BIOGRAFÍA Guy Brousseau nació el 4 de febrero 1933, en Taza, Marruecos. En 1953, comenzó a enseñar en la región de Lot et Garonne. Se casó con Nadine Labeque, quien devino su compañera de trabajo. A fines de los años 60, antes de formarse en matemática, enseñó en la Universidad de Burdeos. Actualmente ejerce en la universidad la función de director de laboratorio de Didáctica de las Ciencias y de las Tecnologías. En 1991, llegó a ser docente del Instituto Normal Superior Local. Recibió el título de doctor honoris causa de las universidades de Montreal, Genebra y Córdoba.
Una trayectoria extraordinaria Comienza su carrera como alumno de una escuela de magisterio, con el fin de hacerse maestro de escuela. Continúa siendo maestro de escuela algunos años antes de encontrarse, gracias a una comisión de servicios, con los personajes de toda índole que se embarcan, al principio de los años 60, en el movimiento general de renovación de la enseñanza de las matemáticas. Con el soporte de su administración, completa su formación universitaria antes de ser contratado como asistente en la Universidad de Burdeos-I. Es en la universidad, en el marco del IREM3 y con el apoyo permanente del profesor Juan Colmez, donde llevará a cabo lo fundamental de sus trabajos de investigación sobre la enseñanza de las matemáticas en la escolaridad obligatoria. Presenta y defiende su tesis de estado en 1986. Con apoyo de las autoridades académicas, pone en marcha el COREM4, que dirigirá del 1973 al 1998, antes de fundar el LADIST5, el laboratorio que acompaña el COREM. Entre tanto, la creación del IUFM6 le permitirá hacerse, en 1992, profesor de universidad hasta su jubilación en 1998. Se convierte entonces en profesor emérito en el IUFM de Aquitania, lo que le permite continuar la actividad científica y académica (dirección de tesis) en el marco de un nuevo laboratorio relacionado con la universidad Victor Segalen Bordeaux. Guy Brousseau comienza a publicar en 1961 (con ocasión del encuentro CIEAEM8 del Castañar [Suiza]), continúa con un manual para el primer curso de la escuela elemental (1965) y muy pronto prosigue con sus publicaciones en el dominio científico, con una gran regularidad desde 1968 al período actual. La profunda imbricación de su trabajo personal con la formación de maestros en el marco del IREM, unido a la especificidad y originalidad de su proyecto de investigación, le llevan a publicar en revistas locales, textos esenciales para comprender el desarrollo del instrumento teórico fundamental que representa la Teoría de Situaciones Didácticas.
Decisiones científicas profundas y originales La pasión de Guy Brousseau por la enseñanza de las matemáticas proviene de una doble fascinación, de una parte la fascinación por las matemáticas, su poder explicativo y su capacidad para formar el pensamiento, por otra parte la fascinación por la transmisión y la difusión del saber, así como por el estudio de las condiciones que lo hacen posible. A lo largo de toda su carrera científica, sabrá movilizar al servicio de esta doble pasión una energía inagotable y constante, una determinación inquebrantable, una curiosidad sin límite, un rigor extremo que lo condujeron a desarrollar y proponer la teoría más acabada y más coherente de estos treinta últimos años. Este pensamiento y este enfoque emergen, con su fuerza y originalidad, en la segunda mitad de los años 60. Brousseau efectúa entonces una elección teórica original y decisiva que es expuesta en un texto fundador: Processus de mathématisation, texto de una conferencia impartida en las Jornadas de la APMEP11 de 1970. Este texto supone una contribución decisiva. Su actualidad y su pertinencia jamás serán desmentidas. Si tanto el alumno como el profesor son actores ineludibles de la enseñanza y del aprendizaje, el autor decide también interesarse y de forma prioritaria, por una tercera instancia, el "actor silencioso": la situación en la cual evolucionan, en la cual se despliegan la actividad del alumno y la del maestro