Cosine similarity measures of neutrosophic soft set

Page 1

Annals of Fuzzy Mathematics and Informatics

ISSN: 2093–9310 (print version)

ISSN: 2287–6235 (electronic version) http:// www.afmi.or.kr

@FMI

c KyungMoonSaCo. http://www.kyungmoon.com

Cosinesimilaritymeasuresofneutrosophicsoftset

I.R.SumathiandI.Arockiarani

Received8January2016; Revised12February2016; Accepted15May2016

Abstract. Inthispaperwehaveintroducedtheconceptofcosinesimilaritymeasuresforneutrosophicsoftsetandintervalvaluedneutrosophic softset.Anapplicationisgiventoshowitspracticalityandeffectiveness.

2010AMSClassification: 03B99,03E99

Keywords: Neutrosophicsoftset,CosinesimilarityofNeutrosophicsoftset, IntervalvaluedNeutrosophicsoftset.

CorrespondingAuthor: I.R.Sumathi(sumathi raman2005@yahoo.co.in)

1. Introduction

Neutrosophyisabranchofphilosophy,whichemphasizestheoriginandnature ofneutralities,alongwiththeirinteractionwithdifferentconceptivedomains.Fuzzy logicextendsclassicallogicbyassigningamembershipfunctionrangingindegreebetween0and1tothevariables.Asageneralizationoffuzzylogic,neutrosophiclogic introducesanewcomponentcalledindeterminacyandcarriesmoreinformationthan fuzzylogic.Theapplicationofneutrosophiclogicwouldleadtobetterperformance thanfuzzylogic.Neutrosophiclogicissonewthatitsuseinmanyfieldsmerit exploration.Thewords”neutrosophy”and”neutrosophic”wereintroducedbyF. Smarandacheinhis1998book[23],.Etymologically,”neutro-sophy”(noun)[French neutre < Latin neuter,neutral,andGreek sophia,skill/wisdom]meansknowledge ofneutralthought.Neutrosophicset[24],[25]isamathematicaltoolforhandling problemsinvolvingimprecise,indeterminacyandinconsistentdata.Inneutrosophic logicapropositionhasadegreeoftruth(T),adegreeofindeterminacy(I),anda degreeoffalsity(F),whereT,I,Farestandardornon-standardsubsetsof]-0,1+[. A.A.Salama[7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22]studiedthe variousnotionsofneutrosophicsets.

Inseveralapplicationitisoftenneededtocomparetwosetsandweareinterestedtoknowwhethertwopatternsorimagesareidenticalorapproximately identicalofatleasttowhatdegreetheyareidentical.SeveralresearcherslikeHung

I.R.Sumathietal./Ann.FuzzyMath.Inform. x (201y),No.x,xx–xx

[3],JunYe[4, 5],P.Majumdar[6],C.Wang[26]andmanyauthorshavestudiedthe problemofsimilaritymeasuresbetweenintuitionisticfuzzysets,neutrosophicsets andvaguesoftsets.Inthispaperwehaveintroducedsomenewcosinesimilarity measuresforneutrosophicsoftsetsandderivedsomeoftheirproperties.Adecision makingmethodbasedonthissimilaritymeasureisconstructed.[7],[8],[9]

2. Preliminaries

Definition2.1 ([1]). AneutrosophicsetAontheuniverseofdiscourse X is definedas A = x,TA(x),IA(x),FA(x) ,x ∈ X where T,I,F : X → [0, 1]and 0 ≤ TA(x)+ IA(x)+ FA(x) ≤ 3,where T representsthetruthvalue, I represents theindeterministicvalueand F representsthefalsevalue.

Definition2.2. [1]LetXbeanonemptyset,andlet A = x,TA(x),IA(x),FA(x) and B = x,TB (x),IB (x),FB (x) beneutrosophicsets.ThenAisasubsetofBif ∀ x ∈ X, TA(x) ≤ TB (x),IA(x) ≤ IB (x)and FA(x) ≥ FB (x).

Definition2.3 ([1]). LetXbeanonemptyset,andlet A = x,TA(x),IA(x),FA(x) and B = x,TB (x),IB (x),FB (x) beneutrosophicsets.Then

A ∪ B =<x,max(TA(x),TB (x)),max(IA(x),IB (x)),min(FA(x),FB (x)) >,

A ∩ B =<x,min(TA(x),TB (x)),min(IA(x),IB (x)),max(FA(x),FB (x)) >

Definition2.4 ([1]). LetUbeatheinitialuniversalsetandEbeasetofparameters. Consideranon-emptysetA,A ⊆ E.LetP(U)denotethesetofallneutrosophicsets ofU.Thecollection(F,A)istermedtobetheneutrosophicsoftsetoverU,where FisamappinggivenbyF:A−→ P(U).(NeutrosophicsoftsetisdenotedbyNSS).

