneutrosophicsets)isasetwhoseelementsarecharacterisedbytheattribute values.Eachattributevaluehasitscontradictiondegreevalues c(vj,vD) between vj andthedominant (mostimportant)attributevalue vD.Thecontradictiondegreebetweenattributesassiststhemodel togainmoreaccurateresults.Theplithogenicset,logic,probabilityandstatisticsthatwerealso introducedbySmarandachein2017,areobtainedfromplithogeny,andtheyaregeneralizationsof neutrosophicsets,logic,probabilityandstatisticsrespectively.

Therestofthispapersisorganizedasfollows:InSection 2,thereisaliteraturereviewofsustainable supplychain,qualityfunctiondeployment,clarificationofplithogenicsets,andarecapitulationof neutrosophicsets.Section 3 presentstheproposedmodeltoevaluatethesustainablesupplychain. InSection 4,arealworldcaseisstudiedinordertoevaluatetheproposedmodel.Section 5 discusses theresultsofthiscase.Finally,theconclusionandsuggestionsforfutureworksendSection 6.

2.LiteratureReview

2.1.SupplyChainSustainability

Inthesupplychainmanagementfield,therearemanyconsiderationsthatneedtobetaken intoaccounttominimizethenegativeinfluenceofbusinessproductiontoenvironmentandsocial

Symmetry 2019, 11,903 2of21

e

ects.Theseconsiderationspushedforthestrategicdevelopmentsplansforsustainability[11]. Threedimensionsofsustainabilityareconsideredinthesupplychain,derivedfromcustomerand stakeholderdesires,whichareeconomic,environmentalandsocialaspectstomanagerawmaterials, informationandfinanceflows[21].Otherdefinitionsofsupplychainsustainabilityistheintegrationof anorganization’seconomic,socialandenvironmentaldimensionsbycoordinatingthebusinessprocess inordertoimprovetheorganization’sperformanceinthelongterm[22].Amorefocuseddefinition couldbesupplychainmanagementstrategiesandactivitiesconcerningsocialandenvironmental aspects,correlatedtotheproduction,distribution,designandsupplyofproductsandservices[23]. Theevaluationofsupplychainsustainabilitymetricsareattributesandrequirementsusedtomeasure thesupplychainperformanceconsideringeconomic,socialandenvironmentalfeatures[24].Table 1 summarizessomeofthestudiesonsupplychainsustainabilitymetricsandframeworks.

Table1. Studiesaboutsupplychainsustainabilitymetrics.

AuthorsScopeMethodologyMetrics

AkshayJadhav,StuartOrr, MohsinMalik(2018)[25]

ElkafiHassini,ChiragSurti, CorySearcy(2012)[4]

Yazdani,Morteza,Cengiz Kahraman,PascaleZarate, andSeziCevikOnar(2019)[26]

Supplychainorientation (SCO)

Developingsupplychain sustainabilitymetrics

Literaturereview analysis(SEManalysis)

Literaturereview

Co2emissionmanagement, communityengagement,supplier codesofconduct,wasteelimination, energyusageefficiency,waterusage efficiency,andrecycledmaterials practices,amongothers.

Percentofsuppliers,Percentof contracts,Percentofpurchase orders,Levelofstake-holdertrust bycategory

Rankingofsupplychain sustainabilityindicators

Qorri,Ardian,ZlatanMujki´c,and AndrzejKraslawski(2018)[27]

Searcy,Cory,ShaneM.Dixon,and W.PatrickNeumann(2016)[28]

Chen,Rong-Hui,YuanhsuLin, andMing-LangTseng[29]

Haghighi,S.Motevali,S.A. Torabi,andR.Ghasemi[30]

Multi-attributedecision making(QFDandGRA)

Measuringsupplychain sustainability performance Literaturereview

Analysisofperformance indicatorsinsupply chainsustainability

Sustainabledevelopment indicatorsinthe structureminerals industryinChina

EvaluationofSustainable SupplyChainNetworks

2.2.QualityFunctionDeployment(QFD)

Literaturereviewand reportanalysis

Combinesfuzzyset theory,theDelphi method,discrete multi-criteriamethod

Dataenvelopment analysistechnique

Quality,managingenvironmental systems,supplychainelasticity, businesssocialliability, transportationservicesituation, andfinancialconstancy.

Numberofcontributors,products, geographicalencompassing, strategicgoals,methods,tools, amongothers

Employeesnumber,profits, supplierestimation,trainingcost, amongothers

Solidwaste,Eco-efficiency, Healthandsafety,Energyuse, Investments,Landuseand rehabilitation,amongothers

Timedelivery,Supplierrejection rate,AmountofPollution, Customers’satisfaction, Servicequality,amongothers

• Area(1):Thecustomers’requirements(whatregion)thatconsistsoftwoindicators:Thecustomers’ requirementsandtheimportanceofeachofthem αi

• Area(2):Thequalitycharacteristicsordesignspecifications(howregion),composedoftwoparts: Thedesignspecificationsandthewayofdevelopment.

• Area(3):Therelationshipbetweencustomerrequirementsanddesignspecifications(whatversus howregion)byscore Cij = {0,1,3, ,9}

Symmetry 2019, 11,903 3of21
measurementfortheimprovementanddesign,ratherthanjustqualitycontrolinmanufacturing
Qualityfunctiondeployment(QFD)originatedinJapaninthe1960s.QFDestablishesquality
processes[31].TheQFDmethodisthelinkthatconnectsthecustomervoicetothedesignrequirement inordertorespondtheseexpectationseffectively.AsillustratedinFigure 1,thecomponentsofQFD areasfollows[32]:

:

customers’ requirements and the importance of each of them �� .

• Area (2): The quality characteristics or design specifications (how region), composed of two parts: The design specifications and the way of development.

Symmetry 2019, 11,903 4of21

• Area (3): The relationship between customer requirements and design specifications (what versus how region) by score �� = 0,1,3,…,9 .

• Area (4): This area is a combination of the value of the design specification, the acceptance level of it, and the score

• Area(4):Thisareaisacombinationofthevalueofthedesignspecification,theacceptancelevelof it,andthescore

S j = αi ∗ Cij (1)

�� = (�� ∗ �� ) (1)

• Area(5):Thecomparisonoftheproductandcompetitors,andhowmuchitsatisfiescustomerneeds.

• Area (5): The comparison of the product and competitors, and how much it satisfies customer needs.

• Area(6):Thecomparisonbetweeneachdesignspecification,andhowmuchtheirimprovement mayaffecteachother.

• Area (6): The comparison between each design specification, and how much their improvement may affect each other.

Figure 1. QFD structure Figure1. QFDstructure.

ThereareseveralstudiesthatcombineQFDwithothertechniquestoevaluatesupplychain sustainability,suchas:AhybridQFD–ANPapproachtodesignasustainablemaritimesupplychain[33]; integrationofQFDandgreyrelationalanalysis(GRA)inordertosolvecompounddecisionmaking complications[26];QFDandMCDMtechniquesinsupplierselectionproblems[34]. Dursunetal.(2018) consideredthecompetitionfactorintheprocessofnewproductdevelopmentusingQFD[35]. Acombinationofbest-worstmethod(BWM)andQFDwasproposedinordertodeterminetherelation betweencustomerrequirementsandengineeringcharacteristicsinMeietal.(2018)[36].

