Time-Truncated Group Plan under a Weibull Distribution based on Neutrosophic Statistics

Page 1

Time-TruncatedGroupPlanunderaWeibull DistributionbasedonNeutrosophicStatistics

MuhammadAslam 1,* ,P.Jeyadurga 2,SaminathanBalamurali 2 andAliHusseinAL-Marshadi 1

1 DepartmentofStatistics,FacultyofScience,KingAbdulazizUniversity,Jeddah21551,SaudiArabia; aalmarshadi@kau.edu.sa

2 DepartmentofComputerApplications,KalasalingamAcademyofResearchandEducation,Krishnankoil, TN626126,India;jeyadurga@klu.ac.in(P.J.);sbmurali@rediffmail.com(S.B.)

* Correspondence:magmuhammad@kau.edu.saoraslam_ravian@hotmail.com

Received:26July2019;Accepted:20September2019;Published:27September2019

Abstract: Theaimofreducingtheinspectioncostandtimeusingacceptancesamplingcanbeachieved byutilizingthefeaturesofallocatingmorethanonesampleitemtoasingletester.Therefore,group acceptancesamplingplansareoccupyinganimportantplaceintheliteraturebecausetheyhave theabove-mentionedfacility.Inthispaper,thedesigningofagroupacceptancesamplingplanis consideredtoprovideassuranceontheproduct’smeanlife.Wedesigntheproposedplanbasedon neutrosophicstatisticsundertheassumptionthattheproduct’slifetimefollowsaWeibulldistribution. Wedeterminetheoptimalparametersusingtwospecifiedpointsontheoperatingcharacteristiccurve. Thediscussiononhowtoimplementtheproposedplanisprovidedbyanillustrativeexample.

Keywords: time-truncatedtest;Weibulldistribution;risk;uncertainty;neutrosophic

1.Introduction

Theambitionofeachproduceristoglobalizetheirbusinessbymeansofmarketingtheproducts. However,fewproducersreachthisgoalsincetheyonlymakesincereeffortsinimprovingand controllingtheproduct’squalitytoaccomplishthistarget.Theproducerwhoenhancestheproduct’s qualityneednotconcernitsglobalizationbecausethecontinuousimprovementinqualityhelpsto increasethepositiveopinionoftheproductsandtofulfilltheconsumer’sexpectations.Hence,the involvementoftheproducerswithgreateffortssupportstoattainthedesiredresultandtoachievethe ambition.Forqualityimprovementandmaintenancepurposes,theproducerusescertainstatistical techniques,namelycontrolchartsandacceptancesampling(seeMontgomery[1]andSchillingand Neubauer[2]).Inspiteoftheapplicationofcontrolchartsinqualitymaintenanceviamonitoringthe manufacturingprocess,itisnotsuitableforassuringthequalityofthefinishedproducts.Butthereisa necessitytoprovidequalityassurancefortheproductsbeforetheyarereceivedbytheconsumer.Under thissituation,themanufacturersmayprefercompleteinspection.However,completeinspections arenotappropriateforallsituationsbecausetheyarecostly,requirequalityinspectors,andaretime consuming.Therefore,inmostofthecases,manufacturersadoptsamplinginspectionstoprovide qualityassurance.Insamplinginspection,asampleofitemsisselectedrandomlyfromtheentirelot forinspection.

Acceptancesamplingisalsoaformofsamplinginspection,inwhichthedecisiontoacceptor rejectalotismadebasedontheresultsofsampleitemstakenfromtheconcernedlot.Obviously, acceptancesamplingovercomesthedrawbacksofcompleteinspections,suchasinspectioncostand timeconsumption,sinceitinspectsonlyapartoftheitemsofthelotformakingdecisions.Acceptance samplingplansyieldthesamplesizeandacceptancecriteriaassociatedwiththesamplingrulestobe implemented.Forfurtherdetailsonacceptancesampling,onemayrefertoDodge[3]andSchillingand

Mathematics 2019, 7,905;doi:10.3390/math7100905

www.mdpi.com/journal/mathematics

mathematics Article

Neubauer[2].Intheliterature,severalsamplingplansareavailableforlotsentencingwithdifferent samplingprocedures;however,asingle-samplingplan(SSP)isthemostbasic,aswellastheeasiest, samplingplanintermsoftheimplementationprocess.InSSP,asinglesampleofsize n istakenfor lotsentencing,andtheacceptance/rejectiondecisionismadeimmediatelybycomparingthesample resultswithacceptancenumbersdeterminedfromattributeinspectionsorwithacceptancecriteria fromvariablesinspections.ManyauthorshaveinvestigatedSSPsundervarioussituations(see,for example,Loganathanetal.[4],LiuandCui[5],Govindaraju[6],andHuandGui[7]).

InSSPimplementation,asampleof n itemsisdistributedto n testers,andthedecisionismadeafter consolidatingtheinformationobtainedfromallthetesters.Obviously,itrequiresmuchtimetomakea decision,andtheinspectioncostisalsohigh.Onecanovercomethesedrawbacksbyimplementinga groupacceptancesamplingplan(GASP)insteadofusingSSP.InGASP,acertainnumberofsample itemsareallocatedtoasingletester,andthetestisconductedsimultaneouslyonthesampleitems. Therefore,thetestingtimeandinspectioncostarereducedautomaticallyunderGASPwhencompared toSSP.Itistobementionedthatthenumberoftestersinvolvedintheinspectionisfrequentlyreferred toasthenumberofgroups,andthenumberofsampleitemsallocatedtoeachgroupisdefinedas thegroupsize.Forthepurposesofmakingadecisiononthelotbyutilizingminimumcostandtime, GASPhasbeenusedfortheinspectionofdifferentqualitycharacteristicsbyseveralauthors(see,for example,AslamandJun[8]).