Definition2.5 ([1]). Aneutrosophicsoftset(F,A)overtheuniverseUissaid tobeemptyneutrosophicsoftsetwithrespecttotheparameterAif TF (e) =0, IF (e) =0,FF (e) =1, ∀ x ∈ U, ∀ e ∈ A.Itisdenotedby 0.

Definition2.6 ([1]). Aneutrosophicsoftset(F,A)overtheuniverseUissaidto beuniverseneutrosophicsoftsetwithrespecttotheparameterAif TF (e) =1, IF (e) =1, FF (e) =0, ∀ x ∈ U, ∀ e ∈ A.Itisdenotedby 1.

Definition2.7 ([1]). Aneutrosophicsoftset(F,A)issaidtobeasubsetofneutrosophicsoftset(G,B)ifA⊆ BandF(e)⊆ G(e) ∀ e ∈ E,u ∈ U.Wedenoteitby (F,A)⊆ (G,B).

Definition2.8 ([1]). Thecomplementofneutrosophicsoftset(F,A)denotedby (F,A)c andisdefinedas(F,A)c =(F c , ¬A)where F c : ¬A −→ P (U )isamapping givenby F c(α)=<x,TF c (x)= FF (x),IF c (x)=1 IF (x),FF c (x)= TF (x) >

Definition2.9. [1]Theunionoftwoneutrosophicsoftsets(F,A)and(G,B)over (U,E)isneutrosophicsoftsetwhereC=A∪B, ∀e ∈ C

    
H(e)=
F (e)ife ∈ A B G(e)ife ∈ B A F (e) ∪ G(e)ife ∈ A ∩ B 2

I.R.Sumathietal./Ann.FuzzyMath.Inform. x (201y),No.x,xx–xx

andiswrittenas(F,A)∪(G,B)=(H,C).

Definition2.10 ([1]). Theintersectionoftwoneutrosophicsoftsets(F,A)and (G,B)over(U,E)isneutrosophicsoftsetwhereC=A∩B,∀e ∈ CH(e)= F (e)∩G(e) andiswrittenas(F,A)∩(G,B)=(H,C).

Definition2.11 ([2]). Anintervalvaluedneutrosophicset(IVNSinshort)ona universeXisanobjectoftheform,where TA(x)= X → Int([0, 1]), IA(x)= X → Int([0, 1])and FA(x)= X → Int([0, 1]),Int([0,1])standsforthesetofallclosed subintervalof[0,1]satisfiesthecondition: ∀x ∈ X, supTA(x)+ supIA(x)+ supFA(x) ≤ 3.

Definition2.12 ([2]). Foranarbitraryset A ⊆ [0, 1], wedefine A = infA and A = supA

Definition2.13 ([2]). LetUbeaninitialuniverseandEbeasetofparameters. IVNS(U)denotesthesetofallintervalvaluedneutrosophicsetsofU.LetA ⊆E.A pair(F,A)isanintervalvaluedneutrosophicsoftsetoverU,whereFisamapping givenbyF:A → IVNS(U).

Note:Intervalvaluedneutrosophicsoftset/setsisdenotedbyIVNSS/IVNSSs.

Definition2.14 ([2]). LetUbeaninitialuniverseandEbeasetofparameters. SupposethatA,B ⊆E,(F,A)and(G,B)betwoIVNSSs,wesaythat(F,A)isan intervalvaluedneutrosophicsoftsubsetof(G,B)ifandonlyif (i)A ⊆ B, (ii)e ∈A,F(e)isanintervalvaluedneutrosophicsoftsubsetofG(e),thatis,for allx ∈Uande ∈ A, T F (e)(x) ≤ T G(e)(x), T F (e)(x) ≤ T G(e)(x), I F (e)(x) ≤ I G(e)(x), I F (e)(x) ≤ I G(e)(x), F F (e)(x) ≥ F G(e)(x), F F (e)(x) ≥ F G(e)(x). Anditisdenotedby(F,A) ⊆ (G,B).

Similarly(F,A)issaidtobeanintervalvaluedneutrosophicsoftsupersetof (G,B),if(G,B)isanintervalvaluedneutrosophicsoftsubsetof(F,A),wedenoteit by(F,A)⊇ (G,B).