2.3.PlithogenicSetCharacteristics

Plithogenyistheformation,construction,development,germination,andevolutionofnew entitiesfromcombinationsofcontradictory(dissimilar)ornon-contradictorymultipleoldentities[37]. Aplithogenicset (P, A, V, d, c) isasetthatincludesnumerouselementsdescribedbyanumberof attributesA = {α1, α2, , αm}, m ≥ 1,whichhasavaluesV = {v1,v2, ,vn},for n ≥ 1.Therearetwo mainfeaturesofeachattribute’svalue,V.Thefirstistheappurtenancedegreefunction d(x,v) ofthe element x,withrespecttosomegivencriteria[38].Thecontradiction(dissimilarity)degreefunction c(v,D) isthesecondone,whichisrealizedbetweeneachattributevalueandthemostimportant (dominant)one.Thecontradictiondegreefunctionismainlythekeyelementoftheplithogenic aggregationoperations(intersection,union,complement,inclusion,andequality)thatincreasethe accuracyofaggregation.

LetAbeanon-emptysetofuni-dimensionalattributesA = {α1, α2, , αm}, m ≥ 1,andlet α ∈ A beanattributewithitsvaluespectrumtheset S,whereScanbedefinedasafinitediscreteset,

indicators: The
The customers’ requirements (what region) that consists of two

S = {s1, s2, ... , sl}, 1 ≤ l <∞,orinfinitelycountableset S = {s1, s2, ... , s∞},orinfinitelyuncountable (continuum)set S = ]a,b[, a < b,where ] ... [ isanyopen,semi-open,orclosedintervalfromthesetof realnumbersorfromothergeneralsets[39].

Let V beanon-emptysubsetof S,where V istherangeofallattributesof α’svaluesdefinedbythe expertsbasedontheapplication, V = {v1, v2, , vn} for n ≥ 1.Intheset V,thereisadominantattribute valuewhichisdeterminedbytheexpertsbasedonpreferencesandthenatureoftheapplication.

Eachattributevaluein V hasitsappurtenancedegree d(x,v) withrespecttosomecriteria.Thedegree ofappurtenancemaybeafuzzy,orintuitionisticfuzzy,orneutrosophicdegreeofappurtenancetothe plithogenicset.Therefore,theappurtenancedegree d(x,v) ofattributevalue v is:

∀x ∈ P, d: P × V → P([0,1]z),(2)

Therefore, d(x, v) isasubsetof[0,1]z,andP([0,1]z)isthepowersetof[0,1]z,wherez = 1,2,3, forfuzzy,intuitionisticfuzzy,andneutrosophicdegreesofappurtenancerespectively[19].

Let c: V × V → [0,1]betheattributevaluecontradictiondegreefunction c(v1, v2),representingthe dissimilaritybetweentwoattributevalues v1 and v2,andsatisfyingthefollowingaxioms:

c(v1, v1) = 0,contradictiondegreebetweentheattributevaluesanditselfiszero. c(v1, v2) = c(v2, v1),contradictiondegreefunctioncanbefuzzyCF,intuitionisticattributevalue contradictionfunction(CIF: V × V → [0,1]2),oraneutrosophicattributevaluecontradictionfunction (CN: V × V → [0,1]3).

2.4.NeutrosophicSet

Neutrosophyisanewbranchofphilosophy(generalizationofdialecticsandYinYangChinese philosophy),introducedbyFlorentinSmarandachein1980,whichstudiestheorigin,nature,andscope ofneutralities,aswellastheirinteractionswithdifferentideationalspectra.Neutrosophyisthe foundationofneutrosophiclogic,neutrosophicprobability,neutrosophicsets,andneutrosophic statistics.Neutrosophicsetdefinitionsareclearlystatedinthefollowing:

Definition1. [40]LetXbeauniversalsetofobjects,consistingofnon-specificelementsdefinedasx. AneutrosophicsetN ⊂ XreflectsasetsuchthateachelementxfromNischaracterizedbyTN(x)–the truth-membershipfunction,IN(x)–theindeterminacy-membershipfunction,andFN(x)–thefalsity-membership function.TN(x),IN(x)andFN(x)aresubsetsof[0 ,1+],sothethreeneutrosophiccomponentsareTN(x) ∈ [0 , 1+],IN(x) ∈ [0 ,1+]andFN(x) ∈ [0 ,1+].IN(x)isdepictsuncertainty,indeterminate,unidentified,orerror values.Thesumofthethreecomponentsis0 ≤ TN(x) + IN(x) + FN(x) ≤ 3+ .

Definition2. [41]LetXbeaspaceofpointsandx ∈ X.AneutrosophicsetNinXisrecognizedby atruth-membershipfunctionTN(x),anindeterminacy-membershipfunctionIN(x)andafalsity-membership functionFN(x),whereTN(x),IN(x)andFN(x)aresubsetsof]-0,1+[.TN(x):X → ]-0,1+[,IN(x):X → ]-0,1+[ andFN(x):X → ]-0,1+[.Thereisnorestrictiononthesummationofmembershipfunctions.Therefore,0−≤ sup TN(x) + supIN(x) + supFN(x) ≤ 3+

Definition3. [42]Let a = (a1, a2, a3); α, θ, β beasinglevaluedtriangularneutrosophicset,withtruth membershipTa(x),indeterminatemembershipIa(x),andfalsitymembershipfunctionFa(x)asfollows:

= a2 ootherwise (3)

Symmetry 2019
5of21
, 11,903
Ta(x) =            αa x a1 a2 a1 ifa
αa ifx
1
x ≤ a2

(5) where αa, θa, βa ∈ [0,1].Theyrepresentthehighesttruthmembershipdegree,thelowestindeterminacy membershipdegree,andthelowestfalsitymembershipdegree,respectively.

3.ProposedModel

Inthispaper,theauthorsproposedamodeltoevaluatethesupplychainsustainabilitymetrics basedonacombinationofqualityfunctiondeploymentandplithogenicaggregationoperations. ThismodelcombinesthebenefitsoftheQFDmethodtolinkcustomerneedswithdesignrequirements andplithogenicaggregationoperatorfeatures.Theusefulnessofthismodelderivesfromthe plithogenicaggregationoperation,becausethistechniqueensuresmoreaccurateresultsandtakes intoconsiderationthedegreeofuncertainty,whichisdefectiveinotherstudiesofthesameproblem. Thestepsoftheproposedmodelhavebeenexplainedindetailinthissectionanditisshownin Figure 2

❖ Step1: Firstofall,decisionmakers(DM)identifyaseriesofrequirementstoappraisethesupply chainsustainability.Themostpopularrequirementsofsupplychainsustainabilityevaluation aresummarizedinTable 2 ortheDMcanidentifyotherrequirementsbasedontheirstrategy. Theserequirementsmustreflecteconomic,socialandenvironmentalfeatureswhichiscalled triplebottomline(TPL).

Thedecisionmakersmeasuretheimportanceofeachrequirementbasedonthesupply chainstrategyusinglinguisticterms.

ThelinguisticscaleisdefinedtodescribetheassessmentofeachrequirementbytheDM. Inthismodel,thescaleissuggestedasatriangularneutrosophicscale,asshowninTable 3

❖ Step2: Usingplithogenicaggregationoperations,thedecisionmaker’sopinionsareaggregated basedonthecontradictiondegreeofeachrequirement.Thisstepincreasestheaccuracyofresults.

Definecontradictiondegree c ofeachrequirementwithrespecttothedominant. Plithogenicneutrosophicsetintersectionisdefinedasfollowing:

❖ Step3: Inordertofindthebestrequirementconsideringthesetofcriteria,thedistanceofeach requirementisfoundfromthebestandworstsolutions.