Whenindustrialpractitionersareuncertainabouttheparameters,theinspectioncannotbedone usingtraditionalsamplingplans.Inthiscase,theuseoffuzzy-basedsamplingplansisthebest alternativetotraditionalsamplingplans.Fuzzy-basedsamplingplanshavebeenwidelyusedforlot sentencing.KanagawaandOhta[9]proposedasingle-attributeplanusingfuzzylogic.Moredetailson fuzzysamplingplanscanbeseeninChakraborty[10],JamkhanehandGildeh[11],Turano˘gluetal.[12], JamkhanehandGildeh[13],TongandWang[14],UmaandRamya[15],AfshariandGildeh[16],and Khanetal.[17].

Thefuzzyapproachhasbeenusedtocomputethedegreeoftruth.Fuzzylogicisaspecialcaseof neutrosophiclogic.Thelaterapproachcomputesmeasuresofindeterminacyinadditiontothefirst approach(seeSmarandache[18]).Abdel-Bassetetal.[19]discussedtheapplicationofneutrosophic logicindecisionmaking.Abdel-Bassetetal.[20]workedonlinearprogrammingusingtheidea ofneutrosophiclogic.Broumietal.[21]providedtheminimumspanningtreeusingneutrosophic logic.Moredetailscanbeseenin[22,23].Neutrosophicstatisticsistreatedasanextensionofclassical statistics,inwhichsetvaluesareconsideredratherthancrispvalues.Sometimes,thedatamaybe imprecise,incomplete,andunknown,andexactcomputationisnotpossible.Underthesesituations, theneutrosophicstatisticsconceptisused(seeSmarandache[24]).BroumiandSmarandache[25] discussedthecorrelationsofsetsusingneutrosophiclogic.Moredetailsabouttheuseofneutrosophic logicinsetscanbeseenin[26–28].Butonecanuseasetofvalues(thatrespectivelyapproximates thesecrispnumbers)forasinglevariableusingneutrosophicstatistics.Chenetal.[29,30]introduced neutrosophicnumberstosolverockengineeringproblems.PatroandSmarandache[31]andAlhabib etal.[32]discussedsomebasicsofprobablitydistributionunderneutrosophicnumbers.Nowadays,the neutrosophicstatisticsconceptisusedforqualitycontrolpurposes.Whendesigningthecontrolchart andsamplingplansunderclassicalstatistics,itisassumedthatthevaluewhichrepresentsthequality oftheproductisknown.Butinneutrosophicstatistics,suchvalueisindeterminateorliesbetween aninterval.Someresearchershavedesignedthecontrolchartandacceptancesamplingplansunder thesestatistics(see,forexample,Aslametal.[33]).Aslam[34]introducedneutrosophicstatisticsin theareaofacceptancesamplingplans.AslamandArif[35]proposedasuddendeathtestingplan underuncertainty.

Asmentionedearlier,AslamandJun[8]designedGASPtoensuretheWeibull-distributed meanlifeoftheproductsunderclassicalstatistics.Theydeterminedtheoptimalparametersfor somecalculatedvaluesoffailureprobability;however,theydidnotconsiderthecasewherethe failureprobabilityisuncertain.Therefore,inthispaper,weattemptedtodesignGASPforproviding

Mathematics 2019, 7,905 2of11

Weibull-distributedmeanlifeassurancewherethevaluesofshapeparametersandfailureprobabilities areuncertain.Thatis,weconsideredthedesignofGASPunderneutrosophicstatistics,whichisthe maindifferencebetweentheproposedworkandtheworkdonebyAslamandJun[8].Wewillcompare theproposedplanwiththeexistingsamplingplanunderclassicalstatisticsintermsofthesample sizerequiredforinspection.Weexpectthattheproposedplanwillbequiteeffective,adequate,and efficientcomparedtotheexistingplaninanuncertaintyenvironment.

2.DesignoftheProposedPlanusingNeutrosophicStatistics

ThemethodtodesigntheproposedGASPforprovidingqualityassuranceoftheproductinterms ofmeanlifeisdiscussedinthissection.Theratiobetweenthetruemeanlifeandthespecifiedmeanlife oftheproductisconsideredasthequalityoftheproduct.AWeibulldistributionisconsideredasan appropriatemodeltoexpressthelifetimeoftheproductbecauseofitsflexiblenature.So,weassume thatthelifetimeoftheproduct tN ∈ {tL, tU}understudyfollowsaneutrosophicWeibulldistribution, whichhastheshapeparameter δN ∈ {δL, δU}andscaleparameter λN ∈ {λL, λU}.Then,thecumulative distributionfunction(cdf)oftheWeibulldistributionisobtainedasfollows. F(tN; λN, δN ) = 1 exp tN λN

δN , tN ≥ 0, λN > 0, δN > 0.(1)

Inthisstudy,itisassumedthatthescaleparameter λN isunknownandtheshapeparameter δN isknown.Itcanbeseenthatthecdfdependsonlyon tN/λN sincetheshapeparameterisknown. Onecanestimatetheshapeparameterfromtheavailablehistoryoftheproductionprocesswhenitis unknown.ThetruemeanlifeoftheproductundertheneutrosophicWeibulldistributioniscalculated bythefollowingequation µN = λN δN Γ 1 δN ,(2) where Γ(.)representsthecompletegammafunction.Then,theprobabilitythattheproductwillfail beforeitreachestheexperimenttime tN0,isdenotedby pN andisgivenasfollows pN = 1 exp tN0 λN

