Elementi di Fotometria

Page 1



(OHPHQWL GL )RWRPHWULD ,QGLFH

,1',&(

35(5(48,6,7, 0$7(0$7,&, ( ),6,&,

&RRUGLQDWH 6IHULFKH %DVH 1DWXUDOH (VSUHVVLRQH GL XQ 9HWWRUH LQ &RRUGLQDWH 6IHULFKH (OHPHQWR 'LIIHUHQ]LDOH GL /LQHD GL 6XSHUILFLH H GL 9ROXPH 2SHUDWRUH 'LYHUJHQ]D LQ &RRUGLQDWH 6IHULFKH

$QJROR 6ROLGR

&DPSR 9HWWRULDOH H )OXVVR GL &DPSR ,O &RQFHWWR GL &DPSR 9HWWRULDOH 2VVHUYD]LRQL )OXVVR GL XQ &DPSR 9HWWRULDOH 7HRUHPD GHOOD 'LYHUJHQ]D R GL *DXVV )OXVVR GL XQ FDPSR D GLYHUJHQ]D QXOOD 6LJQLILFDWR )LVLFR )OXVVR GL XQ FDPSR FLQHWLFR )OXVVR GL FDULFKH HOHWWULFKH (VSUHVVLRQL GHOO·,QWHJUDOH GL )OXVVR &DVR SDUWLFRODUH 2VVHUYD]LRQH

12=,21, (/(0(17$5, ', )2720(75,$

0RGHOOL 0DWHPDWLFL GHL )HQRPHQL /XPLQRVL 0RGHOOR 2QGXODWRULR (TXD]LRQL GL 0D[ZHOO (TXD]LRQH '·2QGD $QDOLVL GHOO·HTXD]LRQH G·2QGD 2PRJHQHD 6ROX]LRQH SHU OH 2QGH 3LDQH 6ROX]LRQH *HQHUDOH DWWUDYHUVR OR 6YLOXSSR LQ 6HULH GL 2QGH 3LDQH &ODVVLILFD]LRQH GHOOH 2QGH (OHWWURPDJQHWLFKH )OXVVR GL SRWHQ]D GL XQ·2QGD (OHWWURPDJQHWLFD 0RGHOOR 2QGXODWRULR $SSURVVLPD]LRQH *HRPHWULFD 1R]LRQL GL )RWRPHWULD &RPSRUWDPHQWR GHOO·2FFKLR 8PDQR FRPH 5LFHYLWRUH *UDQGH]]H )RWRPHWULFKH )OXVVR /XPLQRVR ,QWHQVLWj /XPLQRVD /XPLQDQ]D /XPLQRVLWj ,OOXPLQDPHQWR $SSURIRQGLPHQWR VXOOH 8QLWj GL PLVXUD 8QLWj VRWWRPXOWLSOL 8QLWj /DPEHUW 8QLWj $QJORVDVVRQL 2VVHUYD]LRQL ,



(OHPHQWL GL )RWRPHWULD &DSLWROR

35(5(48,6,7, 0$7(0$7,&, ( ),6,&,

1HO SUHVHQWH SDUDJUDIR YHQJRQR LOOXVWUDWL L SUHUHTXLVLWL PDWHPDWLFL H ILVLFL QHFHVVDUL DOOD WUDWWD]LRQH GHL FRQFHWWL IRWRPHWULFL ,Q SDUWLFRODUH YHQJRQR WUDWWDWL L VHJXHQWL DUJRPHQWL • FRRUGLQDWH VIHULFKH • UDSSUHVHQWD]LRQH GL XQ YHWWRUH LQ XQ ULIHULPHQWR VIHULFR • DQJROR VROLGR • UDSSUHVHQWD]LRQH GL XQ DQJROR VROLGR ULVSHWWR DOOH FRRUGLQDWH SRODUL • FRQFHWWR GL FDPSR YHWWRULDOH • FRQFHWWR GL IOXVVR GL XQ FDPSR YHWWRULDOH

&225',1$7( 6)(5,&+( ,Q XQR VSD]LR VWUHWWDPHQWH HXFOLGHR VLD GDWR XQ ULIHULPHQWR FDUWHVLDQR WULGLPHQVLRQDOH RUWRJRQDOH FRPH ULSRUWDWR QHOOD ILJXUD VRWWRVWDQWH GRYH & & & • OD WHUQD ( x o , y 0 , z 0 ) LQGLYLGXD L YHUVRUL GHOOD EDVH •

OD WHUQD ( x, y , z ) LQGLYLGXD OH FRRUGLQDWH FDUWHVLDQH RUWRJRQDOL GL SXQWR

,Q WDOH ULIHULPHQWR LO JHQHULFR SXQWR P ( x, y , z ) q SRVWR LQ FRUULVSRQGHQ]D ELXQLYRFD FRQ LO YHWWRUH SRVL]LRQH

& & & OP = xx o + yy 0 + zz 0


(OHPHQWL GL )RWRPHWULD &DSLWROR

)LJXUD &RRUGLQDWH 6IHULFKH 6L GHILQLVFRQR FRRUGLQDWH SRODUL OH WUH TXDQWLWj ( r , φ ,θ ) GHQRPLQDWH ULVSHWWLYDPHQWH • • •

YHWWRUH SRVL]LRQH R UDJJLR YHWWRUH r FRODWLGXGLQH θ ORQJLWXGLQH φ

OHJDWH DOOH FRRUGLQDWH FDUWHVLDQH RUWRJRQDOL GDOOH VHJXHQWL UHOD]LRQL

­ x = r sin(θ ) cos(φ ) ° ® y = r sin(θ ) sin(φ ) ° z = r cos(θ ) ¯ r

GRYH r ≥ 0 0 ≤ θ ≤ Ï€ 0 ≤ φ

= x2 + y2 + z2

< 2Ï€

%$6( 1$785$/( 6LD OP LO YHWWRUH SRVL]LRQH XWLOL]]DQGR OH WUDVIRUPD]LRQL GL FRRUGLQDWH GHILQLWH GDOOH UHOD]LRQL VL RWWLHQH

& & & & & & OP = xxo + yy 0 + zz 0 = r sin(θ ) cos(φ ) xo + r sin(θ ) sin(φ ) y 0 + r cos(θ ) z 0

)LJXUD %DVH QDWXUDOH H YHUVRUL

7UDPLWH OH GHULYDWH SDU]LDOL ULVSHWWR DOOH WUH FRRUGLQDWH VIHULFKH GHILQLDPR OH VHJXHQWL TXDQWLWj •

∂OP FKH UDSSUHVHQWD LO YHWWRUH WDQJHQWH DOOD r − curva RVVLD DOOD ∂r FXUYD FDUDWWHUL]]DWD GD r YDULDELOH H GD θ = cos t φ = cos t ∂ r OP =


(OHPHQWL GL )RWRPHWULD &DSLWROR

∂OP FKH UDSSUHVHQWD LO YHWWRUH WDQJHQWH DOOD θ − curva RVVLD DOOD ∂θ FXUYD FDUDWWHUL]]DWD GD θ r YDULDELOH H GD r = cos t φ = cos t ∂ θ OP =

•

∂OP FKH UDSSUHVHQWD LO YHWWRUH WDQJHQWH DOOD φ − curva RVVLD DOOD ∂φ FXUYD FDUDWWHUL]]DWD GD φ r YDULDELOH H GD r = cos t θ = cos t ∂ φ OP =

•

6L KD ∂ r OP

& & & = sin(θ ) cos(φ ) x0 + sin(θ ) sin(φ ) y 0 + cos(θ ) z 0

& & & = r cos(θ ) cos(φ ) x0 + r cos(θ ) sin(φ ) y 0 − r sin(θ ) z 0 & & & ∂ φ OP = − r sin(θ ) sin(φ ) x 0 + r sin(θ ) cos(φ ) y 0 − 0 z 0

∂ θ OP

/H UHOD]LRQL SRVVRQR HVVHUH UDSSUHVHQWDWH LQ IRUPD PDWULFLDOH FRPH VHJXH

§sin(θ )cos(φ ) r cos(θ )cos(φ ) −r sin(θ )sin(φ )· & & & ¨ ¸ ∂r OP, ∂θ OP, ∂φ OP = (x o , y 0, z 0 ) sin(θ )sin(φ ) r cos(θ )sin(φ ) r sin(θ )cos(φ ) ¸ ¨ ¸ ¨ cos( θ ) −r sin( θ ) 0 ¹ ©

(

)

