Research Methodology
2.1. Grey Numbers
Therefore,theremainingpartofthisarticleisorganizedasfollows—inSection 2, researchmethodologyispresentedwithsomebasicelementsofgreysettheoryandthe calculationproceduresoftheSWARAandPIPRECIAmethodsarepresented.In Section 3, anewapproachfortransformingrespondents’ratingsintoappropriategreyinterval numbersispresented,whileSection 4 presentstwonumericalillustrationsinwhichthe proposedapproachisapplied.Finally,conclusionsaregiven.
2.ResearchMethodology
2.1.GreyNumbers
TheGreySystemsTheoryisaneffectivemethodologythatcanbeusedforsolving uncertainproblemswithpartiallyknowninformation[47].Thebasicconceptofthistheory isthatallinformationisclassifiedintothreecategories,dependingontheiruncertainty, andtheappropriatecolorsareassignedtothemasfollows—knowninformationislabeled aswhite,unknowninformationislabeledasblack,andtheuncertaintyinformationis labeledgrey.Thewhite,blackandgreynumbersareshownonFigure 1.
The Grey Systems Theory is an effective methodology uncertain problems with partially known information theory is that all information is classified into three categories, uncertainty, and the appropriate colors are assigned information is labeled as white, unknown information uncertainty information is labeled grey. The white, black and Figure 1.
white number black number
grey number
Figure1. White,blackandintervalgreynumbers.
Figure 1. White, black and interval grey numbers.
Definition1. Greynumber[47].Agreynumber ⊗x issuchanumberwhoseexactvalueis unknown,buttherangeinwhichvaluecanliesisknown.
Definition 1. Grey number [47]. A grey number ⨂�� is such unknown, but the range in which value can lies is known.
Definition2. Intervalgreynumber[47].Intervalgreynumberisagreynumberwithknown lowerboundx andupperbound x,butwithunknownvalueofx,anditisshownasfollows:
Definition 2. Interval grey number [47]. Interval grey number lower bound �� and upper bound �� , but with unknown value of
Definition3. Basicoperationsofgreynumbers[34].Let ⊗x1 =[x1, x1] and ⊗x2 =[x2, x2] be twogreynumbers.Thebasicoperationsofgreynumbers ⊗x1 and ⊗x2 aredefinedasfollows:
Definition 3. Basic operations of grey numbers [34]. Let 1x ⊗ two grey numbers. The basic operations of grey numbers 1x ⊗
Mathematics 2021, 9,1554 3of16
⨂��∈ �� ,�� = �� ≤��≤��
⨂��
⨂�� +⨂�� = �� +�� ,�� +��
−⨂�� = �� −�� ,�� −�� x x x x = −∞ → x +∞ → x
⊗ x ∈ [x, x] = [x ≤ x ≤ x] (1)
⊗ x
⊗x
x
⊗x
·⊗ x
⊗x
1 + ⊗x2 = [x1 + x2, x1 + x2],(2)
1 −⊗
2 = [x1 x2, x1 x2],(3)
1
2 = [x1 x2, x1 x2],(4)
1 ÷⊗x2 = [x1, x1] 1 x2 , 1 x2 .(5)
Definition4. Thewhiteningfunction[48].Thewhiteningfunctiontransformsanintervalgrey numberintoacrispnumberwhosepossiblevaluesliebetweentheboundsoftheintervalgrey number.Forthegivenintervalgreynumber,thewhitenedvaluex(λ) ofintervalgreynumber ⊗x is definedas
x(λ) = (1 λ)x + λx,(6) where λ denotesthewhiteningcoefficient,and λ ∈ [0,1]
Intheparticularcase,when λ =0.5,thewhitenedvaluebecomesthemeanofthe intervalgreynumber,asfollows:
x(0.5) = 0.5(x + x) (7)
2.2.TheSWARAandthePIPRECIAMethods
ThebasicstepsofthecomputationalproceduresoftheSWARAandPIPRECIAmethodsfordeterminingcriteriaweightsbasedontheattitudesofarespondent,i.e.,decisionmakerorexpert,arepresentedinthissection.
2.2.1.TheSWARAMethod
Theprocedurefordeterminingweightsof n criteriabyapplyingtheSWARAmethod canbesummarizedasfollows[5,18]:
Step1.Identificationandselectionofcriteria; Step2.Sortingcriteriaaccordingtotheirexpectedsignificance,indescending order;and Step3.Determiningtherelativesignificanceofcriteria.Inthisstep,therelative significanceofthefirstcriterionissetto1,whiletherelativesignificanceoftheothers sj is determinedaccordingtothepreviousone.
IntheSWARAmethod, sj 1 hasavalue0ifcriterion j 1 hasthesamesignificance asthecriterion j, sj ∈ [0,1],andthelowervalueof sj 1 indicatesahighersignificanceof criterion j inrelationtocriterion j 1.
Step4.Calculatingthevalueofthecoefficient kj as: kj = 1 ifj = 1 sj + 1 ifj > 1 (8)
Step5.Calculatingthevalueoftherecalculatedsignificance qj asfollows: qj = 1 ifj = 1 qj 1 kj ifj > 1 (9)
Step6.Calculatingthecriteriaweights wj asfollows: wj = qj ∑n j=1 qk (10)
ThecalculationprocedureoftheSWARAmethod,fordeterminingthecriteriaweights, issummarizedinFigure 2.
Mathematics 2021, 9,1554 4of16
Criteria sorting
Criteria identification j = 1; kj = 1; qj = 1; j < n �� ≺��
Criteria comparation
False j += 1 sj = 0 �� ; �� ∈ 0,1 �� =�� +1 �� = �� −1 ��
True
�� = �� ∑ ��
Figure 2. Flowchart of the SWARA method.
Figure2. FlowchartoftheSWARAmethod.