δN .(3)

AspointedoutbyAslamandJun[8],wecanwrite tN0 asaconstantmultipleofthespecified meanlife µN0,suchas tN0 = t0 = aµ0aµN0 where‘a’iscalledtheexperimentterminationratio.Also,we canexpresstheunknownscaleparameterintermsofthetruemeanlifeandknownshapeparameters. After tN0, λN valuesubstitution,andpossiblesimplification,onecanobtaintheprobabilitythatthe productwillfailbeforeattainingtheexperimenttime tN0, usingthefollowingequation. pN = 1 exp

,(4)

Withrespecttotheratiosbetweenthetruemeanlifeandthespecifiedmeanlife, µN

N0,the acceptablequalitylevel(AQL,i.e., pN1)andlimitingqualitylevel(LQL,i.e., pN2)aredefined.Thatis, thefailureprobabilitiesobtainedwhenthemeanratiovaluesgreaterthanonearetakenasAQLand thesameareobtainedatameanratioequaltooneareconsideredasLQL.Theoperatingprocedureof theproposedGASPforatime-truncatedlifetestisdescribedasfollows: Step1. Takeasampleof

Mathematics 2019, 7,905 3of11
         aδN µN0 µN δN         Γ 1 δN δN         δN         
µ
nN ∈ {nL, nU
r
gN ∈ {gL
gU
/
}itemsrandomlyfromthesubmittedlotanddistribute rN
{rL,
U}itemsinto
,
}groups.Then,conductthelifetestonthesampleitemsforthe specifiedtime tN0

Mathematics 2019, 7,905

Mathematics 2019, 7, x FOR PEER REVIEW 4 of 11

Step2. Observethetestandcountnumberofsampleitemsfailedineachgroupbeforereaching experimenttime tN0 anddenoteitas dN ∈ {dL, dU}.

Step 2. Observe the test and count number of sample items failed in each group before reaching experiment time tN0 and denote it as dN

 {dL, dU}.

Step3. Ifatmost, cN sampleitemsfoundtobefailedineachofall gN groups,thenacceptthelot where cN ∈ {cL, cU}.Otherwise,rejectthelot.

Step 3. If at most, cN sample items found to be failed in each of all gN groups, then accept the lot where cN

 {cL, cU}. Otherwise, reject the lot.

Two parameters used to characterize the proposed plan are number of groups gN and the acceptance number cN. It is to be noted that rN

Twoparametersusedtocharacterizetheproposedplanarenumberofgroups gN andthe acceptancenumber cN.Itistobenotedthat rN ∈ {rL, rU}denotesthenumberofitemsineachgroup andiscalledthegroupsize.TheoperatingprocedureoftheproposedGASPisrepresentedbyaflow chartandisshowninFigure 1

START

 {rL, rU} denotes the number of items in each group and is called the group size. The operating procedure of the proposed GASP is represented by a flow chart and is shown in Figure 1. YES NO

Take a sample of nN items randomly from the submitted lot and distribute rN sample items into gN groups Count number of sample items failed in each group before reach the experiment time tN0, say dN Is dN ≤ cN in all gN groups?

Accept the lot Reject the lot Figure1. Operatingprocedureoftheproposedgroupacceptancesamplingplan(GASP)undera truncatedlifetest. Ingeneral,anoperatingcharacteristic(OC)functionhelpstoinvestigatetheperformanceofthe samplingplan.TheOCfunctionoftheproposedGASPunderaWeibullmodelbasedontime-truncated testisgivenby

Figure 1. Operating procedure of the proposed group acceptance sampling plan (GASP) under a truncated life test

In general, an operating characteristic (OC) function helps to investigate the performance of the sampling plan. The OC function of the proposed GASP under a Weibull model based on timetruncated test is given by

(5)

Generally,eachproducerwishesthatthesamplingplanshouldprovideachancegreaterthan (1 α)toaccepttheproductwhentheproductqualityisatAQL,where α istheproducer’srisk, whereastheconsumerwantsthatthechancetoacceptthelottobelessthan β whenqualityofthe productisatLQL,where β istheconsumer’srisk.Obviously,thesamplingplanthatinvolvesthe minimumriskstobothproducerandconsumerwillbefavorable.Thedesignofthesamplingplanby consideringAQLandLQL,alongwithproducerandconsumerrisksisknownastwopointsonthe OCcurveapproachandthisapproachisconsideredasthemostimportantamongothers.Similarly, thesamplingplanthatmakesitsdecisiononthesubmittedlotusingminimumsamplesizeoraverage samplenumber(ASN)willbeattractive.Therefore,inthisstudy,wedesignGASPwiththeintention

Generally, each producer wishes that the sampling plan should provide a chance greater than (1 α) to accept the product when the product quality is at AQL, where α is the producer’s risk, whereas the consumer wants that the chance to accept the lot to be less than β when quality of the product is at LQL, where β is the consumer’s risk. Obviously, the sampling plan that involves the minimum risks to both producer and consumer will be favorable. The design of the sampling plan by considering AQL and LQL, along with producer and consumer risks is known as two points on the OC curve approach and this approach is considered as the most important among others. Similarly, the sampling plan that makes its decision on the submitted lot using minimum sample size or average sample number (ASN) will be attractive. Therefore, in this study, we design GASP with the intention of assuring a Weibull-distributed mean life of the products with minimum sample size and minimum

4of11
( )
N N
c d N N N aN p
d r p
              = =  1 0
( ) N N N N
g d r N d N
p
P
PaN (pN ) =         cN dN = 0 rN
N p
        g
d
dN N (1 pN )rN dN
N .(5)

ofassuringaWeibull-distributedmeanlifeoftheproductswithminimumsamplesizeandminimum costusingtwopointsontheOCcurveapproach.ItshouldbementionedthattheASNoftheproposed planistheproductofthenumberofgroupsandgroupsize(i.e., nN = gNrN).Fordeterminingthe optimalparameters,weusethefollowingoptimizationproblem.