/D PDWULFH SUHVHQWH QHOOD UHOD]LRQH q GHWWD PDWULFH MDFRELDQD HG q LQGLFDWD FRQ LO VLPEROR J

§ sin(θ ) cos(φ ) r cos(θ ) cos(φ ) − r sin(θ ) sin(φ ) · ¨ ¸ J = ¨ sin(θ ) sin(φ ) r cos(θ ) sin(φ ) r sin(θ ) cos(φ ) ¸ ¨ cos(θ ) ¸ − r sin(θ ) 0 © ¹

9DOXWLDPR RUD LO GHWHUPLQDQWH GL J

sin(θ ) cos(φ ) r cos(θ ) cos(φ ) − r sin(θ ) sin(φ )

J = sin(θ ) sin(φ ) cos(θ ) − r sin(θ ) sin(φ )

r cos(θ ) sin(φ )

r sin(θ ) cos(φ ) =

− r sin(θ )

0

sin(θ ) sin(φ ) r cos(θ ) sin(φ ) cos(θ )

− r sin(θ )

− r sin(θ ) cos(φ )

sin(θ ) cos(φ ) r cos(θ ) cos(φ ) cos(θ )

− r sin(θ )

= − r sin(θ ) sin(φ )[−r sin(θ ) 2 sin(φ ) − r cos(θ ) 2 sin(φ )] − − r sin(θ ) cos(φ )[− r sin(θ ) 2 cos(φ ) − r cos(θ ) 2 cos(φ )]

J = r 2 sin(θ ) sin(φ ) 2 + r 2 sin(θ ) cos(φ ) 2 = r 2 sin(θ ) J = r 2 sin(θ )

=


(OHPHQWL GL )RWRPHWULD &DSLWROR

9DOH GXQTXH LQYHUVD J

−1

J ≠0 VH r ≠0 H θ ≠π SHUWDQWR VRWWR WDOL FRQGL]LRQL HVLVWH OD PDWULFH

GHOOD MDFRELDQD J H YDOJRQR OH VHJXHQWL FRQFOXVLRQL

•

OH FRRUGLQDWH SRODUL YDOJRQR DG HVFOXVLRQH GHL FDVL r = 0 H θ = Ï€ LQ TXDQWR SHU WDOL YDORUL OH QRQ ULVXOWDQR LQYHUWLELOL

•

SRLFKp FRPH JLj RVVHUYDWR SHU FKH OD WHUQD

r ≠0 H θ ≠π J ≠0 WUDPLWH OD VL GHGXFH

(∂ OP, ∂ OP, ∂ OP) UDSSUHVHQWD XQD EDVH GHOOR VSD]LR YHWWRULDOH r

θ

φ

3

•

VWUHWWDPHQWH HXFOLGHR FKH ID GD VXSSRUWR DOOR VSD]LR DIILQH GL SXQWL R OD UDSSUHVHQWD OD OHJJH GL WUDVIRUPD]LRQH GDO ULIHULPHQWR FDUWHVLDQR

& & & y0 , z0 ) DO ULIHULPHQWR ∂r OP, ∂θ OP, ∂φ OP

(

RUWRJRQDOH ( xo ,

/D WHUQD

)

(∂ OP, ∂ OP, ∂ OP) YLHQH GHWWD EDVH QDWXUDOH YDULD GD SXQWR D SXQWR FRPH r

θ

φ

VL GHGXFH IDFLOPHQWH GDOOH UHOD]LRQL HG q RUWRJRQDOH RVVLD RJQL YHWWRUH GHOOD WHUQD q RUWRJRQDOH DG XQ TXDOVLDVL DOWUR YHWWRUH GHOOD WHUQD ,QIDWWL HVHJXHQGR L SURGRWWL VFDODUL VL RWWLHQH LO SURGRWWR VFDODUH q LQGLFDWR FRQ LO VLPEROR • ‰

∂ r OP • ∂ r OP = & & & & = [sin(θ ) cos(φ ) x0 + sin(θ ) sin(φ ) y 0 + cos(θ ) z 0 ] • [sin(θ ) cos(φ ) x0 + & & sin(θ ) sin(φ ) y 0 + cos(θ ) z 0 ] = = sin(θ ) 2 cos(φ ) 2 + sin(θ ) 2 sin(φ ) 2 + cos(θ ) 2 = sin(θ ) 2 [cos(φ ) 2 + sin(φ ) 2 ] + cos(θ ) 2 = = sin(θ ) 2 + cos(θ ) 2 = 1 3HUWDQWR VL SXz FRQFOXGHUH

∂ r OP • ∂ r OP = 1 ∂ θ OP • ∂ θ OP = & & & & = [r cos(θ ) cos(φ ) x0 + r cos(θ ) sin(φ ) y 0 − r sin(θ ) z 0 ] • [r cos(θ ) cos(φ ) x0 & & + r cos(θ ) sin(φ ) y 0 − r sin(θ ) z 0 ] = r 2 cos(θ ) 2 cos(φ ) 2 + r 2 cos(θ ) 2 sin(φ ) 2 + r sin(θ ) 2 = ‰

3HUWDQWR VL SXz FRQFOXGHUH

∂ θ OP • ∂ θ OP = r 2 ‰

∂ φ OP • ∂ φ OP = & & & & = [−r sin(θ ) sin(φ ) x0 + r sin(θ ) cos(φ ) y 0 ] • [− r sin(θ ) sin(φ ) x0 + r sin(θ ) cos(φ ) y 0 ] = r 2 sin(θ ) 2 sin(φ ) 2 + r 2 sin(θ ) 2 cos(φ ) 2 = r 2 sin(θ ) 2 [sin(φ ) 2 + cos(φ ) 2 ] = r 2 sin(θ ) 2 3HUWDQWR VL SXz FRQFOXGHUH

∂ φ OP • ∂ φ OP = r 2 sin(θ ) 2 ‰

∂ r OP • ∂ θ OP =


(OHPHQWL GL )RWRPHWULD &DSLWROR

& & & = [sin(θ ) cos(φ ) x0 + sin(θ ) sin(φ ) y 0 + cos(θ ) z 0 ] •

& & & • [r cos(θ ) cos(φ ) x0 + r cos(θ ) sin(φ ) y 0 − r sin(θ ) z 0 ] =

= [ r cos(θ ) sin(θ ) cos(φ ) 2 + r cos(θ ) sin(θ ) sin(φ ) 2 − r sin(θ ) cos(θ ) = = r cos(θ ) sin(θ )[cos(φ ) 2 + sin(φ ) 2 ] − r sin(θ ) cos(θ ) = r cos(θ ) sin(θ ) − r sin(θ ) cos(θ ) = 0

3HUWDQWR VL SXz FRQFOXGHUH

∂ r OP • ∂ θ OP = 0 ‰

∂ r OP • ∂ φ OP = & & & = [sin(θ ) cos(φ ) x0 + sin(θ ) sin(φ ) y 0 + cos(θ ) z 0 ] •

& & • [− r sin(θ ) sin(φ ) x0 + r sin(θ ) cos(φ ) y 0 ] =

= [−r sin(θ ) 2 sin(φ ) cos(φ ) + r sin(θ ) 2 cos(φ ) sin(θ ) sin(φ ) = 0

3HUWDQWR VL SXz FRQFOXGHUH

∂ r OP • ∂ φ OP = 0 ‰

∂ θ OP • ∂ φ OP = & & & = [r cos(θ ) cos(φ ) x0 + r cos(θ ) sin(φ ) y 0 − r sin(θ ) z 0 ] •

& & • [− r sin(θ ) sin(φ ) x0 + r sin(θ ) cos(φ ) y 0 ] =

& = [−r 2 sin(θ ) sin(φ ) cos(θ ) cos(φ ) x0 + r 2 cos(θ ) sin(φ )r sin(θ ) cos(φ )] = 0

3HUWDQWR VL SXz FRQFOXGHUH

∂ θ OP • ∂ φ OP = 0 'DOOH HODERUD]LRQL SUHFHGHQWL VL GHGXFH FKH LO WHQVRUH PHWULFR VL ULFRUGD FKH LO WHQVRUH PHWULFR LQ XQR VSD]LR YHWWRULDOH D WUH GLPHQVLRQL q FRVWLWXLWR GD QRYH FRPSRQHQWL g ij GDWH GDO SURGRWWR VFDODUH GHO YHWWRUH GL EDVH i − esimo SHU LO YHWWRUH GL EDVH j − esimo H SXz HVVHUH UDSSUHVHQWDWR LQ IRUPD PDWULFLDOH WUDPLWH XQD PDWULFH LQGLFDWD FRQ LO VLPEROR G q GDWR GD