2.2.2.ThePIPRECIAMethod
2.2.2. The PIPRECIA Method
The procedure for determining criteria weights by applying the PIPRECIA method can be summarized as follows [36]:
TheprocedurefordeterminingcriteriaweightsbyapplyingthePIPRECIAmethod canbesummarizedasfollows[36]:
Step1.Identificationandselectionofcriteria;
Step 1. Identification and selection of criteria; Step 2. Sorting criteria according to their expected significance, in descending order. This step is not strictly required in the PIPRECIA method. Unlike the SWARA method, the PIPRECIA method can be used even when it is not possible to assess the significance of the criteria in advance; and
Step2.Sortingcriteriaaccordingtotheirexpectedsignificance,indescendingorder. ThisstepisnotstrictlyrequiredinthePIPRECIAmethod.UnliketheSWARAmethod, thePIPRECIAmethodcanbeusedevenwhenitisnotpossibletoassessthesignificanceof thecriteriainadvance;and
Step3.Determiningtherelativesignificanceofcriteria.Inthisstep,therelative significanceofthefirstcriterionissetto1,whiletherelativesignificanceoftheothers sj is determinedconcerningthepreviousone.
Step 3. Determining the relative significance of criteria. In this step, the relative significance of the first criterion is set to 1, while the relative significance of the others �� is determined concerning the previous one.
Unlike the SWARA method, in the PIPRECIA method, �� =1 if criterion �� −1 has the same significance as the criterion �� , �� ∈(1,2 if criterion �� −1 has higher significance than criterion �� , and �� ∈(1,0 if criterion �� −1 has a lower significance than criterion �� .
UnliketheSWARAmethod,inthePIPRECIAmethod, sj 1 = 1 ifcriterion j 1 has thesamesignificanceasthecriterion j, sj ∈ (1,2] ifcriterion j 1 hashighersignificance thancriterion j,and sj ∈ (1,0] ifcriterion j 1hasalowersignificancethancriterion j
Step4.Calculatingthevalueofthecoefficientasfollows: kj = 1 ifj = 1 2 sj ifj > 1 (11)
Step 4. Calculating the value of the coefficient as follows: �� = 1���� �� =1 2−�� ���� �� >1 (11)
Step 5. Calculating the value of the recalculated significance as: �� = 1���� �� =1 ���� �� >1 (12)
Step5.Calculatingthevalueoftherecalculatedsignificanceas: qj = 1 ifj = 1 qj 1 kj ifj > 1 (12)
Step 6. Calculating the criteria weights as: �� = ∑ (13)
Step6.Calculatingthecriteriaweightsas: wj = qj ∑n j=1 qk (13)
Mathematics 2021, 9,1554 5of16 Mathematics 2021, 9, x FOR PEER REVIEW 5 of 16
The calculation procedure of the PIPRECIA method is shown in Figure 3.
ThecalculationprocedureofthePIPRECIAmethodisshowninFigure 3.
Criteria
Criteria sorting
Criteria comparation
Figure 3. Flowchart of the PIPRECIA method.
Figure3. FlowchartofthePIPRECIAmethod.
From the previously described procedures, it can be concluded that the basic difference between SWARA and PIPRECIA methods is in the way of assigning the relative importance of the criteria, which is manifested in Equation (11) of the calculation procedure of the PIPRECIA method.
Fromthepreviouslydescribedprocedures,itcanbeconcludedthatthebasicdifference betweenSWARAandPIPRECIAmethodsisinthewayofassigningtherelativeimportance ofthecriteria,whichismanifestedinEquation(11)ofthecalculationprocedureofthe PIPRECIAmethod.
InthecaseofapplyingtheSWARAmethod, sj showshowmuchlessimportanta criterionisthanthepreviousone,whichiswhyitisnecessarytopre-rankthecriteria accordingtotheirexpectedsignificance.Incontrast,thePIPRECIAmethodallowsthe relativesignificanceofthecriteriatobelessthan,equalto,orgreaterthanthesignificanceof thepreviouscriterion,whichiswhyinthecaseofapplyingthismethoditisnotnecessary torankthecriteriaaccordingtotheirexpectedsignificance.
In the case of applying the SWARA method, sj shows how much less important a criterion is than the previous one, which is why it is necessary to pre-rank the criteria according to their expected significance. In contrast, the PIPRECIA method allows the relative significance of the criteria to be less than, equal to, or greater than the significance of the previous criterion, which is why in the case of applying this method it is not necessary to rank the criteria according to their expected significance.
The use of the SWARA method has already been proven in numerous published papers. In contrast, the PIPRECIA method is proposed as an extension of the SWARA method that can be used when it is not possible to determine in advance the expected significance of the criteria, as in the case of surveying the attitudes of a large number of respondents using electronic questionnaires.
TheuseoftheSWARAmethodhasalreadybeenproveninnumerouspublished papers.Incontrast,thePIPRECIAmethodisproposedasanextensionoftheSWARA methodthatcanbeusedwhenitisnotpossibletodetermineinadvancetheexpected significanceofthecriteria,asinthecaseofsurveyingtheattitudesofalargenumberof respondentsusingelectronicquestionnaires.
Thereareseveralwaystoapplythepreviouslydescribedsingle-userprocedures SWARAandPIPRECIAmethodsinthecaseofsolvinggroupdecision-makingproblems. Nevertheless,anewapproachfortransformindividualcrispattitudesintoagreygroup attitudeisproposedanddiscussedbelow.
There are several ways to apply the previously described single-user procedures SWARA and PIPRECIA methods in the case of solving group decision-making problems. Nevertheless, a new approach for transform individual crisp attitudes into a grey group attitude is proposed and discussed below.
Mathematics 2021, 9,1554 6of16
PEER REVIEW 6 of 16
identification j = 1; kj = 1; qj = 1; j < n �� ≺�� False j += 1 sj = 1 �� ; �� ∈(0,1 �� =2−�� �� = �� ∑ �� True �� ≻�� True �� ; �� ∈(1,2
3.ANewGreyApproachforUsingSWARAandPIPRECIAMethodsinaGroup Decision-MakingEnvironment
Asmentionedabove,decision-makersorexpertsinvolvedingroupdecision-making assessthevaluesoftherelativesignificanceofcriteriaandexpressthesevaluesusingcrisp numbers.Asaresultofgroupevaluation, K listsofrelativesignificancesareformed,where K denotesthenumberofdecision-makersorexperts.
Insuchcases,inordertodeterminethecriteriaweights,itispossibleto:
• Calculatethegroupsignificanceasfollows: sj = 1 k ∑K k=1 sk j ,(14)
andthenapplytheSWARAorPIPRECIAmethod.