Definition2.15 ([2]). ThecomplementofanIVNSS(F,A)isdenotedby(F,A)c andisdefinedas(F,A)c =(F c , ¬A)where F c : ¬A → IVNSS(U )isamapping givenby F c(e)=<FF (¬e)(x), (IF (¬e)(x))c,TF (¬e)(x)forall x ∈ U and e ∈¬A, where(IF (¬e)(x))c =[1 I F (e)(x), 1 I F (e)(x)

3. Cosinesimilaritymeasureneutrosophicsoftsetandinterval valuedneutrosophicsoftset

Definition3.1. LetU= {x1,x2,.......xn} betheuniversalsetofelementsandE = {e1,e2,.......em} betheuniversalsetofparameters.Let(F,A)and(G,B)betwo neutrosophicsoftsetsoverU.Thenwedefinethecosinesimilaritymeasuresbetween (F,A)and(G,B)asfollows.

3

I.R.Sumathietal./Ann.FuzzyMath.Inform. x (201y),No.x,xx–xx

CS1((F,A), (G,B)) = 1 mn m i=1

n j=1 cos π 2 (|TF (ei )(xj ) TG(ei )(xj )|) ∨ (|IF (ei )(xj ) IG(ei )(xj )|)∨ (|FF (ei )(xj ) FG(ei )(xj )|) ,

CS2((F,A), (G,B)) = 1 mn m i=1

n j=1 cos π 6 (|TF (ei )(xj ) TG(ei )(xj )|)+(|IF (ei )(xj ) IG(ei )(xj )|)+ (|FF (ei )(xj ) FG(ei )(xj )|) , wherethesymbol ∨ isthemaximumoperation.Thetwosimilaritymeasuressatisfy theaxiomaticrequirementsofsimilaritymeasures.

Proposition3.2. LetU= {x1,x2,.......xn} betheuniversalsetofelementsandE = {e1,e2,.......em} betheuniversalsetofparameters.Thenfortwoneutrosophic softsets(F,A)and(G,B)overUthecosinesimilaritymeasure CSk((F,A), (G,B)) (k=1,2)shouldsatisfythefollowingproperties(1)–(4).

(1)0 ≤ CSk((F,A), (G,B)) ≤ 1 (2) CSk((F,A), (G,B))=1 ifandonlyif(F,A)=(G,B). (3) CSk((F,A), (G,B))= CSk((G,B)(F,A))

(4) If(H,C)isaneutrosophicsoftsetoverUand(F,A) ⊆(G,B)⊆(H,C),then CSk((F,A), (H,C)) ≤ CSk((F,A)(G,B)) and CSk((F,A), (H,C)) ≤ CSk((G,B), (H,C))

Proof. (1)Sincethetruthmembershipdegree,indeterminacy-membershipdegreee andfalsity-membershipdegreeinneutrosophicsetandthevalueofcosinefunction arewithin[0,1],thesimilaritymeasurebasedoncosinefunctionisalsowithin[0,1].

Thus0 ≤ CSk((F,A), (G,B)) ≤ 1fork=1,2.

(2)Foranytwoneutrosophicsoftsets,(F,A)=(G,B)implies

TF (ei )(xj )= TG(ei )(xj ), IF (ei )(xj )= IG(ei )(xj ), FF (ei )(xj )= FG(ei )(xj ) foralli=1,2,...mandj=1,2,...n.Thus

|TF (ei )(xj ) TG(ei )(xj )| = |IF (ei )(xj ) IG(ei )(xj )| = |FF (ei )(xj ) FG(ei )(xj )| =0. So CSk((F,A), (G,B))=1fork=1,2.

Converselyif CSk((F,A), (G,B))=1fork=1,2,thisimplies

|TF (ei )(xj ) TG(ei )(xj )| =0, |IF (ei )(xj ) IG(ei )(xj )| =0, |FF (ei )(xj ) FG(ei )(xj )| =0 sincecos(0)=1.Thentheseequalitiesindicate

TF (ei )(xj )= TG(ei )(xj ), IF (ei )(xj )= IG(ei )(xj ),FF (ei )(xj )= FG(ei )(xj ) foralli=1,2,...mandj=1,2,...n.Hence(F,A)=(G,B).

(3)Clearly CSk((F,A), (G,B))= CSk((G,B)(F,A)).