§ ∂ r OP • ∂ r OP · §1 0 0 0 ¨ ¸ ¨ ¨ ¸ = ¨0 r 2 G = ∂ θ OP • ∂ θ OP 0 0 ¨ ¸ ¨ ∂ φ OP • ∂ φ OP ¸ ¨© 0 0 0 0 © ¹

0

· ¸ 0 ¸ 2 2¸ r sin(θ ) ¹

Ë EHQH RVVHUYDUH FKH L YHWWRUL GHOOD EDVH QDWXUDOH QRQ VRQR D PRGXOR XQLWDULR RVVLD QRQ VRQR GHL YHUVRUL 6H YRJOLDPR RWWHQHUH L YHUVRUL VHFRQGR OR VFKHPD ULSRUWDWR LQ )LJXUD q VXIILFLHQWH GLYLGHUH FLDVFXQ YHWWRUH GL EDVH SHU LO SURSULR PRGXOR RWWHQHQGR TXLQGL •

& r0 = ∂ r OP


(OHPHQWL GL )RWRPHWULD &DSLWROR

&

1 r

θ 0 = ∂ θ OP

φ0 =

&

1 ∂ φ OP r sin(θ )

(635(66,21( ', 81 9(7725( ,1 &225',1$7( 6)(5,&+( & 6LD V XQ YHWWRUH GHOOR VSD]LR HVVR SXz HVVHUH HVSUHVVR VLD QHOOD EDVH FDUWHVLDQD (x&o , y& 0 , z&0 ) VLD QHO ULIHULPHQWR QDWXUDOH VIHULFR ∂r OP ,∂θ OP, ∂φ OP 8WLOL]]DQGR TXHVWH

(

)

GXH SRVVLELOLWj H ULFRUGDQGR OH UHOD]LRQL DEELDPR

& & & & V = v x x0 + v y y 0 + v z z 0 = v r ∂ r OP + vθ ∂ θ OP + vφ ∂ φ OP

GRYH

(v x , v y , v z ) OH LQGLFDQR OH FRPSRQHQWL GHO YHWWRUH QHO ULIHULPHQWR FDUWHVLDQR H

(v r , vθ , vφ ) OH FRPSRQHQWL LQ TXHOOR VIHULFR ,QROWUH QHO FDVR LQ FXL VL XWLOL]]LQR L YHUVRUL & & & & (r0 ,θ 0 , φ 0 ) LQYHFH GHOOH EDVL QDWXUDOL LO YHWWRUH V VL SXz HVSULPH FRQ FRPSRQHQWL ( wr , wθ , wφ ) RVVLD WDOH FKH

& & & & V = wr r0 + wθ θ 0 + wφ φ 0

H ULFRUGDQGR L OHJDPL WUD L YHUVRUL H OH EDVL QDWXUDOL VHJXH OD YDOLGLWj GHL VHJXHQWL OHJDPL wr = v r , wθ = rvθ , wφ = r sin(θ )vφ

(

'HWHUPLQLDPR RUD OH FRPSRQHQWL

)

(v r , vθ , vφ ) LQ IXQ]LRQH GHOOH FRPSRQHQWL FDUWHVLDQH

(v x , v y , v z ) SURFHGHQGR FRPH VHJXH QDWXUDOPHQWH XWLOL]]DQGR OH VL GHWHUPLQDQR IDFLOPHQWH DQFKH OH FRPSRQHQWL ( wr , wθ , wφ ) •

& & & & & & & V • ∂ r OP = v r = (v x x0 + v y y 0 + v z z 0 ) • [sin(θ ) cos(φ ) x0 + sin(θ ) sin(φ ) y 0 + cos(θ ) z 0 ] = = v x sin(θ ) cos(φ ) + v y sin(θ ) sin(φ ) + v z cos(θ )

v r = v x sin(θ ) cos(φ ) + v y sin(θ ) sin(φ ) + v z cos(θ ) & & & & & & & • V • ∂ θ OP = vθ = (v x x 0 + v y y 0 + v z z 0 ) • [r cos(θ ) cos(φ ) x 0 + r cos(θ ) sin(φ ) y 0 − r sin(θ ) z 0 ] =

= v x r cos(θ ) cos(φ ) + v y r cos(θ ) sin(φ ) − v z r sin(θ ) vθ = v x r cos(θ ) cos(φ ) + v y r cos(θ ) sin(φ ) − v z r sin(θ ) & & & & & & & V • ∂ φ OP = vθ = (v x x0 + v y y 0 + v z z 0 ) • [−r sin(θ ) sin(φ ) x0 + r sin(θ ) cos(φ ) y 0 − 0 z 0 ] = = −v x r sin(θ ) sin(φ ) + v y r sin(θ ) cos(φ )


(OHPHQWL GL )RWRPHWULD &DSLWROR

vφ = −v x r sin(θ ) sin(φ ) + v y r sin(θ ) cos(φ ) 3HUWDQWR VL SRUUH

& V = v r ∂ r OP + vθ ∂ θ OP + vφ ∂ φ OP =

= [v x sin(θ ) cos(φ ) + v y sin(θ ) sin(φ ) + v z cos(θ )]∂ r OP + [v x r cos(θ ) cos(φ ) + v y r cos(θ ) sin(φ ) − v z r sin(θ )]∂ θ OP

+ [−v x r sin(θ ) sin(φ ) + v y r sin(θ ) cos(φ )]∂ φ OP /D SHUPHWWH GL GHWHUPLQDUH O¡HVSUHVVLRQH GL XQ YHWWRUH LQ XQ ULIHULPHQWR VIHULFR LQ IXQ]LRQH GHOOH FRPSRQHQWL GHOOR VWHVVR LQ XQ ULIHULPHQWR FDUWHVLDQR 6H DSSOLFKLDPR OD DL WUH YHWWRUL GL EDVH FDUWHVLDQL VL KD & • SHU x o v x = 1, v y = v z = 0 GD FXL VHJXH

& xo = sin(θ ) cos(φ )∂ r OP + r cos(θ ) cos(φ )∂ θ OP − r sin(θ ) sin(φ )∂ φ OP

•

SHU

& y o v x = v z = 0, v y = 1 GD FXL VHJXH

•

&

& y o = sin(θ ) sin(φ )∂ r OP + r cos(θ ) sin(φ )∂ θ OP + r sin(θ ) cos(φ )∂ φ OP

SHU z o v x

= v y = 0, v z = 1 GD FXL VHJXH

& z o = cos(θ )∂ r OP − r sin(θ )∂ θ OP ,Q IRUPD PDWULFLDOH OH SUHFHGHQWL UHOD]LRQL IRUQLVFRQR OD VHJXHQWH HTXD]LRQH

§ sin(θ )cos(φ ) sin(θ )sin(φ ) cos(θ ) ¡ & & & ¨ ¸ (x o , y 0 , z 0 ) = ∂r OP, ∂θ OP, âˆ‚Ď† OP r cos(θ )cos(φ ) r cos(θ )sin(φ ) −r sin(θ ) ¨ ¸ ¨ ¸ θ )sin( φ ) r sin( θ )cos( φ ) 0 −r sin( Š š

(

)

'DO FRQIURQWR GHOOD FRQ OD VL GHGXFH FKH OD PDWULFH ULSRUWDWD LQ q SDUL DOO¡LQYHUVD GL J H TXLQGL


(OHPHQWL GL )RWRPHWULD &DSLWROR

J

−1

sin(θ ) sin(φ ) cos(θ ) · § sin(θ ) cos(φ ) ¨ ¸ = ¨ r cos(θ ) cos(φ ) r cos(θ ) sin(φ ) − r sin(θ ) ¸ ¨ − r sin(θ ) sin(φ ) r sin(θ ) cos(φ ) ¸ 0 © ¹

,QROWUH OD SXz HVVHUH HVSUHVVD LQ IRUPD PDWULFLDOH FRPH VHJXH

§ v r · § sin(θ ) cos(φ ) sin(θ ) sin(φ ) cos(θ ) ·§ v x · ¨ ¸ ¨ ¸¨ ¸ ¨ vθ ¸ = ¨ r cos(θ ) cos(φ ) r cos(θ ) sin(φ ) − r sin(θ ) ¸¨ v y ¸ ¨ v ¸ ¨ − r sin(θ ) sin(φ ) r sin(θ ) cos(φ ) ¸¨ v ¸ 0 ¹© z ¹ © φ¹ © 5LFRUGDQGR OD VWUXWWXUD GL J

