Advances and Applications of DSmT for Information Fusion. Collected Works. Volume 4
Reliability and Importance Discounting of Neutrosophic Masses Florentin Smarandache Originally published in Smarandache, F. - Neutrosophic Theory and its Applications, Collected Papers, Vol. I. 2014. <hal-01092887v2>, and reprinted with permission.
Â&#x201E;Â&#x2022;Â&#x2013;Â&#x201D;Â&#x192;Â&#x2026;Â&#x2013;Ǥ In this paper, we introduce for the first time the discounting of a neutrosophic mass in terms of reliability and respectively the importance of the source. We show that reliability and importance discounts commute when dealing with classical masses. ͳǤ Â?Â&#x2013;Â&#x201D;Â&#x2018;Â&#x2020;Â&#x2014;Â&#x2026;Â&#x2013;Â&#x2039;Â&#x2018;Â?Ǥ Let ÎŚ = {ÎŚ1 , ÎŚ2 , â&#x20AC;Ś , ÎŚn } be the frame of discernment, where đ?&#x2018;&#x203A; â&#x2030;Ľ 2, and the set of Â&#x2C6;Â&#x2018;Â&#x2026;Â&#x192;Â&#x17D; elemeÂ?Â&#x2013;Â&#x2022;: đ??š = {đ??´1 , đ??´2 , â&#x20AC;Ś , đ??´đ?&#x2018;&#x161; }, for đ?&#x2018;&#x161; â&#x2030;Ľ 1, đ??š â&#x160;&#x201A; đ??ş đ?&#x203A;ˇ . (1) Let đ??ş đ?&#x203A;ˇ = (đ?&#x203A;ˇ,â&#x2C6;Ş,â&#x2C6;Š, đ?&#x2019;&#x17E;) be the Â&#x2C6;Â&#x2014;Â&#x2022;Â&#x2039;Â&#x2018;n Â&#x2022;Â&#x2019;Â&#x192;Â&#x2026;Â&#x2021;. A Â?Â&#x2021;Â&#x2014;Â&#x2013;Â&#x201D;Â&#x2018;Â&#x2022;Â&#x2018;Â&#x2019;Â&#x160;Â&#x2039;Â&#x2026; Â?Â&#x192;Â&#x2022;Â&#x2022; is defined as follows: đ?&#x2018;&#x161;đ?&#x2018;&#x203A; : đ??ş â&#x2020;&#x2019; [0, 1]3 for any đ?&#x2018;Ľ â&#x2C6;&#x2C6; đ??ş, đ?&#x2018;&#x161;đ?&#x2018;&#x203A; (đ?&#x2018;Ľ) = (đ?&#x2018;Ą(đ?&#x2018;Ľ), đ?&#x2018;&#x2013;(đ?&#x2018;Ľ), đ?&#x2018;&#x201C;(đ?&#x2018;Ľ)), (2) where
đ?&#x2018;Ą(đ?&#x2018;Ľ) = believe that đ?&#x2018;Ľ will occur (truth); đ?&#x2018;&#x2013;(đ?&#x2018;Ľ) = indeterminacy about occurence; and đ?&#x2018;&#x201C;(đ?&#x2018;Ľ) = believe that đ?&#x2018;Ľ will not occur (falsity).
257
Advances and Applications of DSmT for Information Fusion. Collected Works. Volume 4
Simply, we say in neutrosophic logic: đ?&#x2018;Ą(đ?&#x2018;Ľ) = believe in đ?&#x2018;Ľ; đ?&#x2018;&#x2013;(đ?&#x2018;Ľ) = believe in neut(đ?&#x2018;Ľ) [the neutral of đ?&#x2018;Ľ, i.e. neither đ?&#x2018;Ľ nor anti(đ?&#x2018;Ľ)]; and đ?&#x2018;&#x201C;(đ?&#x2018;Ľ) = believe in anti(đ?&#x2018;Ľ) [the opposite of đ?&#x2018;Ľ]. Of course, đ?&#x2018;Ą(đ?&#x2018;Ľ), đ?&#x2018;&#x2013;(đ?&#x2018;Ľ), đ?&#x2018;&#x201C;(đ?&#x2018;Ľ) â&#x2C6;&#x2C6; [0, 1], and â&#x2C6;&#x2018;đ?&#x2018;Ľâ&#x2C6;&#x2C6;đ??ş [đ?&#x2018;Ą(đ?&#x2018;Ľ) + đ?&#x2018;&#x2013;(đ?&#x2018;Ľ) + đ?&#x2018;&#x201C;(đ?&#x2018;Ľ)] = 1, (3) while đ?&#x2018;&#x161;đ?&#x2018;&#x203A; (Ń&#x201E;) = (0, 0, 0). (4) It is possible that according to some parameters (or data) a source is able to predict the believe in a hypothesis đ?&#x2018;Ľ to occur, while according to other parameters (or other data) the same source may be able to find the believe in đ?&#x2018;Ľ not occuring, and upon a third category of parameters (or data) the source may find some indeterminacy (ambiguity) about hypothesis occurence. An element đ?&#x2018;Ľ â&#x2C6;&#x2C6; đ??ş is called Â&#x2C6;Â&#x2018;Â&#x2026;Â&#x192;Â&#x17D; if đ?&#x2018;&#x203A;đ?&#x2018;&#x161; (đ?&#x2018;Ľ) â&#x2030; (0, 0, 0), (5) i.e. đ?&#x2018;Ą(đ?&#x2018;Ľ) > 0 or đ?&#x2018;&#x2013;(đ?&#x2018;Ľ) > 0 or đ?&#x2018;&#x201C;(đ?&#x2018;Ľ) > 0. Any Â&#x2026;Â&#x17D;Â&#x192;Â&#x2022;Â&#x2022;Â&#x2039;Â&#x2026;Â&#x192;l mÂ&#x192;Â&#x2022;Â&#x2022;: đ?&#x2018;&#x161; â&#x2C6;ś đ??ş Ń&#x201E; â&#x2020;&#x2019; [0, 1] (6) can be simply written as a neutrosophic mass as: đ?&#x2018;&#x161;(đ??´) = (đ?&#x2018;&#x161;(đ??´), 0, 0). (7)
258
Advances and Applications of DSmT for Information Fusion. Collected Works. Volume 4