Symmetry 2019, 11,903 6of21
=             
θa
θ
Ia(x)
(a2 x+
(x a1)) (a2 a1) ifa1 ≤ x ≤ a2
a ifx = a2 (x a2+θa (a3 x)) (a3 a2) otherwise
=                 
(4) Fa(x)
(a2 x+βa (x a1)) (a2 a1) ifa1 ≤ x ≤ a2 βa ifx = a2 (x a2+βa (a3 x)) (a3 a2) ifa2 < x ≤ a3 1 otherwise
((ai1 , ai2, ai3),1 ≤ i ≤ n) p ((bi1
bi2
bi
)
) = ai1 F bi1 , 1 2 (ai2 F bi2) + 1 2
ai2
,
,
3
,1 ≤ i ≤ n
(
∨F bi2), ai2 ∨F bi3 ,1 ≤ i ≤ n (6) where F and ∨F arefuzzyt-normandt-conormrespectively. Theneutrosophicnumberistransformedintoacrispnumberusingthefollowingequation: S (a)= 1 8 (a1 + b1 + c1) × (2 + α θ β) (7)

Thebest(positive)idealsolution S+ andworst(negative)idealsolution S requiredefinition.

Forexample,inpricerequirements,thelowestvalueisdesired(bestidealsolution);onthe otherside,themaximumvalueistheworstidealsolution.Intheoppositeofthat,inprofit requirements,themaximumvalueispositiveandthelowestvalueisnegative.

TheformulaofEuclideandistanceisusedtofindthedistanceofeachrequirementtothe idealpositiveandidealnegativesolutions,asshowninEquations(8)and(9)[50].

Thesuperioralternativehasthesmallestdistancefromthepositiveidealsolution S+ and theworstalternativehasalargerdistancefromthenegativeidealsolution S .

❖ Step4: Theperformancescoreofeachrequirementisfoundinordertoweighteachofthem basedonEquation(10). Pi = Si S+ i Si (10)

Theperformancescoreisnormalizedtofindtheweightofeachrequirementthatsatisfies twoconstraintswhichare0 ≤ wi ≤ 1and wi = 1.

❖ Step5: Thedecisionmakersdefineacombinationofmetricsbyconsideringtherequirements selectedpreviouslyinstep1andtheTPL.Someoftheeconomicmetricsarecostreduction, transactioncosts,environmentalcosts,servicelevel,orsales.Theenvironmentalmetricsare environmentalpolicies,recyclingofwaste,airpollutionemission,solidwaste,waterconsumption, andsoon.Finally,thesocialdiminutionconsistsofworkingconditions,employeesatisfaction, governmentrelationships,employeetraining,andreputation,amongothers.

TheDMsdefinetherelationbetweeneachmetricandexplaineachrequirementusing linguistictermsasinTable 3

❖ Step6: Steps2–4arerepeatedontheevaluationmetrics.AsinStep2,theplithogenicaggregation operationisusedtocombinealldecisionmakers’judgmentsaboutdefinedmetrics.Then, Equations(8)and(9)areusedtoestablishthedistanceofeverymetricfromthebestandworst solutions.Theimportanceofeachmetricisdeterminedusingtheperformancescoreasin Equation(10).

❖ Step7: AsproposedinOsiro,Lauroetal.2018[11],thelimitationsofotherstudiesthatdonot considerthehardnessofdatagatheringofeachmetricneedtobeaddressed.Inthisstep,the difficultyinregardstothreedimensionsareevaluatedinrelationtoinformationaccessibility, humanresourcesandtimeneededforassessment,andotherrequiredresources[51].

Thedifficultyofassessmentmetricsdatacollectingbasedonthreedimensionsexplained bylinguisticvariablesareevaluated.

Theassessmentbasedonthecontradictiondegreetoobtainaccuracyofresultsare aggregated,andthenitscrispvalueisfound. Theirperformancescoreofdatacollectingdifficultybasedonthedistanceofbestand worstsolutionsarefound.

Step8: Inthisfinalstep,thegoalistocategorizethesetofsupplychainsustainabilitymetrics.

Symmetry 2019, 11,903 7of21
        m j=
Vi
       
        m j=
V
       
D+ i =
1
V+ j 2
0.5 (8) Di =
1
i V j 2
0.5 (9)

Symmetry 2019, 11,903 8of21

Symmetry 2019, 11, x FOR PEER REVIEW 7 of 21

TheperformancedegreefoundinStep4(theimportanceofeachmetric)andStep7 (thedifficultyofdatagathering)usingEquation(11)arenormalizedasproposedin (Osiro,Lauroetal.2018)[11].

vn = 1 1 + e v v σv (11)

 Step 1: First of all, decision makers (DM) identify a series of requirements to appraise the supply chain sustainability. The most popular requirements of supply chain sustainability evaluation are summarized in Table 2 or the DM can identify other requirements based on their strategy. These requirements must reflect economic, social and environmental features which is called triple bottom line (TPL).

where vn isthenormalizedvalue, v v isthedifferencebetweenthevalueandthemean, and σv isthestandarddeviation.

Thisistheresultifsupplychainsustainabilityevaluationmetricsarecategorizedaccording toFigure 3 basedontheimportanceofeachmetricanditsdifficultyofdatagathering.

The decision makers measure the importance of each requirement based on the supply chain strategy using linguistic terms.

Figure 2. Steps of the proposed model.

Symmetry 2019, 11, x FOR PEER REVIEW 10 of 21

Figure2. Stepsoftheproposedmodel.

The linguistic scale is defined to describe the assessment of each requirement by the DM. In this model, the scale is suggested as a triangular neutrosophic scale, as shown in Table 3.

 Step 2: Using plithogenic aggregation operations, the decision maker’s opinions are aggregated based on the contradiction degree of each requirement. This step increases the accuracy of results.

Define contradiction degree of each requirement with respect to the dominant. Plithogenic neutrosophic set intersection is defined as following: = ,1≤��≤��. (6) where ⋀ and

Figure3. Twodimentionsmodelcategorization.

Figure 3. Two dimentions model categorization.

4. Real World Case Study

In this paper, the proposed model has been illustrated in an application on Thailand’s sugar industry in order to measure the overall sustainability of this supply chain (Figure 4). The sugar industry in Thailand is considered one of the most important economic pillars. Thailand is the fourth largest sugar producer and second largest exporter in the world. In this application, four decision

Table2. Popularrequirementsofsupplychainsustainabilityevaluations.

RequirementAuthor

1Cost/profit

2Productquality

Govindan,Kannan,RoohollahKhodaverdi, andAhmadJafarian[43]

Osiro,Lauro,FranciscoR.Lima-Junior, andLuizCesarR.Carpinetti[44]

3EnvironmentalinfluencesHuang,SamuelH.,andHarshalKeskar[45]

4StabilityandconstancyKannan,Devika,etal.[46]

5InformationTechnology

Katsikeas,ConstantineS.,NicholasG.Paparoidamis, andEvaKatsikea[47]

6SocialaspectsMani,V.,RajatAgrawal,andVinaySharma[48]

7DeliveryaccuracyChang,Betty,Chih-WeiChang,andChih-HungWu[49]

Table3. Linguisticscale.

LinguisticVariableTriangularNeutrosophicScale

Nothing(N)((0.10,0.30,0.35),0.1,0.2,0.15)

VeryLow(VL)((0.15,0.25,0.10),0.6,0.2,0.3)

Low(L)((0.40,0.35,0.50),0.6,0.1,0.2)

Medium(M)(0.65,0.60,0.70),0.8,0.1,0.1)

High(H)((0.70,0.65,0.80),0.9,0.2,0.1)

Veryhigh(VH)((0.90,0.85,0.90),0.7,0.2,0.2)

Absolute(A)((0.95,0.90,0.95),0.9,0.10,0.10)

4.RealWorldCaseStudy

Inthispaper,theproposedmodelhasbeenillustratedinanapplicationonThailand’ssugar industryinordertomeasuretheoverallsustainabilityofthissupplychain(Figure 4).Thesugar industryinThailandisconsideredoneofthemostimportanteconomicpillars.Thailandisthefourth largestsugarproducerandsecondlargestexporterintheworld.Inthisapplication,fourdecision makers(DMs)wereassistedbytheirexperienceinsolvingsuchcasestoevaluatethesustainability ofThailand’ssugarindustry.Theyareexperiencedinmanufacturing(DM1),qualitycontrol(DM2), financeandpurchasing(DM3),andenvironmentalexpert(DM4).Themaingoalofthiscaseisto evaluateThailand’ssugarindustrysupplychainsustainabilitymetricsbasedontheirsignificanceand difficultydegreeofdatagathering.Initially,thefourexpertsidentifiedagroupofsevenrequirements forThailand’ssugarindustrysupplychainsustainabilityevaluation.Theyare:Profit(R1),costs(R2), deliveryreliability(R3),productdevelopment(R4),environmentalaspects(R5),productquality(R6), healthandsecurity(R7).