−1

VHJXH FKH OD q GDWD GD

H SHUWDQWR O·LQYHUVD GHOOD q GDWD GD

§ vr · § vx · ¨ ¸ ¨ ¸ −1 ¨ vθ ¸ = J ¨ v y ¸ ¨v ¸ ¨v ¸ © z¹ © φ¹

§ vx · ¨ ¸ ¨vy ¸ = ¨v ¸ © z¹ RVVLD LQ WHUPLQL HVSOLFLWL

§ vr · ¨ ¸ J ¨ vθ ¸ ¨v ¸ © φ¹

§ v x · § sin(θ ) cos(φ ) r cos(θ ) cos(φ ) − r sin(θ ) sin(φ ) ·§ v r · ¨ ¸ ¨ ¸¨ ¸ ¨ v y ¸ = ¨ sin(θ ) sin(φ ) r cos(θ ) sin(φ ) r sin(θ ) cos(φ ) ¸¨ vθ ¸ ¨ v ¸ ¨ cos(θ ) ¸¨ v ¸ − r sin(θ ) 0 © z¹ © ¹© φ ¹ /D LQYHUWH GXQTXH OD H TXLQGL OD H SHUPHWWH LQ VRVWDQ]D GL HVSULPHUH OH FRPSRQHQWL FDUWHVLDQH GL XQ YHWWRUH LQ IXQ]LRQH GL TXHOOH VIHULFKH /H H OH VL FKLDPDQR OHJJL GL WUDVIRUPD]LRQH GHOOH FRPSRQHQWL GL XQ YHWWRUH SDVVDQGR GD XQ VLVWHPD GL ULIHULPHQWR DG XQ DOWUR H VLFFRPH FRPH YHWWRUH VL SXz HVVHUH SUHVR LO YHWWRUH SRVL]LRQH OH FXL FRPSRQHQWL LQ FRRUGLQDWH FDUWHVLDQH VRQR OH FRRUGLQDWH GL SXQWR HG LQ FRRUGLQDWH VIHULFKH q LO UDJJLR YHWWRUH RVVLD

& & & OP = xxo + yy 0 + zz 0 = r∂ r OP

DSSOLFDQGR OD D WDOH YHWWRUH VL ULWURYD OD RVVLD OH WUDVIRUPD]LRQL GL FRRUGLQDWH 6L RVVHUYL LQILQH FKH OH OHJJL GL WUDVIRUPD]LRQL GHOOH EDVL H VRQR LQYHUVH GHOOH OHJJL GL WUDVIRUPD]LRQH GHOOH FRPSRQHQWL H QHO VHQVR FKH • LO SDVVDJJLR GDO ULIHULPHQWR FDUWHVLDQR D TXHOOR VIHULFR UHOD]LRQH YLHQH HIIHWWXDWR WUDPLWH OD PDWULFH J PHQWUH LO SDVVDJJLR GDOOH FRPSRQHQWL FDUWHVLDQH D TXHOOH VIHULFKH UHOD]LRQH DYYLHQH WUDPLWH OD J

−1


(OHPHQWL GL )RWRPHWULD &DSLWROR

LO SDVVDJJLR GDO ULIHULPHQWR VIHULFR D TXHOOR FDUWHVLDQR UHOD]LRQH YLHQH −1

HIIHWWXDWR WUDPLWH OD PDWULFH J PHQWUH LO SDVVDJJLR GDOOH FRPSRQHQWL VIHULFKH D TXHOOH FDUWHVLDQH UHOD]LRQH DYYLHQH WUDPLWH OD J

(/(0(172 ',))(5(1=,$/( ', /,1($ ', 683(5),&,( ( ', 92/80( & 6LD V = v r ∂ r OP + vθ ∂ θ OP + vφ ∂ φ OP XQ YHWWRUH HVSUHVVR LQ FRRUGLQDWH VIHULFKH OD VXD QRUPD QRWR LO WHQVRUH PHWULFR q GDWD GD

& & V • V = (v r ∂ r OP + vθ ∂ θ OP + vφ ∂ φ OP ) • (v r ∂ r OP + vθ ∂ θ OP + vφ ∂ φ OP ) & & 2 2 2 2 2 2 V • V = (v r ) + r (vθ ) ∂ + r sin(θ ) (vφ )

5LVSHWWR DOOD IRUPD SLWDJRULFD FODVVLFD OD IRUPD TXDGUDWLFD SUHVHQWD GHL FRHIILFLHQWL FKH GHULYDQR GLUHWWDPHQWH GDO WHQVRUH PHWULFR g11 = 1 • •

g 22 = r 2

g 33 = r 2 sin(θ ) 2

7DOL FRHIILFLHQWL VRWWR UDGLFH TXDGUDWD YHQJRQR GHQRPLQDWL FRHIILFLHQWL PHWULFL H VRQR QRUPDOPHQWH LQGLFDWL FRQ LO VLPEROR hi SHUWDQWR VL KD hi

=

g ii

3HU YDOXWDUH O·HOHPHQWR GL OLQHD FRQVLGHULDPR RUD LO YHWWRUH VSRVWDPHQWR LQILQLWHVLPR

d OP = dr ∂ r OP + dθ ∂ θ OP + dφ ∂ φ OP HG DSSOLFKLDPR DG HVVR OD

d OP • d OP = ds 2 = (dr ∂ r OP + dθ ∂ θ OP + dφ ∂ φ OP ) • (dr ∂ r OP + dθ ∂ θ OP + dφ ∂ φ OP ) ds

2

= (dr ) + r (dθ ) ∂ + r 2 sin(θ ) 2 (dφ ) 2

2

2

2

3HU TXDQWR ULJXDUGD O·HOHPHQWR GL VXSHUILFLH dS VL YHGD OD )LJXUD FRQVLGHULDPR L GXH VSRVWDPHQWL LQILQLWHVLPL •

OXQJR OD θ − curva d OP θ =

OXQJR OD φ

dθ ∂ θ OP

− curva d OPφ = dφ ∂ φ OP

$OORUD O·HOHPHQWR GL VXSHUILFLH q GDWR GDO PRGXOR GHO SURGRWWR YHWWRUH GHL GXH YHWWRUL SUHFHGHQWL

dS = d OP θ × d OPφ = dθ ∂ θ OP × dφ ∂ φ OP

dS = dθ ∂ θ OP × dφ ∂ φ OP = dθ dφ ∂ θ OP × ∂ φ OP = ∂ θ OP ∂ φ OP dθ dφ

dS

= r 2 sin(θ ) dθ dφ


(OHPHQWL GL )RWRPHWULD &DSLWROR

5LFRUGDQGR LO YDORUH GHO GHWHUPLQDQWH

J GHOOD PDWULFH MDFRELDQD H GHO GHWHUPLQDWH

G GHO WHQVRUH PHWULFR DOOD VL SXz GDUH OD IRUPD dS = J dθ dφ dS =

G dθ dφ

8Q PRGR DOWHUQDWLYR SHU GHWHUPLQDUH O·HOHPHQWR GL VXSHUILFLH q TXHOOR GL UDJLRQDUH VXOOD )LJXUD •

HP = r sin(θ )

PK = HPdφ

PQ = rdθ

dS = PK PQ

$OORUD VL KD dS

= (rdθ ) [r sin(θ )dφ ] = r 2 sin(θ ) dθ dφ

)LJXUD (OHPHQWR GL VXSHUILFLH

,QILQH SHU O·HOHPHQWR GL YROXPH LQ FRRUGLQDWH VIHULFKH ULFRUGLDPR FKH LO SURGRWWR PLVWR GL WUH YHWWRUL UDSSUHVHQWD LO YROXPH GHO SDUDOOHOHSLSHGR LQGLYLGXDWR GD WDOL YHWWRUL 3HUWDQWR VH YRJOLDPR GHWHUPLQDUH O·HOHPHQWR GL YROXPH FRPSUHVR QHO SDUDOOHOHSLSHGR LQILQLWHVLPR GHOLPLWDWR GDL WUH YHWWRUL UHODWLYL DOO·LQFUHPHQWR GLIIHUHQ]LDOH GHOOH FRRUGLQDWH VIHULFKH •

d OP r = dr ∂ r OP

d OPθ = dθ ∂ θ OP

d OP φ = dφ ∂ φ OP

EDVWD YDOXWDUH LO SURGRWWR PLVWR

(

)

dV = d OP r • d OPθ × d OP φ

(

)

