Introduction to SuperHyperAlgebra and Neutrosophic SuperHyperAlgebra

Page 1

JournalofAlgebraicHyperstructures andLogicalAlgebras

Volume3,Number2,(2022),pp.17-24

IntroductiontoSuperHyperAlgebraandNeutrosophic SuperHyperAlgebra

F.Smarandache1

1TheUniversityofNewMexico,Mathematics,Physics,andNaturalScienceDivision,705GurleyAve., Gallup,NM87301,USA smarand@unm.edu

Abstract

Inthispaperwerecallourconceptsof nth-Power SetofaSet,SuperHyperOperation,SuperHyperAxiom, SuperHyperAlgebra,andtheircorrespondingNeutrosophicSuperHyperOperation,NeutrosophicSuperHyperAxiomandNeutrosophicSuperHyperAlgebra.Ingeneral,inanyfieldofknowledge,oneactuallyencountersSuperHyperStructures(ormoreaccurately(m,n)SuperHyperStructures).

ArticleInformation

CorrespondingAuthor: F.Smarandache; Received:March2022; Accepted:Invitedpaper; Papertype:Original.

Keywords: SuperHyperOperation, SuperHyperAlgebra,NeutrosophicSuperHyperAlgebra, SuperHyperStructures.

1Introduction OnerecallstheSuperHyperAgebraandNeutrosophicSuperHyperAlgebraintroducedanddevelopedbySmarandache[16, 18, 19]between2016–2022. 1. DefinitionofclassicalHyperOperations: Let U beauniverseofdiscourseand H beanon-emptyset, H ⊂ U A classicalBinaryHyperOperation ◦∗ 2 isdefinedasfollows: ◦ ∗ 2 : H 2 → P∗(H), where H isadiscreteorcontinuousset,and P∗(H)isthepowersetof H withouttheempty-set ∅, or P∗(H)= P (H) \{∅}.

A classical m-aryHyperOperation ◦∗ m isdefinedas: ◦ ∗ m : Hm → P∗(H), forinteger m ≥ 1.For m =1onegetsa UnaryHyperOperation. The classicalHyperStructures arestructuresendowedwithclassicalHyperOperations. TheclassicalHyperOperationsandclassicalHyperStructureswereintroducedby F .Marty[12]in 1934.

2. Definitionofthe nth-PowerSetofaSet: The nth-PowersetofaSetwasintroducedin[16, 18, 19]inthefollowingway: P n(H),asthe nth-PowersetoftheSet H,forinteger n ≥ 1,isrecursivelydefinedas: P 2(H)= P (P (H)), P 3(H)= P (P 2(H))= P (P (P (H))), , P n(H)= P (P (n 1)(H)),where P ◦(H) def = H,and P 1(H) def = P (H).

The nth-PowersetofaSetbetterreflectsourcomplexreality,sinceaset H (thatmayrepresent agroup,asociety,acountry,acontinent,etc.)ofelements(suchas:people,objects,andingeneral anyitems)isorganizedontosubsets P (H),andthesesubsetsareagainorganizedontosubsetsof subsets P (P (H)),andsoon.That’sourworld.

3. NeutrosophicHyperOperationandNeutrosophicHyperStructures[12]:

IntheclassicalHyperOperationandclassicalHyperStructures,theempty-set ∅ doesnotbelong tothepowerset,or P∗(H)= P (H) \{∅}

However,intherealworldweencountermanysituationswhenaHyperOperation ◦ is indeterminate,forexample a ◦ b = ∅ (unknown,orundefined), or partiallyindeterminate,forexample: c ◦ d = {[0 2, 0 3], ∅}

Inoureverydaylife,therearemanymoreoperationsandlawsthathavesomedegreesofindeterminacy(vagueness,unclearness,unknowingness,contradiction,etc.),thanthosethataretotally determinate.

That’swhyin2016wehaveextendedtheclassicalHyperOperationtotheNeutrosophicHyperOperation,bytakingthewholepower P (H)(thatincludestheempty-set ∅ aswell),insteadof P∗(H)(thatdoesnotincludetheempty-set ∅),asfollows.

18 F.Smarandache
3 1 DefinitionofNeutrosophicHyperOperation: Let U beauniverseofdiscourseand H beanon-emptyset, H ⊂ U A NeutrosophicBinaryHyperOperation ◦2 isdefinedasfollows: ◦2 : H 2 → P (H), where H isadiscreteorcontinuousset,and P (H)isthepowersetof H thatincludestheempty-set ∅ A Neutrosophic m-aryHyperOperation ◦m isdefinedas: ◦m : Hm → P (H), forinteger m ≥ 1.Similarly,for m =1onegetsa NeutrosophicUnaryHyperOperation.

3

.