ʹǤ Â&#x2039;Â&#x2022;Â&#x2026;Â&#x2018;Â&#x2014;Â?Â&#x2013;Â&#x2039;Â?Â&#x2030; Â&#x192; NeuÂ&#x2013;Â&#x201D;Â&#x2018;Â&#x2022;Â&#x2018;Â&#x2019;Â&#x160;Â&#x2039;Â&#x2026; Â&#x192;Â&#x2022;Â&#x2022; due Â&#x2013;Â&#x2018; RelÂ&#x2039;Â&#x192;Â&#x201E;Â&#x2039;Â&#x17D;Â&#x2039;Â&#x2013;Â&#x203A; of Â&#x2013;Â&#x160;Â&#x2021; Â&#x2018;Â&#x2014;Â&#x201D;Â&#x2026;Â&#x2021;Ǥ Let đ?&#x203A;ź = (đ?&#x203A;ź1 , đ?&#x203A;ź2 , đ?&#x203A;ź3 ) be the reliability coefficient of the source, đ?&#x203A;ź â&#x2C6;&#x2C6; [0,1]3 . Then, for any đ?&#x2018;Ľ â&#x2C6;&#x2C6; đ??ş đ?&#x153;&#x192; â&#x2C6;&#x2013; {đ?&#x153;&#x192;, đ??źđ?&#x2018;Ą }, where đ?&#x153;&#x192; = the empty set and đ??źđ?&#x2018;Ą = total ignorance, đ?&#x2018;&#x161;đ?&#x2018;&#x203A; (đ?&#x2018;Ľ)đ?&#x2018;&#x17D; = (đ?&#x203A;ź1 đ?&#x2018;Ą(đ?&#x2018;Ľ), đ?&#x203A;ź2 đ?&#x2018;&#x2013;(đ?&#x2018;Ľ), đ?&#x203A;ź3 đ?&#x2018;&#x201C;(đ?&#x2018;Ľ)), (8) and đ?&#x2018;&#x161;đ?&#x2018;&#x203A; (đ??źđ?&#x2018;Ą )đ?&#x203A;ź = (đ?&#x2018;Ą(đ??źđ?&#x2018;Ą ) + (1 â&#x2C6;&#x2019; đ?&#x203A;ź1 )
đ?&#x2018;Ą(đ?&#x2018;Ľ) ,
â&#x2C6;&#x2018; đ?&#x2018;Ľâ&#x2C6;&#x2C6;đ??ş đ?&#x153;&#x192; â&#x2C6;&#x2013;{đ?&#x153;&#x2122;,đ??źđ?&#x2018;Ą }
đ?&#x2018;&#x2013;(đ??źđ?&#x2018;Ą ) + (1 â&#x2C6;&#x2019; đ?&#x203A;ź2 )
đ?&#x2018;&#x2013;(đ?&#x2018;Ľ), đ?&#x2018;&#x201C;(đ??źđ?&#x2018;Ą ) + (1 â&#x2C6;&#x2019; đ?&#x203A;ź3 )
â&#x2C6;&#x2018; đ?&#x2018;Ľâ&#x2C6;&#x2C6;đ??ş đ?&#x153;&#x192; â&#x2C6;&#x2013;{đ?&#x153;&#x2122;,đ??źđ?&#x2018;Ą }
â&#x2C6;&#x2018;
đ?&#x2018;&#x201C;(đ?&#x2018;Ľ))
đ?&#x2018;Ľâ&#x2C6;&#x2C6;đ??ş đ?&#x153;&#x192; â&#x2C6;&#x2013;{đ?&#x153;&#x2122;,đ??źđ?&#x2018;Ą }
(9),
and, of course, đ?&#x2018;&#x161;đ?&#x2018;&#x203A; (đ?&#x153;&#x2122;)đ?&#x203A;ź = (0, 0, 0).
The missing mass of each element đ?&#x2018;Ľ, for đ?&#x2018;Ľ â&#x2030; đ?&#x153;&#x2122;, đ?&#x2018;Ľ â&#x2030; đ??źđ?&#x2018;Ą , is transferred to the mass of the total ignorance in the following way: đ?&#x2018;Ą(đ?&#x2018;Ľ) â&#x2C6;&#x2019; đ?&#x203A;ź1 đ?&#x2018;Ą(đ?&#x2018;Ľ) = (1 â&#x2C6;&#x2019; đ?&#x203A;ź1 ) â&#x2C6;&#x2122; đ?&#x2018;Ą(đ?&#x2018;Ľ) is transferred to đ?&#x2018;Ą(đ??źđ?&#x2018;Ą ), (10) đ?&#x2018;&#x2013;(đ?&#x2018;Ľ) â&#x2C6;&#x2019; đ?&#x203A;ź2 đ?&#x2018;&#x2013;(đ?&#x2018;Ľ) = (1 â&#x2C6;&#x2019; đ?&#x203A;ź2 ) â&#x2C6;&#x2122; đ?&#x2018;&#x2013;(đ?&#x2018;Ľ) is transferred to đ?&#x2018;&#x2013;(đ??źđ?&#x2018;Ą ), (11) and đ?&#x2018;&#x201C;(đ?&#x2018;Ľ) â&#x2C6;&#x2019; đ?&#x203A;ź3 đ?&#x2018;&#x201C;(đ?&#x2018;Ľ) = (1 â&#x2C6;&#x2019; đ?&#x203A;ź3 ) â&#x2C6;&#x2122; đ?&#x2018;&#x201C;(đ?&#x2018;Ľ) is transferred to đ?&#x2018;&#x201C;(đ??źđ?&#x2018;Ą ). (12)
259
Advances and Applications of DSmT for Information Fusion. Collected Works. Volume 4
;Ǥ Â&#x2039;Â&#x2022;Â&#x2026;Â&#x2018;Â&#x2014;Â?Â&#x2013;Â&#x2039;Â?Â&#x2030; Â&#x192; Â&#x2021;Â&#x2014;Â&#x2013;Â&#x201D;Â&#x2018;Â&#x2022;Â&#x2018;Â&#x2019;Â&#x160;Â&#x2039;Â&#x2026; Â&#x192;Â&#x2022;s Â&#x2020;Â&#x2014;e Â&#x2013;Â&#x2018; Â&#x2013;Â&#x160;Â&#x2021; Â?Â&#x2019;Â&#x2018;Â&#x201D;Â&#x2013;Â&#x192;Â?ce Â&#x2018;f Â&#x2013;Â&#x160;Â&#x2021; Â&#x2018;Â&#x2014;Â&#x201D;Â&#x2026;Â&#x2021;Ǥ Let đ?&#x203A;˝ â&#x2C6;&#x2C6; [0, 1] be the importance coefficient of the source. This discounting can be done in several ways. a. For any đ?&#x2018;Ľ â&#x2C6;&#x2C6; đ??ş đ?&#x153;&#x192; â&#x2C6;&#x2013; {đ?&#x153;&#x2122;}, đ?&#x2018;&#x161;đ?&#x2018;&#x203A; (đ?&#x2018;Ľ)đ?&#x203A;˝1 = (đ?&#x203A;˝ â&#x2C6;&#x2122; đ?&#x2018;Ą(đ?&#x2018;Ľ), đ?&#x2018;&#x2013;(đ?&#x2018;Ľ), đ?&#x2018;&#x201C;(đ?&#x2018;Ľ) + (1 â&#x2C6;&#x2019; đ?&#x203A;˝) â&#x2C6;&#x2122; đ?&#x2018;Ą(đ?&#x2018;Ľ)), (13) which means that đ?&#x2018;Ą(đ?&#x2018;Ľ), the believe in đ?&#x2018;Ľ, is diminished to đ?&#x203A;˝ â&#x2C6;&#x2122; đ?&#x2018;Ą(đ?&#x2018;Ľ), and the missing mass, đ?&#x2018;Ą(đ?&#x2018;Ľ) â&#x2C6;&#x2019; đ?&#x203A;˝ â&#x2C6;&#x2122; đ?