(4)If(F,A)⊆(G,B)⊆(H,C),then

TF (ei )(xj ) ≤ TG(ei )(xj ) ≤ TH(ei )(xj ), IF (ei )(xj ) ≤ IG(ei )(xj ) ≤ IG(ei )(xj ), FF (ei )(xj ) ≥ FG(ei )(xj ) ≥ FH(ei )(xj ) 4

I.R.Sumathietal./Ann.FuzzyMath.Inform. x (201y),No.x,xx–xx

foralli=1,2,...mandj=1,2,...n. Thenwehavethefollowinginequalites:

|TF (ei )(xj ) TG(ei )(xj )|≤|TF (ei )(xj ) TH(ei )(xj )|,

|TG(ei )(xj ) TH(ei )(xj )|≤|TF (ei )(xj ) TH(ei )(xj )|,

|IF (ei )(xj ) IG(ei )(xj )|≤|IF (ei )(xj ) IH(ei )(xj )|,

|IG(ei )(xj ) IH(ei )(xj )|≤|IF (ei )(xj ) IH(ei )(xj )|,

|FF (ei )(xj ) FG(ei )(xj )|≤|FF (ei )(xj ) FH(ei )(xj )|,

|FG(ei )(xj ) FH(ei )(xj )|≤|FF (ei )(xj ) FH(ei )(xj )|

Thus

CSk((F,A), (H,C))) ≤ CSk((F,A), (G,B))) and

CSk((F,A), (H,C))) ≤ CSk((G,B), (H,C)))

fork=1,2,sincecosinefunctionisadecreasingfunctionwithintheinterval 0, π 2

Definition3.3. LetU= {x1,x2,.......xn} betheuniversalsetofelementsandE = {e1,e2,.......em} betheuniversalsetofparametersand(F,A)and(G,B)betwo neutrosophicsoftsetsoverU.Nowweconsidertheweights wj of xj (j=1,2,...n) thentheweightedcosinesimilaritymeasuresbetween(F,A)and(G,B)isdefinedas follows. WCS1((F,A), (G,B))

= 1 m m i=1

n j=1 wj cos π 6 (|TF (ei )(xj ) TG(ei )(xj )|)+(|IF (ei )(xj ) IG(ei )(xj )|)+

n j=1 wj cos π 2 (|TF (ei )(xj ) TG(ei )(xj )|) ∨ (|IF (ei )(xj ) IG(ei )(xj )|)∨ (|FF (ei )(xj ) FG(ei )(xj )|) , WCS2((F,A), (G,B)) = 1 m m i=1

(|FF (ei )(xj ) FG(ei )(xj )|) where wj ∈ [0, 1],j=1,2,...nand n j=1 wj =1.

Inparticularifwetake wj = 1 n ,j=1,2,3....n,then WCSk((F,A), (G,B))= CSk((F,A), (G,B)), k=1,2.

Definition3.4. LetU= {x1,x2,.......xn} betheuniversalsetofelementsandE = {e1,e2,.......em} betheuniversalsetofparameters,and(F,A)and(G,B)betwo intervalvaluedneutrosophicsoftsetsoverU.Thenthecosinesimilaritymeasures between(F,A)and(G.B)isdefinedas

5

I.R.Sumathietal./Ann.FuzzyMath.Inform. x (201y),No.x,xx–xx

CS3((F,A), (G,B))

= 1 mn m i=1

n j=1 cos π 4 ((|T F (ei )(xj ) T G(ei )(xj )|) ∨ (|I F (ei )(xj ) I G(ei )(xj )|)∨

(|F F (ei )(xj ) F G(ei )(xj )|)+(|T F (ei )(xj ) T G(ei )(xj )|)∨ (|I F (ei )(xj ) I G(ei )(xj )|) ∨ (|F F (ei )(xj ) F G(ei )(xj )|))

CS4((F,A), (G,B))

= 1 mn m i=1

n j=1 cos π 12 ((|T F (ei )(xj ) T G(ei )(xj )|)+(|I F (ei )(xj ) I G(ei )(xj )|)+ (|F F (ei )(xj ) F G(ei )(xj )|)+(|T F (ei )(xj ) T G(ei )(xj )|)+ (|I F (ei )(xj ) I G(ei )(xj )|)+(|F F (ei )(xj ) F G(ei )(xj )|)) wherethesymbol ∨ isthemaximumoperation.Thecosinesimilaritymeasures CSk((F,A), (G,B)),k=3,4satisfythefollowingproperties.

Proposition3.5. LetU= {x1,x2,.......xn} betheuniversalsetofelementsandE = {e1,e2,.......em} betheuniversalsetofparameters.Thenfortwointervalvaluedneutrosophicsoftsets(F,A)and(G,B)overUthecosinesimilaritymeasure CSk((F,A), (G,B)) (k=3,4)shouldsatisfythefollowingproperties(1)–(4).

(1)0 ≤ CSk((F,A), (G,B)) ≤ 1

(2) CSk((F,A), (G,B))=1 ifandonlyif(F,A)=(G,B).

(3) CSk((F,A), (G,B))= CSk((G,B)(F,A)).

(4) If(H,C)isaintervalvaluedneutrosophicsoftsetoverUand (F,A)⊆(G,B)⊆(H,C),then

CSk((F,A), (H,C)) ≤ CSk((F,A)(G,B)) and

CSk((F,A), (H,C)) ≤ CSk((G,B), (H,C)).