2 NeutrosophicHyperStructures:

ANeutrosophicHyperStructureisastructuredendowedwithNeutrosophicHyperOperations.

4 DefinitionofSuperHyperOperations:

Werecallour2016conceptsofSuperHyperOperation,SuperHyperAxiom,SuperHyperAlgebra, andtheircorrespondingNeutrosophicSuperHyperOperationNeutrosophicSuperHyperAxiomand NeutrosophicSuperHyperAlgebra[16].

Let P n ∗ (H)bethe nth-powersetoftheset H suchthatnoneof P (H), P 2(H), ,P n(H) containtheemptyset ∅

Also,let P n(H)bethe nth-powersetoftheset H suchthatatleastoneofthe P (H), P 2(H),··· , P n(H)containtheemptyset ∅

TheSuperHyperOperationsareoperationswhosecodomainiseither P n ∗ (H)andinthiscase onehas classical-typeSuperHyperOperations,or P n(H)andinthiscaseonehas NeutrosophicSuperHyperOperations,forinteger n ≥ 2.

4 1A classical-typeBinarySuperHyperOperation ◦∗ (2,n) isdefinedasfollows: ◦ ∗ (2,n) : H 2 → P n ∗ (H), where P n ∗ (H)isthe nth-powersetoftheset H,withnoempty-set.

4 2 Examplesofclassical-typeBinarySuperHyperOperation:

1)Let H = {a,b} beafinitediscreteset;thenitspowerset,withouttheempty-set ∅,is: P (H)= {a,b, {a,b}},and: P 2(H)= P (P (H))= P ({a,b, {a,b}})= {a,b, {a,b}, {a, {a,b}}, {b, {a,b}}, {a,b, {a,b}}}, ◦ ∗ (2,2) : H 2 → P 2 ∗ (H). ◦∗ (2,2) a b a {a, {a,b}}{b, {a,b}} b a {a,b, {a,b}}

Table1: Example1ofclassical-typeBinarySuperHyperOperation

2)Let H =[0, 2]beacontinuousset. P (H)= P ([0, 2])= {A | A ⊆ [0, 2],A =subset}, P 2(H)= P (P ([0, 2])) Let c,d ∈ H ◦ ∗ (2,2) : H 2 → P 2 ∗ (H)

IntroductiontoSuperHyperAlgebraandNeutrosophicSuperHyperAlgebra 19

◦∗ (2,2) c d c {[0, 0.5], [1, 2]} {0.7, 0.9, 1.8} d {2.5} {(0.3, 0.6), {0.4, 1.9}, 2}

Table2: Example2ofclassical-typeBinarySuperHyperOperation

4 2 Classical-type m-arySuperHyperOperation (oramoreaccuratedenomination(m,n) SuperHyperOperation)

Let U beauniverseofdiscourseandanon-emptyset H, H ⊂ U .Then: ◦ ∗ (m,n) : Hm → P n ∗ (H), wheretheintegers m,n ≥ 1, Hm = H × H ×···× H m times , and P n ∗ (H)isthe nth-powersetoftheset H thatincludestheempty-set.

ThisSuperHyperOperationisan m-aryoperationdefinedfromtheset H tothe nth-powerset oftheset H

4 3 Neutrosophic m-arySuperHyperOperation (ormoreaccuratedenomination Neutrosophic (m,n)-SuperHyperOperation):

Let U beauniverseofdiscourseandanon-emptyset H, H ⊂ U .Then: ◦(m,n) : Hm → P n(H), wheretheintegers m,n ≥ 1, and P n(H)isthe n-thpowersetoftheset H thatincludestheempty-set.

5. SuperHyperAxiom:

A classical-typeSuperHyperAxiom ormoreaccuratelya(m,n)-SuperHyperAxiom is anaxiombasedonclassical-typeSuperHyperOperations.

Similarly,a NeutrosophicSuperHyperAxiom (orNeutrosphic(m,n)-SuperHyperAxiom) isanaxiombasedonNeutrosophicSuperHyperOperations.

Thereare:

• StrongSuperHyperAxioms,whentheleft-handsideisequaltotheright-handsideasin non-hyperaxioms,

• and WeekSuperHyperAxioms,whentheintersectionbetweentheleft-handsideandthe right-handsideisnon-empty.

20 F.Smarandache

Forexamples,onehas:

• StrongSuperHyperAssociativity,when(x ◦ y) ◦ z = x ◦ (y ◦ z),forall x,y,z ∈ Hm,wherethe law ◦∗ (m,n) : Hm → P n ∗ (H);

• andWeekSuperHyperAssociativity,when[(x ◦ y) ◦ z] ∩ [x ◦ (y ◦ z)] = ∅,forall x,y,z ∈ Hm

6. SuperHyperAlgebraandSuperHyperStructure:

A SuperHyperAlgebra ormoreaccurately(m n)-SuperHyperAlgebra isanalgebra dealingwithSuperHyperOperationsandSuperHyperAxioms.