• Calculatethecriteriaweightsforeachrespondent wk j ,andthencalculatethegroup criteriaweightasfollows: wj = 1 k ∑K k=1 wk j (15)
However,inordertotakeadvantageofthebenefitsthatgreynumbersprovide,i.e., thepossibilityofanalysis,atransformationofrespondents’attitudesintogreyrelative groupsignificanceisproposed,usingthefollowingsteps:
Step1.Determinethemedianvalue mdnj foreachcriterion,asfollows: mdnj = median(sk j ) (16)
Step2.Determinethelower sj andupper sj boundsofgreyrelativegroupsignificance foreachcriterion,asfollows:
sj = mean(sk j |sk j ≤ mdnj ) (17)
sj = mean(sk j |sk j ≥ mdnj ) (18)
Step3.UsingEquation(6)anddifferentvaluesforthecoefficient λ,therelativegroup significancecanbedeterminedafterwhichthecriteriaweightscanbedeterminedusing theSWARAorPIPRECIAmethods.
Usingtheproposedapproach,theattitudesofalargernumberofrespondents,i.e.,a largernumberofcrispratings,canbetransformedintoagreyinterval,i.e.,onlytwocrisp numbers,withoutsignificantlossofinformation.
Thismeansthattheproposedapproachcanprovidesimilarresultstoapproachesin whichcrispnumbersareused,butitalsoprovidesanadditionalpossibilitytoconduct analyses.Thewordsimilarisusedherebecauseinthisapproachtheedgesoftheinterval areformedbasedonthemedianvaluesofthescorescollectedfromalltherespondents. Identicalweightsofthecriteria,whenthewhitenedvalueis0.5,couldbeachievedifthe limitsofthegreynumberwereformedonthebasisofthemeanvalueinsteadofthemedian valueofthecollectedrelativesignificances.However,inthisapproach,formingofthe greynumberbasedonthemedianvalueofcollectedrelativesignificanceswasselected becauseitbettermaintainsthedeviationfromthenormaldistributioninthecollected relativesignificances.
4.ANumericalIllustrations
Topresenttheproposedapproachindetail,aswellasitsverification,thissection presentstheresultsoftwostudiesconductedbyagroupof10masteranddoctoralstudentsfromtheFacultyofAppliedManagement,EconomicsandFinance(MEF),Belgrade, Serbia.Beforebeginningresearchaboutevaluationcriteriaforassessingthequalityof websites,studentsinvolvedintheresearcharethoroughlyintroducedusingtheSWARA andPIPRECIAmethods.
Mathematics 2021, 9,1554 7of16
4.1.TheFirstNumericalIllustration
Toverifyandexplaininmoredetailtheproposedapproach,astudywithdoctoral andmasterstudents,familiarwiththeuseofSWARAandPIPRECIAmethods,was conducted.Onthatoccasion,thesignificanceoffivecriteriaforevaluatingtraveland tourismwebsitedesignideas,suchasOntheGrid(https://onthegrid.city/ (accessed on1March2021)[49]),VisitAsia(https://www.visitasiatravel.com/ (accessedon1 March2021)[50]),VisitAustralia(https://www.australia.com/en (accessedon1March 2021)[51]),LiveAfrica(http://www.liveafrica.com/ (accessedon1March2021)[52]), BoraBora(https://www.borabora.com/ (accessedon1March2021)[53]),VisitSerbia (https://www.serbia.travel/en (accessedon1March2021)[54])andNationalParkDjerdap(https://npdjerdap.rs/en/ (accessedon1March2021)[55]),wasdetermined.
Basedon7criteriaproposedbythe2020WebAwardCompetition(http://www. webaward.org/ (accessedon1March2021)[56]),thatare,Design,Innovation,Content, Technology,Interactivity,Copywriting,andEaseofuse,thefollowingfivecriteriaare definedforevaluatingtravelandtourismwebsitedesignideas:
• Cr1,Availabilityofinformation;
• Cr2,Structureandnavigability;
• Cr3,Design;
• Cr4,Personalization;and
• Cr5,Innovations.
Onthatoccasion,ininteractionswiththerespondents,theirmeaningwasprecisely determined.Duringthisevaluation,wegavethefollowingmeaningtothecriteria— Criterion Cr1 referstotheavailabilityofusefulinformationaboutthetouristdestination onthewebsite,whilecriterion Cr2,Structureandnavigability,referstotheorganization ofinformationinsuchawaythatvisitorstothewebsitecaneasilyfindit.Thecriterion Cr3,Design,referstothevisualappearanceofthewebsiteanditssuccesstoconveythe beautyoftouristdestinations.The Cr4 criterionindicatestheabilitytotailorthewebsiteto theneedsofvisitors.Thiscriterionincludestheabilitytochoosethelanguageinwhich theinformationisdisplayed,theuseofsearchbars,aswellasresponsivewebdesign. Finally,thecriterion Cr5,Innovations,referstotheapplicationofcurrenttechnologiesand innovationsinwebdesign.
Afterchoosingthecriteria,andconsideringtheirsignificancesandimpact,duringa touroftheabove-mentionedwebsites,respondentsgavetheirattitudes,whichareshown inTable 1.Itshouldbenotedthattheabovecriteriaarelistedinorderoftheirexpected significance,whichisnecessaryfortheapplicationoftheSWARAmethod.
Table1. AttitudesofrespondentsasresultsoftheSWARAmethod.
E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 Mean
Cr1 1.001.001.001.001.001.001.001.001.001.001.00
Cr2 0.000.050.060.200.150.010.030.180.150.200.10
Cr3 0.150.100.100.200.200.050.100.200.150.200.15
Cr4 0.250.150.100.250.300.100.150.230.170.250.20
Cr5 0.250.200.200.300.400.150.150.250.200.300.24
Table 1 alsoshowsthemeanvalueoftheattitudesofallrespondentsforeachcriterion. Thecalculationdetailsandcriteriaweightsobtainedbasedonthemeanvalue,calculated byapplyingtheSWARAmethod,areencounteredinTable 2
Mathematics 2021, 9,1554 8of16
Table2. ComputationaldetailsandcriteriaweightsgeneratedbytheSWARAmethodbasedon meanvalues.