Proof. (1)Sincethetruthmembershipdegree,indeterminacy-membershipdegreee andfalsity-membershipdegreeinneutrosophicsetandthevalueofcosinefunction arewithin[0,1],thesimilaritymeasurebasedoncosinefunctionisalsowithin[0,1]. Then0 ≤ CSk((F,A), (G,B)) ≤ 1fork=3,4.

(2)Foranytwointervalvaluedneutrosophicsoftsets,(F,A)=(G,B)implies

TF (ei )(xj )= TG(ei )(xj ), IF (ei )(xj )= IG(ei )(xj ),FF (ei )(xj )= FG(ei )(xj ) foralli=1,2,...mandj=1,2,...n.Then

|T F (ei )(xj ) T G(ei )(xj )| = |I F (ei )(xj ) I G(ei )(xj )| = |F F (ei )(xj ) F G(ei )(xj )| =0 and |T F (ei )(xj ) T G(ei )(xj )| = |I F (ei )(xj ) I G(ei )(xj )| = |F F (ei )(xj ) F G(ei )(xj )| =0.

Thus CSk((F,A), (G,B))=1fork=3,4. Converselyif CSk((F,A), (G,B))=1fork=3,4,then,sincecos(0)=1, |T F (ei )(xj ) T G(ei )(xj )| =0, |I F (ei )(xj ) I G(ei )(xj )| =0, |F F (ei )(xj ) F G(ei )(xj )| =0, 6

I.R.Sumathietal./Ann.FuzzyMath.Inform. x (201y),No.x,xx–xx

|T F (ei )(xj ) T G(ei )(xj )| = |I F (ei )(xj ) I G(ei )(xj )| = |F F (ei )(xj ) F G(ei )(xj )| =0.

Thentheseequalitiesindicate

TF (ei )(xj )= TG(ei )(xj ), IF (ei )(xj )= IG(ei )(xj ), FF (ei )(xj )= FG(ei )(xj ) foralli=1,2,...mandj=1,2,...n.Thus(F,A)=(G,B).

(3)Clearly CSk((F,A), (G,B))= CSk((G,B)(F,A)). (4)If(F,A)⊆(G,B)⊆(H,C),then

T F (ei )(xj ) ≤ T G(ei )(xj ) ≤ T H(ei )(xj ),

T F (ei )(xj ) ≤ T G(ei )(xj ) ≤ T H(ei )(xj ),

I F (ei )(xj ) ≤ I G(ei )(xj ) ≤ I H(ei )(xj ),

I F (ei )(xj ) ≤ I G(ei )(xj ) ≤ I H(ei )(xj ),

F F (ei )(xj ) ≥ F G(ei )(xj ) ≥ F H(ei )(xj ),

F F (ei )(xj ) ≥ F G(ei )(xj ) ≥ F H(ei )(xj ), foralli=1,2,...mandj=1,2,...n.Thuswehavethefollowinginequalites:

|T F (ei )(xj ) T G(ei )(xj )|≤|T F (ei )(xj ) T H(ei )(xj )|,

|T G(ei )(xj ) T H(ei )(xj )|≤|T F (ei )(xj ) T H(ei )(xj )|,

|T F (ei )(xj ) T G(ei )(xj )|≤|T F (ei )(xj ) T H(ei )(xj )|,

|T G(ei )(xj ) T H(ei )(xj )|≤|T F (ei )(xj ) T H(ei )(xj )|,

|I F (ei )(xj ) I G(ei )(xj )|≤|I F (ei )(xj ) I H(ei )(xj )|,

|I G(ei )(xj ) I H(ei )(xj )|≤|I F (ei )(xj ) I H(ei )(xj )|,

|I F (ei )(xj ) I G(ei )(xj )|≤|I F (ei )(xj ) I H(ei )(xj )|,

|I G(ei )(xj ) I H(ei )(xj )|≤|I F (ei )(xj ) I H(ei )(xj )|,

|F F (ei )(xj ) F G(ei )(xj )|≤|F F (ei )(xj ) F H(ei )(xj )|,

|F G(ei )(xj ) F H(ei )(xj )|≤|F F (ei )(xj ) F H(ei )(xj )|,

|F F (ei )(xj ) F G(ei )(xj )|≤|F F (ei )(xj ) F H(ei )(xj )|,

|F G(ei )(xj ) F H(ei )(xj )|≤|F F (ei )(xj ) F H(ei )(xj )| Thus

CSk((F,A), (H,C)) ≤ CSk((F,A), (G,B)) and

CSk((F,A), (H,C)) ≤ CSk((G,B), (H,C)) 7

I.R.Sumathietal./Ann.FuzzyMath.Inform. x (201y),No.x,xx–xx

fork=3,4,sincecosinefunctionisadecreasingfunctionwithintheinterval 0, π 2 .