&#x2018;Ą(đ?&#x2018;Ľ) = (1 â&#x2C6;&#x2019; đ?&#x203A;˝) â&#x2C6;&#x2122; đ?&#x2018;Ą(đ?&#x2018;Ľ), is transferred to the believe in đ?&#x2018;&#x17D;đ?&#x2018;&#x203A;đ?&#x2018;Ąđ?&#x2018;&#x2013;(đ?&#x2018;Ľ). b. Another way: For any đ?&#x2018;Ľ â&#x2C6;&#x2C6; đ??ş đ?&#x153;&#x192; â&#x2C6;&#x2013; {đ?&#x153;&#x2122;}, đ?&#x2018;&#x161;đ?&#x2018;&#x203A; (đ?&#x2018;Ľ)đ?&#x203A;˝2 = (đ?&#x203A;˝ â&#x2C6;&#x2122; đ?&#x2018;Ą(đ?&#x2018;Ľ), đ?&#x2018;&#x2013;(đ?&#x2018;Ľ) + (1 â&#x2C6;&#x2019; đ?&#x203A;˝) â&#x2C6;&#x2122; đ?&#x2018;Ą(đ?&#x2018;Ľ), đ?&#x2018;&#x201C;(đ?&#x2018;Ľ)), (14) which means that đ?&#x2018;Ą(đ?&#x2018;Ľ), the believe in đ?&#x2018;Ľ, is similarly diminished to đ?&#x203A;˝ â&#x2C6;&#x2122; đ?&#x2018;Ą(đ?&#x2018;Ľ), and the missing mass (1 â&#x2C6;&#x2019; đ?&#x203A;˝) â&#x2C6;&#x2122; đ?&#x2018;Ą(đ?&#x2018;Ľ) is now transferred to the believe in đ?&#x2018;&#x203A;đ?&#x2018;&#x2019;đ?&#x2018;˘đ?&#x2018;Ą(đ?&#x2018;Ľ). c. The third way is the most general, putting together the first and second ways. For any đ?&#x2018;Ľ â&#x2C6;&#x2C6; đ??ş đ?&#x153;&#x192; â&#x2C6;&#x2013; {đ?&#x153;&#x2122;}, đ?&#x2018;&#x161;đ?&#x2018;&#x203A; (đ?&#x2018;Ľ)đ?&#x203A;˝3 = (đ?&#x203A;˝ â&#x2C6;&#x2122; đ?&#x2018;Ą(đ?&#x2018;Ľ), đ?&#x2018;&#x2013;(đ?&#x2018;Ľ) + (1 â&#x2C6;&#x2019; đ?&#x203A;˝) â&#x2C6;&#x2122; đ?&#x2018;Ą(đ?&#x2018;Ľ) â&#x2C6;&#x2122; đ?&#x203A;ž, đ?&#x2018;&#x201C;(đ?&#x2018;Ľ) + (1 â&#x2C6;&#x2019; đ?&#x203A;˝) â&#x2C6;&#x2122; đ?&#x2018;Ą(đ?&#x2018;Ľ) â&#x2C6;&#x2122; (1 â&#x2C6;&#x2019; đ?&#x203A;ž)), (15) where đ?&#x203A;ž â&#x2C6;&#x2C6; [0, 1] is a parameter that splits the missing mass (1 â&#x2C6;&#x2019; đ?&#x203A;˝) â&#x2C6;&#x2122; đ?&#x2018;Ą(đ?&#x2018;Ľ) a part to đ?&#x2018;&#x2013;(đ?&#x2018;Ľ) and the other part to đ?&#x2018;&#x201C;(đ?&#x2018;Ľ). For đ?&#x203A;ž = 0, one gets the first way of distribution, and when đ?&#x203A;ž = 1, one gets the second way of distribution.
260
Advances and Applications of DSmT for Information Fusion. Collected Works. Volume 4
͜Ǥ Â&#x2039;Â&#x2022;Â&#x2026;Â&#x2018;Â&#x2014;Â?Â&#x2013;Â&#x2039;Â?Â&#x2030; Â&#x2018;f Â&#x2021;Â&#x17D;Â&#x2039;Â&#x192;Â&#x201E;Â&#x2039;Â&#x17D;Â&#x2039;Â&#x2013;y Â&#x192;Â?Â&#x2020; Â?Â&#x2019;Â&#x2018;Â&#x201D;tance Â&#x2018;f Â&#x2018;Â&#x2014;Â&#x201D;ces Â&#x2039;n Â&#x2021;Â?Â&#x2021;Â&#x201D;Â&#x192;Â&#x17D; Â&#x2018; Not CoÂ?Â?Â&#x2014;Â&#x2013;Â&#x2021;Ǥ a. Reliability first, Importance second. For any đ?&#x2018;Ľ â&#x2C6;&#x2C6; đ??ş đ?&#x153;&#x192; â&#x2C6;&#x2013; {đ?&#x153;&#x2122;, đ??źđ?&#x2018;Ą }, one has after reliability Îą discounting, where đ?&#x203A;ź = (đ?&#x203A;ź1 , đ?&#x203A;ź2 , đ?&#x203A;ź3 ): đ?&#x2018;&#x161;đ?&#x2018;&#x203A; (đ?&#x2018;Ľ)đ?&#x203A;ź = (đ?&#x203A;ź1 â&#x2C6;&#x2122; đ?&#x2018;Ą(đ?&#x2018;Ľ), đ?&#x203A;ź2 â&#x2C6;&#x2122; đ?&#x2018;Ą(đ?&#x2018;Ľ), đ?&#x203A;ź3 â&#x2C6;&#x2122; đ?&#x2018;&#x201C;(đ?&#x2018;Ľ)), (16) and
đ?&#x2018;&#x161;đ?&#x2018;&#x203A; (đ??źđ?&#x2018;Ą )đ?&#x203A;ź = (đ?&#x2018;Ą(đ??źđ?&#x2018;Ą ) + (1 â&#x2C6;&#x2019; đ?&#x203A;ź1 ) â&#x2C6;&#x2122;
â&#x2C6;&#x2018;
đ?&#x2018;Ą(đ?&#x2018;Ľ) , đ?&#x2018;&#x2013;(đ??źđ?&#x2018;Ą ) + (1 â&#x2C6;&#x2019; đ?&#x203A;ź2 )
đ?&#x2018;Ľâ&#x2C6;&#x2C6;đ??ş đ?&#x153;&#x192; â&#x2C6;&#x2013;{đ?&#x153;&#x2122;,đ??źđ?&#x2018;Ą }
â&#x2C6;&#x2122;
â&#x2C6;&#x2018;
đ?&#x2018;&#x2013;(đ?&#x2018;Ľ) , đ?&#x2018;&#x201C;(đ??źđ?&#x2018;Ą ) + (1 â&#x2C6;&#x2019; đ?&#x203A;ź3 ) â&#x2C6;&#x2122;
đ?&#x2018;Ľâ&#x2C6;&#x2C6;đ??ş đ?&#x153;&#x192; â&#x2C6;&#x2013;{đ?&#x153;&#x2122;,đ??źđ?&#x2018;Ą }
â&#x2C6;&#x2018;
đ?&#x2018;&#x201C;(đ?&#x2018;Ľ))
đ?&#x2018;Ľâ&#x2C6;&#x2C6;đ??ş đ?&#x153;&#x192; â&#x2C6;&#x2013;{đ?&#x153;&#x2122;,đ??źđ?&#x2018;Ą }
â&#x2030;? (đ?&#x2018;&#x2021;đ??źđ?&#x2018;Ą , đ??źđ??źđ?&#x2018;Ą , đ??šđ??źđ?&#x2018;Ą ).