Mean kj qj wj ’ Rank
Cr1 1.00110.2571
Cr2 0.101.100.910.2332
Cr3 0.151.150.790.2033
Cr4 0.201.200.660.1704 Cr5 0.241.240.530.1375
Theindividualcriteriaweightscalculatedontheattitudesofeachrespondentare showninTable 3.Table 3 alsoshowsgroupcriteriaweightscalculatedastheaverageof individualcriteriaweights.
Table3. IndividualandgroupcriteriaweightscalculatedbytheSWARAmethod. we1 we2 we3 we4 we5 we6 we7 we8 we9 we10 wj ”
Cr1 0.240.240.240.280.280.220.230.280.260.280.256
Cr2 0.240.230.220.240.240.220.230.240.230.240.232 Cr3 0.210.210.200.200.200.210.210.200.200.200.203
Cr4 0.170.180.180.160.160.190.180.160.170.160.170 Cr5 0.140.150.150.120.110.160.160.130.140.120.138
FromTables 2 and 3,itcanbeseenthatbothapproachesgivethesamecriteria weights,aswellasthesamerankingorderofcriteriabasedontheirsignificance,thatis Cr1 Cr2 Cr3 Cr4 Cr5, whichconfirmsthattheexpectedsignificanceofthecriteria wascorrectlyassessed,aswellasthatallrespondentsfilledinthequestionnairescorrectly. Itisimportanttonoteherethattheevaluationwasperformedbyrespondentsfamiliar withthemethodsusedandthattheyenteredtheirviewsinaquestionnairemadeinthe spreadsheetprogramwhichimmediatelycalculatedcriteriaweightsanddisplayedvalues numericallyandgraphicallyafterenteringtherelativesignificanceofeachcriterion.Inthis way,therespondentswereabletocorrecttheirgradesifnecessary.Respondentswerealso suggestedthattheycouldmodifytheirresponsesuntiltheygainedcriteriaweightsthat reflectedtheirrealopinion.
DeterminingtheCriteriaWeightsBasedontheProposedGreyApproach
Determiningcriteriaweightsusingtheproposedapproachbeganbydetermining themedianvaluesforeachcriterion,afterwhichthelowerandupperboundsofthegrey numbersweredetermined.Themedian,lowerandupperboundsofgreynumbersare arrangedinTable 4.Table 4 alsoshowsthevaluesofrelativegroupsignificanceobtained byapplyingEquation(6)and λ =0.5,aswellasitsdeviationsfromthemean.
Table4. Median,left,andrightboundsofgreyratings.
mdnj s j s j s0.5 j ∆∆%
Cr1 0.240.240.240.280.280.22 Cr2 0.240.230.220.240.240.22 Cr3 0.210.210.200.200.200.21 Cr4 0.170.180.180.160.160.19 Cr5 0.140.150.150.120.110.16
Duetothecomplexityoftheprocedurefordeterminingtheleftandrightboundsof thegreyinterval,thecalculationwasperformedusingaprogramwritteninthePython programminglanguage.
Mathematics 2021, 9,1554 9of16
Thecriteriaweightsdeterminedbasedontheleftandrightboundariesofthegrey intervalareshowninTable 5.ThecriteriaweightscalculatedusingEquation(6)and λ =0.5 arealsoshowninTable 5.
Table5. Thecriteriaweightobtainedbasedongreyratings.
w j wj wj ”’
Cr1 0.2790.2340.257 Cr2 0.2370.2270.233 Cr3 0.2010.2050.203 Cr4 0.1600.1810.170 Cr5 0.1230.1530.137
Table 6 showsthecriteriaweightsobtainedbasedonthemeanvalueofrelative significance(wj ’),themeanvaluesoftheweightsobtainedbasedontherespondents’ attitudes(wj ”),andtheweightsobtainedbyapplyingtheproposedapproach(wj ”’).
Table6. Thecriteriaweightobtainedusingthreeapproaches.
wj’wj”wj ”’
Cr1 0.2570.2560.257 Cr2 0.2330.2320.233 Cr3 0.2030.2030.203 Cr4 0.1700.1700.170 Cr5 0.1370.1380.137
ItcanbenoticedfromTable 6 thatallthreeconsideredapproachesgivealmostthe samecriteriaweights.
Toverifytheapplicabilityoftheproposedapproachinthecaseofapplicationofthe PIPRECIAmethod,thevaluesinTable 1 wererecalculatedasfollows:
sj = 1 ifj = 1 1 sj ifj > 1
Thisrecalculationwasnecessaryduetodifferencesinthecalculationofthecoefficient kj,i.e.,inEquations(8)and(11),intheSWARAandPIPRECIAmethods.Thiswayofvalue transformationwaschosenbecausetheaimofthisresearchwasnottocomparetheresults obtainedusingtheSWARAandPIPRECIAmethodsbuttochecktheapplicabilityofthe proposedprocedure.TheresultsachievedusingSWARAandPIPRECIAcoulddifferto someextentbecausetherelativelyimportantfeatureistheassessmentoftherespondent. Eveninthecaseofre-evaluationusingsomeoftheabovemethods,certaindeviations mayoccur.
TherecalculatedvaluesfromTable 1 areshowninTable 7
Table7. AttitudesofrespondentsadaptedforapplyingthePIPRECIAmethod.
Cr1 1.001.001.001.001.001.001.001.001.001.001.00 Cr2 1.000.950.940.800.850.990.970.820.850.800.90 Cr3 0.850.900.900.800.800.950.900.800.850.800.86
Cr4 0.750.850.900.750.700.900.850.770.830.750.81 Cr5 0.750.800.800.700.600.850.850.750.800.700.76
Thevaluesobtainedusingthethreeapproaches,andthePIPRECIAmethod,aregiven inTables 8 10,whilethecomparisonofweightsobtainedusingthethreeapproachesis summarizedinTable 11
Mathematics 2021, 9,1554 10of16
(19)
E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 Mean
Table8. ComputationaldetailsandthecriteriaweightsobtainedbythePIPRECIAmethodbasedon meanvalues.
