IN
In decision making problems with sub attributes Refined Plithogenic Neutrosophic Sets(RPNS) are efficiently used by considering their reality, indeterminacy and falsehood components. In this article a few concepts of RPNS along with union, intersection, complement and partial orders are introduced in a unique approach to cope up with uncertain and conflicting data. Some ideal properties of RPNS based on these perceptions have alsobeenstudied.Wewillimplementtheconceptinordertoevaluatetheefficacyoftheproposedmethodology ofRPNSinmulticriteriadecisionmakingwiththenumericalexamples.
Keywords: Plithogenic set, Neutrosophic Set, Refined Plithogenic Neutrosophic Set, Multi criteria decision making.
I. INTRODUCTION
Numerous concepts for dealing with ambiguity, inconsistency and incoherence have recently been implemented.Probabilistic theory, fuzzy set theory, intuitionist fuzzy set, rough set theory, etc. are constantly usedasimpactfultechniquestohandlewithvarioustypesofcomplexitiesandinaccuracyinembeddedmethod. Allthesehypothesesmentionedconsequentlyhavefailedtodealwithundefinedandcontradictoryinformation intheworldview.
FlorentinSmarandacheintroducedtheNeutrosophicset(NS)theoryin1998anditwasdevelopedfromanew field of study, namely Neutrosophy. NS is capable of managing volatility, indeterminacy and contradictory information. NS approaches are appropriate for analysing complexity, indeterminacy and contradictory informationproblemsinwhichtechnicalexpertiseisrequiredandhumanassessmentisessential.
Yager[21]firstproposedthemulti settheoryasarepresentationoftheframeworkofnumbertheory,andafter thatthemulti set wasestablishedbyCaludeetal [3].A varietyofgeneralizationsof themulti settheoryhave been made by many scholars from different perspectives. Sebastian and Ramakrishnan [9, 10] introduced a newtechniquetermedmultifuzzysets,whichisamulti setgeneralization.Eversince,manyresearchers[4,5, 6, 7] have addressed more multi fuzzy set properties and they expanded the idea of fuzzy multi sets to an intuitionistic fuzzy set called intuitionistic fuzzy multi sets (IFMS). Since then, many exemplary methods have been suggested by the researchers in the IFMS analysis [2, 6, 12, 20]. A multi fuzzy set component can occur quiteoftenwithpossiblythesameordifferentmembershipfunctions,althoughanintuitionisticfuzzymulti set techniquerequiresmembershipandnon membershipvaluestooccurfrequently.FMSandIFMSdefinitionsfail todealwithindeterminacy.
In 2013, by refining each neutrosophical component t, i, f into t1, t2, ..., ts and i1, i2, ..., ir and f1, f2, ..., fm Smarandache [17] generalized traditional neutrosophical logic to n value refined neutrosophical logic. The definitionofrefined(multi set)neutrosophicalsets(RNS)wasrecentlyusedbyDelietal.[3] Ye[20]andsome of their basic properties were studied by Said Broumi and Irfan Deli. RNS is the generalization of fuzzy multi setsandintuitionisticfuzzymulti sets.
Plithogeny which was introduced in 2017 by Florentine Smarandache is the origination, existence, development, growth and emergence of various entities from technologies and organic combinations of old objects that are conflicting and/or neutral and/or non contradictory. A plithogenic set P is a set whose membersarecharacterizedbyoneormoreattributesandtheremaybeseveralvaluesforeachattribute. The motive of this article is an attempt to study Plithogenic Neutrosophic Sets to Refined Plithogenic Neutrosophic Sets (RPNS). The manuscript is carried out in the following manner. In Section 2, we introduce some concepts and perceptions of PNS and RPNS theory which will support us in the subsequent study. We
www.irjmets.com @International
andScience [735]
ResearchJournalofModernizationinEngineering,Technology
e ISSN:2582 5208
InternationalResearchJournalof ModernizationinEngineering TechnologyandScience
Volume:03/Issue:05/May 2021 Impact Factor 5.354 www.irjmets.com
examinetheoperatorsofPNRSinSection3.Insection4,wemakeanapplicationforPNRSindecision making. Finally,weconcludethisarticlewiththefuturework.
II. PRELIMINARY CONCEPTS
Inthissection,werefertothenoteworthyfundamentalpreliminariesandinparticular,theworkofZadeh[23] Attanassov[1],AtiqeUrRahmanetal[2],I.Delietal[5]and Smarandache[15]whointroducedthePlithogenic Setwhichinvestigatesthecomplexitiesofseveraltypesofoppositesandtheirneutralsandnon opposites.