➢ TherequirementsbytheDMsbasedonlinguisticvariablesinTable 3 areevaluatedasatriangular neutrosophicvalue.TheevaluationisshowninTable 4

AsexplainedinStep2,theplithogenicaggregationoperationisusedtocombinealldecision makersjudgmentsabouttherequirementsbasedonthecontradictiondegreeofeachoneasin Table 5

➢ UsingEquation(6),theaggregationresultsareshowninTable 6 andthentheircrispvalueis foundusingEquation(7).

➢ In Steps3and4,thedistanceofpositiveandnegativeidealsolutionsarefoundusingthe EuclideandistanceasinEquations(8)and(9).Then,theperformancedegreeismeasuredas

Symmetry 2019, 11,903 9of21

mentionedinEquation(10)tofindtheweightvectorofthesevenrequirementsasshownin Table 7.

Thedecisionmakersdefineasetofsupplychainsustainabilitymetricswithrespecttoeconomic, environmental,andsocialdimensions(Table 8).Then,basedonlinguisticvariablesinTable 3, theDMsevaluatethemasspecifiedinTable 9

Table 10 showsthemetricsaggregationusingaplithogenicaggregationoperatoraccordingto eachrequirementandbasedonthecontradictiondegreeinTable 11.Then,theircrispvaluescan befound.

AsinSteps3and4,usingtheEuclideandistanceasinEquations(8)and(9),thedistanceofpositive andnegativeidealsolutionsarefound.Then,asmentionedinEquation(10),theperformance degreeismeasuredtofindtheweightvectorofthemetrics.TheirresultsareshowninTable 12. ➢

AsproposedinOsiro,Lauroetal.2018[11],thelimitationsofneglectingthedifficultyofdata gatheringofeverymetricisaddressed.Inthisstep,thedecisionmakersevaluatethedifficultyin regardstothreedimensions:Informationaccessibility,humanresourcesandtimeneededfor assessments,andotherrequiredresources,asshowninTable 13 ➢

Then,thedecisionmakersevaluationswereaggregatedusingaplithogenicaggregationequation asshowninTable 14: ➢

Equations(8)and(9)wereusedtofindthedistanceofeverymetricfromthepositiveideal solutionandnegativeidealsolution.Then,Equation(10)wasusedtocalculatetheperformance degree,asshowninthefourthcolumninTable 15. ➢ Finally,theperformancescorewasnormalizedusingEquation(11)thatrelatestometrics importanceanddifficultyofdatagathering.ThenormalizationresultsareshowninTable 16 ➢ Figure 5 showstheThailandsugarindustrysupplychainsustainabilitymetricsdistribution categorizedintworegionswhicharetheprioritizedmetricsandlessprioritizedmetricsbasedon thefourdecisionmaker’sevaluation.

Symmetry 2019, 11, x FOR PEER REVIEW 11 of 21

Figure4. Thailand’ssugarindustrysustainabilityrequirementsandmetrics.

Figure 4. Thailand’s sugar industry sustainability requirements and metrics.  The requirements by the DMs based on linguistic variables in Table 3 are evaluated as a triangular neutrosophic value. The evaluation is shown in Table 4.

Table 4. The evaluation of the requirements by four DMs. Requirement

Symmetry 2019, 11,903 10of21
R2 H VH M H
DM1 DM2 DM3 DM4 R1 VH H H M

Table4. TheevaluationoftherequirementsbyfourDMs.

RequirementDM1 DM2 DM3 DM4 R1 VHHHM R2 HVHMH R3 MHHVH R4 HMMH R5 HVHHM R6 HVHVHM R7 HMHM

Table5. Therequirementscontradictiondegree.

RequirementR1 R2 R3 R4 R5 R6 R7 Contradictiondegree 01/72/73/74/75/76/7

Table6. Theaggregationresultsofrequirements.

RequirementDM1∧p DM2 ∧p DM3 ∧p DM4 CrispValue R1 ((0.29,0.69,1),0.45,0.18,0.36)0.4727 R2 ((0.42,0.69,0.97),0.57,0.18,0.32)0.1664 R3 ((0.56,0.69,0.91),0.68,0.18,0.24)0.6130 R4 ((0.61,0.63,0.8),0.6,0.15,0.12)0.5942 R5 ((0.79,0.69,0.75),0.86,0.18,0.1)0.7192 R6 ((0.92,0.74,0.68),0.9,0.18,0.06)0.7781 R7 ((0.93,0.63,0.43),0.98,0.15,0.01)0.7015

Table7. Theweightsofrequirementsbasedonpositiveandnegativedistances.

Requirement Positive Distance Negative Distance Performance Score WeightRanking

R1 0.23230.408720.63760.15514 R2 0.46740.5380.53510.13025 R3 0.09140.02080.18540.04517 R4 0.10480.03980.27520.06696 R5 0.01460.08520.85370.20772 R6 0.07360.14420.66210.16113 R7 0.00270.06770.96160.23391 total --4.11071

Symmetry 2019, 11,903 11of21

Table8. Economic,environmentalandsocialmetrics.

DimensionMetrics

Economic

Commitmenttocostreduction(I1) Inventoryturnover(I2) Environmentalcosts(I3) Measurementtoolsandmethods(I4) Responsivenesstodemandchange(I5) Manufacturingcost(I6) Deliverycost(I7)

Environmental Wasteminimization(I8)

Airemission(I9) CO2 emission(I10) Recyclingofwaste(I11)

Social Noiselevel(I12) Customercomplaints(I13) Employeetraining(I14) Workingconditions(I15)

Table9. Theevaluationofmetrics.

MetricsR1 R2 R3 R4 R5 R6 R7

I1 VHAMMLML I2 LMHLLML I3 HVHLMVHLH I4 MMHVHHVHH I5 HHVHLVLMVL I6 MVHLVHVLVHVL I7 VHVHVHMVLHL I8 LVHLLVHLVH

I9 VLVLLMVHLVH

I10 VLVLLHVHMVH

I11 MLLVLVHLVH

I12 LLLVLMLH

I13 HLMLMLH

I14 HVHLVHVLHH I15 HHMMLHH

Symmetry 2019, 11,903 12of21

R1 ∧p R2∧p R3∧p R4

Table10. Theaggregationresultsofthemetrics.