Mean kj qj wj ’
Cr1 1.00110.257
Cr2 0.901.100.910.233 Cr3 0.861.150.790.203 Cr4 0.811.200.660.170 Cr5 0.761.240.530.137
Table9. IndividualandgroupcriteriaweightscalculatedusingthePIPRECIAmethod.
e1 we2 we3 we4 we5 we6 we7 we8 we9 we10 wj ”
Cr1 0.240.240.240.280.280.220.230.280.260.280.256 Cr2 0.240.230.220.240.240.220.230.240.230.240.232
Cr3 0.210.210.200.200.200.210.210.200.200.200.203
Cr4 0.170.180.180.160.160.190.180.160.170.160.170 Cr5 0.140.150.150.120.110.160.160.130.140.120.138
Table10. Thecriteriaweightobtainedbasedongreyratings.
mdnj s j s j s0.5 j wj ”’
Cr1 1.0001.0001.0001.0000.257 Cr2 0.8950.8240.9700.8970.233 Cr3 0.8500.8170.8920.8540.203 Cr4 0.8000.7440.8660.8050.170 Cr5 0.7750.7000.8200.7600.137
Table11. Thecriteriaweightobtainedusingthreeapproaches. wj’wj”wj ”’
Cr1 0.2570.2560.257 Cr2 0.2330.2320.233 Cr3 0.2030.2030.203 Cr4 0.1700.1700.170 Cr5 0.1370.1380.137
AsinthecaseofusingtheSWARAmethod,itcanbeseenfromTable 11 thatallthree approachesgivealmostthesamecriteriaweights.
Finally,Table 12 showsacomparisonofcriteriaweightsobtainedusingtheSWARA andPIPRECIAmethods,theproposedgreyapproach,and λ =0.5.
Table12. ThecomparisonofcriteriaweightobtainedusingtheSWARAandPIPRECIAmethods.
SWARAPIPRECIA wj”’wj ”’
Cr1 0.2570.257 Cr2 0.2330.233 Cr3 0.2030.203 Cr4 0.1700.170 Cr5 0.1370.137
AscanbeseenfromTable 12,bothapproachesgivethesamecriteriaweights.
Mathematics 2021, 9,1554 11of16
4.2.TheSecondNumericalIllustration
Inthesecondpartoftheresearch,theaforementionedgroupofstudentsdetermined thesignificanceofthecriteriaforevaluatinge-commercewebsites,fromtheviewpointof first-timevisitors,usingthePIPRECIAmethod.Onthisoccasion,thesignificanceofthe followingcriteria,adoptedfromStanujkicandMagdalinovic[57],wasdetermined:
• Cr1,Designofthewebsite;
• Cr2,Easytouse;
• Cr3,Qualityandavailabilityofinformation;
• Cr4,Orderingprocess;and
• Cr5,Securityassurance.
Inthisevaluation,thefollowingmeaningswereassignedtotheabove-mentioned criteria.Criterion Cr1 referstothewebsite’sdesign,whilecriterion Cr2,Easytouse,refers tothepossibilityofeasilyfindingthedesiredproductandthepossibilityofsortingand selectingproducts.Criterion Cr3 referstotheinformationaboutproductsandorganization ofinformationtoenableeasierdecision-makingaboutorderingproducts.Criterion Cr4 referstothecomplexity,intuitiveness,andflexibilityoftheorderingprocess,whilecriterion Cr5,Securityassurance,referstotheassessmentoforderingsecurityfromthewebsitein thesensethattheywillactuallyreceiveproductsofappropriatequality,andthepossibility ofcomplaintsandthesecurityoftheirpersonalinformationandpaymentcardnumbers.
Afterdiscussingthemeaningoftheabovecriteria,alistthatcontainedfivee-commerce websites,thatnoneoftherespondentshadvisitedbefore,wasformed.Thislistofwebsiteswascompiledbythefollowingwebsites—www.eponuda.com (accessedon21March 2021)[58], www.gamecentar.rs (accessedon21March2021)[59], www.mi-srbija.rs (accessedon21March2021)[60], www.3gstore.rs (accessedon21March2021)[61],and www.lalafo.rs (accessedon21March2021)[62].
Theattitudesoftherespondentscollectedduringtheevaluationareshownin Table 13, aswellastheirmean.
Table13. Respondents’attitudesobtainedbasedontheuseofthePIPRECIAmethod.
E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 Mean
Cr1 1.001.001.001.001.001.001.001.001.001.001.00 Cr2 1.201.101.001.001.050.800.901.201.101.151.05 Cr3 1.201.001.001.201.101.201.201.201.201.301.16 Cr4 1.001.100.901.001.000.901.101.101.001.001.01 Cr5 1.101.101.101.001.001.050.901.001.001.001.03
Thecalculationdetailsandthecriteriaweightsobtainedbasedonthemeanvalueare encounteredinTable 14,whilethegroupcriteriaweights,calculatedbasedontheaverage ofindividualcriteriaweights,areshowninTable 15
Table14. ThecomputationaldetailsandthecriteriaweightsobtainedusingthePIPRECIAmethod basedonmeanvalues.
Mean kj qj wj ’
Cr1 1.00110.170 Cr2 1.050.951.050.179 Cr3 1.160.841.250.213 Cr4 1.010.991.270.216 Cr5 1.030.981.300.221
Mathematics 2021, 9,1554 12of16
Table15. IndividualandgroupcriteriaweightscalculatedbyapplyingthePIPRECIAmethod.
we1 we2 we3 we4 we5 we6 we7 we8 we9 we10 wj ”
Cr1 0.140.170.200.170.180.210.180.140.160.140.170
Cr2 0.180.190.200.170.190.170.170.170.180.160.179
Cr3 0.220.190.200.220.210.220.210.210.220.230.213
Cr4 0.220.210.180.220.210.200.230.240.220.230.216
Cr5 0.240.240.210.220.210.210.210.240.220.230.221
ThecriteriaweightsobtainedusingtheproposedapproachareshowninTable 16. Finally,thecomparisonsofweightsobtainedusingthreeapproachesarepresentedin Table 17.
Table16. Thecriteriaweightobtainedbasedongreyratings.
mdnj s j s j s0.5 j wj ”’
Cr1 1.0001.0001.0001.0000.169 Cr2 0.8950.8240.9700.8970.178 Cr3 0.8500.8170.8920.8540.216
Cr4 0.8000.7440.8660.8050.217 Cr5 0.7750.7000.8200.7600.220
Table17. Thecriteriaweightobtainedusingthreeapproaches.
wj’wj”wj ”’
Cr1 0.1700.1700.169 Cr2 0.1790.1790.178 Cr3 0.2130.2130.216 Cr4 0.2160.2160.217 Cr5 0.2210.2210.220
AscanbeobservedfromTable 17,allconsideredapproachesgavealmostthesame criteriaweights.