dV = ∂ r OP • ∂ θ OP × ∂ φ OP dr dθdφ dV

= r sin(θ ) dr dθ dφ 2


(OHPHQWL GL )RWRPHWULD &DSLWROR

5LFRUGDQGR LO YDORUH GHO GHWHUPLQDQWH

J GHOOD PDWULFH MDFRELDQD H GHO GHWHUPLQDWH

G GHO WHQVRUH PHWULFR DOOD VL SXz GDUH OD IRUPD

dV = J dr dθ dφ dV =

G dr dθ dφ

23(5$725( ',9(5*(1=$ ,1 &225',1$7( 6)(5,&+( 'DOOD WHRULD JHQHUDOH GHOOH FRRUGLQDWH FXUYLOLQHH RUWRJRQDOL LQGLFDWR FRQ •

g ii JOL HOHPHQWL GLDJRQDOL GHO WHQVRUH PHWULFR RVVLD LO TXDGUDWR GHL FRHIILFLHQWL PHWULFL hi

(e1 , e2 , e3 ) XQD JHQHULFD EDVH QDWXUDOH DVVRFLDWD DOOH FRRUGLQDWH JHQHUDOL]]DWH

• •

( x 1 , x 2 , x 3 ) ∂ ∂ k = k ∂x & V = v1e1 + v 2 e2 + v 3 e3 XQD JHQHULFD IXQ]LRQH YHWWRULDOH GL SXQWR FDPSR & 3 3 YHWWRULDOH V : R → R

VL RWWLHQH OD VHJXHQWH HVSUHVVLRQH GHOO·RSHUDWRUH GLYHUJHQ]D QHOOH IRUPXOH q VRWWLQWHVD OD VRPPDWRULD ULVSHWWR DOO·LQGLFH ULSHWXWR

& 1 ∂k (h1h2 h3v k ) ∇ •V = h1h2 h3

6SHFLDOL]]DQGR WDOH IRUPXOD DO FDVR VIHULFR H ULFRUGDQGR O·HVSUHVVLRQH GHL FRHIILFLHQWL PHWULFL VL KD (VSUHVVLRQH ULIHULWD DOOH FRPSRQHQWL GHOOH EDVL QDWXUDOL

& 1 1 ∂θ (sin(θ )vθ ) + ∂φ (vφ ) = 2 ∂r (r 2v r )+ sin(θ ) r

∇ • V

(VSUHVVLRQH ULIHULWD DOOH FRPSRQHQWL GHL YHUVRUL 5LFRUGDQGR OH

& 1 1 1 ∂θ (sin(θ )wθ ) + ∂φ (wφ ) = 2 ∂r (r 2 w r )+ r sin(θ ) r sin(θ ) r

∇ • V

$1*2/2 62/,'2


(OHPHQWL GL )RWRPHWULD &DSLWROR

,Q ULIHULPHQWR DOOD )LJXUD VL FRQVLGHUL LO FRQR GL YHUWLFH O RULJLQH GHO ULIHULPHQWR H EDVH dS RWWHQXWD GDOO· LQWHUVH]LRQH FRQ OD VIHUD UDSSUHVHQWDWD LQ ILJXUD 9LHQH GHWWR DQJROR VROLGR LQILQLWHVLPR dΩ O·DQJROR DO YHUWLFH O GHOLPLWDWR GD WDOH FRQR H GHILQLWR GDOOD UHOD]LRQH VHJXHQWH dΩ

=

dS r2

GRYH OD VXSHUILFLH dS ULVXOWD SHUSHQGLFRODUH DOO·HVVH GHO FRQR H DQFKH DO UDJJLR GHOOD VIHUD LQ TXDQWR VWLPR DQDOL]]DQGR HOHPHQWL LQILQLWHVLPL

)LJXUD ² $QJROR VROLGR LQILQLWHVLPR

3HU FRPSUHQGHUH LO PRWLYR SHU FXL OD FRVWLWXLVFH XQD PLVXUD GHOO·DQJROR VROLGR VL FRQVLGHUL LO FDVR

r = 1 dΩ =

dS = dS r2

)LJXUD ² VLPLOLWXGLQH WUD FRQL


(OHPHQWL GL )RWRPHWULD &DSLWROR

4XLQGL QHO FDVR GL LQWHUVH]LRQH WUD LO FRQR HG XQD VIHUD GL UDIILR XQLWDULR OD LQ VRVWDQ]D DIIHUPD FKH OD PLVXUD GHOO·DQJROR VROLGR q GDWD GDOO·DPSLH]]D GHOOD VXSHUILFLH GL EDVH GHO FRQR '·DOWUD SDUWH WDOH GHILQL]LRQH q EHQ SRVWD SRLFKp VH LQ XQ FRQR VL ILVVD OD EDVH H O·DVVH qVVR ULVXOWD XQLYRFDPHQWH GHWHUPLQDWR H TXLQGL ULVXOWD LQGLYLGXDWR DQFKH O·DQJROR DO YHUWLFH RVVLD O·DQJROR VROLGR RUD DYHQGR SRVWR r = 1 GL IDWWR VL q GHWHUPLQDWR QRQ VROR O VIHUD PD QHO FDVR LQILQLWHVLPR DQFKH O·DVVH GHO FRQR SRLFKp HVVR WHQGH DO OLPLWH D FRQIRQGHUVL FRQ LO UDJJLR GHOOD VIHUD GD FXL VHJXH FKH O·LQGLFD]LRQH GHOOD VXSHUILFLH GL EDVH dS ILVVD LO FRQR H TXLQGL DQFKH O·DQJROR VROLGR ,QILQH RVVHUYDQGR OD )LJXUD SHU OD VLPLOLWXGLQH GHL GXH FRQL •

GL EDVH dS1 DVVH r1

= OH

GL EDVH dS 2 DVVH r2

= OK

YDOH OD VHJXHQWH UHOD]LRQH

dS1 dS 2 = 2 (r1 ) (r2 ) 2 dS FKH GLPRVWUD O·LQGLSHQGHQ]D GD r GHOOD TXDQWLWj 2 SHUWDQWR VH dS q O·DUHD GHO FRQR SHU r r = 1 VL KD dS1 dS 2 dS = = 2 (r1 ) (r2 ) 2 H TXLQGL O·DQJROR VROLGR q PLVXUDWR GDOO·DUHD FKH VL RWWLHQH FRPH LQWHUVH]LRQH GHOOD VIHUD GL UDJJLR XQLWDULR FRQ LO FRQR GL YHUWLFH LO FHQWUR GL WDOH VIHUD 5LFRUGDQGR O·HVSUHVVLRQH GHOO·HOHPHQWR GLIIHUHQ]LDOH GL VXSHUILFLH q SRVVLELOH HVSULPHUH O·DQJROR VROLGR LQ IXQ]LRQH GHOOH FRRUGLQDWH VIHULFKH QHO VHJXHQWH PRGR SHU LO FDVR GLIIHUHQ]LDOH dΩ

=

dS = sin(θ ) dθ dφ r2

3HU O·DQJROR VROLGR Ω QHO FDVR ILQLWR q QHFHVVDULR YDOXWDUH O·LQWHJUDOH GRSSLR VHJXHQWH FKH IRUQLVFH O·DQJROR VROLGR SHU YDULD]LRQL ILQLWH Δθ H Δφ Ω

= ³³ S

φ + Δφ θ + Δθ dS =³ dφ ³ sin(θ ) dθ = Δφ [cos(θ ) − cos(θ + Δθ )] 2 φ θ r

$SSOLFDQGR OD DO FDVR GHOO·LQWHUD VIHUD SHU LO TXDOH YDOH • φ = 0 φ + Δφ = 2π • θ = 0 θ VL RWWLHQH

+ Δθ = π

Ω = Δφ [cos(θ ) − cos(θ + Δθ )] = 2π [cos(0) − cos(π )] = 2π (1 + 1) = 4π


(OHPHQWL GL )RWRPHWULD &DSLWROR

3HUWDQWR O·DQJROR VROLGR UHODWLYR DOO·LQWHUD VIHUD DQJROR JLUR q SDUL D Ω = 4π H FRQVHJXHQWHPHQWH ULFRUGDQGR LO OHJDPH WUD DQJROR VROLGR H VXSHUILFLH OD VXSHUILFLH S GL XQ VIHUD GL UDIILR XQLWDULR q SDUL D 4π RVVLD S = 4π 3RLFKp YDOH OD DQFKH DO FDVR ILQLWR LQ TXDQWR LO UDJJLR GL XQD VIHUD q FRVWDQWH VHJXH FKH GHWWD S r OD VXSHUILFLH GL XQD VIHUD GL UDJJLR r