(17)
Now we do the importance β discounting method, the third importance discounting way which is the most general: đ?&#x2018;&#x161;đ?&#x2018;&#x203A; (đ?&#x2018;Ľ)đ?&#x203A;źđ?&#x203A;˝3 = (đ?&#x203A;˝đ?&#x203A;ź1 đ?&#x2018;Ą(đ?&#x2018;Ľ), đ?&#x203A;ź2 đ?&#x2018;&#x2013;(đ?&#x2018;Ľ) + (1 â&#x2C6;&#x2019; đ?&#x203A;˝)đ?&#x203A;ź1 đ?&#x2018;Ą(đ?&#x2018;Ľ)đ?&#x203A;ž, đ?&#x203A;ź3 đ?&#x2018;&#x201C;(đ?&#x2018;Ľ) + (1 â&#x2C6;&#x2019; đ?&#x203A;˝)đ?&#x203A;ź1 đ?&#x2018;Ą(đ?&#x2018;Ľ)(1 â&#x2C6;&#x2019; đ?&#x203A;ž))
(18)
and đ?&#x2018;&#x161;đ?&#x2018;&#x203A;(đ??źđ?&#x2018;Ą)đ?&#x203A;źđ?&#x203A;˝3 = (đ?&#x203A;˝ â&#x2C6;&#x2122; đ?&#x2018;&#x2021;đ??źđ?&#x2018;Ą , đ??źđ??źđ?&#x2018;Ą + (1 â&#x2C6;&#x2019; đ?&#x203A;˝)đ?&#x2018;&#x2021;đ??źđ?&#x2018;Ą â&#x2C6;&#x2122; đ?&#x203A;ž, đ??šđ??źđ?&#x2018;Ą + (1 â&#x2C6;&#x2019; đ?&#x203A;˝)đ?&#x2018;&#x2021;đ??źđ?&#x2018;Ą (1 â&#x2C6;&#x2019; đ?&#x203A;ž)). (19) b. Importance first, Reliability second. For any đ?&#x2018;Ľ â&#x2C6;&#x2C6; đ??şđ?&#x153;&#x192; â&#x2C6;&#x2013; {đ?&#x153;&#x2122;, đ??źđ?&#x2018;Ą}, one has after importance β discounting (third way): đ?&#x2018;&#x161;đ?&#x2018;&#x203A;(đ?&#x2018;Ľ)đ?&#x203A;˝3 = (đ?&#x203A;˝ â&#x2C6;&#x2122; đ?&#x2018;Ą(đ?&#x2018;Ľ), đ?&#x2018;&#x2013;(đ?&#x2018;Ľ) + (1 â&#x2C6;&#x2019; đ?&#x203A;˝)đ?&#x2018;Ą(đ?&#x2018;Ľ)đ?&#x203A;ž, đ?&#x2018;&#x201C;(đ?&#x2018;Ľ) + (1 â&#x2C6;&#x2019; đ?&#x203A;˝)đ?&#x2018;Ą(đ?&#x2018;Ľ)(1 â&#x2C6;&#x2019; đ?&#x203A;ž)) (20) and đ?&#x2018;&#x161;đ?&#x2018;&#x203A; (đ??źđ?&#x2018;Ą )đ?&#x203A;˝3 = (đ?&#x203A;˝ â&#x2C6;&#x2122; đ?&#x2018;Ą(đ??źđ??źđ?&#x2018;Ą ), đ?&#x2018;&#x2013;(đ??źđ??źđ?&#x2018;Ą ) + (1 â&#x2C6;&#x2019; đ?&#x203A;˝)đ?&#x2018;Ą(đ??źđ?&#x2018;Ą )đ?&#x203A;ž, đ?&#x2018;&#x201C;(đ??źđ?&#x2018;Ą ) + (1 â&#x2C6;&#x2019; đ?&#x203A;˝)đ?&#x2018;Ą(đ??źđ?&#x2018;Ą )(1 â&#x2C6;&#x2019; đ?&#x203A;ž)). (21)
261
Advances and Applications of DSmT for Information Fusion. Collected Works. Volume 4
Now we do the reliability đ?&#x203A;ź = (đ?&#x203A;ź1 , đ?&#x203A;ź2 , đ?&#x203A;ź3 ) discounting, and one gets: đ?&#x2018;&#x161;đ?&#x2018;&#x203A; (đ?&#x2018;Ľ)đ?&#x203A;˝3đ?&#x203A;ź = (đ?&#x203A;ź1 â&#x2C6;&#x2122; đ?&#x203A;˝ â&#x2C6;&#x2122; đ?&#x2018;Ą(đ?&#x2018;Ľ), đ?&#x203A;ź2 â&#x2C6;&#x2122; đ?&#x2018;&#x2013;(đ?&#x2018;Ľ) + đ?&#x203A;ź2 (1 â&#x2C6;&#x2019; đ?&#x203A;˝)đ?&#x2018;Ą(đ?&#x2018;Ľ)đ?&#x203A;ž, đ?&#x203A;ź3 â&#x2C6;&#x2122; đ?&#x2018;&#x201C;(đ?&#x2018;Ľ) + đ?&#x203A;ź3 â&#x2C6;&#x2122; (1 â&#x2C6;&#x2019; đ?&#x203A;˝)đ?&#x2018;Ą(đ?&#x2018;Ľ)(1 â&#x2C6;&#x2019; đ?&#x203A;ž)) (22) and đ?&#x2018;&#x161;đ?&#x2018;&#x203A; (đ??źđ?&#x2018;Ą )đ?&#x203A;˝3đ?&#x203A;ź = (đ?&#x203A;ź1 â&#x2C6;&#x2122; đ?&#x203A;˝ â&#x2C6;&#x2122; đ?&#x2018;Ą(đ??źđ?&#x2018;Ą ), đ?&#x203A;ź2 â&#x2C6;&#x2122; đ?&#x2018;&#x2013;(đ??źđ?&#x2018;Ą ) + đ?&#x203A;ź2 (1 â&#x2C6;&#x2019; đ?&#x203A;˝)đ?&#x2018;Ą(đ??źđ?&#x2018;Ą )đ?&#x203A;ž, đ?&#x203A;ź3 â&#x2C6;&#x2122; đ?&#x2018;&#x201C;(đ??źđ?&#x2018;Ą ) + đ?&#x203A;ź3 (1 â&#x2C6;&#x2019; đ?&#x203A;˝)đ?&#x2018;Ą(đ??źđ?&#x2018;Ą )(1 â&#x2C6;&#x2019; đ?&#x203A;ž)). (23) emark. We see that (a) and (b) are in general different, so reliability of sources does not commute with the importance of sources. ͡Ǥ Â&#x192;Â&#x201D;Â&#x2013;Â&#x2039;Â&#x2026;Â&#x2014;Â&#x17D;Â&#x192;r Â&#x192;se Â&#x2122;Â&#x160;en Â&#x2021;Â&#x17D;Â&#x2039;Â&#x192;Â&#x201E;Â&#x2039;Â&#x17D;Â&#x2039;ty Â&#x192;Â?d Â?Â&#x2019;Â&#x2018;Â&#x201D;Â&#x2013;Â&#x192;Â?Â&#x2026;Â&#x2021; Â&#x2039;Â&#x2022;Â&#x2026;Â&#x2018;Â&#x2014;Â?Â&#x2013;Â&#x2039;Â?g Â&#x2018;Â&#x2C6; Â&#x192;Â&#x2022;Â&#x2022;Â&#x2021;Â&#x2022; CoÂ?Â?Â&#x2014;Â&#x2013;Â&#x2021;Ǥ Letâ&#x20AC;&#x2122;s consider a classical mass and the focal set đ??š â&#x160;&#x201A; đ??ş đ?&#x153;&#x192; ,