según sus proyectos respectivos, aprender y enseñar. Esta situación está construida por uno y vivida por el otro y evoluciona por el juego de sus interacciones según reglas, generalmente tácitas, movilizadas en el marco del contrato didáctico. Es concebida como un modelo del conocimiento que hay que enseñar. Es a la vez la condición del establecimiento de una relación didáctica específica de los conocimientos en juego y el instrumento privilegiado del proceso de enseñanzaaprendizaje. Si se quiere que dicha situación permita aprender las matemáticas, no debe ser arbitraria en las modalidades de acción que le ofrece al alumno. Podemos caracterizar la irrupción de la situación como el objeto central de estudio a partir de dos puntos de vista: - el primero consiste en colocarse, en cierta manera, en una posición dual de la del experimentador que se acerca a los alumnos y les interroga, con la ayuda de pruebas adaptadas a propósito de sus concepciones sobre los objetos matemáticos que encontraron, en la enseñanza o en sus diversas experiencias de la vida diaria. El proyecto didáctico es completamente diferente. Consiste en invertir esta perspectiva y en preocuparse de los problemas y de las situaciones por ellos mismos, por la manera en la que nos informan sobre los conocimientos y el saber que ponen en juego y que ellos movilizan. Así, no se estudia ya el
sujeto in abstracto sino la situación en la potencialidad que debe ofrecerle al alumno, sea en su actividad matemática o en la dimensión del estudio como sujeto de la institución didáctica. - el segundo punto de vista se apoya en la consideración, como un hecho fundamental, del análisis de la situación no didáctica, es decir la situación de utilización de las matemáticas, sea la utilización del matemático o del "simple" usuario en un universo de prácticas determinado. En efecto, conocer las matemáticas no sería ceñirse al conocimiento de teoremas o de algoritmos sino a reconocer hic et nunc sus condiciones de uso. El sentido de un saber matemático no depende de un juego de obligaciones externas vinculadas por ejemplo a la utilización de un saber determinado, exigencia que es la de toda organización didáctica. Sobre la base de este análisis, la perspectiva teórica central consiste entonces en estudiar las condiciones del establecimiento en el sistema didáctico de situaciones que involucren al alumno como lo hacen las situaciones no didácticas. Estas son las situaciones que Guy Brousseau llama situaciones adidácticas. Se trata por tanto para él, de mostrar que es posible construir situaciones adidácticas y de justificar su funcionamiento a la vez sobre el plano teórico (el grado de necesidad en relación con el conocimiento en juego) y sobre el plano de la contingencia (examinando, por la observación, sus condiciones de "viabilidad didáctica" es decir de su instalación en las restricciones de la clase de matemáticas).
Guy Brousseau muestra que el éxito de esta ubicación contiene dos aspectos que estudiará con más detalle. El primer aspecto concierne a la instalación misma, lo que lo conduce a introducir un nuevo concepto, el de devolución: si los saberes preexisten en el alumno, su comprensión exige un uso que, por muy esperado que sea por el maestro, no debería serle dictado; tal es la paradoja de la devolución: «si el maestro dice lo que quiere, no puede ya obtenerlo» (Brousseau, 1998, 73). Es la paradoja a la que inicialmente se había vinculado (desde los años 60) a través del estudio de las condiciones de su superación por la devolución al alumno de situaciones adidácticas («¿Qué estrategias de base puede desarrollar el alumno en esta situación? ¿Qué retroacciones podrá recibir? ¿Qué variables didácticas son susceptibles de mantener el sentido del conocimiento buscado? Etc.»). El profesor busca que la acción del alumno sea producida y justificada sólo por las necesidades del medio y por sus conocimientos, y no por la interpretación de los procedimientos didácticos del profesor, o por sus deseos.