Definition 2.1 [15] Plithogenicset(PS)isageneralisationofacrispset,afuzzyset(FS),anintuitionisticfuzzy set (IFS) and a neutrosophic set (NS), while these four categories are represented by a single attribute value (appurtenance):singlevalue(belonging) foracrispsetandaFS,twovalues(belonging,non belonging) foran IFS, or triple values (belonging, non belonging and indeterminacy) for NS. In general, PS is a set whose membersaredeterminedbyasetofelementswithfourormorevaluesofattributes.
Definition 2.2 [8] LetUbeauniverseofdiscourse,andPanon emptysetofelements,P U,then (P, ,R,d,C)iscalledaPNSwhere Theattributeis =“appurtenance” ThesetofattributevaluesR={belonging,indeterminacy,non belonging},whosecardinal|R|=3; TheDominantAttributeValue=belonging; Theattributevalueappurtenancegradefunction: 0,1 : R P d , [0,1] ) , ( [0,1], ) , ( [0,1], ) , ( belonging non y d indeterminacy y d belonging y d with 3; ) , ( ) min det , ( ) , ( 0 nonbelonging y d acy er in y d belonging y d andtheattributevaluecontradictiongradefunction: [0,1], : R R C 0, , ( ) ( ) , ( nonbelonging nonbelonging C indeterminacy,indeterminacy C belonging belonging C 0, ) , ( nonbelonging belonging C 2, 1 ) , ( ) , ( indeterminacy nonbelonging c indeterminacy belonging C WhichmeansthatforthePNSaggregationoperators(Intersection,Union,Complementetc.),ifoneappliesthe norm onbelongingfunction,thenonehastoapplythe conorm onnon belonging(andmutually),whileon indeterminacyoneappliestheaverageof norm and conorm (i.e) ab b a b a fuzzy ab b a fuzzy f conorm f norm
III. REFINED PLITHOGENIC NEUTROSOPHIC SETS (RPNS) AND ITS OPERATORS
In this section we will consider some possible definitions for the fundamental concepts of the RPNS and its operators.
l x b
Definition 3.1 LetUbeauniverseofdiscourse,andPanon emptysetofelements,P U,then C D rpn , , , , where‘rpn’standsfor refinedplithogenicneutrosophiciscalled RPNSifatleastoneofthevaluesofattribute A ai issplitintotwoormoresubvaluesofattribute: A a a i i , , 2 1 ,withthesubvalueappurtenancedegree functionofattribute 1,2, , 0,1 P ) , ( 3 s for a z D si Definition 3.2 Asinglevaluedfinitelyrefined PNShastheform }. {1,2, } {1,2, , 1,2, 0,1, , ,
, , , ; , , ; , , , 2 1 2 1 2 1 l q and x j b k for N H M all and l x b with egers are l x b where N N N H H H M M M q j K
Theattribute =“appurtenance”. Thesetofattributevalues } , , ; , , ; , , { 2 1 2 1 2 1 l x b y y y e e e t t t A
4, , int 1 , ,
www.irjmets.com @InternationalResearchJournalofModernizationinEngineering,TechnologyandScience [736]
& .
e ISSN:2582 5208
InternationalResearchJournalof ModernizationinEngineering TechnologyandScience
Volume:03/Issue:05/May 2021 Impact Factor 5.354 www.irjmets.com
Where“t”meanssubmembership,“e”meanssubindeterminacy,“y”meanssubnon membership. Thedominantattributevalue(DAV)= bt t t , , 2 1 ;
Thevalueofattributeappurtenancedegreefunction: 0,1, : A P D
e e C t t C
5)
) ,1 ; 1 ; ,1 ( ) ,1 ; 1 ; ,1 (
1 0.75 0.5 0.25 0 deg bad very bad Fair good good very Appurtenance of Degree value Attribute ree disimilarity z ThePNSnegationandRPNAttributeValueSetfortheabovedataisgivenbelow.