đ?&#x2018;&#x161;: đ??ş đ?&#x153;&#x192; â&#x2020;&#x2019; [0, 1] (24) đ??š = {đ??´1 , đ??´2 , â&#x20AC;Ś , đ??´đ?&#x2018;&#x161; }, đ?&#x2018;&#x161; â&#x2030;Ľ 1, (25)
and of course đ?&#x2018;&#x161;(đ??´đ?&#x2018;&#x2013; ) > 0, for 1 â&#x2030;¤ đ?&#x2018;&#x2013; â&#x2030;¤ đ?&#x2018;&#x161;. Suppose đ?&#x2018;&#x161;(đ??´đ?&#x2018;&#x2013; ) = đ?&#x2018;&#x17D;đ?&#x2018;&#x2013; â&#x2C6;&#x2C6; (0,1]. (26) a. Reliability first, Importance second. Let đ?&#x203A;ź â&#x2C6;&#x2C6; [0, 1] be the reliability coefficient of đ?&#x2018;&#x161; (â&#x2C6;&#x2122;). For đ?&#x2018;Ľ â&#x2C6;&#x2C6; đ??ş đ?&#x153;&#x192; â&#x2C6;&#x2013; {đ?&#x153;&#x2122;, đ??źđ?&#x2018;Ą }, one has
đ?&#x2018;&#x161;(đ?&#x2018;Ľ)đ?&#x203A;ź = đ?&#x203A;ź â&#x2C6;&#x2122; đ?&#x2018;&#x161;(đ?&#x2018;Ľ), (27)
and đ?&#x2018;&#x161;(đ??źđ?&#x2018;Ą ) = đ?&#x203A;ź â&#x2C6;&#x2122; đ?&#x2018;&#x161;(đ??źđ?&#x2018;Ą ) + 1 â&#x2C6;&#x2019; đ?&#x203A;ź. (28) Let đ?&#x203A;˝ â&#x2C6;&#x2C6; [0, 1] be the importance coefficient of đ?&#x2018;&#x161; (â&#x2C6;&#x2122;). Then, for đ?&#x2018;Ľ â&#x2C6;&#x2C6; đ??ş đ?&#x153;&#x192; â&#x2C6;&#x2013; {đ?&#x153;&#x2122;, đ??źđ?&#x2018;Ą }, đ?&#x2018;&#x161;(đ?&#x2018;Ľ)đ?&#x203A;źđ?&#x203A;˝ = (đ?&#x203A;˝đ?&#x203A;źđ?&#x2018;&#x161;(đ?&#x2018;Ľ), đ?&#x203A;źđ?&#x2018;&#x161;(đ?&#x2018;Ľ) â&#x2C6;&#x2019; đ?&#x203A;˝đ?&#x203A;źđ?&#x2018;&#x161;(đ?&#x2018;Ľ)) = đ?&#x203A;ź â&#x2C6;&#x2122; đ?&#x2018;&#x161;(đ?&#x2018;Ľ) â&#x2C6;&#x2122; (đ?&#x203A;˝, 1 â&#x2C6;&#x2019; đ?&#x203A;˝), (29) considering only two components: believe that đ?&#x2018;Ľ occurs and, respectively, believe that đ?&#x2018;Ľ does not occur. Further on, đ?&#x2018;&#x161;(đ??źđ?&#x2018;Ą )đ?&#x203A;źđ?&#x203A;˝ = (đ?&#x203A;˝đ?&#x203A;źđ?&#x2018;&#x161;(đ??źđ?&#x2018;Ą ) + đ?&#x203A;˝ â&#x2C6;&#x2019; đ?&#x203A;˝đ?&#x203A;ź, đ?&#x203A;źđ?&#x2018;&#x161;(đ??źđ?&#x2018;Ą ) + 1 â&#x2C6;&#x2019; đ?&#x203A;ź â&#x2C6;&#x2019; đ?&#x203A;˝đ?&#x203A;źđ?&#x2018;&#x161;(đ??źđ?&#x2018;Ą ) â&#x2C6;&#x2019; đ?&#x203A;˝ + đ?&#x203A;˝đ?&#x203A;ź) = [đ?&#x203A;źđ?&#x2018;&#x161;(đ??źđ?&#x2018;Ą ) + 1 â&#x2C6;&#x2019; đ?&#x203A;ź] â&#x2C6;&#x2122; (đ?&#x203A;˝, 1 â&#x2C6;&#x2019; đ?&#x203A;˝). (30) 262
Advances and Applications of DSmT for Information Fusion. Collected Works. Volume 4
b. Importance first, Reliability second. For đ?&#x2018;Ľ â&#x2C6;&#x2C6; đ??ş đ?&#x153;&#x192; â&#x2C6;&#x2013; {đ?&#x153;&#x2122;, đ??źđ?&#x2018;Ą }, one has đ?&#x2018;&#x161;(đ?&#x2018;Ľ)đ?&#x203A;˝ = (đ?&#x203A;˝ â&#x2C6;&#x2122; đ?&#x2018;&#x161;(đ?&#x2018;Ľ), đ?&#x2018;&#x161;(đ?&#x2018;Ľ) â&#x2C6;&#x2019; đ?&#x203A;˝ â&#x2C6;&#x2122; đ?&#x2018;&#x161;(đ?&#x2018;Ľ)) = đ?&#x2018;&#x161;(đ?&#x2018;Ľ) â&#x2C6;&#x2122; (đ?&#x203A;˝, 1 â&#x2C6;&#x2019; đ?&#x203A;˝), (31) and đ?&#x2018;&#x161;(đ??źđ?&#x2018;Ą )đ?&#x203A;˝ = (đ?&#x203A;˝đ?&#x2018;&#x161;(đ??źđ?&#x2018;Ą ), đ?&#x2018;&#x161;(đ??źđ?