R5∧p R6∧p R7

R1 R7 CRISP

I1 ((0.36,0.74,1),0.4,0.13,0.42)((0.1,0.43,0.9),0.29,0.1,0.4)((0.036,0.59,1),0.12,0.25,0.65)0.248

I2 ((0.12,0.49,0.96),0.34,0.13,0.5)((0.15,0.4,0.9),0.3,0.1,0.45)((0.03,0.5,0.99),0.13,0.1,0.69)0.2479

I3 ((0.52,0.48,0.87),0.43,0.15,0.39)((0.6,0.63,0.9),0.5,0.2,0.34)((0.4,0.6,0.97),0.28,0.17,0.54)0.3866

I4 ((0.46,0.7,0.94),0.6,0.15,0.32)((0.6,0.7,0.94),0.7,0.2,0.25)((0.4,0.7,0.97),0.5,0.18,0.41)0.4968

I5 ((0.43,0.63,0.92),0.6,0.18,0.3)((0.1,0.3,0.45),0.5,0.18,0.4)((0.43,0.5,0.8),0.43,0.18,0.46)0.3871

Symmetry 2019, 11, x FOR PEER REVIEW 16 of 21

I6 ((0.55,0.7,0.87),0.56,0.15,0.3)((0.2,0.4,0.62),0.5,0.2,0.37)((0.3,0.6,0.8),0.45,0.18,0.41)0.3953

I7 ((0.78,0.5,0.87),0.88,0.18,0.24)((0.3,0.4,0.7),0.7,0.14,0.24)((0.5,0.45,0.8),0.76,0.16,0.28)0.5191

I8 ((0.5,0.48,0.64),0.6,0.13,0.2)((0.75,0.7,0.8),0.7,0.18,0.2)((0.61,0.6,0.73),0.61,0.16,0.2)0.5484

I6 0.5763 0.4710 I7 0.3569 0.7095

I9 ((0.37,0.73,0.32),0.68,0.15,0.21)((0.8,0.7,0.8),0.7,0.18,0.18)((0.6,0.73,0.53),0.7,0.17,0.18)0.5464

I10 ((0.45,0.38,0.28),0.77,0.18,0.16)((0.9,0.8,0.8),0.8,0.18,0.13)((0.72,0.6,0.48),0.8,0.18,0.12)0.5607

I11 ((0.57,0.4,0.28),0.79,0.2,0.11)((0.9,0.7,0.85),0.8,0.18,0.1)((0.8,0.6,0.46),0.84,0.19,0.07)0.587

I12 ((0.57,0.33,0.29),0.8,0.13,0.09)((0.8,0.6,0.5),0.9,0.15,0.05)((0.78,0.5,0.28),0.9,0.14,0.04)0.5168

I13 ((0.82,0.49,0.3),0.93,0.13,0.57)((0.8,0.6,0.5),0.93,0.15,0.2)((0.9,0.53,0.24),0.97,0.14,0.2)0.5448

I14 ((0.17,0.7,0.46),0.95,0.13,0.02)((0.8,0.6,0.2),0.97,0.2,0.03)((0.8,0.6,0.17),0.99,0.2,0.007)0.5521

I15 ((0.97,0.63,0.4),0.99,0.15,0.003)((0.9,0.6,0.4),0.98,0.2,0.01)((0.99,0.61,0.14),1,0.17,0.001)0.6153

I8 0.4495 0.7418 I9 0.3129 0.5361 I10 0.2911 0.2197 I11 0.7216 0.8233 I12 0.2926 0.6903 I13 0.4316 0.4509 I14 0.6682 0.7648 I15 0.6958 0.595

Table11. Contradictiondegreeofmetrics. MetricsI1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12 I13 I14 I15 Contradiction degree 0 1 15 2 15 3 15 4 15 5 15 6 15 7 15 8 15 9 15 10 15 11 15 12 15 13 15 14 15

Figure 5 shows the Thailand sugar industry supply chain sustainability metrics distribution categorized in two regions which are the prioritized metrics and less prioritized metrics based on the four decision maker’s evaluation.

Figure 5. The categorization of Thailand’s sugar industry sustainability.

Figure5. ThecategorizationofThailand’ssugarindustrysustainability.

5. Results and Discussion

Based on the decision makers evaluations, the prioritize metrics to evaluate Thailand’s sugar industry sustainability are: Commitment to cost reduction (I1), environmental costs (I3), responsiveness to demand change (I5), manufacturing costs (I6), working conditions (I15) and CO2 emission (I10). In this case, the decision makers were considering the economic aspects more than social or environmental dimensions. The importance of commitment to cost reduction (I1), environmental costs (I3) and recycling of wastes (I11) gained the highest importance in value compared to other metrics, as shown in Figure 6. On the other side, recycling of the waste (I11), employee training (I14) and waste minimization (I8) were the most difficult gathering information metrics. However, the CO2 emission (I10), environmental costs (I3) and responsiveness to demand changes (I5) were the most available information that had the lowest difficulty of data gathering

Symmetry 2019, 11,903 13of21

Table12. Theperformancescorebasedonpositiveandnegativedistances.

MetricsPositiveDistanceNegativeDistancePerformanceScore

I1 0.11140.5139 0.8218

I2 0.45090.11150.1983

I3 0.02720.3753 0.9324

I4 0.26510.1370.3407

I5 0.37480.24670.3969

I6 0.2640.36660.5814

I7 0.38780.24280.385

I8 0.21350.1890.4696

I9 0.41510.21550.3417

I10 0.42940.20120.3191

I11 0.17490.45570.7226

I12 0.38550.1820.3207

I13 0.18540.1540.4537

I14 0.20980.42080.6673

I15 0.08350.2559 0.754

Table13. Theevaluationofinformationgatheringdifficulty.

Metrics Information Availability HumanResource andTime Additional ResourceRequired

I1 HLVH I2 MHH I3 HLL I4 MHH I5 LML I6 HHL I7 HLVH I8 MLVH I9 HML I10 HML I11 MLVH I12 HVHL I13 VHLL I14 HVHVH I15 HHH

Symmetry 2019, 11,903 14of21

Table14. Theaggregationresultsofinformationgatheringdifficulty. MetricsA ∧p B ∧p CCrispValue

I1 ((0.25,0.68,1),0.38,0.18,0.42) 0.4294

I2 ((0.37,0.64,0.96),0.69,0.18,0.25)0.5565

I3 ((0.2,0.4,0.85),0.42,0.13,0.35) 0.3516

I4 ((0.47,0.64,0.92),0.75,0.18,0.2)0.6014 I5 ((0.29,0.42,0.73),0.49,0.1,0.28) 0.3798

I6 ((0.43,0.5,0.76),0.66,0.15,0.2)0.488

I7 ((0.65,0.68,0.83),0.66,0.18,0.22)0.6102

I8 ((0.7,0.67,0.77),0.68,0.15,0.19)0.626 I9 ((0.56,0.49,0.6),0.74,0.13,0.14)0.5094

I10 ((0.6,0.49,0.55),0.78,0.13,0.12)0.506 I11 ((0.82,0.67,0.63),0.8,0.15,0.11) 0.6731

I12 ((0.77,0.55,0.53),0.84,0.15,0.09)0.6013 I13 ((0.78,0.48,0.38),0.83,0.13,0.07)0.5392

I14 ((0.97,0.8,0.72),0.85,0.2,0.04) 0.8124

I15 ((0.94,0.65,0.55),0.99,0.2,0.01 0.7437

Table15. Theperformancescoreofinformationgatheringdifficulty.

MetricsIdealPositiveIdealNegativePerformanceDegree

I1 0.76190.35940.1739

I2 0.69880.63380.352

I3 0.69880.35940.02197

I4 0.69880.63380.2496

I5 0.63380.35940.0743

I6 0.69880.35940.3789

I7 0.76190.35940.6231

I8 0.76190.35940.6624

I9 0.69880.35940.442

I10 0.69880.35940.1003

I11 0.76190.35940.7794

I12 0.76190.35940.601

I13 0.76190.35940.4467

I14 0.76190.69880.6923

I15 0.69880.69880.5

Symmetry 2019, 11,903 15of21

Symmetry 2019, 11,903

Table16. Normalizationofimportanceanddatagatheringdifficulty.