Definition3.6. LetU= {x1,x2,.......xn} betheuniversalsetofelementsandE = {e1,e2,.......em} betheuniversalsetofparameters,and(F,A)and(G,B)betwo intervalvaluedneutrosophicsoftsetsoverU.Thentheweightedcosinesimilarity measuresbetween(F,A)and(G.B)isdefinedas

CS3((F,A), (G,B))

= 1 m m i=1

n j=1 wj cos π 4 ((|T F (ei )(xj ) T G(ei )(xj )|) ∨ (|I F (ei )(xj ) I G(ei )(xj )|)∨

(|F F (ei )(xj ) F G(ei )(xj )|)+(|T F (ei )(xj ) T G(ei )(xj )|)∨ (|I F (ei )(xj ) I G(ei )(xj )|) ∨ (|F F (ei )(xj ) F G(ei )(xj )|)) , CS4((F,A), (G,B))

= 1 m m i=1

n j=1 wj cos π 12 ((|T F (ei )(xj ) T G(ei )(xj )|)+(|I F (ei )(xj ) I G(ei )(xj )|)+ (|F F (ei )(xj ) F G(ei )(xj )|)+(|T F (ei )(xj ) T G(ei )(xj )|)+ (|I F (ei )(xj ) I G(ei )(xj )|)+(|F F (ei )(xj ) F G(ei )(xj )|)) where wj ∈ [0, 1],j=1,2,...nand n j=1 wj =1.

Inparticularifwetake wj = 1 n ,j=1,2,3....n,then WCSk((F,A), (G,B))= CSk((F,A), (G,B)),k=3,4.

4. Applicationofcosinesimilaritymeasureofneutrisophicsoftset

Example4.1. Considerareasofastateareaffectedbyflood.Ateamofthreemembers U = {m1,m2,m3} fromRehabilitationdepartmentinspectthefloodaffected areasandthereliefmeasuresrecommendedbythemaredescribedbytheparameterset E = {e1,e2,e3,e4} where e1 =reliefforcroploss, e2 =reliefforecological damage, e3 =reliefforlivestockand e4 =provisionforalternatelivelihood.Based ontheserecommendationsthegovernmenthastoallocatefundsaccordingtothe levelofdamage.Algorithm:

Step1:Anintervalvaluedneutrosophicsoftset(F,A)overUisconstructedbased onpreviousrecordsofreliefmeasuresinsimilarsituation.

Step2:Anintervalvaluedneutrosophicsoftset(G,B)overUbasedonthe recommendationsoftheteamvisitingAreaIisconstructed.

Step3:Cosinesimilaritymeasuresbetween(F,A)and(G,B)iscalculated.

Step4:Anintervalvaluedneutrosophicsoftset(H,C)overUbasedonthe recommendationsoftheteamvisitingAreaIIisconstructed.

Step5:Cosinesimilaritymeasuresbetween(F,A)and(H,C)iscalculated.

Step6:Estimateresultbyusingthesimilarityvalue.Anintervalvalued(F,A) overUwithA=Ebasedonthepreviousrecordsofreliefmeasuresinsimilarsituationisgivenby.

(F,A)=

{F (e1)(m1)=([0 6, 0 7], [0 3, 0 4], [0 2, 0 3]),F (e2)(m1)=([0 4, 0 5], [0 3, 0 4], [0 2, 0 3]), F (e3)(m1)=([0 5, 0 6], [0 4, 0 5], [0 1, 0 2]),F (e4)(m1)=([0 5, 0 6], [0 2, 0 3], [0 3, 0 4]), 8

I.R.Sumathietal./Ann.FuzzyMath.Inform. x (201y),No.x,xx–xx

F (e1)(m2)=([0.5, 0.6], [0.3, 0.4], [0.2, 0.3]),F (e2)(m2)=([0.4, 0.5], [0.2, 0.3], [0.5, 0.6]), F (e3)(m2)=([0.5, 0.6], [0.1, 0.2], [0.3, 0.4]),F (e4)(m2)=([0.5, 0.6], [0.3, 0.5], [0.4, 0.5]), F (e1)(m3)=([0.7, 0.8], [0.4, 0.5], [0.2, 0.3]),F (e2)(m3)=([0.5, 0.6], [0.3, 0.4], [0.2, 0.3]), F (e3)(m3)=([0 6, 0 7], [0 4, 0 5], [0 3, 0 4]),F (e4)(m3)=([0 6, 0 7], [0 2, 0 3], [0 4, 0 5])}

Anintervalvalued(G,B)overUwithB=EbasedonrecommendationsoftheexpertteamvisitingAreaI.

