Neutrosophic EOQ Model with Price Break
M.Mullai1
AssistantProfessorofMathematics,AlagappaUniversity,Karaikudi, Tamilnadu,India.
E-mail:mullaimalagappauniversity.ac.in R.Surya2

DepartmentofMathematics,AlagappaUniversity,Karaikudi, Tamilnadu,India.
E-mail:suryarrrm@gmail.com
Abstract—Inventorycontrolofanidealresourceisthemostimportantonewhichfulfilsvariousactivities(functions)of anorganisation.Thesuppliergivesthediscountforaniteminthecostofunitsinordertomotivatethebuyers(or) customerstopurchasethelargequantityofthatitem.Thesediscountstaketheformofpricebreakswherepurchase costisassumedtobeconstant.InthispaperanEOQmodelwithpricebreakininventorymodelisdevelopedtoobtain itsoptimumsolutionbyassumingneutrosophicdemandandneutrosophicpurchasingcostastriangularneutrosophic numbers.Anumericalexampleisprovidedtoillustratetheproposedmodel.
Keywords: Price break, neutrosophic demand, neutrosophic purchase cost, neutrosophic sets, triangular neutrosophic number.
1INTRODUCTION
BaiandLi[1]havediscussedtriangularand trapezoidalfuzzynumbersininventorymodel fordeterminingtheoptimalorderquantityand theoptimalcost.Thequantitydiscountproblemhasbeenanalyzedfromabuyersperspective.HadleyandWhintin[2],PetersonandSilver[3],andStarrandMiller[6]consideredvariousdiscountpolicesanddemandassumptions.
YangandWee[7]developedaneconomic orderingpolicyintheviewofboththesupplierandthebuyer.PrabjotKaurandMahuya Deb[5]developedanintuitionisticapproachfor pricebreaksinEOQfrombuyer’sperspective.Smarandache[5]introducedneutrosophic setandneutrosophiclogicbyconsideringthe non-standardanalysis.Also,neutrosophicinventorymodelwithoutshortagesisintroduced
byM.MullaiandS.Broumi[3].
Inthispaper,weintroducetheneutrosophicinventorymodelswithneutrosophic pricebreaktofindtheoptimalsolutionofthe modelfortheoptimalorderquantity.Alsothe neutrosophicinventorymodelunderneutrosophicdemandandneutrosophicpurchasing costatwhichthequantitydiscountareoffered tobetriangularneutrosophicnumber.Alsothe optimalorderquantityfortheneutrosophictotalcostisdeterminedbydefiningtheaccuracy functionoftriangularneutrosophicnumbers.
M. Mullai, R. Surya: Neutrosophic EOQ Model with Price

N h =NeutrosophicHoldingcostperunit peryear
DN =NeutrosophicAnnualdemandin units
3NEUTROSOPHIC EOQMODEL WITH PRICE BREAK:
TheNeutrosophicinventorymodelwith neutrosophicpricebreakisintroducedto findtheoptimalsolutionsfortheoptimal neutrosophicorderquantity.Herewe assumethatthereisnostockouts,no backlogs,replenishmentisinstantaneous, theneutrosophicorderingcostinvolvedto receiveanorderareknownandconstantand purchasingvaluesatwhichdiscountsare offeredastriangularneutrosophicnumbers. Considerthefollowingvariables: DN :Neutrosophicyearlydemand, PN :Neutrosophicpurchasingcost Let DN =(DN 1 ,DN 2 ,DN 3 )(D N 1 ,DN 2 ,D N 3 )(D N 1 ,DN 2 ,D N 3 ) PN =(P N 1 ,P N 2 ,P N 3 )(P N 1 ,P N 2 ,P N 3 )(P N 1 ,P N 2 ,P N 3 ) PN 1 =(P N 11 ,P N 12 ,P N 13 )(P N 11 ,P N 12 ,P N 13 )(P N 11 ,P N 12 ,P N 13 ) PN 2 =(P N 21 ,P N 22 ,P N 23 )(P N 21 ,P N 22 ,P N 23 )(P N 21 ,P N 22 ,P N 23 )
arenonnegativetriangularneutrosophic numbers.