MetricsImportanceDifficultyofDataCollection

I1 0.80310.2762

I2 0.19130.4434

I3 0.87110.1692

I4 0.31190.3429

I5 0.36940.2018

I6 0.57630.4710

I7 0.35690.7095

I8 0.44950.7418

I9 0.31290.5361

I10 0.29110.2197

I11 0.72160.8233

I12 0.29260.6903

I13 0.43160.4509

I14 0.66820.7648

I15 0.69580.595

5.ResultsandDiscussion

Basedonthedecisionmakersevaluations,theprioritizemetricstoevaluateThailand’ssugar industrysustainabilityare:Commitmenttocostreduction(I1),environmentalcosts(I3),responsiveness todemandchange(I5),manufacturingcosts(I6),workingconditions(I15)andCO2 emission(I10).Inthis case,thedecisionmakerswereconsideringtheeconomicaspectsmorethansocialorenvironmental dimensions.Theimportanceofcommitmenttocostreduction(I1),environmentalcosts(I3)and recyclingofwastes(I11)gainedthehighestimportanceinvaluecomparedtoothermetrics,asshown inFigure 6.Ontheotherside,recyclingofthewaste(I11),employeetraining(I14)andwaste minimization(I8)werethemostdifficultgatheringinformationmetrics.However,theCO2 emission (I10),environmentalcosts(I3)andresponsivenesstodemandchanges(I5)werethemostavailable informationthathadthelowestdifficultyofdatagatheringdegreeasinFigure 7 Symmetry 2019, 11, x FOR PEER REVIEW 17 of 21

Figure 6. Metrics evaluation based on their importance Figure6. Metricsevaluationbasedontheirimportance.

16of21

Figure 6. Metrics evaluation based on their importance

Figure 7 Metrics evaluation based on difficulty of data collection

Figure7. Metricsevaluationbasedondifficultyofdatacollection.

AstheresultsofdistributionoftheThailandsugarindustrysustainabilitymetricswerecategorized basedonthesignificanceanddifficultyofdatagathering,thisstudyfoundthatthemostpreferred metricswere:Environmentalcost(I3),commitmenttocostreduction(I1)andrealizationtodemand change(I5),respectively,whichwerealleconomicmetrics.Itcanbeconcludedthattheeconomic metricsweremorecriticalthantheenvironmentalandsocialmetrics.Theseresultsarebasedonthe evaluationoffourdecisionmakers,whichmeansthatitisnotageneralresultforsimilarapplications.

As the results of distribution of the Thailand sugar industry sustainability metrics were categorized based on the significance and difficulty of data gathering, this study found that the most preferred metrics were: Environmental cost (I3), commitment to cost reduction (I1) and realization to demand change (I5), respectively, which were all economic metrics. It can be concluded that the economic metrics were more critical than the environmental and social metrics. These results are based on the evaluation of four decision makers, which means that it is not a general result for similar applications.

The main point in this paper is the plithogenic aggregation operation to group the decision maker’s opinions in a more accurate manner. The plithogenic aggregation is taking into consideration the contradiction degree that mainly increases the accuracy of the aggregation. This study aggregated the decision maker’s assessment of supply chain sustainability requirements, the evaluation of metrics importance, and measuring the difficulty of information gathering. Also, the difficulty of data

Themainpointinthispaperistheplithogenicaggregationoperationtogroupthedecision maker’sopinionsinamoreaccuratemanner.Theplithogenicaggregationistakingintoconsideration thecontradictiondegreethatmainlyincreasestheaccuracyoftheaggregation.Thisstudyaggregated thedecisionmaker’sassessmentofsupplychainsustainabilityrequirements,theevaluationofmetrics importance,andmeasuringthedifficultyofinformationgathering.Also,thedifficultyofdatagathering wasnotconsideredinmanyarticles,buttheauthorsfoundittobeacriticaldiminutiontobemeasured. Similarstudiesonthistopicdifferbasedonthemodelandthenatureoftheproblem.AsIgnatius, Joshua,etal.[52]proposed,theANP-QFDapproachwhichmainlyconsideredenvironmentalindicators inordertoensureagreenbuildingstructure.Ontheotherhand,Jamalnia, Aboozar,etal.[53] consideredeconomicmetricssuchascosts,rawmaterialandlabouravailabilitytosolveafacility locationproblemusingtheQFDmethod.Khodakarami,Mohsen,etal.[54]andIzadikhah,etal.[55] useddataenvelopmentanalysis(DEA)fortheevaluationofsupplychainsustainabilitybytakinginto accountmostlyeconomicandenvironmentalmetrics.Ahmadi,etal.[56]usedthebestworstmethod (BWM)toevaluatethesocialsustainabilityofsupplychainbyconsideringsocialindicatorsratherthan economicorenvironmentalaspects.

6.ConclusionsandFutureWorks

Duetostrictgovernmentrequestsandthehugestressfromthepublic,theconsideration ofsupplychainsustainabilitywasincreased[36].Sustainabledevelopmentisoneofthemost significantconditionsofsavingresourcesandkeepingthesupplychainphasesoperatingefficiently[57]. ThisexplainswhySSCMbecameoneofthemostimportantcompetitivestrategiesinorganizations[58]. Thisstudyproposedanefficientcombinationofplithogenicaggregationoperationswiththequality functiondeploymentmethod.Theadvantageofthiscombinationistheimprovementoftheaccuracy oftheresultswhileaggregatingtheassessmentsofthedecisionmakers.QFDproducedgreatresults

Symmetry 2019, 11,903 17of21

insupplychainsustainabilityevaluation.However,itdoesnotconsiderthedepthofdatagathering difficultywhichloosentheaccuracyoftheresults.Thesupplychainsustainabilityevaluationis acriticaltopicthatneedstobestudiedwithhighaccuracybyconsideringeconomic,environmental andsocialdimensions.

Thisstudyobservedtheproposedcombinedmodelinamajorrealworldcasestudy,whichwas Thailand’ssugarindustry.Basedonthenatureofthissupplychainstrategy,itssustainability requirementswasdefinedandmeasuredbyfourdecisionmakers.Theiropinionswereaggregated usingplithogenicaggregationoperatorbasedonthecontradictiondegreetomaximizetheaccuracy oftheaggregation.Inthesameway,themeasurementmetricswasdefinedbasedontheprevious requirementandincludedeconomic,socialandenvironmentaldimensionsevaluatedbytheDMs. Theresultsshowedthattheimportanceofcommitmenttocostreduction(I1),environmentalcosts(I3) andrecyclingofwastes(I11)gainedthemostimportantmetricscomparedtotherestofmetrics.Finally, thedifficultyofdatagatheringofthesemetricswasmeasuredandaggregated.Foreachdimensionof evaluation,thedistanceofthemetricstothebestandworstidealsolutionswascalculatedtofindthe importanceandthedegreeofinformationgatheringdifficulty.Theresultofthispointwasrecyclingof thewaste(I11),employeetraining(I14)andwasteminimization(I8)werethemostdifficultgathering informationmetrics.Moreover,theperformancedegreeofthemetricswasintendedandnormalized todistributethemetricsbasedonthetwodefineddimensions.Itcanbeconcludedthatthemost preferredmetricsbasedinbothdimensionsareenvironmentalcost(I3),commitmenttocostreduction (I1)andrealizationtodemandchange(I5).

Realcontributionsofthisproposedmethodology:

• Themaincontributionofthisproposedmodelliesinprovidingaccurateresultsofthedecision makersassessmentsbasedonthecontradictiondegreewhileapplyingtheaggregation.

• TheplithogenicaggregationoperationallowstheDMstoconsiderseveralexpertsopinionsin ordertomaximizetheefficiencyofthedecisionmaking.

• Also,itmeasuresthesupplychainsustainabilitybasedontwomajoraspects,thesignificanceof themetricsanditslevelofdifficultyofdatagathering,whichisreallyacriticalpointthataffects theevaluations.

• Usingatriangularneutrosophiclinguisticscaletoevaluatetherequirement,metricsand informationavailabilityimprovedthelevelofconsiderationtouncertainty,becauseitconfirms thebestrepresentationbyusingthethreemembershipdegreespositive,negativeandboundary areasofdecisionmaking.