(G,B)=

{G(e1)(m1)=([0 6, 0 7], [0 5, 0 6], [0 4, 0 5]),G(e2)(m1)=([0 3, 0 4], [0 5, 0 6], [0 4, 0 5]), G(e3)(m1)=([0 3, 0 4], [0 4, 0 5], [0 5, 0 6]),G(e4)(m1)=([0 2, 0 3], [0 3, 0 4], [0 5, 0 6]), G(e1)(m2)=([0 8, 0 9], [0 4, 0 5], [0 2, 0 3]),G(e2)(m2)=([0 5, 0 6], [0 1, 0 2], [0 3, 0 4]), G(e3)(m2)=([0.5, 0.6], [0.1, 0.2], [0.2, 0.3]),G(e4)(m2)=([0.3, 0.4], [0.3, 0.4], [0.2, 0.3]), G(e1)(m3)=([0.5, 0.6], [0.4, 0.5], [0.3, 0.4]),G(e2)(m3)=([0.4, 0.5], [0.2, 0.3], [0.5, 0.6]), G(e3)(m3)=([0.2, 0.3], [0.4, 0.5], [0.4, 0.5]),G(e4)(m3)=([0.2, 0.3], [0.5, 0.6], [0.3, 0.4])}.

Anintervalvalued(H,C)overUwithC=Ebasedonrecommendationsoftheexpert teamvisitingAreaII.

(H,C)=

{H(e1)(m1)=([0 4, 0 5], [0 2, 0 3], [0 1, 0 2]),H(e2)(m1)=([0 3, 0 4], [0 2, 0 3], [0 1, 0 2]), H(e3)(m1)=([0 6, 0 7], [0 2, 0 3], [0 1, 0 2]),H(e4)(m1)=([0 1, 0 2], [0 3, 0 4], [0 6, 0 7]), H(e1)(m2)=([0 4, 0 5], [0 2, 0 3], [0 5, 0 6]),H(e2)(m2)=([0 2, 0 3], [0 3, 0 4], [0 4, 0 5]), H(e3)(m2)=([0 1, 0 2], [0 5, 0 6], [0 4, 0 5]),H(e4)(m2)=([0 5, 0 6], [0 3, 0 4], [0 1, 0 2]), H(e1)(m3)=([0.2, 0.3], [0.4, 0.5], [0.3, 0.4]),H(e2)(m3)=([0.1, 0.2], [0.3, 0.4], [0.4, 0.5]), H(e3)(m3)=([0.2, 0.3], [0.4, 0.5], [0.4, 0.5]),H(e4)(m3)=([0.3, 0.4], [0.5, 0.6], [0.6, 0.7])}. UsingDefinition 3.4,weget

CS3((F,A), (G,B))=0.904 and

CS3((F,A), (H,C))=0.871. Wehave CS3((F,A), (G,B)) >CS3((F,A), (H,C)).HenceweconcludethatArea Iisseverelyaffectedbyflood.

References

[1]

I.Arockiarani,I.R.SumathiandJ.MartinaJency,FuzzyNeutrosophicSoftTopological Spaces,Internationaljournalofmathematicalarchives4(10)(2013)225–238.

[2] I.Arockiarani,I.R.Sumathi,SomeresultsonintervalvaluedFuzzyneutrosophicsoftset, Internationaljournalofinnovativeresearchandstudies3(5)(2014)386–405.

[3] W.L.HungandM.S.Yang,SimilaritymeasuresofintuitionisticfuzzysetsbasedonHausdorff distance,PatternRecognitionLetters25(2004)1603–1611.

[4] JunYe,Entropy,Cosinesimilaritymeasuresforintuitionisticfuzzysetsandtheirapplications, Mathematicalandcomputermodelling53(1-2)(2011)91–97.

[5] JunYe,Vectorsimilaritymeasuresofsimplifiedneutrosophicsetsandtheirapplicationin multicriteriaDecisionMaking,InternationalJournalofFuzzySystems16(2)(2014)204–211.

[6] P.MajumdarandS.K.Samanta,Onsimilarityandentropyofneutrosophicsets,J.Intell. FuzzySystems26(2014)1245–1252.

[7] A.A.SalamaandFlorentinSmarandache,NeutrosophicCrispSetTheory,2015USABook, Educational.EducationPublishing1313Chesapeake,Avenue,Columbus,Ohio43212,USA.