&#x2018;Ą ) â&#x2C6;&#x2019; đ?&#x203A;˝đ?&#x2018;&#x161;(đ??źđ?&#x2018;Ą )) = đ?&#x2018;&#x161;(đ??źđ?&#x2018;Ą ) â&#x2C6;&#x2122; (đ?&#x203A;˝, 1 â&#x2C6;&#x2019; đ?&#x203A;˝). (32) Then, for the reliability discounting scaler Îą one has: đ?&#x2018;&#x161;(đ?&#x2018;Ľ)đ?&#x203A;˝đ?&#x203A;ź = đ?&#x203A;źđ?&#x2018;&#x161;(đ?&#x2018;Ľ)(đ?&#x203A;˝, 1 â&#x2C6;&#x2019; đ?&#x203A;˝) = (đ?&#x203A;źđ?&#x2018;&#x161;(đ?&#x2018;Ľ)đ?&#x203A;˝, đ?&#x203A;źđ?&#x2018;&#x161;(đ?&#x2018;Ľ) â&#x2C6;&#x2019; đ?&#x203A;źđ?&#x203A;˝đ?&#x2018;&#x161;(đ?&#x2018;&#x161;)) (33) and đ?&#x2018;&#x161;(đ??źđ?&#x2018;Ą )đ?&#x203A;˝đ?&#x203A;ź = đ?&#x203A;ź â&#x2C6;&#x2122; đ?&#x2018;&#x161;(đ??źđ?&#x2018;Ą )(đ?&#x203A;˝, 1 â&#x2C6;&#x2019; đ?&#x203A;˝) + (1 â&#x2C6;&#x2019; đ?&#x203A;ź)(đ?&#x203A;˝, 1 â&#x2C6;&#x2019; đ?&#x203A;˝) = [đ?&#x203A;źđ?&#x2018;&#x161;(đ??źđ?&#x2018;Ą ) + 1 â&#x2C6;&#x2019; đ?&#x203A;ź] â&#x2C6;&#x2122; (đ?&#x203A;˝, 1 â&#x2C6;&#x2019; đ?&#x203A;˝) = (đ?&#x203A;źđ?&#x2018;&#x161;(đ??źđ?&#x2018;Ą )đ?&#x203A;˝, đ?&#x203A;źđ?&#x2018;&#x161;(đ??źđ?&#x2018;Ą ) â&#x2C6;&#x2019; đ?&#x203A;źđ?&#x2018;&#x161;(đ??źđ?&#x2018;Ą )đ?&#x203A;˝) + (đ?&#x203A;˝ â&#x2C6;&#x2019; đ?&#x203A;źđ?&#x203A;˝, 1 â&#x2C6;&#x2019; đ?&#x203A;ź â&#x2C6;&#x2019; đ?&#x203A;˝ + đ?&#x203A;źđ?&#x203A;˝) = (đ?&#x203A;źđ?&#x203A;˝đ?&#x2018;&#x161;(đ??źđ?&#x2018;Ą ) + đ?&#x203A;˝ â&#x2C6;&#x2019; đ?&#x203A;źđ?&#x203A;˝, đ?&#x203A;źđ?&#x2018;&#x161;(đ??źđ?&#x2018;Ą ) â&#x2C6;&#x2019; đ?&#x203A;źđ?&#x203A;˝đ?&#x2018;&#x161;(đ??źđ?&#x2018;Ą ) + 1 â&#x2C6;&#x2019; đ?&#x203A;ź â&#x2C6;&#x2019; đ?&#x203A;˝ â&#x2C6;&#x2019; đ?&#x203A;źđ?&#x203A;˝). (34) Hence (a) and (b) are equal in this case. ͸Ǥ Â&#x161;Â&#x192;Â?Â&#x2019;Â&#x17D;Â&#x2021;Â&#x2022;Ǥ 1. Classical mass. The following classical is given on đ?&#x153;&#x192; = {đ??´, đ??ľ} â&#x2C6;ś
m
A
B
AUB
0.4
0.5
0.1
(35)
Let đ?&#x203A;ź = 0.8 be the reliability coefficient and đ?&#x203A;˝ = 0.7 be the importance coefficient. a. Reliability first, Importance second. A
B
AUB
đ?&#x2018;&#x161;đ?&#x203A;ź
0.32
0.40
0.28
đ?&#x2018;&#x161;đ?&#x203A;źđ?&#x203A;˝
(0.224, 0.096)
(0.280, 0.120)
(0.196, 0.084) (36)
263
Advances and Applications of DSmT for Information Fusion. Collected Works. Volume 4
We have computed in the following way: đ?&#x2018;&#x161;đ?&#x203A;ź (đ??´) = 0.8đ?&#x2018;&#x161;(đ??´) = 0.8(0.4) = 0.32, (37) đ?&#x2018;&#x161;đ?&#x203A;ź (đ??ľ) = 0.8đ?&#x2018;&#x161;(đ??ľ) = 0.8(0.5) = 0.40, (38) đ?&#x2018;&#x161;đ?&#x203A;ź (đ??´đ?&#x2018;&#x2C6;đ??ľ) = 0.8(AUB) + 1 â&#x2C6;&#x2019; 0.8 = 0.8(0.1) + 0.2 = 0.28, (39) and đ?&#x2018;&#x161;đ?&#x203A;źđ?&#x203A;˝ (đ??ľ) = (0.7đ?&#x2018;&#x161;đ?&#x203A;ź (đ??´), đ?&#x2018;&#x161;đ?&#x203A;ź (đ??´) â&#x2C6;&#x2019; 0.7đ?&#x2018;&#x161;đ?&#x203A;ź (đ??´)) = (0.7(0.32), 0.32 â&#x2C6;&#x2019; 0.7(0.32)) = (0.224, 0.096), (40) đ?&#x2018;&#x161;đ?&#x203A;źđ?&#x203A;˝ (đ??ľ) = (0.7đ?&#x2018;&#x161;đ?&#x203A;ź (đ??ľ), đ?&#x2018;&#x161;đ?&#x203A;ź (đ??ľ) â&#x2C6;&#x2019; 0.7đ?&#x2018;&#x161;đ?&#x203A;ź (đ??ľ)) = (0.7(0.40), 0.40 â&#x2C6;&#x2019; 0.7(0.40)) = (0.280, 0.120), (41) đ?&#x2018;&#x161;đ?&#x203A;źđ?&#x203A;˝ (đ??´đ?&#x2018;&#x2C6;đ??ľ) = (0.7đ?&#x2018;&#x161;đ?&#x203A;ź (đ??´đ?&#x2018;&#x2C6;đ??ľ), đ?&#x2018;&#x161;đ?&#x203A;ź (đ??´đ?&#x2018;&#x2C6;đ??ľ) â&#x2C6;&#x2019; 0.7đ?&#x2018;&#x161;đ?&#x203A;ź (đ??´đ?&#x2018;&#x2C6;đ??ľ)) = (0.7(0.28), 0.28 â&#x2C6;&#x2019; 0.7(0.28)) = (0.196, 0.084). (42) b. Importance first, Reliability second. A