0.2,0.5,0.7 0.9,0.1,0.6 0.2,0.8,0.5 0.4,0.6,0.3 0.2,0.3,0.1 ,
1 075 05 025 0 deg bad very bad Fair good good very Appurtenance of Degree value Attribute ree disimilarity z
7 5,0 2,0 0 6 1,0 9,0 0 5 8,0 2,0 0 4,06,03 0 1 2,03,0 0 ,
1 075 5 0 25 0 0 deg bad very good below Fair bad above good very Appurtenance of Degree value Attribute ree disimilarity
0.2,0.5,0.7 0.9,0.1,0.6 0.2,0.8,0.5 0.4,0.6,0.3 0.2,0.3,0.1 ,
www.irjmets.com @International
Journal
andScience [737]
Research
ofModernizationinEngineering,Technology
;
,
1
l x
e
t
z
e z
t z
q z l q j z x j x z b k q j x
0
, 0,1, ) , ( 0,1, ) , ( 0,1, ) , (
1 1
b y D
D
D with q j x all for y
D
D
D
q
,
l
j
q
3.2.1 RPNS intersection l q h v w o w o u x g r l q h x j w u x g l q v x j o u x r q f q j f j j f j x f x q j x RPNS q j x
f x
q
x
a q a q j a j x a x q j x RPNS q j x
w u x
l q v x j
Andthevalueofattributedissimilarityfunction: forall y y C u x r
q j j k k 0, ) , ( ) , ( ) , ( 2 1 2 1 1 1
, 5, 0 ) , ( 1, ) , ( 1, ) , ( }; {1,2, , } {1,2, , , 1,2, , 2 1 2 1 2 1 q j x all for e y C e t C y t C
q q and x j j b k k
q j k
k
,1 , 5* ;0 ,1 ) ,1 ; 1 ; ,1 ( ) ,1 ; 1 ; ,1 ( 3.2.2 RPNS union l q h v w o w o u x g r l q h x j w u x g l q v x j o u x r q f q j f j j f j x
q j x RPNS
j
,1 , 5* ;0 ,1 ) ,1 ; 1 ; ,1 ( ) ,1 ; 1 ; ,1 ( 3.2.3 RPNS Complement
), ,1 ; ,1 ; ,1 ; ,1 ( ,1 ; ,1 ; ,1 u x r N l q v x j o H l q v M l q v N x j o H b x r M RPNS x q q j j q x q q j j x x
Whereall x M =subtruths,all j H =subindeterminacies,andall qN =subfalsehoods. 3.2.4 RPNS Inclusions (Partial orders)
[0,0 , 1 1 , 1
C where h C v all and w C o all g C r all if only and if l q h x j
g
o
isthedissimilaritydegreebetweenthevaluesofattribute a If aC doesnotoccur,wewilltakeitaszeroby default.
IV. NUMERICAL EXAMPLE
In this section, we refine the existing attributes into sub attributes in order to achieve a better accurateness whichreallyhelpstomakedecisionswhenattemptingtodealwithmulti attributescenarios. (i)ConsideraUniattribute“Evaluation”(of5attributevalues)PNSforselectingtheCandidateinaninterview isrepresentedby
PN =
z PN
e ISSN:2582 5208
InternationalResearchJournalof ModernizationinEngineering TechnologyandScience
Volume:03/Issue:05/May 2021 Impact Factor 5.354 www.irjmets.com
Therefore,theoriginalattributeset
very bad fair good good very A , , , ,
Andhasbeenpartiallyrefinedinto verybad belowgood fair abovebad good very A fined , , , , Re Where , , bad good belowgood abovebad (ii)Considerauni attribute(of4attributevalues)PNSfortheattribute“Proficiency”ofselectingthestudents inaclassthathasthefollowingattributevalues:Excellent(thedominantone),good,average,poor.
Appurtenance of Degrees
1 75 0 5 0 0
Excellent good average poor AttributeValues contradiction of Degrees
6) 9,0 8,0 (0 4) 3,0 9,0 (0 6) 8,0 4,0 (0 4) 3,0 2,0 (0
Nowletusintroducethecomponent'best'asarefinementoftheprecedingtablewhichistabulatedbelow
1 9 0 8 0 5 0 3 0 1 0 0 Appurtenance of Degree
contradiction of Degree
Excellent best good Average good anti lessaverage best anti poor above poor Attributevalues
6) 9,0 8,0 (0 7) 6,0 5,0 (0 4) 3,0 9,0 (0 6) 8,0 4,0 (0 4) 2,0 8,0 (0 6) 5,0 4,0 (0 4) 3,0 2,0 (0 ) ( ) (
Thecomplementoftheattributevalue“Excellent”whichis80%dissimilaritywith“good”,willbeanattribute valuewhichis1 0.8=0.2=20%dissimilaritywith“Excellent”,soitwillbeequalto Average Excellent 2 1 .Letus callit“lessaverage”,whosedegreeofappurtenanceis 3). 2,0 8,0 (0 4 3,0 9,0 0 1
Iftheattribute“Proficiency”hasothervalues“Excellent”beingthedominant. Thenegationofbestis1 0.9=0.1=10%dissimilaritydegreewiththedominantattributevalue“Excellent”,so itisinbetweenExcellentandAverage,wemaysayitisincludedintotheattributevalueinterval average Excellent , muchclosertoExcellentthantoAverage.Letuscall “abovepoor”,whosedegreeof appurtenanceis (0.7,0.8,0.3). 0.8,0.9,0.4 1
V. CONCLUSION AND FUTURE WORK
Inthisarticle,wehavedefined the RPNS byintroducingitscoreoperators. Wehavepresent anapplicationof RPNS in multi criteria decision making. In future work, we will extend this concept to study the correlation measuresofRPNSandalsoitselementaryproperties.
