Advances and Applications of DSmT for Information Fusion. Collected Works. Volume 4
Reliability and Importance Discounting of Neutrosophic Masses Florentin Smarandache Originally published in Smarandache, F. - Neutrosophic Theory and its Applications, Collected Papers, Vol. I. 2014. <hal-01092887v2>, and reprinted with permission.
Â&#x201E;Â&#x2022;Â&#x2013;Â&#x201D;Â&#x192;Â&#x2026;Â&#x2013;Ǥ In this paper, we introduce for the first time the discounting of a neutrosophic mass in terms of reliability and respectively the importance of the source. We show that reliability and importance discounts commute when dealing with classical masses. ͳǤ Â?Â&#x2013;Â&#x201D;Â&#x2018;Â&#x2020;Â&#x2014;Â&#x2026;Â&#x2013;Â&#x2039;Â&#x2018;Â?Ǥ Let ÎŚ = {ÎŚ1 , ÎŚ2 , â&#x20AC;Ś , ÎŚn } be the frame of discernment, where đ?&#x2018;&#x203A; â&#x2030;Ľ 2, and the set of Â&#x2C6;Â&#x2018;Â&#x2026;Â&#x192;Â&#x17D; elemeÂ?Â&#x2013;Â&#x2022;: đ??š = {đ??´1 , đ??´2 , â&#x20AC;Ś , đ??´đ?&#x2018;&#x161; }, for đ?&#x2018;&#x161; â&#x2030;Ľ 1, đ??š â&#x160;&#x201A; đ??ş đ?&#x203A;ˇ . (1) Let đ??ş đ?&#x203A;ˇ = (đ?&#x203A;ˇ,â&#x2C6;Ş,â&#x2C6;Š, đ?&#x2019;&#x17E;) be the Â&#x2C6;Â&#x2014;Â&#x2022;Â&#x2039;Â&#x2018;n Â&#x2022;Â&#x2019;Â&#x192;Â&#x2026;Â&#x2021;. A Â?Â&#x2021;Â&#x2014;Â&#x2013;Â&#x201D;Â&#x2018;Â&#x2022;Â&#x2018;Â&#x2019;Â&#x160;Â&#x2039;Â&#x2026; Â?Â&#x192;Â&#x2022;Â&#x2022; is defined as follows: đ?&#x2018;&#x161;đ?&#x2018;&#x203A; : đ??ş â&#x2020;&#x2019; [0, 1]3 for any đ?&#x2018;Ľ â&#x2C6;&#x2C6; đ??ş, đ?&#x2018;&#x161;đ?&#x2018;&#x203A; (đ?&#x2018;Ľ) = (đ?&#x2018;Ą(đ?&#x2018;Ľ), đ?&#x2018;&#x2013;(đ?&#x2018;Ľ), đ?&#x2018;&#x201C;(đ?&#x2018;Ľ)), (2) where
đ?&#x2018;Ą(đ?&#x2018;Ľ) = believe that đ?&#x2018;Ľ will occur (truth); đ?&#x2018;&#x2013;(đ?&#x2018;Ľ) = indeterminacy about occurence; and đ?&#x2018;&#x201C;(đ?&#x2018;Ľ) = believe that đ?&#x2018;Ľ will not occur (falsity).
257