El segundo aspecto está estrechamente vinculado al primero ya que concierne a las condiciones que mantienen la implicación del alumno en la situación. Brousseau estudia, a partir de un caso clínico (hoy célebre en la comunidad de losinvestigadores en didáctica de las matemáticas), el "caso Gaël", el conjunto de las obligaciones recíprocas que cada “partenaire” de la situación didáctica impone o cree que él impone a los otros y aquellas que se le imponen o las que cree que se le imponen, a propósito del conocimiento en juego: es el concepto de contrato didáctico. Corresponde al resultado de una "negociación", a menudo implícita, de las diversas relaciones que se establecen entre el alumno, un cierto medio y un sistema educativo. Este contrato no es un verdadero contrato: No es ni explícito, ni consentido libremente ya que depende de un conocimiento necesariamente desconocido de los alumnos. Coloca al profesor y el alumno ante una autentica situación paradójica: si el maestro dice lo que quiere para que el alumno lo haga, no puede obtenerlo más que como ejecución de una orden y no por el ejercicio de sus conocimientos y de su juicio. Recíprocamente, si el alumno acepta que el maestro le enseñe las soluciones y las respuestas, no las establece por él mismo y por lo tanto, no pone en juego los conocimientos matemáticos necesarios y no puede apropiárselos (“aprehenderlos”). El aprendizaje exige pues el rechazo del contrato para hacerse cargo del problema de modo autónomo (devolución). El aprendizaje va pues a basarse, no en el buen funcionamiento del contrato, sino sobre sus rupturas, de donde se deriva la importancia de estudiar con más detalle las condiciones efectivas de sus rupturas. Por otra parte, es el sujeto en tanto que actor en la situación, el que encuentra el conocimiento, pero esto no basta para que haya aprendizaje, ya que si bien la experiencia del alumno es una condición necesaria, hace falta también que estos conocimientos en acto sean identificados como tales, etiquetados y agregados a saberes socialmente reconocidos. Guy Brousseau pone en evidencia así la necesidad de la institucionalización y abre un nuevo campo a la teorización de los fenómenos de enseñanza. Principales nociones desarrolladas en el campo de la didáctica
- La noción fundamental es la de situación; que puede ser modelada por un juego formal. La posibilidad de aislar, los momentos de acción, los momentos de formulación, los momentos orientados hacia la validación y sus instrumentos, los momentos de institucionalización, en el marco de situaciones especialmente construidas - como “Quien dirá veinte "13 por ejemplo-, ha sido una de las características principales de los trabajos llevados a cabo durante más de treinta años sobre contenidos matemáticos diferentes. Mostraron a la vez el interés y el
valor heurístico de esta teorización y pueden legitimar el éxito del proyecto científico de Guy Brousseau. - La transposición didáctica es un concepto desarrollado inicialmente por Yves Chevallard para explicar las transformaciones que sufren los objetos matemáticos cuando tienen que estar presentes en un sistema didáctico. En el paradigma de la teoría de las situaciones este concepto se hace operativo y se precisa a través de la noción de situación fundamental de un conocimiento, que constituye un instrumento privilegiado de estudio de estos fenómenos transpositivos, precisando las condiciones de conservación del sentido del saber y los conocimientos en el momento de su transposición. - El concepto de contrato didáctico, central en el análisis del funcionamiento del sistema didáctico, ha sido retomado recientemente por el propio Guy Brousseau, en una perspectiva de modelización de diferentes tipos de contratos. Otros investigadores estudiaron, en una perspectiva diferencial, las condiciones didácticas susceptibles de explicar el por qué ciertos alumnos se revelan más sensibles que otros a implícitos movilizados en el contrato, así como los lazos que estos fenómenos de sensibilidad al contrato didáctico tienen con la problemática tradicional de las desigualdades escolares (B. Sarrazy). - El concepto de obstáculo, tomado del epistemólogo Gastón Bachelard, ha permitido realizar enfoques originales en el análisis de los errores de los alumnos. Este concepto ha sido especialmente productivo en el análisis de las dificultades del paso de los números enteros a los números decimales. - La distinción realizada entre conocimientos involucrados en la acción, producidos por la actividad del sujeto en sus relaciones con en medio y el saber identificado en las instituciones, ha permitido abrir un campo de estudio relativo al papel de la enumeración en la construcción de los números (J. Briand), y otro que concierne al tratamiento de las relaciones entre conocimientos espaciales y geometría euclidiana (R. Berthelot, M.-H. Salin). - El concepto de medio para la acción y su estructuración permiten modelar las rupturas necesarias realizadas en los cambios de referencia del sujeto en un contexto didáctico (distinción situación de aprendizaje, situación didáctica). Este concepto, introducido desde los principios de la teorización de los hechos didácticos, ha sido retomado y abordado en profundidad por C. Margolinas, en particular para analizar la acción del profesor en las clases ordinarias. - La memoria didáctica ha sido un concepto esencial que ha permitido tomar en cuenta e identificar fenómenos vinculados al tiempo didáctico, la progresión de
este último, la conversión de los conocimientos en saber por la acción de la institucionalización del profesor (J. Centeno). - El lugar y el “rôle” de la institucionalización, que consiste en fijar a partir de los conocimientos elaborados en las situaciones adidácticas, los elementos que van a participar en la construcción y el reconocimiento explícito del saber y a asegurar así la coherencia entre los aprendizajes y los objetivos de enseñanza fijados por la institución. (A. Rouchier). - La noción de agrupamiento/surtido didáctico es más reciente. Permite estudiar la estructuración de los conjuntos de actividades y de ejercicios reunidos con una intención de enseñanza.