Sr = 4π S r = 4πr 2 2 r

6L RVVHUYL LQILQH FKH QHO FDVR LQ FXL OD VXSHUILFLH QRQ VLD SHUSHQGLFRODUH DOO·DVVH GHO FRQR PD LQFOLQDWD LQ PRGR WDOH GD IRUPDUH XQ DQJROR ψ WUD WDOH DVVH H OD SURSULD QRUPDOH VL FRQIURQWL )LJXUD VL SXz SRUUH dS ′ = dS cos(ψ ) RWWHQXWD DSSOLFDQGR OD UHOD]LRQH WULJRQRPHWULFD WUD OH GXH VXSHUILFL H SHUWDQWR ULVXOWD dΩ

=

dS ′ dS = cos(ψ ) 2 2 r r

)LJXUD ² $QJROR VROLGR ULIHULWR D VXSHUILFLH REOLTXD

&$032 9(7725,$/( ( )/8662 ', &$032 1HO SUHVHQWH SDUDJUDIR GRSR XQ EUHYH LQWURGX]LRQH GHO FRQFHWWR GL FDPSR YHWWRULDOH YLHQH LOOXVWUDWD XQ·RSHUD]LRQH YHWWRULDOH LPSRUWDQWH DSSOLFDWD D L FDPSL GHQRPLQDWD IOXVVR

,/ &21&(772 ', &$032 9(7725,$/( R 3 OR VSD]LR WULGLPHQVLRQDOH RUGLQDULR VSD]LR YHWWRULDOH VWUHWWDPHQWH HXFOLGHR H 3 LQGLFKLDPR FRQ D ⊆ R XQ VXR GRPLQLR FRQQHVVR VXSSRQLDPR LQROWUH FKH LQ RJQL SXQWR & P( x, y, z ) GHO GRPLQR D VLD GHILQLWR XQ YHWWRUH V & & 3 3 OD IXQ]LRQH YHWWRULDOH V = V ( x, y, z ) D ⊆ R → R GHILQLVFD XQ FDPSR YHWWRULDOH

6LD

,O FDPSR YHWWRULDOH SXz HVVHUH FDUDWWHUL]]DWR LQROWUH LQ EDVH DO VXR FRPSRUWDPHQWR LQ IXQ]LRQH GHO WHPSR VL GHILQLVFRQR TXLQGL • &DPSL YHWWRULDOL QRQ VWD]LRQDUL OH VRQR TXHOOL LQ FXL OD IXQ]LRQH YHWWRULDOH

& V YDULD QHO WHPSR SHU FXL QHOOR VWHVVR SXQWR DG LVWDQWL GLYHUVL VL SRVVRQR DYHUH


(OHPHQWL GL )RWRPHWULD &DSLWROR

&

•

&

&

YDORUL GLYHUVL GL V ,Q TXHVWR FDVR VL SRQH V = V ( x, y , z , t ) GRYH t LQGLFD LO WHPSR SHU HYLGHQ]LDUH OD GLSHQGHQ]D HVSOLFLWD GD HVVR &DPSL YHWWRULDOL VWD]LRQDUL VRQR TXHOOL FKH QRQ YDULDQR HVSOLFLWDPHQWH FRQ LO

&

WHPSR SHU FXL LQ XQ SXQWR ILVVDWR V PDQWLHQH XQ YDORUH FRVWDQWH ,Q TXHVWR

&

& = V ( x, y, z ) VHQ]D OD GLSHQGHQ]D HVSOLFLWD GDO WHPSR SRWHQGR & & QDWXUDOPHQWH HVVHUH V = V [ x (t ), y (t ), z (t )] LQWHQGHQGR FRQ WDOH VLPEROR OD YDULDELOLWj QHO WHPSR GHO SXQWR P

FDVR VL SRQH V

1HL JUDILFL VRWWRVWDQWL VRQR HYLGHQ]LDWL DOFXQL VHPSOLFL HVHPSL GL FDPSL YHWWRULDOL VWD]LRQDUL •

FDPSR GL IRU]D XQLIRUPH JHQHUDWR GDOOD IRU]D SHVR YHWWRUH DFFHOHUD]LRQH JUDYLWD]LRQDOH )LJXUD

•

FDPSR HOHWWULFR

& E=

& & & F = mg GRYH g LQGLFD LO

& E JHQHUDWR GD XQ FDULFD HOHWWULFD SRVLWLYD SXQWLIRUPH q

q & ro )LJXUD 4Ï€ε 0 r 2 1

)LJXUD &DPSR JHQHUDWR GDOOD IRU]D SHVR

+

)LJXUD &DPSR HOHWWULFR


(OHPHQWL GL )RWRPHWULD &DSLWROR

$G RJQL SXQWR GHO GRPLQLR VHGH GL FDPSR YLHQH GXQTXH DVVRFLDWR XQ YHWWRUH FKH FDUDWWHUL]]D LO FDPSR VWHVVR D VHFRQGD GHOOD JUDQGH]]D ILVLFD UDSSUHVHQWDWD GDO YHWWRUH VL KD XQ GLYHUVD WLSRORJLD GL FDPSR DG HVHPSLR VH LO YHWWRUH UDSSUHVHQWD • XQD IRU]D VL SDUOD DOORUD GL FDPSR GL IRU]D • XQD YHORFLWj VL KD XQ FDPSR FLQHWLFR $OO·LQWHUQR GHO FDPSR VL FRQVLGHULQR RUD OH FXUYH FKH KDQQR OD SURSULHWj GL HVVHUH

&

&

WDQJHQWL LQ RJQL ORUR SXQWR P ( x, y , z ) DO YHWWRUH GL FDPSR V = V ( x, y, z ) GHILQLWR LQ TXHO SXQWR 7DOL FXUYH YHQJRQR GHQRPLQDWH OLQHH GL FDPSR YHGHUH )LJXUD GHQRPLQDWH DQFKH OLQHH GL IRU]D QHO FDVR FKH LO YHWWRUH GL FDPSR UDSSUHVHQWL XQ IRU]D H OLQHH GL IOXVVR QHO FDVR GL XQ FDPSR FLQHWLFR GL XQ IOXLGR 6XSSRQHQGR GL XWLOL]]DUH XQD UDSSUHVHQWD]LRQH SDUDPHWULFD SHU OH HTXD]LRQL GHOOH OLQHH

­ x = x(t ) ° ® y = y (t ) ° z = z (t ) ¯

WDOL HTXD]LRQL IXQ]LRQH VRQR FDUDWWHUL]]DWH GDOOD VHJXHQWH HTXD]LRQH GLIIHUHQ]LDOH IXQ]LRQH GHOOH FRPSRQHQWL FDUWHVLDQH GHO FDPSR

­1 °σ ° °1 ® °σ °1 ° ¯σ

dx 1 = v x ( x, y , z ) dt ρ dy 1 = v y ( x, y , z ) dt ρ dz 1 = v z ( x, y , z ) dt ρ

GRYH 2

2

2

§ dx · § dy · § dz · σ = ¨ ¸ +¨ ¸ +¨ ¸ © dt ¹ © dt ¹ © dt ¹

ρ = (v x ) 2 + (v y ) 2 + (v z ) 2

)LJXUD /LQHH GL IOXVVR


(OHPHQWL GL )RWRPHWULD &DSLWROR

/H OLQHH GL FDPSR KDQQR OD SURSULHWj GL QRQ LQWHUVHFDUVL WUD ORUR ,QIDWWL VH VXSSRQLDPR SHU DVVXUGR FKH HVLVWDQR GXH OLQHH l1 H l 2 FKH VL LQWHUVHFDQR LQ XQ SXQWR P ( x, y , z ) DOORUD VHJXH FKH LQ TXHO SXQWR OH GXH FXUYH GHYRQR DYHUH WDQJHQWL GLVWLQWH H TXLQGL

&

GHYRQR HVLVWHUH GXH YHWWRUL GLVWLQWL V1 ( x, y, z )

&

& ≠V2 ( x, y, z ) &Lz q LPSRVVLELOH SRLFKp GDO

SXQWR GL YLVWD PDWHPDWLFR LO FDPSR V ( x, y , z ) q SHU GHILQL]LRQH XQD IXQ]LRQH GL SXQWR H TXLQGL YHULILFD OD FRQGL]LRQH GL PRQRFURPLD RVVLD DVVXPH LQ RJQL SXQWR P ( x, y , z ) XQ VROR YDORUH 7DOH GHILQL]LRQH WURYD DQFKH XQD VXD JLXVWLILFD]LRQH ILVLFD ,QIDWWL VH OD