,

cN dN =0

rN dN p dN N2 (1 pN2)rN dN 

 gN .(10)

i. Inmostofthecases,thenumberofgroupsrequiredforinspectiondecreasesiftheconstant‘a’ increasesfrom0.5to1.

ii. Forfixedvaluesof δN, α, β, a,and µN/µN0,thenumberofgroupsincreaseswhengroupsize decreases.Thereisnoparticularchangeinthenumberofgroupswhenthemeanratioincreases.

Mathematics 2019, 7,905 5of11
pN1 = 1 exp          aδN1 µN0 µN δN1         Γ 1 δN1 δN1         δN1          , δN1 ∈ {δL1
δ
p
         aδN2 µN
µN δN2         Γ 1 δN2 δ
        δN2          , δ
∈ {δ
P
        c
r
      
       
MinimizegN Subjectto Pa(pN1) ≥ 1 α, Pa(pN2) ≤ β, gN ≥ 1, rN > 1, cN ≥ 0, (6) where pN1 and pN2 arethefailureprobabilitiesobtainedfromthefollowingequations      
U1},(7)
N2 = 1 exp
0
N2
N2
L2, δU2},(8)
aN (pN1) =
N dN =0
N dN p dN N1 (1 pN1)rN dN 
gN ,(9) PaN (pN2) =
Inthisdesigning,wedefineAQLasthefailureprobabilitycorrespondingtothemeanratios µN/µN0 = 2,4,6,8,10.Similarly,theLQLisdefinedasthefailureprobabilitycorrespondingtothe meanratio µN/µN0 = 1.TheoptimalparametersoftheproposedGASParedeterminedforvarious combinationsofgroupsize,shapeparameter,andproducer’srisk.Weusedthegridsearchmethod underneutrosophicstatisticstofindtheoptimalvaluesofparameters[gL, gU]and[cL, cU].Weselected thosevaluesofparametersfromseveralcombinationsofparametersthatsatisfythegivenconditions wheretherangebetween gL and gU isataminimum.Forthisdetermination,weconsideredtwosets ofgroupsizes,suchas rN = {10,12}and rN = {4,6},andtwosetsofshapeparameters,suchas δN = {0.9, 1.1}and δN = {1.9,2.1}.Similarly,theproducerrisksareassumedtobe α = 0.1and α = 0.05,andfour valuesoftheconsumer’srisk,namely β = 0.25,0.10,0.05,0.01,areused.Theexperimenttermination ratiosinvolvedinthisdeterminationare a = 0.5and a = 1.Then,theoptimalparametersarereported inTables 1–4.Wecanobservethefollowingtrendsfromtables.

Table1. OptimalparametersoftheproposedGASPunderneutrosophicstatisticswhen rN = [10,12] and δN = [0.9,1.1].

a = 0.5 a = 1.0

βµN/µN0 gN cN PaN(pN1) gN cN PaN(pN1)

2[19,44][6,7][0.919,0.983][5,7][7,8][0.904,0.951] 4[2,4][3,4][0.905,0.987][1,3][4,5][0.910,0.957]

0.256[1,3][2,4][0.919,0.999][1,3][4,6][0.974,0.999] 8[1,3][2,4][0.956,1.000][1,3][4,7][0.990,1.000] 10[1,3][2,3][0.974,0.998][1,3][3,7][0.974,1.000] 2***[26,28][8,9][0.924,0.969] 4[2,4][3,4][0.905,0.987][1,3][4,6][0.910,0.992] 0.16[2,4][3,4][0.969,0.998][1,3][4,6][0.974,0.999] 8[2,4][2,3][0.915,0.994][1,3][3,5][0.951,0.999] 10[2,4][3,4][0.994,1.000][1,3][3,5][0.974,1.000] 2***[34,36][8,9][0.902,0.960] 4[7,11][4,5][0.935,0.996][3,5][5,7][0.930,0.998] 0.056[3,6][3,4][0.954,0.997][2,4][4,5][0.949,0.993]

8[2,4][2,3][0.915,0.994][1,3][3,4][0.951,0.991] 10[2,4][2,3][0.948,0.998][1,3][3,4][0.974,0.997] 2******

4[9,17][4,5][0.917,0.994][4,6][5,6][0.908,0.984] 0.016[5,8][3,4][0.925,0.996][2,4][4,5][0.949,0.993] 8[5,8][3,4][0.968,0.999][2,4][3,4][0.905,0.987] 10[3,5][2,3][0.923,0.997][2,4][3,6][0.948,1.000]

*:Plandoesnotexist.