Again,a NeutrosophicSuperHyperAlgebra (orNeutrosphic(m,n)-SuperHyperAlgebra) isanalgebradealingwithNeutrosophicSuperHyperOperationsandNeutrosophicSuperHyperAxioms.

Ingeneral,wehave SuperHyperStructures (or(m n)-SuperHyperStructures),andcorresponding NeutrosophicSuperHyperStructures.

Forexample,thereareSuperHyperGrupoid,SuperHyperSemigroup,SuperHyperGroup,SuperHyperRing,SuperHyperVectorSpace,etc.

7 DistinctionbetweenSuperHyperAlgebravs.NeutrosophicSuperHyperAlgebra:

i. Ifnoneofthepowersets P k(H),1 ≤ k ≤ n,donotincludetheemptyset ∅,thenonehasa classical-typeSuperHyperAlgebra;

ii. Ifatleastonepowerset, P k(H),1 ≤ k ≤ n,includestheemptyset ∅,thenonehasa NeutrosophicSuperHyperAlgebra.

8 SuperHyperGraph (or n-SuperHyperGraph):

TheSuperHyperAlgebraresemblesthe n-SuperHyperGraph[17, 18, 19],introducedbySmarandachein2019,definedasfollows:

8.1 Definitionofthen-SuperHyperGraph:

Let V = {v1,v2, ,vm},for1 ≤ m ≤∞,beasetofvertices,thatcontainsSingleVertices (theclassicalones),IndeterminateVertices(unclear,vague,partiallyknown),andNullVertices (totallyunknown,empty).

Let P (V )bethepowerofset V ,thatincludestheemptyset ∅,too. Then P n(V )bethe n-powersetoftheset V ,definedinarecurentway,i.e.:

P (V ),P 2(V )= P (P (V )),P 3(V )= P (P 2(V ))= P (P (P (V ))), ··· , P n(V )= P (P (n 1)(V )),for1 ≤ n ≤∞,wherebydefinition P 0(V ) def = V

IntroductiontoSuperHyperAlgebraandNeutrosophicSuperHyperAlgebra 21

Then,the n-SuperHyperGraph(n-SHG) isanorderedpair: n-SHG=(Gn,En), where Gn ⊆ P n(V ),and En ⊆ P n(V ),for1 ≤ n ≤∞. Gn isthesetofvertices,and En isthesetofedges.

The setofvertices Gn containsthefollowingtypesofvertices:

SinglesVertices (theclassicalones);

IndeterminateVertices (unclear,vagues,partiallyunkwnown);

NullVertices (totallyunknown,empty); and:

SuperVertex (orSubsetVertex),i.e.twooremore(single,indeterminate,ornull)verticesput togetherasagroup(organization).

n-SuperVertex thatisacollectionofmanyverticessuchthatatleastoneisa(n 1)SuperVertexandallother r-SuperVerticesintothecollection,ifany,havetheorder r ≤ n 1.

The setofedges En containsthefollowingtypesofedges:

SinglesEdges(theclassicalones);

IndeterminateEdges (unclear,vague,partiallyunknown);

NullEdges (totallyunknown,empty); and:

HyperEdge (connectingthreeormoresinglevertices);

SuperEdge (connectingtwovertices,atleastoneofthembeingaSuperVertex);

n-SuperEdge (connectingtwovertices,atleastonebeingan n-SuperVertex,andtheotherof order r-SuperVertex,with r ≤ n);

SuperHyperEdge (connectingthreeormorevertices,atleastonebeingaSuperVertex);

n-SuperHyperEdge (connectingthreeormorevertices,atleastonebeingan n-SuperVertex, andtheother r-SuperVerticeswith r ≤ n;

MultiEdges (twoormoreedgesconnectingthesametwovertices);

Loop (andedgethatconnectsanelementwithitself). and:

22 F.Smarandache

DirectedGraph (classicalone);

UndirectedGraph (classicalone);

NeutrosophicDirectedGraph (partiallydirected,partiallyundirected,partiallyindeterminate direction).

2Conclusion

Werecalledthemostgeneralformofalgebras,calledSuperHyperAlgebra(ormoreaccuratedenomination(m,n)-SuperHyperAlgebra)andtheNeutrososophicSuperHyperAlgebra,andtheirextensionstoSuperHyperStructuresandrespectivelyNeutrosophicSuperHyperAlgebrainanyfield ofknowledge.