&

IXQ]LRQH GL FDPSR V ( x, y , z ) GHVFULYH XQD JUDQGH]]D ILVLFD FRPH DG HVHPSLR YHORFLWj IRU]D LQ RJQL SXQWR GHYH DVVXPHUH XQR HG XQ VRO YDORUH DOWULPHQWL LQ TXHO SXQWR OD JUDQGH]]D QRQ VDUHEEH GHWHUPLQDWD 1HOOD )LJXUD VRQR ULSRUWDWL GXH HVHPSL GL OLQHH GL IRU]D HQWUDPEL ULIHULWL DO FDVR HOHWWURVWDWLFR GL GXH FDULFKH SXQWLIRUPH • GHOOR VWHVVR VHJQR SRVLWLYR • GL VHJQR RSSRVWR GLSROR HOHWWULFR LQ TXHVWR FDVR q HYLGHQ]LDWD DQFKH OD FRPSRVL]LRQH YHWWRULDOH GHO FDPSR LQ XQ SXQWR JHQHUDWR GDOOH GXH FDULFKH H OD WDQJHQ]D GL WDOH FDPSR FRQ OD OLQHD GL IRU]D

)LJXUD /LQHH G IRU]D QHO FDVR GL XQ GLSROR HOHWWULFR

,QILQH XQ XOWLPR FRQFHWWR FKH VL YXROH PHWWHUH LQ HYLGHQ]D q TXHOOR GL WXER GL IOXVVR VLDQR GHILQLWH D WDOH VFRSR GXH VXSHUILFL S1 HG S 2 DYHQWL YHUVRUL GHOOD QRUPDOH

&

&

ULVSHWWLYDPHQWH n1 H n 2 H GHOLPLWDWH ULVSHWWLYDPHQWH GDOOH GXH FXUYH FKLXVH l1 HG l 2 3HU RJQL FRSSLD GL SXQWL

P1 ∈ l1 H P2 ∈ l 2 VL FRQVLGHUL OD OLQHD GL IOXVVR FRQJLXQJHQWH OD

( P1 , P2 ) OD WRWDOLWj GHOOH OLQHH GL IOXVVR FRVu GHILQLWH FKH LQYLOXSSDQR OH GXH VXSHUILFL S1 HG S 2 GHILQLVFH XQ WXER GL IOXVVR )LJXUD DWWUDYHUVR XQD VXSHUILFLH S l & ODWHUDOH FRQ YHUVRUH GHOOD QRUPDOH nl FRSSLD


(OHPHQWL GL )RWRPHWULD &DSLWROR

)LJXUD 7XER GL IOXVVR

1HO FDVR GL XQ FDPSR FLQHWLFR VWD]LRQDULR FKH GHVFULYH LO PRWR GL XQ IOXLGR LO WXER GHILQLVFH LO PRWR GHO IOXLGR FKH SDVVD WUD OH GXH VXGGHWWH VXSHUILFL 266(59$=,21, 6L RVVHUYL FKH LO FRQFHWWR GL FDPSR q XQ VHPSOLFH DUWLILFLR PDWHPDWLFR H QRQ KD XQD YHUD H SURSULD UHDOWj ILVLFD DG HVHPSLR QHO FDVR GL XQ IOXLGR LQ PRYLPHQWR LO IHQRPHQR SXz HVVHUH DQDOL]]DWR XWLOL]]DQGR LO FDPSR FLQHWLFR GHOOH YHORFLWj DVVRFLDWR DL SXQWL GHO GRPLQLR VHGH GHO IOXLGR DG HVHPSLR XQD WXED]LRQH 2UD FLz FKH ILVLFDPHQWH HVLVWH VRQR OH SDUWLFHOOH GL IOXLGR FKH VL PXRYRQR H QRQ OR VSD]LR FRQ DVVRFLDWD LQ RJQL SXQWR XQD ´HWLFKHWWD YHWWRULDOHµ FKH LQGLFD OD YHORFLWj GHOOH SDUWLFHOOH FKH WUDQVLWDQR SHU LO SXQWR &RPH DOWUR HVHPSLR VL FRQVLGHUL L IHQRPHQL HOHWWURVWDWLFL FLz FKH ILVLFDPHQWH VL PLVXUD q OD IRU]D FKH HVHUFLWDQR GXH SDUWLFHOOH FDULFKH HG LO FDPSR YLHQH SUHVR FRPH YDORUH OLPLWH GL WDOH IRU]D SHU XQD GHOOH FDULFKH GHQRPLQDWD FDULFD VRQGD WHQGHQWH D ]HUR 4XLQGL LO FDPSR HOHWWULFR q XQ FRQFHWWR OLPLWH SXUDPHQWH PDWHPDWLFR PHQWUH FLz FKH ILVLFDPHQWH HVLVWH q OD FRSSLD GL FDULFKH FRQ OD ORUR LQWHUD]LRQH SHU XOWHULRUL DSSURIRQGLPHQWL VL YHGD LO VDJJLR ´/RJLFD GHOOD ILVLFD PRGHUQD ´ GL 3HUF\ :LOO\DPV %ULGJPDQ

)/8662 ', 81 &$032 9(7725,$/( & 3 6LD FRQVLGHUL LQ D ⊆ R XQ FDPSR YHWWRULDOH V H VLD

• •

S XQD VXSHUILFLH RULHQWDWD FRQWHQXWD LQ D & n LO YHUVRUH GHOOD QRUPDOH DOOD VXSHUILFLH S

&

VL GHILQLVFH )OXVVR GHO FDPSR V DWWUDYHUVR S OD VHJXHQWH TXDQWLWj LQWHJUDOH Ψ

& & = ³³V • n dS S

GRYH LO PRGXOR GHO FDPSR YHWWRULDOH VL SXz LQWHUSUHWDUH FRPH LO IOXVVR FKH DWWUDYHUVD O·XQLWj GL VLSHUILFLH

&

dΨ cos(ψ )dS & & GRYH ψ q O·DQJROR FRPSUHVR WUD V HG LO YHUVRUH n V

=


(OHPHQWL GL )RWRPHWULD &DSLWROR

7(25(0$ '(//$ ',9(5*(1=$ 2 ', *$866 6XSSRQLDPR FKH OD VXSHUILFLH S VLD XQD VXSHUILFLH FKLXVD FKH UDFFKLXGD XQ YROXPH τ H VL VXSSRQJD GL VXGGLYLGHUH WDOH YROXPH QHOOD VRPPDWRULD LQWHJUDOH GL LQILQLWL YROXPHWWL dτ = dxdydz ,O IOXVVR DWWUDYHUVR OH VXSHUILFL GHO YROXPHWWR OH VHL IDFFH GHO FXER dτ SXz HVVHUH VXGGLYLVR QHOOD VRPPD GL WUH FRPSRQHQWL dΨ = dΨ x + dΨ y + dΨ z GRYH •

dΨx q LO IOXVVR UHODWLYR DOOH GXH IDFFH GHO YROXPHWWR SDUDOOHOH DO SLDQR yz

dΨx = (v x + ∂ x v x dx)dydz − v x dxdy = ∂ x v x dxdydz •

dΨ y q LO IOXVVR UHODWLYR DOOH GXH IDFFH GHO YROXPHWWR SDUDOOHOH DO SLDQR xz

dΨ y = (v y + ∂ y v y dy )dxdz − v y dxdz = ∂ y v y dydxdz •

dΨz q LO IOXVVR UHODWLYR DOOH GXH IDFFH GHO YROXPHWWR SDUDOOHOH DO SLDQR xy

dΨz = (v z + ∂ z v z dz )dxdy − v z dxdy = ∂ z v z dzdxdy 6RPPDQGR , GLYHUVL FRQWULEXWL VL RWWLHQH

dΨ = dΨx + dΨ y + dΨz = ∂ x v x dxdydz + ∂ y v y dydxdz + ∂ z v z dzdxdy

& = (∂ x v x + ∂ y v y + ∂ z v z )dzdxdy = ∇ • Vdτ

,QWHJUDQGR VL RWWLHQH Ψ

& & & = ³³V • n dS = ³³³ ∇ • Vdτ τ

S

)OXVVR GL XQ FDPSR D GLYHUJHQ]D QXOOD

&

1HO FDVR LQ FXL ∇ • V

= 0 q QXOOR LO IOXVVR DWWUDYHUVR OD VXSHUILFLH FKLXVD S & & Ψ = ³³V • n dS = 0 S

6H OD VXSHUILFLH FKLXVD

S

q FRVWLWXLWD GD XQ WXER GL IOXVVR FRPH QHOOD )LJXUD

&

HVVHQGR QXOOR LO IOXVVR DWWUDYHUVR OD VXSHUILFLH ODWHUDOH S l LQ WDQJHQWH DO FDPSR V VL KD

& &

& &

& &

& &

³³V • n dS + ³³V • n dS = 0 ³³V • n dS = − ³³V • n dS S1

S2

S1

S2

6H LQILQH S1 HG S 2 VRWWHQGRQR OR VWHVVR DQJROR VROLGR OD SUHFHGHQWH UHOD]LRQH SHUPHWWH GL DIIHUPDUH VXSSRQHQGR GL RULHQWDUH OH QRUPDOL LQ PRGR GD HOLPLQDUH LO VHJQR PHQR FKH q XJXDOH LO IOXVVR DWWUDYHUVR OH VXSHUILFL GL XQ WXER GL IOXVVR VRWWR OR VWHVVR DQJROR VROLGR RVVLD WDOH IOXVVR QRQ GLSHQGH GDOOH VXSHUILFL PD GLSHQGH VROR