Table2. OptimalparametersoftheproposedGASPunderneutrosophicstatisticswhen rN = [10,12] and δN = [1.9,2.1].

a = 0.5 a = 1.0

βµN/µN0 gN cN PaN(pN1) gN cN PaN(pN1)

2[5,11][2,3][0.926,0.988][2,4][5,6][0.990,0.995]

4[2,4][1,2][0.981,0.999][1,3][3,4][0.998,1.000]

0.256[2,4][1,2][0.996,1.000][1,3][2,4][0.998,1.000]

8[2,4][1,2][0.999,1.000][1,3][1,5][0.990,1.000] 10[2,4][1,2][0.999,1.000][1,3][2,3][1.000,1.000]

2[39,65][3,4][0.942,0.995][2,4][4,6][0.945,0.995]

4[4,7][1,2][0.962,0.999][1,3][2,3][0.985,0.997]

0.16[3,7][1,2][0.994,1.000][1,3][2,4][0.998,1.000]

8[5,7][1,2][0.996,1.000][1,3][1,3][0.990,1.000]

10[3,7][1,2][0.999,1.000][1,3][2,4][1.000,1.000] 2[67,84][3,4][0.902,0.994][3,5][4,6][0.918,0.994]

4[4,8][1,2][0.962,0.998][1,3][2,4][0.985,1.000]

0.056[5,8][1,2][0.989,1.000][1,3][2,5][0.998,1.000]

8[4,8][1,2][0.997,1.000][1,3][2,5][1.000,1.000] 10[5,8][1,2][0.998,1.000][1,3][1,5][0.996,1.000] 2[59,129][3,4][0.914,0.990][7,9][5,6][0.964,0.989] 4[6,13][1,2][0.944,0.997][2,4][2,5][0.970,1.000]

0.016[9,13][1,2][0.981,1.000][1,3][1,3][0.973,1.000] 8[7,13][1,2][0.995,1.000][1,3][1,2][0.990,0.999] 10[7,13][1,2][0.998,1.000][1,3][1,2][0.996,1.000]

Mathematics 2019, 7,905 6of11

Table3. OptimalparametersoftheproposedGASPunderneutrosophicstatisticswhen rN = [4,6]and δN = [0.9,1.1].

a = 0.5a = 1.0

βµN/µN0 gN cN PaN(pN1) gN cN PaN(pN1) 2******

4[6,10][2,3][0.932,0.990][8,10][3,4][0.964,0.988]

0.256[7,10][2,3][0.970,0.998][2,4][2,3][0.955,0.988] 8[2,4][1,2][0.928,0.994][2,4][2,3][0.977,0.996] 10[2,4][1,2][0.950,0.997][1,3][1,2][0.923,0.980] 2******

4[68,88][3,4][0.967,0.997][12,14][3,4][0.947,0.983] 0.16[13,17][2,3][0.945,0.997][3,5][2,3][0.933,0.985] 8[13,17][2,3][0.973,0.999][3,5][2,3][0.965,0.995] 10[3,5][1,2][0.926,0.996][3,5][2,3][0.980,0.998] 2******

4 [103, 115] [3,4][0.951,0.996][16,18][3,4][0.930,0.978]

0.056[19,22][2,3][0.920,0.996][4,6][2,3][0.911,0.982] 8[17,22][2,3][0.965,0.999][4,6][2,3][0.954,0.994] 10[4,7][1,2][0.902,0.994][4,6][2,3][0.973,0.998] 2****** 4 [170, 176] [3,4][0.920,0.993]***

0.016[23,34][2,3][0.904,0.994][24,26][3,4][0.970,0.996] 8[32,34][2,3][0.934,0.998][6,8][2,3][0.932,0.992] 10[28,34][2,3][0.967,0.999][6,8][2,3][0.960,0.997] *:Plandoesnotexist.

Table4. OptimalparametersoftheproposedGASPunderneutrosophicstatisticswhen rN = [4,6]and δN = [1.9,2.1]. a = 0.5 a = 1.0 βµN/µN0 gN cN PaN(pN1) gN cN PaN(pN1)

2 [156, 164] [2,3][0.902,0.993][3,5][2,3][0.929,0.958]

4[8,23][1,2][0.989,1.000][1,3][1,3][0.983,1.000] 0.256[20,23][1,2][0.994,1.000][1,3][1,3][0.996,1.000]

8[8,23][1,2][0.999,1.000][1,3][1,2][0.999,1.000]

10[9,23][1,2][1.000,1.000][1,3][1,2][0.999,1.000]

2***[25,27][3,4][0.966,0.983]

4[26,37][1,2][0.965,0.999][2,4][1,2][0.966,0.995]

0.16[18,37][1,2][0.995,1.000][2,4][1,2][0.992,1.000]

8[18,37][1,2][0.998,1.000][2,4][1,2][0.997,1.000]

10[33,37][1,2][0.999,1.000][2,4][1,2][0.999,1.000]

2***[32,34][3,4][0.957,0.978]

4[27,48][1,2][0.964,0.999][3,5][1,2][0.949,0.994]

0.056[23,48][1,2][0.993,1.000][3,5][1,2][0.988,0.999]

8[45,48][1,2][0.995,1.000][3,5][1,2][0.996,1.000]

10[28,48][1,2][0.999,1.000][3,5][1,2][0.998,1.000]

2***[49,51][3,4][0.935,0.968]

4[27,74][1,2][0.964,0.999][4,6][1,2][0.933,0.992]

0.016[64,74][1,2][0.981,1.000][4,6][1,2][0.984,0.999]

8[71,74][1,2][0.993,1.000][4,6][1,2][0.995,1.000]

10[29,74][1,2][0.999,1.000][4,6][1,2][0.998,1.000]

*:Plandoesnotexist.