• Theproposedmethodologyisefficientandhasahighaccuracydegreeindecisionmaking problems,Therefore,itisagreattoolthatmayhelpfirmsintheirestimationofcustomerneedsin additiontoevaluatingthesupplychainsustainabilityrequirements.

Infutureresearchdirections,thismodelmaybeusedinassessmentofothersupplychain strategiestoevaluatetheirsustainability.Inaddition,theplithogenicaggregationoperatorscouldbe combinedwithothertechniquestoevaluatethesupplychainsustainability.Finally,moreevaluation dimensionscouldbeaddedtotheimportanceanddifficultyofinformationgatheringtomeasure supplychainsustainability.

AuthorContributions: Allauthorshavecontributedequallytothispaper.Theindividualresponsibilitiesand contributionofallauthorscanbedescribedasfollows:TheideaofthiswholepaperwasputforwardbyM.A.-B. andR.M.,A.E.-N.H.Z.completedthepreparatoryworkofthepaper.F.S.analyzedtheexistingwork.Therevision andsubmissionofthispaperwascompletedbyM.A.-B.

Funding: “Thisresearchreceivednoexternalfunding”.

Acknowledgments: Theauthorswouldliketothanktheanonymousreferees,Chief-Editor,andsupportEditors fortheirconstructivesuspensionsandpropositionsthathavehelpedtoimprovethequalityofthisresearch.

ConflictsofInterest: Theauthorsdeclarenoconflictsofinterest.

Symmetry 2019, 11,903 18of21

References

1. Ageron,B.;Gunasekaran,A.;Spalanzani,A.Sustainablesupplymanagement:Anempiricalstudy. Int.J. Prod.Econ. 2012, 140,168–182.[CrossRef]

2. Hassini,E.;Surti,C.;Searcy,C.Aliteraturereviewandacasestudyofsustainablesupplychainswithafocus onmetrics. Int.J.Prod.Econ. 2012, 140,69–82.[CrossRef]

3. Fera,M.;Fruggiero,F.;Lambiase,A.;Macchiaroli,R.;Miranda,S.Theroleofuncertaintyinsupplychains underdynamicmodeling. Int.J.Ind.Eng.Comput. 2017, 8,119–140.[CrossRef]

4. Taticchi,P.;Tonelli,F.;Pasqualino,R.Performancemeasurementofsustainablesupplychains:Aliterature reviewandaresearchagenda. Int.J.Product.Perform.Manag. 2013, 62,782–804.[CrossRef]

5. Chithambaranathan,P.;Subramanian,N.;Gunasekaran,A.;Palaniappan,P.K.Servicesupplychain environmentalperformanceevaluationusinggreybasedhybridMCDMapproach. Int.J.Prod.Econ. 2015, 166,163–176.[CrossRef]

6. Hervani,A.A.;Helms,M.M.;Sarkis,J.Performancemeasurementforgreensupplychainmanagement. BenchmarkingInt.J. 2004, 14,330–353.[CrossRef]

7. Xu,M.;Cui,Y.;Hu,M.;Xu,X.;Zhang,Z.;Liang,S.;Qu,S.Supplychainsustainabilityriskandassessment. J.Clean.Prod. 2018, 225,857–867.[CrossRef]

8. Martins,C.L.;Pato,M.V.Supplychainsustainability:Atertiaryliteraturereview. J.Clean.Prod. 2019 [CrossRef]

9. Vafaeenezhad,T.;Tavakkoli-Moghaddam,R.;Cheikhrouhou,N.Multi-objectivemathematicalmodelingfor sustainablesupplychainmanagementinthepaperindustry. Comput.Ind.Eng. 2019.[CrossRef]

10. Tseng,M.L.;Wu,K.J.;Hu,J.;Wang,C.H.Decision-makingmodelforsustainablesupplychainfinanceunder uncertainties. Int.J.Prod.Econ. 2018, 205,30–36.[CrossRef]

11. Osiro,L.;Lima-Junior,F.R.;Carpinetti,L.C.Agroupdecisionmodelbasedonqualityfunctiondeployment andhesitantfuzzyforselectingsupplychainsustainabilitymetrics. J.Clean.Prod. 2018, 183,964–978. [CrossRef]

12. Rajeev,A.;Pati,R.K.;Padhi,S.S.Sustainablesupplychainmanagementinthechemicalindustry:Evolution, opportunities,andchallenges. Resour.Conserv.Recycl. 2019, 149,275–291.

13. Akkawuttiwanich,P.;Yenradee,P.FuzzyQFDapproachformanagingSCORperformanceindicators. Comput.Ind.Eng. 2018, 122,189–201.[CrossRef]

14. Li,S.;Tang,D.;Wang,Q.Ratingengineeringcharacteristicsinopendesignusingaprobabilisticlanguage methodbasedonfuzzyQFD. Comput.Ind.Eng. 2019.[CrossRef]

15. Eleftheriadis,S.;Duffour,P.;Mumovic,D.Participatorydecision-supportmodelinthecontextofbuilding structuraldesignembeddingBIMwithQFD. Adv.Eng.Inform. 2018, 38,695–711.[CrossRef]

16. Lee,C.K.;Ru,C.T.;Yeung,C.L.;Choy,K.L.;Ip,W.H.Analyzethehealthcareservicerequirementusingfuzzy QFD. Comput.Ind. 2015, 74,1–15.[CrossRef]

17. Eldermann,M.;Siirde,A.;Gusca,J.QFDframeworkforselectionofindustrydevelopmentscenarios. EnergyProcedia 2017, 128,230–233.[CrossRef]

18. Zaim,S.;Sevkli,M.;Camgöz-Akda˘g,H.;Demirel,O.F.;Yayla,A.Y.;Delen,D.UseofANPweightedcrisp andfuzzyQFDforproductdevelopment. ExpertSyst.Appl. 2014, 41,4464–4474.[CrossRef]

19. Abdel-Basset,M.;Manogaran,G.;Mohamed,M.;Chilamkurti,N.Three-waydecisionsbasedonneutrosophic setsandAHP-QFDframeworkforsupplierselectionproblem. FutureGener.Comput.Syst. 2018, 89,19–30. [CrossRef]

20. Smarandache,F. Plithogeny,PlithogenicSet,Logic,Probability,andStatistics;InfiniteStudy,2017;p.141.

21. Ahi,P.;Searcy,C.Assessingsustainabilityinthesupplychain:Atriplebottomlineapproach. Appl.Math.Model. 2015, 39,2882–2896.[CrossRef]

22. Closs,D.J.;Speier,C.;Meacham,N.Sustainabilitytosupportend-to-endvaluechains:Theroleofsupply chainmanagement. J.Acad.Mark.Sci. 2011, 39,101–116.[CrossRef]

23. Haake,H.;Seuring,S.Sustainableprocurementofminoritems–exploringlimitstosustainability. Sustain.Dev. 2009, 17,284–294.[CrossRef]

24. Linton,J.D.;Klassen,R.;Jayaraman,V.Sustainablesupplychains:Anintroduction. J.Oper.Manag. 2007, 25, 1075–1082.[CrossRef]

Symmetry
19of21
2019, 11,903

25.

Jadhav,A.;Orr,S.;Malik,M.Theroleofsupplychainorientationinachievingsupplychainsustainability. Int.J.Prod.Econ. 2008.[CrossRef]

26. Yazdani,M.;Kahraman,C.;Zarate,P.;Onar,S.C.Afuzzymultiattributedecisionframeworkwithintegration ofQFDandgreyrelationalanalysis. ExpertSyst.Appl. 2019, 115,474–485.[CrossRef]

27.