Theyarebasedonthe nth-PowersetofaSet,whichbetterreflectsourcomplexreality,sincea set H (thatmayrepresentagroup,asociety,acountry,acontinent,etc.)ofelements(suchas: people,objects,andingeneralanyitems)isorganizedontosubsets P (H),andthesesubsetsare againorganizedontosubsetsofsubsets P (P (H)),andsoon.That’sourworld.

HopingthatthisnewfieldofSuperHyperAlgebrawillinspireresearcherstostudyingseveral interestingparticularcases,suchastheSuperHyperGroupoid,SuperHyperMonoid,SuperHyperSemigroup,SuperHyperGroup,SuperHyperRing,SuperHyperVectorSpace,etc.

References

[1] A.A.A.Agboola,B.Davvaz, OnNeutrosophiccanonicalhypergroupsandneutrosophichyperrings,NeutrosophicSetsandSystems,2(2014),34–41.

[2] M.Al-Tahan,B.Davvaz, Refinedneutrosophicquadruple(po-)hypergroupsandtheirfundamentalgroup,NeutrosophicSetsandSystems,27(2019),138–153.

[3] M.Al-Tahan,B.Davvaz,F.Smarandache,O.Anis, OnsomeNeutroHyperstructures,Symmetry,13(2021),1–12.

[4] M.A.Ibrahim,A.A.A.Agboola, IntroductiontoNeutroHyperGroups,NeutrosophicSetsand Systems,38(2020),15–32.

[5] M.A.Ibrahim,A.A.A.Agboola,Z.H.Ibrahim,E.O.Adeleke, Onrefinedneutrosophiccanonical hypergroups,NeutrosophicSetsandSystems,45(2021),414–427.

[6] M.A.Ibrahim,A.A.A.Agboola,Z.H.Ibrahim,E.O.Adeleke, Onrefinedneutrosophichyperrings,NeutrosophicSetsandSystems,45(2021),349–365.

[7] S.Khademan,M.M.Zahedi,R.A.Borzooei,Y.B.Jun, NeutrosophichyperBCK-ideals,NeutrosophicSetsandSystems,27(2019),201–217.

[8] M.A.Malik,A.Hassan,S.Broumi,F.Smarandache, Regularbipolarsinglevaluedneutrosophic hypergraphs,NeutrosophicSetsandSystems,13(2016),84–89.

IntroductiontoSuperHyperAlgebraandNeutrosophicSuperHyperAlgebra 23

[9] D.Mandal, Neutrosophichyperidealsofsemihyperrings,NeutrosophicSetsandSystems,12 (2016),105–113.

[10] N.Martin,F.Smarandache, Concentricplithogenichypergraphbasedonplithogenichypersoft sets–Anoveloutlook,NeutrosophicSetsandSystems,33(2020),78–91.

[11] N.Martin,F.Smarandache,I.Pradeepa,N.RamilaGandhi,P.Pandiammal, Exploration ofthefactorscausingautoimmunediseasesusingfuzzycognitivemapswithconcentricneutrosophichypergraphicapproach,NeutrosophicSetsandSystems,35(2020),232–238.

[12] F.Marty, Suruneg´en´eralisationdelaNotiondeGroupe,8thCongressMath.Scandinaves, Stockholm,Sweden,(1934),45–49.

[13] S.Nawaz,M.Gulistan,S.Khan, WeakLA-hypergroups;neutrosophy,enumerationandredox reaction,NeutrosophicSetsandSystems,36(2020),352–367.

[14] S.Rajareega,D.Preethi,J.Vimala,G.Selvachandran,F.Smarandache, Someresultson singlevaluedneutrosophichypergroup,NeutrosophicSetsandSystems,31(2020),80–85.

[15] A.Rezaei,F.Smarandache,S.Mirvakili, Applicationsof(Neutro/Anti)sophicationstoSemiHyperGroups,JournalofMathematics,(2021),1–7.

[16] F.Smarandache, SuperHyperAlgebraandNeutrosophicSuperHyperAlgebra,Sectionintothe authorsbookNidusIdearum.Scilogs,II:dererumconsectatione,SecondEdition,(2016),107–108.

[17] F.Smarandache, n-SuperHyperGraphandPlithogenic n-SuperHperGraph,inNidusIdearum, Vol.7,secondandthirdeditions,Ponsasbl,Bruxelles,(2019),107-113.

[18] F.Smarandache, ExtensionofHyperGraphto n-SuperHyperGraphandtoPlithogenic n SuperHyperGraph,andExtensionofHyperAlgebrato n-ary(Classical-/Neutro-/Anti-)HyperAlgebra,NeutrosophicSetsandSystems,33(2020),290–296.

[19] F.Smarandache, Introductiontothe n-SuperHyperGraph-themostgeneralformofgraphtoday,NeutrosophicSetsandSystems,48(2022),483–485.

24 F.Smarandache

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.