B
AUB
m
0.4
0.5
0.1
đ?&#x2018;&#x161;đ?&#x203A;˝
(0.28, 0.12)
(0.35, 0.15)
(0.07, 0.03)
đ?&#x2018;&#x161;đ?&#x203A;˝đ?&#x203A;ź
(0.224, 0.096
(0.280, 0.120)
(0.196, 0.084) (43)
We computed in the following way: đ?&#x2018;&#x161;đ?&#x203A;˝ (đ??´) = (đ?&#x203A;˝đ?&#x2018;&#x161;(đ??´), (1 â&#x2C6;&#x2019; đ?&#x203A;˝)đ?&#x2018;&#x161;(đ??´)) = (0.7(0.4), (1 â&#x2C6;&#x2019; 0.7)(0.4)) = (0.280, 0.120), (44) đ?&#x2018;&#x161;đ?&#x203A;˝ (đ??ľ) = (đ?&#x203A;˝đ?&#x2018;&#x161;(đ??ľ), (1 â&#x2C6;&#x2019; đ?&#x203A;˝)đ?&#x2018;&#x161;(đ??ľ)) = (0.7(0.5), (1 â&#x2C6;&#x2019; 0.7)(0.5)) = (0.35, 0.15), (45) đ?&#x2018;&#x161;đ?&#x203A;˝ (đ??´đ?&#x2018;&#x2C6;đ??ľ) = (đ?&#x203A;˝đ?&#x2018;&#x161;(đ??´đ?&#x2018;&#x2C6;đ??ľ), (1 â&#x2C6;&#x2019; đ?&#x203A;˝)đ?&#x2018;&#x161;(đ??´đ?&#x2018;&#x2C6;đ??ľ)) = (0.7(0.1), (1 â&#x2C6;&#x2019; 0.1)(0.1)) = (0.07, 0.03), (46) and đ?&#x2018;&#x161;đ?&#x203A;˝đ?&#x203A;ź (đ??´) = đ?&#x203A;źđ?&#x2018;&#x161;đ?&#x203A;˝ (đ??´) = 0.8(0.28, 0.12) = (0.8(0.28), 0.8(0.12)) = (0.224, 0.096), (47) đ?&#x2018;&#x161;đ?&#x203A;˝đ?&#x203A;ź (đ??ľ) = đ?&#x203A;źđ?&#x2018;&#x161;đ?&#x203A;˝ (đ??ľ) = 0.8(0.35, 0.15) = (0.8(0.35), 0.8(0.15)) = (0.280, 0.120), (48)
264
Advances and Applications of DSmT for Information Fusion. Collected Works. Volume 4
đ?&#x2018;&#x161;đ?&#x203A;˝đ?&#x203A;ź (đ??´đ?&#x2018;&#x2C6;đ??ľ) = đ?&#x203A;źđ?&#x2018;&#x161;(đ??´đ?&#x2018;&#x2C6;đ??ľ)(đ?&#x203A;˝, 1 â&#x2C6;&#x2019; đ?&#x203A;˝) + (1 â&#x2C6;&#x2019; đ?&#x203A;ź)(đ?&#x203A;˝, 1 â&#x2C6;&#x2019; đ?&#x203A;˝) = 0.8(0.1)(0.7, 1 â&#x2C6;&#x2019; 0.7) + (1 â&#x2C6;&#x2019; 0.8)(0.7, 1 â&#x2C6;&#x2019; 0.7) = 0.08(0.7, 0.3) + 0.2(0.7, 0.3) = (0.056, 0.024) + (0.140, 0.060) = (0.056 + 0.140, 0.024 + 0.060) = (0.196, 0.084). (49) Therefore reliability discount commutes with importance discount of sources when one has classical masses. The result is interpreted this way: believe in đ??´ is 0.224 and believe in đ?&#x2018;&#x203A;đ?&#x2018;&#x153;đ?&#x2018;&#x203A;đ??´ is 0.096, believe in đ??ľ is 0.280 and believe in đ?&#x2018;&#x203A;đ?&#x2018;&#x153;đ?&#x2018;&#x203A;đ??ľ is 0.120, and believe in total ignorance đ??´đ?&#x2018;&#x2C6;đ??ľ is 0.196, and believe in non-ignorance is 0.084.
͚Ǥ Â&#x192;Â?Â&#x2021; Â&#x161;Â&#x192;Â?Â&#x2019;Â&#x17D;Â&#x2021; Â&#x2122;Â&#x2039;Â&#x2013;h Â&#x2039;Â&#x2C6;Â&#x2C6;Â&#x2021;Â&#x201D;Â&#x2021;Â?Â&#x2013; Â&#x2021;Â&#x2020;Â&#x2039;Â&#x2022;Â&#x2013;Â&#x201D;Â&#x2039;Â&#x201E;Â&#x2014;Â&#x2013;Â&#x2039;Â&#x2018;Â? Â&#x2018;f Â&#x192;Â&#x2022;Â&#x2022;Â&#x2021;Â&#x2022; Â&#x2021;Â&#x17D;Â&#x192;Â&#x2013;Â&#x2021;Â&#x2020; Â&#x2013;Â&#x2018;
Â?Â&#x2019;Â&#x2018;Â&#x201D;Â&#x2013;Â&#x192;Â?Â&#x2026;Â&#x2021; of Â&#x2018;Â&#x2014;Â&#x201D;Â&#x2026;Â&#x2021;Â&#x2022;Ǥ Letâ&#x20AC;&#x2122;s consider the third way of redistribution of masses related to importance coefficient of sources. đ?&#x203A;˝ = 0.7, but đ?&#x203A;ž = 0.4, which means that 40% of đ?&#x203A;˝ is redistributed to đ?&#x2018;&#x2013;(đ?&#x2018;Ľ) and 60% of đ?&#x203A;˝ is redistributed to đ?&#x2018;&#x201C;(đ?&#x2018;Ľ) for each đ?&#x2018;Ľ â&#x2C6;&#x2C6; đ??ş đ?&#x153;&#x192; â&#x2C6;&#x2013; {đ?&#x153;&#x2122;}; and đ?&#x203A;ź = 0.8.