Qorri,A.;Mujki´c,Z.;Kraslawski,A.Aconceptualframeworkformeasuringsustainabilityperformanceof supplychains. J.Clean.Prod. 2018, 189,570–584.[CrossRef]

28. Searcy,C.;Dixon,S.M.;Neumann,W.P.Theuseofworkenvironmentperformanceindicatorsincorporate socialresponsibilityreporting. J.Clean.Prod. 2016, 112,2907–2921.[CrossRef]

29. Chen,R.H.;Lin,Y.;Tseng,M.L.Multicriteriaanalysisofsustainabledevelopmentindicatorsintheconstruction mineralsindustryinChina. Resour.Policy 2015, 46,123–133.[CrossRef]

30. Haghighi,S.M.;Torabi,S.A.;Ghasemi,R.Anintegratedapproachforperformanceevaluationinsustainable supplychainnetworks(withacasestudy). J.Clean.Prod. 2016, 137,579–597.[CrossRef] 31. Akao,Y.;Mazur,G.H.TheleadingedgeinQFD:Past,presentandfuture. Int.J.Qual.Reliab.Manag. 2003, 20,20–35.[CrossRef] 32. Moubachir,Y.;Bouami,D.AnewapproachforthetransitionbetweenQFDphases. ProcediaCIRP 2015, 26, 82–86.[CrossRef] 33. Lam,J.S.Designingasustainablemaritimesupplychain:AhybridQFD-ANPapproach. Transp.Res.PartE: Logist.Transp.Rev. 2015, 78,70–81.[CrossRef] 34. Yazdani,M.;Chatterjee,P.;Zavadskas,E.K.;Zolfani,S.H.IntegratedQFD-MCDMframeworkforgreen supplierselection. J.Clean.Prod. 2017, 142,3728–3740.[CrossRef]

35. Dursun,M.;Arslan,Ö.AnIntegratedDecisionFrameworkforMaterialSelectionProcedure:ACaseStudy inaDetergentManufacturer. Symmetry 2018, 10,657.[CrossRef] 36. Meksavang,P.;Shi,H.;Lin,S.M.;Liu,H.C.AnExtendedPictureFuzzyVIKORApproachforSustainable SupplierManagementandItsApplicationintheBeefIndustry. Symmetry 2019, 11,468.[CrossRef]

37. Smarandache,F.PlithogenicSet,anExtensionofCrisp,Fuzzy,IntuitionisticFuzzy,andNeutrosophic Sets–Revisited. NeutrosophicSetsSyst. 2018, 21,153–166.

38. Smarandache,F.PhysicalPlithogenicSet. APSMeetingAbstracts. 2018.

39. Smarandache,F.ExtensionofSoftSettoHypersoftSet,andthentoPlithogenicHypersoftSet. NeutrosophicSetsSyst. 2018, 24,168–170.

40. Liu,P.;Wang,Y.Multipleattributedecision-makingmethodbasedonsingle-valuedneutrosophicnormalized weightedBonferronimean. NeuralComput.Appl. 2014, 25,2001–2010.[CrossRef]

41. Abdel-Baset,M.;Hezam,I.M.;Smarandache,F.Neutrosophicgoalprogramming. NeutrosophicSetsSyst. 2016,11.

42. Rivieccio,U.Neutrosophiclogics:Prospectsandproblems. FuzzySetsSyst. 2008, 159,1860–1868.[CrossRef]

43. Govindan,K.;Khodaverdi,R.;Jafarian,A.Afuzzymulticriteriaapproachformeasuringsustainability performanceofasupplierbasedontriplebottomlineapproach. J.Clean.Prod. 2003, 47,345–354.[CrossRef]

44. Osiro,L.;Lima-Junior,F.R.;Carpinetti,L.C.Afuzzylogicapproachtosupplierevaluationfordevelopment. Int.J.Prod.Econ. 2014, 153,95–112.[CrossRef]

45. Kannan,D.;Khodaverdi,R.;Olfat,L.;Jafarian,A.;Diabat,A.Integratedfuzzymulticriteriadecisionmaking methodandmulti-objectiveprogrammingapproachforsupplierselectionandorderallocationinagreen supplychain. J.Clean.Prod. 2013, 47,355–367.[CrossRef]

46. Huang,S.H.;Keskar,H.Comprehensiveandconfigurablemetricsforsupplierselection. Int.J.Prod.Econ. 2007, 105,510–523.[CrossRef]

47. Katsikeas,C.S.;Paparoidamis,N.G.;Katsikea,E.Supplysourceselectioncriteria:Theimpactofsupplier performanceondistributorperformance. Ind.Mark.Manag. 2004, 33,755–764.[CrossRef]

48. Mani,V.;Agrawal,R.;Sharma,V.Supplierselectionusingsocialsustainability:AHPbasedapproachin India. Int.Strateg.Manag.Rev. 2014, 2,98–112.[CrossRef]

49. Chang,B.;Chang,C.W.;Wu,C.H.FuzzyDEMATELmethodfordevelopingsupplierselectioncriteria. ExpertSyst.Appl. 2011, 38,1850–1858.[CrossRef]

50. Liao,H.;Xu,Z.;Zeng,X.J.Distanceandsimilaritymeasuresforhesitantfuzzylinguistictermsetsandtheir applicationinmulti-criteriadecisionmaking. Inf.Sci. 2014, 271,125–142.[CrossRef]

51. Lima-Junior,F.R.;Carpinetti,L.C.AmulticriteriaapproachbasedonfuzzyQFDforchoosingcriteriafor supplierselection. Comput.Ind.Eng. 2016, 101,269–285.[CrossRef]

20of21
Symmetry 2019, 11,903

Symmetry 2019, 11,903 21of21

52. Ignatius,J.;Rahman,A.;Yazdani,M.;Šaparauskas,J.;Haron,S.H.AnintegratedfuzzyANP–QFDapproach forgreenbuildingassessment. J.Civ.Eng.Manag. 2016, 22,551–563.[CrossRef]

53. Jamalnia,A.;Mahdiraji,H.A.;Sadeghi,M.R.;Hajiagha,S.H.;Feili,A.AnintegratedfuzzyQFDandfuzzy goalprogrammingapproachforglobalfacilitylocation-allocationproblem. Int.J.Inf.Technol.Decis.Mak. 2014, 13,263–290.[CrossRef]

54. Khodakarami,M.;Shabani,A.;Saen,R.F.;Azadi,M.Developingdistinctivetwo-stagedataenvelopment analysismodels:Anapplicationinevaluatingthesustainabilityofsupplychainmanagement. Measurement 2015, 70,62–74.[CrossRef]

55. Izadikhah,M.;Saen,R.F.Evaluatingsustainabilityofsupplychainsbytwo-stagerangedirectionalmeasure inthepresenceofnegativedata. Transp.Res.PartDTransp.Environ. 2016, 49,110–126.[CrossRef]

56. Ahmadi,H.B.;Kusi-Sarpong,S.;Rezaei,J.AssessingthesocialsustainabilityofsupplychainsusingBest WorstMethod. Resour.Conserv.Recycl. 2017, 126,99–106.[CrossRef]

57. Mati´c,B.;Jovanovi´c,S.;Das,D.K.;Zavadskas,E.K.;Stevi´c,Ž.;Sremac,S.;Marinkovi´c,M.ANewHybrid MCDMModel:SustainableSupplierSelectioninaConstructionCompany. Symmetry 2019, 11,353.[CrossRef]

58. Abdel-Basset,M.;Mohamed,M.;Smarandache,F.AhybridneutrosophicgroupANP-TOPSISframework forsupplierselectionproblems. Symmetry 2018, 10,226.[CrossRef]

© 2019bytheauthors.LicenseeMDPI,Basel,Switzerland.Thisarticleisanopenaccess articledistributedunderthetermsandconditionsoftheCreativeCommonsAttribution (CCBY)license(http://creativecommons.org/licenses/by/4.0/).

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.