Mathematics 2019, 7,905 7of11

3.IllustrativeExample

Supposethatamanufacturerwantstoprovidethemeanlifeassuranceforhisproduct,andhe claimsthatthetruemeanlifeoftheproductis µN = 500h.Thequalityinspectordecidestocheck whetherthemanufacture’sclaimonthelifetimeoftheproductistrueornotand,therefore,specifies theexperimenttimeas tN0 = 500h.Hence,theexperimentterminationratioiscalculatedas a = 1.0. Thefailureprobabilitycorrespondingtothemeanratio µN/µN0 = 4isconsideredasAQLandthesame atmeanratio1istakenasLQL.Theconsumerriskisassumedtobe β = 0.25.Theshapeparameterof theWeibulldistributionisspecifiedas δN = 0.9.Supposethequalityinspectorwantstoimplementthe proposedGASPunderneutrosophicstatistics,andhedecidestoallocate rN = 6itemstoeachtester. Therefore,inordertoexecutetheproposedplanfortheabove-specifiedconditions,weobtainthe optimalparameters gN = [8,10]and cN = [3,4]fromTable 3.Theinputvalues(orspecifiedvalues)and theoptimalvaluesdeterminedforthoseinputvaluesarereportedinTable 5 foreasyidentification.

Table5. Summaryofinputvaluesandoutputparameters.

InputValuesOutputParameters

Thisshowsthatthenumberofgroupsfortheinspectionliesbetween8and10.Supposethequality inspectorchooseseightgroups.Then,implementationprocedureoftheproposedplanisasfollows.

Arandomsampleof48itemsischosenfromthesubmittedlot,and6sampleitemsaredistributed to8groups.Thesampleitemsareincludedinthelifetest,andthetestisconducteduptothespecified time500h.Thesubmittedlotisacceptedifthereare,atmost,3sampleitemsthatfailedbeforethe time500hineachofall8groups.Otherwise,thelotisrejected.

4.Comparison

Toshowtheefficiencyoftheproposedplanintermsofnumberofgroups(samplesize)overthe existingSSP,wetabulatedtheoptimalparametersdeterminedforsomespecifiedvaluesof a, rN,and δN.Theminimumnumberofgroupsrequiredforinspectingthelotunderneutrosophicstatisticsand classicalstatisticsisshowninTable 6.WenotefromTable 6 thattheproposedsamplingplanunder neutrosophicstatisticshasthesmallernumberofgroupscomparedtothetime-truncatedplanunder classicalstatistics.Forexample,when a = 0.5and µN/µN0 = 2,thenumberofgroupsinanindeterminate intervalunderclassicalstatisticsislargerthantheproposedsamplingplanunderneutrosophic statistics.Thesameefficiencyoftheproposedplancanbeobservedforallotherspecifiedparameters. Bycomparingbothsamplingplans,itcanbenotedthattime-truncatedgroupsamplingplanunder neutrosophicstatisticsisbetterthantheplanusingclassicalstatistics.Hence,theproposedplanis moreeconomicalthantheexistingplaninsavingcost,time,andeffortsinuncertaintyenvironments.

Table6. ValuesoftheproposedGASPandsingle-samplingplan(SSP)underneutrosophicstatistics when rN = [10,12]and δN = [0.9,1.1]. a = 0.5 a = 1.0 βµN/µN0 GASPSSPGASPSSP gN nN gN nN 2[19,44][34,38][5,7][20,23] 4[2,4][11,14][1,3][7,8] 0.256[1,3][9,10][1,3][5,6] 8[1,3][6,7][1,3][5,4] 10[1,3][6,7][1,3][4,4]

Mathematics 2019, 7,905 8of11
t
0 a µN/µN0
r
µN
N
βδN
N gN cN 500(h)500(h)1.040.250.96[8,10][3,4]

Table6. Cont.

a = 0.5

a = 1.0

βµN/µN0 GASPSSPGASPSSP

gN nN gN nN 2*[54,59][26,28][36,35] 4[2,4][17,20][1,3][10,11] 0.16[2,4][14,13][1,3][9,7] 8[2,4][11,13][1,3][7,7] 10[2,4][8,10][1,3][7,5] 2*[68,73][34,36][48,42] 4[7,11][22,27][3,5][13,14]

0.056[3,6][16,19][2,4][12,10] 8[2,4][13,16][1,3][10,8] 10[2,4][13,16][1,3][8,8] 2*[103,108]*[68,59] 4[9,17][36,36][4,6][22,21] 0.016[5,8][23,28][2,4][16,15] 8[5,8][20,24][2,4][12,13] 10[3,5][20,20][2,4][12,10]

*:Plandoesnotexist.

5.Conclusions

Inthispaper,wehavedesignedagroupacceptancesamplingplanforcaseswherethequality oftheproductisindeterminateandvague.Therefore,neutrosophicstatisticshasbeenusedinthis designinsteadofclassicalstatistics.Theoptimalparametersdeterminedfordifferentcombinationsof groupsizesandshapeparametershavebeentabulated.Itisconcludedfromthisstudythatonecan usetheproposedplanifthereisuncertaintyintheproduct’squality.Theproposedsamplingplan usingsomeotherneutrosophicdistributionsorsamplingschemescanbeconsideredinfutureresearch. Theextensionoftheproposedplanforbigdataisalsoafruitfulareaforfutureresearch.