5.Conclusions
Aninnovativeapproachfordeterminingcriteriaweightsincaseofgroupdecisionmaking,usingSWARAorPIPRECIAmethods,isproposedinthisarticle.
Inthisapproach,itisproposedtotransformtherespondents’attitudesintoappropriategreyintervals,insteadoftransformingthemintocrispvalues.Usinggrey,instead ofcrisp,numbersprovidesmuchgreaterpossibilities,primarilyforperformingcertain analyses.Therefore,inthisarticle,twonumericalexampleswereconductedandthe justificationoftheproposedapproachisconfirmed.Also,byvaryingthevalueofthe whiteningcoefficient,differentweightsofthecriteriacanbeobtained,anditshouldbe emphasizedthatthisapproachgivesthesameweightsasinthecaseofcrispnumbers whenthewhiteningcoefficienthasavalueof0.5.
Thestudywasconductedwithagroupof10selectedrespondentsfromagroupof 25respondentswhowereinstructedtoapplytheSWARAandPIPRECIAmethods.
Theresultsobtainedbyapplyingtheproposedapproach,intheconsideredcases,are identicaltotheresultsobtainedbytheusedproceduresbasedontheapplicationofcrisp numbers.Besides,theresultsobtainedusingtheSWARAandPIPRECIAmethodsare thesameinallcasesconsidered,whichconfirmsthatthisapproachcanbeusedwiththe SWARAandPIPRECIAmethods.
Theadvantageofthisapproachisreflectedinthepossibilityofcombiningcrispand greynumbers,wherecrispnumbersareusedforcollectingtherespondents’attitudes, whilegreynumbersareusedforexpressingattitudesofallrespondentsthataregroup
Mathematics 2021, 9,1554 13of16
attitudes.Inthisway,thepossibilityofasimplecollectionofrespondents’attitudesand theadvantagesofgreynumbersiscombined,primarilyintermsofconductinganalyses.
Inaddition,inthisapproach,thegreynumberwasformedbasedonthemedian valueofcollectedresponsesbecauseitbettermaintainsthedeviationfromthenormal distributionofthecollectedresponses.
Theproposedapproachcanbeusedfordeterminingthecriteriaweightsaswellas forcompletelysolvingtheMCDMproblem.Finally,asadirectionforfutureresearch, theproposedapproachcanbeeasilyadaptedforapplyingtriangularfuzzynumbers,or eveninterval-valuedtriangularfuzzynumbers,i.e.,newextensionsforsolvingawider spectrumofcomplexreal-worldproblemscouldbeproposed.
AuthorContributions: Conceptualization,D.S.;methodology,D.S.andD.K.;validation,D.K.,G.P., P.S.S.andM.S.;formalanalysis,G.P.andP.S.S.;datacuration,M.S.,F.S.andV.N.K.;writing— originaldraftpreparation,F.S.,V.N.K.andA.U.;writing—reviewandediting,F.S.,V.N.K.andA.U.; supervision,D.S.;projectadministration,D.S.andD.K.Allauthorshavereadandagreedtothe publishedversionofthemanuscript.
Funding: TheresearchpresentedinthisarticlewasdonewiththefinancialsupportoftheMinistry ofEducation,ScienceandTechnologicalDevelopmentoftheRepublicofSerbia,withinthefunding ofthescientificresearchworkattheUniversityofBelgrade,TechnicalFacultyinBor,accordingto thecontractwithregistrationnumber451-03-9/2021-14/200131.
InstitutionalReviewBoardStatement: Notapplicable.
InformedConsentStatement: Notapplicable.
DataAvailabilityStatement: Thedatausedinthestudyweretakenfromrelatedstudiesin theliterature.
ConflictsofInterest: Theauthorsdeclarenoconflictofinterest.Thefundershadnoroleinthedesign ofthestudy;inthecollection,analyses,orinterpretationofdata;inthewritingofthemanuscript,or inthedecisiontopublishtheresults.
References
1. Shannon,C.E.Themathematicaltheoryofcommunication. BellSyst.Tech.J. 1948, 27,379–423.[CrossRef]
2. Saaty,L.T. TheAnalyticHierarchyProcess;McGrawHillCompany:NewYork,NY,USA,1980.
3. Diakoulaki,D.;Mavrotas,G.;Papayannakis,L.Determiningobjectiveweightsinmultiplecriteriaproblems:Thecriticmethod. Comput.Oper.Res. 1995, 22,763–770.[CrossRef]
4. Saaty,L.T.;Vargas,L.G. Models,Methods,Concepts&ApplicationsoftheAnalyticalHierarchyProcess;KluwerAcademicPublishers: Boston,MA,USA,2001.
5. Kersuliene,V.;Zavadskas,E.K.;Turskis,Z.Selectionofrationaldisputeresolutionmethodbyapplyingnewstep-wiseweight assessmentratioanalysis(SWARA). J.Bus.Econ.Manag. 2010, 11,243–258.[CrossRef]
6. Rezaei,J.Best-worstmulti-criteriadecision-makingmethod. Omega 2015, 53,49–57.[CrossRef]
7. Pamucar,D.;Stevic,Z.;Sremac,S.Anewmodelfordeterminingweightcoefficientsofcriteriainmcdmmodels:Fullconsistency method(FUCOM). Symmetry 2018, 10,393.[CrossRef]
8. Sałabun,W.TheCharacteristicObjectsMethod:ANewDistance-basedApproachtoMulticriteriaDecision-makingProblems. J. Multi-CriteriaDecis.Anal. 2015, 22,37–50.[CrossRef]
9. Piegat,A.;Sałabun,W.Identificationofamulticriteriadecision-makingmodelusingthecharacteristicobjectsmethod. Appl. Comput.Intell.SoftComput. 2014, 2014,536492.[CrossRef]
10. Sałabun,W.;Karczmarczyk,A.;W˛atróbski,J.Decision-makingusingthehesitantfuzzysetsCOMETmethod:Anempiricalstudy oftheelectriccitybusesselection.InProceedingsofthe2018IEEESymposiumSeriesonComputationalIntelligence(SSCI), Bangalore,India,18–21November2018;pp.1485–1492.