VI. REFERENCES
[1] K.T.Atanassov,IntuitionisticFuzzySet.FuzzySetsandSystems,20(1),87 86,1986.
[2] Atiqe Ur Rahman, Muhammad Rayees Ahmad, Muhammad Saeed, Muhammad Ahsan, Muhammad Arshad, Muhammad Ihsan, A study on fundamentals of Refined intuitionistic fuzzy set with some properties,Journaloffuzzyextensionandapplications,1(4),300 314,2020.
[3] C.S.Calude,G. Paun, G.Rozenberg,A. Saloma,Lecture notesin computerscience: MultisetProcessing Mathematical, Computer Science, and Molecular Computing Points of View, 2235, Springer, New York,2001.
[4] S. Das, M. B. Kar and S. Kar, Group multi criteria decision making using intuitionistic multi fuzzy sets, JournalofUncertaintyAnalysisandApplications,10(1),1 16,2013.
[5] I. Deli, S. Broumi and F. Smarandache On Neutrosophic refined sets and their applications in medical diagnosis,Journalofnewtheory,88 98,2015.
[6] P.A.Ejegwa,J.A.Awolola,IntuitionisticFuzzyMultiset(IFMS)InBinomialDistributions,International JournalofScientificandTechnologyResearch,3(4),335 337,2014.
[7] R.MuthurajandS.Balamurugan,Multi FuzzyGroupanditsLevel Subgroups,Gen.Math.Notes,17(1), 74 81,2013.
[8] S.P. Priyadharshini, F. Nirmala Irudayam Plithogenic Neutrosophic set and Plithogenic Neutrosophic TopologicalSpaces(Submitted),2021.
www.irjmets.com @International
[738]
ResearchJournalofModernizationinEngineering,TechnologyandScience
bad
e ISSN:2582 5208
InternationalResearchJournalof ModernizationinEngineering TechnologyandScience
Volume:03/Issue:05/May 2021 Impact Factor 5.354 www.irjmets.com
[9] S. Sebastian and T. V. Ramakrishnan, Multi fuzzy extension of crisp functions using bridge functions, AnnalsofFuzzyMathematicsandInformatics,2(1),1 8,2011.
[10] S.SebastianandT.V.Ramakrishnan,Multi FuzzySets,InternationalMathematicalForum,5(50),2471 2476,2010.
[11] S.SebastianandT.V.Ramakrishnan,Multi fuzzySubgroups,Int.J.Contemp.Math.Sciences,6(8),365 372,2011.
[12] T.K.ShinojandS.J.John,Intuitionisticfuzzymulti setsanditsapplicationinmedicaldiagnosis,World AcademyofScience,EngineeringandTechnology,6,01 28,2012.
[13] P.K. Singh, “Plithogenic set for multi variable data analysis”, International Journal of Neutrosophic Science(IJNS),1(2),81 89,2020
[14] F. Smarandache, A Unifying Field in Logics. Neutrosophy: Neutrosophic Probability, Set and Logic, Rehoboth:AmericanResearchPress,1998.
[15] F. Smarandache, “Plithogeny, PlithogenicSet, Logic,Probability, and Statistics”, 141 pages, Pons Editions, Brussels,Belgium,2017, arXiv.org (Cornell University), Computer Science Artificial Intelligence.
[16] F. Smarandache,” Plithogenic set, an extension of Crisp, Fuzzy, Intuitionistic Fuzzy, and Neutrosophicsets Revisited.Neutrosophic Sets and Systems, 21, 153 166, 2018. http://doi.org/10.5281/zenodo.1408740
[17] F.Smarandache,”PhysicalPlithogenicsets”,71st AnnualGaseousElectronicsconference,SessionLW1, Oregon Convention Center Room, Portland, Oregon, USA, November 5 9, 2018;http://meetings.aps.org/Meeting/GEC18/Session/LW1.110
[18] F.Smarandache “Neutrosophy, A new Branch of Philosophy”, Multiple Valued Logic /An International Journal,USA,ISSN1023 6627,8(3),297 384,2002.
[19] F. Smarandache, n Valued Refined Neutrosophic Logic and Its Applications in Physics, Progress in Physics, 4,143 146,2013.
[20] A. Syropoulos, On generalized fuzzy multi sets and their use in computation, Iranian Journal Of Fuzzy Systems,9(2),113 125,2012.
[21] R.R.Yager,Onthetheoryofbags(Multisets),Int.Joun.OfGeneralSystem,13,23 37,1986.
[22] S.Ye,J.Ye,Dice Similarity Measure betweenSingleValuedNeutrosophicMultisetsandItsApplication in MedicalDiagnosis,NeutrosophicSetsandSystems,6,48 53,2014
www.irjmets.com @International
Science [739]
ResearchJournalofModernizationinEngineering,Technologyand