Now,weintroducetheneutrosophic inventorymodelunderneutrosophicdemand andneutrosophicpurchasingcostatwhich thequantitydiscountsareoffered.Total neutrosophicinventorycostisgivenby (TC)N = DN ⊗ P N ⊕ DN CN 0 QN ⊕ QN P N ⊗I N 2
QN P N 3 I N 2 )(D N 1 P N 1 + D N 1 CN 0 QN + QN
P N 3 I N 2 )
Thedefuzzifiedtotalneutrosophiccost usingaccuracyfunctionisgivenby D(TC)N = 1 8 [(DN 1 P N 1 + DN 1 CN 0 QN + QN P N 1 I N 2 )+ 2(DN 2 P N 2 + DN 2 CN 0 QN + QN P N 2 I N 2 )+(DN 3 P N 3 + DN 3 CN 0 QN + QN P N 3 I N 2 )+(D N 1 P N 1 + D N 1 CN 0 QN + QN P N 1 I N 2 )+ 2(DN 2 P N 2 + DN 2 CN 0 QN + QN P N 2 I N 2 )+(D N 3 P N 3 + D N 3 CN 0 QN + QN P N 3 I N 2 )]
0 + DN 3 C N 0 )+ (D N 1 C N 0 +2DN 2 C N 0 + D N 3 C N 0 )]+ 1 16 [(P N 1 I N + 2P N 2 I N + P N 3 I N )+(P N 1 I N +2P N 2 I N + P N 3 I N )]= 0,weget QN = 2[(DN 1 CN 0 +2DN 2 CN 0 +DN 3 CN 0 )+(D N 1 CN 0 +2DN 2 CN 0 +D N 3 CN 0 )] [(P N 1 I N +2P N 2 I N +P N 3 I N )+(P N 1 I N +2P N 2 I N +P N 3 I N )] NeutrosophicPriceBreak: S.No. Quantity PricePerUnit(Rs) 1 0≤ QN 1 ≤ b P N 1 2 b ≤ QN 2 P N 2 (<P N 1 ) 4ALGORITHM FOR FINDING NEUTROSOPHIC OPTIMAL QUANTITYAND NEUTROSOPHIC OPTIMAL COST: StepI: Considerthelowestprice P N 2 anddetermine QN 2 byusingtheeconomicorderquantity (EOQ)formula: QN = 2[(DN 1 CN 0 +2DN 2 CN 0 +DN 3 CN 0 )+(D N 1 CN 0 +2DN 2 CN 0 +D N 3 CN 0 )] [(P N 1 I N +2P N 2 I N +P N 3 I N )+(P N 1 I N +2P N 2 I N +P N 3 I N )] If QN 2 liesintherangespecified, b ≥ QN 2 then QN 2 istheEOQ.Thedefuzzifiedoptimaltotal cost (TC)N associatedwithQN iscalculatedas follows: (TC)N = DN ∗ P N 2 + DN CN 0 b + bP N 2 ∗I N 2 , byusingtheaccuracyfunction AN = (a1 +2a2 +a3 )+(a1 +2a2 +a3 ) 8 Neutrosophic Sets and Systems, Vol. 19, 2018 25
M. Mullai, R. Surya: Neutrosophic EOQ Model with Price Break
Step2:
(i)If QN 2 <b,wecannotplaceanorderat thelowestprice P N 2 (ii)Wecalculate QN 1 withprice P N 1 andthe correspondingtotalcostTCatQN . (iii)If (TC)N b> (TC)N QN 1 ,thenEOQis Q∗N = QN 1 ,OtherwiseQ∗N = b istherequired EOQ.
TheEOQincrisp,fuzzyandintuitionistic fuzzysetsarediscusseddetailin[5].Theyare
TC(P1 =800) =Rs.296039
TC(b=100)=Rs.224250,whichislower thanthetotalcostcorrespondingto Q2 (ii) FuzzyCase:
Given D =(300,350,400), P1 =(750,800, 850)
P2 =(550,600,650),C0 =Rs.1500,I=0.3
Q∗ 2 =88.192
TC(P1 =800) =Rs.297785.95
TC(b=100)=Rs.225500,whichislower thanthetotalcostcorrespondingto Q2. (iii) IntuitionisticFuzzyCase:
Given D =(300,350,400)(250,350,450)
P 1 =(750,800,850)(700,800,900)
Usingtheseformula,thenumericalexample forneutrosophicsetisillustratedasfollows.
5NUMERICAL EXAMPLE:
Amanufacturingcompanyissuesthesupplyof aspecialcomponentwhichhasthefollowing priceschedule:
0to99items:Rs.800perunit 100itemsandabove:Rs.600perunit
Theinventoryholdingcostsareestimated tobeRs.30/-ofthevalueoftheinventory.The procurementorderingcostsareestimatedtobe Rs.1500perorder.Iftheannualrequirementof thespecialcomponentis350,thencomputethe economicorderquantityfortheprocurement oftheseitems.
Solution:
(i) CrispCase:
GivenD=350,P1 =Rs.800,P2 =Rs.600, C0 =Rs.1500,I=0.3
Q∗ 2 =76
P 2 =(550,600,650)(500,600,700), C0 =Rs.1500,I=0.3
Q ∗ 2 =88.19
TC(P1 =800) =Rs.299660.85
TC(b =100) =Rs.227375,whichislower thanthetotalcostcorrespondingto Q2. (iv) NeutrosophicCase:
Given DN =(300,350,400)(250,350,450) (150,350,550)
P N 1 =(750,800,850)(700,800,900)(600, 800,1000)
P N 2 =(550,600,650)(500,600,700)(400, 600,800) CN 0 =Rs.1500,IN =0.3
price600,
76.376,whichis lessthanthepricebreakpoint. Therefore,wehavetodeterminetheoptimal totalcostforthefirstpriceandthetotalcost attheprice-breakcorrespondingtothesecond priceandcomparethetwo.
M. Mullai, R. Surya: Neutrosophic EOQ Model with Price Break
Thedefuzzifiedoptimaltotalcost (TC)N associatedwith P N 1 iscalculatedasfollows:
(TC)N (P N 1 =800)= DN ∗ P N 1 + DN C N 0 QN 2 + QN 2 P N 1 ∗ I N 2 = Rs.306664 13
(TC)N (b =100)= DN ∗ P N 2 + DN C N 0 b + bP N 2 ∗ I N 2 = Rs.173812 5
whichislowerthanthetotalcost correspondingto QN 2 .