AuthorContributions: Conceivedanddesignedtheexperiments,M.A.,P.J.andS.B.,andA.H.A.-M.Performedthe experiments,M.A.andA.H.A.-M.Analyzedthedata,M.A.andA.H.A.-M.Contributedreagents/materials/analysis tools,M.A.Wrotethepaper,M.A.

Funding: ThisarticlewasfundedbytheDeanshipofScientificResearch(DSR)atKingAbdulazizUniversity, Jeddah.Theauthors,therefore,acknowledgeandthankDSRtechnicalandfinancialsupport.

Acknowledgments: Theauthorsaredeeplythankfultotheeditorandreviewersfortheirvaluablesuggestionsto improvethequalityofthismanuscript.Theauthor(P.Jeyadurga)wouldliketothanktheKalasalingamAcademy ofResearchandEducationforprovidingfinancialsupportthroughpostdoctoralfellowship.

ConflictsofInterest: Theauthorsdeclarenoconflictsofinterestregardingthispaper.

Glossary

lifetimeoftheproduct,where tL isthelowervalueofthelifetimeand tU istheuppervalueofthe lifetime

Mathematics 2019, 7,905 9of11
tN ∈ {tL, tU}
δN ∈ {δL, δU}
δ
λN ∈ {λL, λU}
λ
tN0
µN
µN0
a
µN/µN0
shapeparameteroftheWeibulldistribution,where δL isthelowervalueoftheshapeparameter and
U istheuppervalueoftheshapeparameter
scaleparameter,where
L isthelowervalueofthescaleparameterand λU istheuppervalueof thescaleparameter
experimenttime
truemeanlife
specifiedmeanlife
experimentterminationratio(i.e., a = tN0/µN0)
ratiobetweenthetruemeanlifeandthespecifiedmeanlife

pN1 acceptablequalitylevel(AQL) pN2 limitingqualitylevel(LQL)

nN ∈ {nL, nU}

samplesize(i.e., nN = gNrN),where nL isthelowervalueofthesamplesizeand nU istheupper valueofthesamplesize

rN ∈ {rL, rU} groupsize,where rL isthelowervalueofthegroupsizeand rU istheuppervalueofthegroup size

gN ∈ {gL, gU}

dN ∈ {dL, dU}

cN ∈ {cL, cU}

numberofgroups,where gL isthelowervalueofthenumberofgroupsand gU istheupper valueofthenumberofgroups

numberoffailureitemsinthesample,where dL isthelowervalueofthenumberoffailureitems and dU istheuppervalueofthenumberoffailureitems

acceptancenumber,where cL isthelowervalueoftheacceptancenumberand cU istheupper valueoftheacceptancenumber

α producer’srisk

β consumer’srisk

PaN (pN)Probabilityofacceptanceatfailureprobability pN

PaN (pN1)Probabilityofacceptanceatfailureprobability pN1 oratAQL

PaN (pN2)Probabilityofacceptanceatfailureprobability pN2 oratLQL

References

1. Montgomery,D.C. IntroductiontoStatisticalQualityControl,6thed.;JohnWiley&Sons,Inc.:NewYork,NY, USA,2009.

2. Schilling,E.G.;Neubauer,D.V. AcceptanceSamplinginQualityControl,3rded.;CRCPress,TaylorandFrancis Group:BocaRaton,FL,USA,2017.

3. Dodge,H.F.Notesontheevolutionofacceptancesamplingplans—PartI. J.Qual.Technol. 1969, 1,77–88. [CrossRef]

4. Loganathan,A.;Vijayaraghavan,R.;Rajagopal,K.Designingsinglesamplingplansbyvariablesusing predictivedistribution. Econ.Qual.Control 2010, 25,301–316.[CrossRef]

5. Liu,F.;Cui,L.Anewdesignonattributesinglesamplingplans. Commun.Stat.TheoryMethods 2015, 44, 3350–3362.[CrossRef]

6. Govindaraju,K.Predictivedesignofsinglesamplingattributeplans. J.Stat.Comput.Simul. 2017, 87,447–456. [CrossRef]

7. Hu,M.;Gui,W.AcceptancesamplingplansbasedontruncatedlifetestsforBurrtypeXdistribution. J.Stat. Manag.Syst. 2018, 21,323–336.[CrossRef]

8. Aslam,M.;Jun,C.-H.AgroupacceptancesamplingplanfortruncatedlifetesthavingWeibulldistribution. J.Appl.Stat. 2009, 36,1021–1027.[CrossRef]

9. Kanagawa,A.;Ohta,H.Adesignforsinglesamplingattributeplanbasedonfuzzysetstheory. FuzzySets Syst. 1990, 37,173–181.[CrossRef]

10. Chakraborty,T.K.Aclassofsinglesamplingplansbasedonfuzzyoptimisation. Opsearch 1992, 29,11–20.

11.

Jamkhaneh,E.B.;Gildeh,B.S.AcceptancedoublesamplingplanusingfuzzyPoissondistribution. World Appl.Sci.J. 2012, 16,1578–1588.