[8] A.A.SalamaandSaidBroumi,RoughnessofNeutrosophicSets,ElixirAppl.Math.74(2014) 26833–26837.

9

I.R.Sumathietal./Ann.FuzzyMath.Inform. x (201y),No.x,xx–xx

[9] A.A.Salama,BasicStructureofSomeClassesofNeutrosophicCrispNearlyOpenSetsand PossibleApplicationtoGISTopology,NeutrosophicSetsandSystems7(2015)18–22.

[10] A.A.Salama,MohamedAbdelfattahandMohamedEisa,Distances,HesitancyDegreeand FlexibleQueryingviaNeutrosophicSets,InternationalJournalofComputerApplications,101 (10)(2014)7–12.

[11] A.A.Salama,HaithemA.El-Ghareeb,Ayman.M.MaineandFlorentinSmarandache,IntroductiontoDevelopSomeSoftwareProgramsfordealingwithNeutrosophicSets,Neutrosophic SetsandSystems4(2014)51–52.

[12] A.A.Salama,F.Smarandache,andM.Eisa,IntroductiontoImageProcessingviaNeutrosophicTechnique,NeutrosophicSetsandSystems5(2014)59–63.

[13] A.A.Salama,MohamedAbdelfattahandMohamedEisa,ANovelModelforImplementing SecurityoverMobileAd-hocNetworksusingIntuitionisticFuzzyFunction,InternationalJournalofEmergingTechnologiesinComputationalandAppliedSciences(IJETCAS),7(1)(2014) 1–7.

[14] A.A.Salama,MohamedEisaandM.M.Abdelmoghny,NeutrosophicRelationsDatabase, InternationalJournalofInformationScienceandIntelligentSystem3(1)(2014)33–46.

[15] A.A.Salama,HaithamA.El-Ghareeb,AymanM.ManieandM.M.Lotfy,UtilizingNeutrosophicSetinSocialNetworkAnalysise-LearningSystems,InternationalJournalofInformation ScienceandIntelligentSystem3(2)(2014)61–72.

[16] A.A.Salama,MohamedEisa,S.A.ELhafeezandM.M.Lotfy,ReviewofRecommender SystemsAlgorithmsUtilizedinSocialNetworksbasede-LearningSystemsandNeutrosophic System,NeutrosophicSetsandSystems8(2015)35–44.

[17] A.A.SalamaandFlorentinSmarandache,NeutrosophicIdealTheoryNeutrosophicLocal FunctionandGeneratedNeutrosophicTopology,InNeutrosophicTheoryandItsApplications, CollectedPapers,Volume1,EuropaNova,Bruxelles(2014)213–218.

[18] A.Salama,SaidBroumiandFlorentinSmarandache,SomeTypesofNeutrosophicCrispSets andNeutrosophicCrispRelations,I.J.InformationEngineeringandElectronicBusiness2014.

[19] S.A.Alblowi,A.A.SalamaandMohmedEisa,Newconceptsofneutrosophicsets,internationaljournalofmathematicsandcomputerapplicationsresearch(ijmcar)4(1)(2014)59–66.

[20] A.A.Salama,NeutrosophicCrispPointsandNeutrosophicCrispIdeals,NeutrosophicSets andSystems1(1)(2013)50–54.

[21] A.A.SalamaandF.Smarandache,FiltersviaNeutrosophicCrispSets,NeutrosophicSets andSystems,1(1)(2013)34–38.

[22] A.A.Salama,F.SmarandacheandS.A.Alblowi,TheCharacteristicFunctionofaNeutrosophicSet,NeutrosophicSetsandSystems3(2014)14–17.

[23] FlorentinSmarandache,Neutrosophy:NeutrosophicProbability,Set,andLogic,Amer.Res. Press,Rehoboth,USA105p.,1998.

[24] F.Smarandache,AUnifyingFieldinLogics,Neutrosophy:NeutrosophicProbability,Setand Logic,AmericanResearchPress2005.

[25] F.Smarandache,NeutrosophyandNeutrosophicLogic,FirstInternationalConferenceOn Neutrosophy,NeutrosophicLogic,Set,ProbabilityandStatisticsUniversityofNewMexico, Gallup,NM87301,USA2002.

[26] C.WangandA.Qu,Entropy,similaritymeasureanddistancemeasureofvaguesoftsetsand theirrelations,Inform.Sci.244(2013)92–106.

I.R.Sumathi (sumathi raman2005@yahoo.co.in)

DepartmentofMathematics,KumaraguruCollegeofTechnology,Coimbatore,Tamilnadu,India

I.Arockiarani (stell11960@gmail.com)

DepartmentofMathematics,NirmalaCollegeforwomen,Coimbatore,Tamilnadu, India

10

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.