11. Faizi,S.;Sałabun,W.;Rashid,T.;W˛atróbski,J.;Zafar,S.Groupdecision-makingforhesitantfuzzysetsbasedoncharacteristic objectsmethod. Symmetry 2017, 9,136.[CrossRef]
12. Sałabun,W.;Karczmarczyk,A.;W˛atróbski,J.;Jankowski,J.HandlingdatauncertaintyindecisionmakingwithCOMET.In Proceedingsofthe2018IEEESymposiumSeriesonComputationalIntelligence(SSCI),Bangalore,India,18–21November2018; pp.1478–1484.
13. Brans,J.P.;Vincke,P.Apreferencerankingorganizationmethod:ThePROMETHEEmethodforMCDM. Manag.Sci. 1985, 31, 647–656.[CrossRef]
14. Figueira,J.;Greco,S.;Ehrgott,M. MultipleCriteriaDecisionAnalysis:StateoftheArtSurveys;Springer:NewYork,NY,USA,2005.
Mathematics 2021, 9,1554 14of16
15. Zolfani,S.H.;Saparauskas,J.NewapplicationofSWARAmethodinprioritizingsustainabilityassessmentindicatorsofenergy system. Eng.Econ. 2013, 24,408–414.[CrossRef]
16. Zolfani,S.H.;Zavadskas,E.K.;Turskis,Z.DesignofproductswithbothInternationalandLocalperspectivesbasedonYin-Yang balancetheoryandSWARAmethod. Econ.Res.-Ekon.Istraživanja 2013, 26,153–166.[CrossRef]
17. Ruzgys,A.;Volvaˇciovas,R.;Ignataviˇcius, C.;Turskis,Z.Integratedevaluationofexternalwallinsulationinresidentialbuildings usingSWARA-TODIMMCDMmethod. J.Civ.Eng.Manag. 2014, 20,103–110.[CrossRef]
18. Stanujkic,D.;Karabasevic,D.;Zavadskas,E.K.AframeworkfortheSelectionofapackagingdesignbasedontheSWARA method. Inz.Ekon.-Eng.Econ. 2015, 26,181–187.[CrossRef]
19. Zolfani,S.H.;Salimi,J.;Maknoon,R.;Kildiene,S.TechnologyforesightaboutR&Dprojectsselection;applicationofSWARA methodatthepolicymakinglevel. Eng.Econ. 2015, 26,571–580.
20. Dehnavi,A.;Aghdam,I.N.;Pradhan,B.;Varzandeh,M.H.Anewhybridmodelusingstep-wiseweightassessmentratioanalysis (SWARA)techniqueandadaptiveneuro-fuzzyinferencesystem(ANFIS)forregionallandslidehazardassessmentinIran. Catena 2015, 135,122–148.[CrossRef]
21. Karabasevic,D.;Stanujkic,D.;Urosevic,S.;Maksimovic,M.AnapproachtopersonnelselectionbasedonSWARAandWASPAS methods. BizinfoBlaceJ.Econ.Manag.Inform. 2016, 7,1–11.[CrossRef]
22. Panahi,S.;Khakzad,A.;Afzal,P.Applicationofstepwiseweightassessmentratioanalysis(SWARA)forcopperprospectivity mappingintheAnarakregion,centralIran. Arab.J.Geosci. 2017, 10,484.[CrossRef]
23. Valipour,A.;Yahaya,N.;MdNoor,N.;Antucheviˇciene,J.;Tamošaitiene,J.HybridSWARA-COPRASmethodforriskassessment indeepfoundationexcavationproject:AnIraniancasestudy. J.CivilEng.Manag. 2017, 23,524–532.[CrossRef]
24. Balki,M.K.;Erdo˘gan,S.;Aydın,S.;Sayin,C.TheoptimizationofengineoperatingparametersviaSWARAandARAShybrid methodinasmallSIengineusingalternativefuels. J.Clean.Prod. 2020, 258,120685.[CrossRef]
25. Baç,U.AnIntegratedSWARA-WASPASGroupDecisionMakingFrameworktoEvaluateSmartCardSystemsforPublic Transportation. Mathematics 2020, 8,1723.[CrossRef]
26. Yücenur,G.N.;Ipekçi,A.SWARA/WASPASmethodsforamarinecurrentenergyplantlocationselectionproblem. Renew.Energy 2021, 163,1287–1298.[CrossRef]
27. Ghenai,C.;Albawab,M.;Bettayeb,M.Sustainabilityindicatorsforrenewableenergysystemsusingmulti-criteriadecision-making modelandextendedSWARA/ARAShybridmethod. Renew.Energy 2020, 146,580–597.[CrossRef]
28. Juodagalviene,B.;Turskis,Z.;Šaparauskas,J.;Endriukaityte,A.Integratedmulti-criteriaevaluationofhouse’splanshapebased ontheEDASandSWARAmethods. Eng.Struct.Technol. 2017, 9,117–125.[CrossRef]
29. Majeed,R.A.;Breesam,H.K.ApplicationofSWARATechniquetoFindCriteriaWeightsforSelectingLandfillSiteinBaghdad Governorate.In IOPConferenceSeries:MaterialsScienceandEngineering;IOPPublishing:Bristol,UK,2021;Volume1090,p.012045.