12. Turano˘glu,E.;Kaya, I.;Kahraman,C.Fuzzyacceptancesamplingandcharacteristiccurves. Int.J.Comput. Intell.Syst. 2012, 5,13–29.[CrossRef]

13. Jamkhaneh,E.B.;Gildeh,B.S.Chainsamplingplanusingfuzzyprobabilitytheory. J.Appl.Sci. 2011, 11, 3830–3838.[CrossRef]

14. Tong,X.;Wang,Z.Fuzzyacceptancesamplingplansforinspectionofgeospatialdatawithambiguity inequalitycharacteristics. Comput.Geosci. 2012, 48,256–266.[CrossRef]

15. Uma,G.;Ramya,K.Impactoffuzzylogiconacceptancesamplingplans-AReview. Autom.Auton.Syst. 2015, 7,181–185.

16. Afshari,R.;Gildeh,B.S.Constructionoffuzzymultipledeferredstatesamplingplan.InProceedingsofthe 2017Joint17thWorldCongressofInternationalFuzzySystemsAssociationand9thInternationalConference onSoftComputingandIntelligentSystems(IFSA-SCIS),Otsu,Japan,27–30June2017.

17. Khan,M.Z.;Khan,M.F.;Aslam,M.;Mughal,A.R.DesignoffuzzysamplingplanusingtheBirnbaum-Saunders distribution. Mathematics 2019, 7,9.[CrossRef]

Mathematics
10of11
2019, 7,905

18.

Smarandache,F.Neutrosophiclogic-Ageneralizationoftheintuitionisticfuzzylogic. MultispaceMultistruct. NeutrosophicTransdiscipl. 2010, 4,396.[CrossRef]

19. Abdel-Basset,M.;Atef,A.;Smarandache,F.AhybridNeutrosophicmultiplecriteriagroupdecisionmaking approachforprojectselection. Cogn.Syst.Res. 2019, 57,216–227.[CrossRef]

20.

Abdel-Basset,M.;Gunasekaran,M.;Mohamed,M.;Smarandache,F.Anovelmethodforsolvingthefully neutrosophiclinearprogrammingproblems. NeuralComput.Appl. 2019, 31,1595–1605.[CrossRef]

21. Broumi,S.;Bakali,A.;Talea,M.;Smarandache,F.BipolarNeutrosophicMinimumSpanningTree. InfiniteStudy,2018.Availableonline: https://books.google.com.sa/books?id=VopuDwAAQBAJ&printsec= frontcover&hl=ar#v=onepage&q&f=false (accessedon20August2019).

22. Abdel-Basset,M.;Manogaran,G.;Gamal,A.;Smarandache,F.Ahybridapproachofneutrosophicsetsand DEMATELmethodfordevelopingsupplierselectioncriteria. Des.Autom.Embed.Syst. 2018, 22,257–278. [CrossRef]

23.

Abdel-Basset,M.;Nabeeh,N.A.;El-Ghareeb,H.A.;Aboelfetouh,A.Utilisingneutrosophictheorytosolve transitiondifficultiesofIoT-basedenterprises. Enterp.Inf.Syst. 2019,1–21.[CrossRef]

24. Smarandache,F. IntroductiontoNeutrosophicStatistics;InfiniteStudy:ElSegundo,CA,USA,2014.

25. Broumi,S.;Smarandache,F.Correlationcoefficientofintervalneutrosophicset. AppliedMechanicsand Materials 2013, 436,511–517.[CrossRef]

26. Hanafy,I.;Salama,A.;Mahfouz,K.Neutrosophicclassicaleventsanditsprobability. Int.J.Math.Comput. Appl.Res.(IJMCAR) 2013, 3,171–178.

27. Smarandache,F. IntroductiontoNeutrosophicMeasure,NeutrosophicIntegral,andNeutrosophicProbability; InfiniteStudy:ElSegundo,CA,USA,2013.

28. Smarandache,F. NeutrosophicOverset,NeutrosophicUnderset,andNeutrosophicOffset.SimilarlyforNeutrosophic Over-/Under-/Off-Logic,Probability,andStatistics;InfiniteStudy:ElSegundo,CA,USA,2016.

29. Chen,J.;Ye,J.;Du,S.Scaleeffectandanisotropyanalyzedforneutrosophicnumbersofrockjointroughness coefficientbasedonneutrosophicstatistics. Symmetry 2017, 9,208.[CrossRef]

30. Chen,J.;Ye,J.;Du,S.;Yong,R.Expressionsofrockjointroughnesscoefficientusingneutrosophicinterval statisticalnumbers. Symmetry 2017, 9,123.[CrossRef]

31. Patro,S.;Smarandache,F. TheNeutrosophicStatisticalDistribution,MoreProblems,MoreSolutions;InfiniteStudy: ElSegundo,CA,USA,2016.

32. Alhabib,R.;Ranna,M.M.;Farah,H.;Salama,A.someneutrosophicprobabilitydistributions. Neutrosophic SetsSyst. 2018, 22,30–38.

33. Aslam,M.;Bantan,R.A.R.;Khan,N.Designofanewattributecontrolchartunderneutrosophicstatistics. Int.J.FuzzySyst. 2018, 21,433–440.[CrossRef]

34.

35.

Aslam,M.Anewsamplingplanusingneutrosophicprocesslossconsideration. Symmetry 2018, 10,132. [CrossRef]

Aslam,M.;Arif,O.TestingofgroupedproductfortheWeibulldistributionusingneutrosophicstatistics. Symmetry 2018, 10,403.[CrossRef]

© 2019bytheauthors.LicenseeMDPI,Basel,Switzerland.Thisarticleisanopenaccess articledistributedunderthetermsandconditionsoftheCreativeCommonsAttribution (CCBY)license(http://creativecommons.org/licenses/by/4.0/).

11of11
Mathematics 2019, 7,905

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.