a. Reliability first, Importance second. A
B
AUB
m
0.4
0.5
0.1
đ?&#x2018;&#x161;đ?&#x203A;ź
0.32
0.40
0.28
đ?&#x2018;&#x161;đ?&#x203A;źđ?&#x203A;˝
(0.2240, 0.0384,
(0.2800, 0.0480,
(0.1960, 0.0336,
0.0576)
0.0720)
0.0504). (50)
265
Advances and Applications of DSmT for Information Fusion. Collected Works. Volume 4
We computed đ?&#x2018;&#x161;đ?&#x203A;ź in the same way. But: đ?&#x2018;&#x161;đ?&#x203A;źđ?&#x203A;˝ (đ??´) = (đ?&#x203A;˝ â&#x2C6;&#x2122; đ?&#x2018;&#x161;đ?&#x203A;ź (đ??´), đ?&#x2018;&#x2013;đ?&#x203A;ź (đ??´) + (1 â&#x2C6;&#x2019; đ?&#x203A;˝)đ?&#x2018;&#x161;đ?&#x203A;ź (đ??´) â&#x2C6;&#x2122; đ?&#x203A;ž, đ?&#x2018;&#x201C;đ?&#x203A;ź (đ??´) + (1 â&#x2C6;&#x2019; đ?&#x203A;˝)đ?&#x2018;&#x161;đ?&#x203A;ź (đ??´)(1 â&#x2C6;&#x2019; đ?&#x203A;ž)) = (0.7(0.32), 0 + (1 â&#x2C6;&#x2019; 0.7)(0.32)(0.4), 0 + (1 â&#x2C6;&#x2019; 0.7)(0.32)(1 â&#x2C6;&#x2019; 0.4)) = (0.2240, 0.0384, 0.0576). (51) Similarly for đ?&#x2018;&#x161;đ?&#x203A;źđ?&#x203A;˝ (đ??ľ) and đ?&#x2018;&#x161;đ?&#x203A;źđ?&#x203A;˝ (đ??´đ?&#x2018;&#x2C6;đ??ľ).
b. Importance first, Reliability second. A
B
AUB
m
0.4
0.5
0.1
đ?&#x2018;&#x161;đ?&#x203A;˝
(0.280, 0.048,
(0.350, 0.060,
(0.070, 0.012,
0.072)
0.090)
0.018)
(0.2240, 0.0384,
(0.2800, 0.0480,
(0.1960, 0.0336,
0.0576)
0.0720)
0.0504).
đ?&#x2018;&#x161;đ?&#x203A;˝ đ?&#x203A;ź
(52) We computed đ?&#x2018;&#x161;đ?&#x203A;˝ (â&#x2C6;&#x2122;) in the following way: đ?&#x2018;&#x161;đ?&#x203A;˝ (đ??´) = (đ?&#x203A;˝ â&#x2C6;&#x2122; đ?&#x2018;Ą(đ??´), đ?&#x2018;&#x2013;(đ??´) + (1 â&#x2C6;&#x2019; đ?&#x203A;˝)đ?&#x2018;Ą(đ??´) â&#x2C6;&#x2122; đ?&#x203A;ž, đ?&#x2018;&#x201C;(đ??´) + (1 â&#x2C6;&#x2019; đ?&#x203A;˝)đ?&#x2018;Ą(đ??´)(1 â&#x2C6;&#x2019; đ?&#x203A;ž)) = (0.7(0.4), 0 + (1 â&#x2C6;&#x2019; 0.7)(0.4)(0.4), 0 + (1 â&#x2C6;&#x2019; 0.7)0.4(1 â&#x2C6;&#x2019; 0.4)) = (0.280, 0.048, 0.072). (53) Similarly for đ?&#x2018;&#x161;đ?&#x203A;˝ (đ??ľ) and đ?&#x2018;&#x161;đ?&#x203A;˝ (đ??´đ?&#x2018;&#x2C6;đ??ľ). To compute đ?&#x2018;&#x161;đ?&#x203A;˝đ?&#x203A;ź (â&#x2C6;&#x2122;), we take đ?&#x203A;ź1 = đ?&#x203A;ź2 = đ?&#x203A;ź3 = 0.8, (54) in formulas (8) and (9).
266
Advances and Applications of DSmT for Information Fusion. Collected Works. Volume 4
đ?&#x2018;&#x161;đ?&#x203A;˝đ?&#x203A;ź (đ??´) = đ?&#x203A;ź â&#x2C6;&#x2122; đ?&#x2018;&#x161;đ?&#x203A;˝ (đ??´) = 0.8(0.280, 0.048, 0.072) = (0.8(0.280), 0.8(0.048), 0.8(0.072)) = (0.2240, 0.0384, 0.0576). (55) Similarly đ?&#x2018;&#x161;đ?&#x203A;˝đ?&#x203A;ź (đ??ľ) = 0.8(0.350, 0.060, 0.090) = (0.2800, 0.0480, 0.0720). (56) For đ?&#x2018;&#x161;đ?&#x203A;˝đ?&#x203A;ź (đ??´đ?&#x2018;&#x2C6;đ??ľ) we use formula (9): đ?&#x2018;&#x161;đ?&#x203A;˝đ?&#x203A;ź (đ??´đ?&#x2018;&#x2C6;đ??ľ) = (đ?&#x2018;Ąđ?&#x203A;˝ (đ??´đ?&#x2018;&#x2C6;đ??ľ) + (1 â&#x2C6;&#x2019; đ?&#x203A;ź)[đ?&#x2018;Ąđ?&#x203A;˝ (đ??´) + đ?&#x2018;Ąđ?&#x203A;˝ (đ??ľ)], đ?&#x2018;&#x2013;đ?&#x203A;˝ (đ??´đ?&#x2018;&#x2C6;đ??ľ) + (1 â&#x2C6;&#x2019; đ?&#x203A;ź)[đ?&#x2018;&#x2013;đ?&#x203A;˝ (đ??´) + đ?&#x2018;&#x2013;đ?&#x203A;˝ (đ??ľ)], đ?&#x2018;&#x201C;đ?&#x203A;˝ (đ??´đ?&#x2018;&#x2C6;đ??ľ) + (1 â&#x2C6;&#x2019; đ?&#x203A;ź)[đ?&#x2018;&#x201C;đ?&#x203A;˝ (đ??´) + đ?&#x2018;&#x201C;đ?&#x203A;˝ (đ??ľ)]) = (0.070 + (1 â&#x2C6;&#x2019; 0.8)[0.280 + 0.350], 0.012 + (1 â&#x2C6;&#x2019; 0.8)[0.048 + 0.060], 0.018 + (1 â&#x2C6;&#x2019; 0.8)[0.072 + 0.090]) = (0.1960, 0.0336, 0.0504). Again, the reliability discount and importance discount commute.
ͺǤ Â&#x2018;Â?Â&#x2026;Â&#x17D;Â&#x2014;Â&#x2022;Â&#x2039;Â&#x2018;Â?Ǥ In this paper we have defined a new way of discounting a classical and neutrosophic mass with respect to its importance. We have also defined the discounting of a neutrosophic source with respect to its reliability. In general, the reliability discount and importance discount do not commute. But if one uses classical masses, they commute (as in Examples 1 and 2).
267
Advances and Applications of DSmT for Information Fusion. Collected Works. Volume 4
Ǥ The author would like to thank Dr. Jean Dezert for his opinions about this paper.
Ǥ 1.
F. Smarandache, J. Dezert, J.-M. Tacnet, Fusion of Sources of
Evidence with Different Importances and Reliabilities, Fusion 2010 International Conference, Edinburgh, Scotland, 26-29 July, 2010. 2.
Florentin Smarandache, Neutrosophic Masses & Indeterminate
Models. Applications to Information Fusion, Proceedings of the International Conference on Advanced Mechatronic Systems [ICAMechS 2012], Tokyo, Japan, 18-21 September 2012.
268