30. Singh,R.K.;Modgil,S.SupplierselectionusingSWARAandWASPAS—AcasestudyofIndiancementindustry. Meas.Bus.Excell. 2020, 24,243–265.[CrossRef]
31. Rani,P.;Mishra,A.R.;Krishankumar,R.;Mardani,A.;Cavallaro,F.;SoundarapandianRavichandran,K.;Balasubramanian,K. HesitantFuzzySWARA-ComplexProportionalAssessmentApproachforSustainableSupplierSelection(HF-SWARA-COPRAS). Symmetry 2020, 12,1152.[CrossRef]
32. Cao,Q.;Esangbedo,M.O.;Bai,S.;Esangbedo,C.O.GreySWARA-FUCOMWeightingMethodforContractorSelectionMCDM Problem:ACaseStudyofFloatingSolarPanelEnergySystemInstallation. Energies 2019, 12,2481.[CrossRef]
33. Hassanpour,M.ClassificationofsevenIranianrecyclingindustriesusingMCDMmodels. Ann.Optim.TheoryPract. 2020, 3, 37–52.
34. Uluta¸s,A.;Karaku¸s,C.B.;Topal,A.LocationselectionforlogisticscenterwithfuzzySWARAandCoCoSomethods. J.Intell. FuzzySyst. 2020, 38,4693–4709.[CrossRef]
35. Zavadskas,E.K.;Stevi´c,Ž.;Tanackov,I.;Prentkovskis,O.Anovelmulticriteriaapproach–roughstep-wiseweightassessment ratioanalysismethod(R-SWARA)anditsapplicationinlogistics. Stud.Inform.Control 2018, 27,97–106.[CrossRef]
36. Stanujkic,D.;Zavadskas,E.K.;Karabasevic,D.;Smarandache,F.;Turskis,Z.Theuseofthepivotpairwiserelativecriteria importanceassessmentmethodfordeterminingtheweightsofcriteria. Rom.J.Econ.Forecast. 2017, 20,116–133.
37. Tomasevic,M.;Lapuh,L.;Stevic,Z.;Stanujkic,D.;Karabasevic,D.EvaluationofCriteriafortheImplementationofHighPerformanceComputing(HPC)inDanubeRegionCountriesUsingFuzzyPIPRECIAMethod. Sustainability 2020, 12,3017. [CrossRef]
38. Djalic,I.;Stevic,Z.;Karamasa,C.;Puska,A.AnovelintegratedfuzzyPIPRECIA—IntervalroughSAWmodel:Greensupplier selection. Decis.Mak.Appl.Manag.Eng. 2020, 3,126–145.
39. JaukovicJocic,K.;Jocic,G.;Karabasevic,D.;Popovic,G.;Stanujkic,D.;Zavadskas,E.K.;ThanhNguyen,P.Anovelintegrated PIPRECIA—Interval-valuedtriangularfuzzyARASmodel:E-learningcourseselection. Symmetry 2020, 12,928.[CrossRef]
40. Jaukovi´cJoci´c,K.;Karabaševi´c,D.;Joci´c,G.TheuseofthePIPRECIAmethodforassessingthequalityofe-learningmaterials. Ekonomika 2020, 66,37–45.[CrossRef]
41. Blagojevic,A.;Stevic,Z.;Marinkovic,D.;Kasalica,S.;Rajilic,S.Anovelentropy-fuzzyPIPRECIA-DEAmodelforsafety evaluationofrailwaytraffic. Symmetry 2020, 12,1479.[CrossRef]
42. Memi¸s,S.;Demir,E.;Karama¸sa,Ç.;Korucuk,S.Prioritizationofroadtransportationrisks:AnapplicationinGiresunprovince. Oper.Res.Eng.Sci.TheoryAppl. 2020, 3,111–126.[CrossRef]
Mathematics 2021
9,1554 15of16
,
43. Veskovi´c,S.;Milinkovi´c,S.;Abramovi´c,B.;Ljubaj,I.Determiningcriteriasignificanceinselectingreachstackersbyapplyingthe fuzzyPIPRECIAmethod. Oper.Res.Eng.Sci.TheoryAppl. 2020, 3,72–88.[CrossRef]
44. Karabasevic,D.;Radanov,P.;Stanujkic,D.;Popovic,G.;Predic,B.Goinggreen:StrategicevaluationofgreenICTadoptioninthe textileindustrybyusingbipolarfuzzyMULTIMOORAmethod. Ind.Text. 2021, 72,3–10.[CrossRef]
45. Uluta¸s,A.;Popovic,G.;Stanujkic,D.;Karabasevic,D.;Zavadskas,E.K.;Turskis,Z.ANewHybridMCDMModelforPersonnel SelectionBasedonaNovelGreyPIPRECIAandGreyOCRAMethods. Mathematics 2020, 8,1698.[CrossRef]
46. Stevic,Z.;Stjepanovic,Z.;Bozickovic,Z.;Das,D.K.;Stanujkic,D.Assessmentofconditionsforimplementinginformation technologyinawarehousesystem:Anovelfuzzypipreciamethod. Symmetry 2018, 10,586.[CrossRef] 47. Deng,J.L.IntroductiontoGreySystemTheory. J.GreySyst. 1989, 1,1–24. 48. Liu,S.;Yang,Y.;Forrest,J. GreyDataAnalysis:Methods,ModelsandApplications;Springer:Singapore,2016. 49. OntheGrid.Availableonline: https://onthegrid.city/ (accessedon1March2021). 50. VisitAsia.Availableonline: https://www.visitasiatravel.com/ (accessedon1March2021). 51. VisitAustralia.Availableonline: https://www.australia.com/en (accessedon1March2021). 52. LiveAfrica.Availableonline: http://www.liveafrica.com/ (accessedon1March2021). 53. BoraBora.Availableonline: https://www.borabora.com/ (accessedon1March2021). 54. VisitSerbia.Availableonline: https://www.serbia.travel/en (accessedon1March2021).
55. NationalParkDjerdap.Availableonline: https://npdjerdap.rs/en/ (accessedon1March2021).
56. 2020WebAwardCompetition.Availableonline: http://www.webaward.org/ (accessedon1March2021).
57. Stanujkic,D.;Magdalinovic,N.Amodelforevaluatione-commercewebsitesbasedonfuzzycompromiseprogramming.In Proceedingsofthe2012InternationalScientificConferenceContemporaryIssuesinBusiness,ManagementandEducation, VilniusGediminasTechnicalUniversity,Vilnius,Lithuania,15November2012;pp.532–544.
58. ePonuda.Availableonline: www.eponuda.com (accessedon21March2021).
59. GameCentar.Availableonline: www.gamecentar.rs (accessedon21March2021).
60. MiSrbija.Availableonline: www.mi-srbija.rs (accessedon21March2021).
61. 3GStore.Availableonline: www.3gstore.rs (accessedon21March2021).
62. Lalafo.Availableonline: www.lalafo.rs (accessedon21March2021).
Mathematics 2021, 9,1554 16of16