(OHPHQWL GL )RWRPHWULD &DSLWROR

GDOO·DQJROR VROLGR 6L SXz DOORUD GHILQLUH LO IOXVVR ULIHULWR DOO·DQJROR VROLGR ULFRUGDQGR OD LQ FXL VL SRQH r = 1 Ψ

=

& & & V ( Ω ) d Ω = V ³ ³³ • n sin(θ )dθdφ

Ω2 Ω1

S

,Q TXHVWR FDVR YDOH

&

V ( Ω ) =

*

dΨ dΩ

RVVLD V DVVXPH LO VLJQLILFDWR GL IOXVVR FKH IOXLVFH DWWUDYHUVR O·XQLWj GL DQJROR VROLGR 6L RVVHUYL LQILQH FKH SRLFKp OH VXSHUILFL FKH VRWWHQGRQR OR VWHVR DQJROR VROLGR DXPHQWDQR

r 2 GRYHQGR HVVHUH FRVWDQWH LO IOXVVR VX RJQL VXSHUILFLH VHJXH FKH LO IOXVVR SHU 2 XQLWj GL VXSHUILFLH GHFUHVFH FRPH r

FRPH

,QIDWWL

dΨ dΨ = 2 dS r dΩ

6,*1,),&$72 ),6,&2 ,Q TXHVWR SDUDJUDIR YHQJRQR SUHVHQWDWL GXH HVHPSL SHU LOOXVWUDUH LO VLJQLILFDWR ILVLFR GHOO·LQWHJUDOH GL IOXVVR • )OXVVR GL XQ IOXLGR SRUWDWD GL XQD PDVVD IOXLGD • )OXVVR GL FDULFKH HOHWWULFKH LQWHQVLWj GL FRUUHQWH HOHWWULFD )OXVVR GL XQ FDPSR FLQHWLFR 3

6XSSRQLDPR FKH XQ GRPLQLR D ⊆ R VLD ULHPSLWR GD XQ IOXLGR FKH D OLYHOOR PDFURVFRSLFR YHQJD FRQVLGHUDWR FRPH XQ FRQWLQXR H TXLQGL RJQL SXQWR P GHO GRPLQLR LQGLYLGXDWR GD XQD WHUQD GL FRRUGLQDWH LQGLYLGXL DQFKH OD SDUWLFHOOD GL IOXLGR FKH LQ QHOO·LVWDQWH GL WHPSR FRQVLGHUDWR RFFXSL LO SXQWR P SXQWR GL YLVWD HXOHULDQR ,O FRPSRUWDPHQWR FLQHWLFR GHO IOXLGR SXz DOORUD HVVHUH GHVFULWWR DWWUDYHUVR XQ FDPSR

P ( x, y, z ) GHO GRPLQLR D ⊆ R 3 DVVRFL LO YHWWRUH YHORFLWj & V ( x, y, z ) GHOOD SDUWLFHOOD FKH VWD WUDQVLWDQGR QHO SXQWR P &RQVLGHUDWD DGHVVR XQD VXSHUILFLH dS q SRVVLELOH GHWHUPLQDUH LO WXER GL IOXVVR & & & FRVWLWXLWR GD XQ FLOLQGUR LQILQLWHVLPR GL EDVH dS HG DOWH]]D h = V dt cos(ψ ) = V • n dS & & GRYH ψ LQGLFD O·DQJROR WUD LO YHUVRUH n GHOOD QRUPDOH DOOD VXSHUILFLH H LO YHWWRUH V YHGHUH )LJXUD GHWWD ρ = ρ ( x, y , z ) OD GHQVLWj GL YROXPH GHO IOXLGR YLVWD O·LSRWHVL GL FRQWLQXLWj OD IXQ]LRQH ρ LQGLYLGXD OD PDVVD SHU XQLWj GL YROXPH OD PDVVD dm FKH YHWWRULDOH FKH LQ RJQL SXQWR

WUDQVLWD DWWUDYHUVR LO WXER GL IOXVVR q GDWD GD

& & & dm = ρ V cos(ψ )dS dt = ρ V • n dS dt


(OHPHQWL GL )RWRPHWULD &DSLWROR

)LJXUD )OXLGR DWWUDYHUVR XQ FLOLQGUR LQILQLWHVLPR 'D FXL VHJXH

& & dm = ρ V • n dS dt = dΨ dt

& & dm Ψ = ³³ ρ V • ndS = = p dt S dm YLHQH GHWWD SRUWDWD H IRUQLVFH OD PDVVD GL IOXLGR FKH SDVVD DWWUDYHUVR OD dt VXSHUILFLH S QHOO·XQLWj GL WHPSR 6L RVVHUYL LQROWUH FKH OD TXDQWLWj & dm & V dt ρV = & cos(ψ )dS V GRYH

p=

GHILQLVFH OD PDVVD FKH WUDQVLWD QHOO·XQLWj GL WHPSR DWWUDYHUVR O·XQLWj GL VXSHUILFLH &RQVLGHULDPR DGHVVR XQD VXSHUILFLH FKLXVD S FKH UDFFKLXGD XQ YROXPH τ XWLOL]]DQGR LO IDWWR FKH

dm = ρdτ m = ³³³ ρdτ τ

· ∂m ∂ρ ∂m ∂ § = ³³³ dτ = ¨¨ ³³³ ρdτ ¸¸ ∂t ∂t ∂t © τ τ ∂t ¹

VXSSRQHQGR XQLIRUPH FRQWLQXLWj GHOOD IXQ]LRQH GHQVLWj ρ )

DSSOLFDQGR OD H OD SUHFHGHQWH HVSUHVVLRQH UHODWLYD DOOD SRUWDWD VHJXH

& & & ∂ρ Ψ = ³³ ρ V • n dS = ³³³ ∇ • ( ρV )dτ = - ³³³ dτ S τ τ ∂t

LQ FXL OD GHQVLWj YLHQH GHULYDWD LQ PRGR SDU]LDOH SRLFKp HVVD ROWUH D GLSHQGHUH GDO WHPSR q DQFKH IXQ]LRQH GL SXQWR HG LQ FXL DSSDUH LO VHJQR PHQR LQ TXDQWR OD QRUPDOH DOOD VXSHUILFLH q RULHQWDWD LQ PRGR GD FRQVLGHUDUH SRVLWLYR LO IOXVVR XVFHQWH TXLQGL VH LO IOXVVR q SRVLWLYR QHOO·LQWHUYDOOR dt OD PDVVD QHO YROXPH τ q GLPLQXLWD GHOOD TXDQWLWj m(t ) − m(t + dt ) = − dm) &RQIURQWDQGR JOL LQWHJUDQGL GHO VHFRQGR H WHU]R PHPEUR VHJXH GLUHWWDPHQWH O·HTXD]LRQH GL FRQWLQXLWj

6L RVVHUYL LQILQH FKH

& ∂ρ ∇ • ( ρV ) = ∂t


(OHPHQWL GL )RWRPHWULD &DSLWROR

QHO FDVR GL FDPSR VWD]LRQDULR QRQ VL KD YDULD]LRQH GL PDVVD ULVSHWWR DO WHPSR SHUWDQWR

∂ρ = 0 H FRQVHJXHQWHPHQWH LO IOXVVR UHODWLYR DG XQD VXSHUILFLH FKLXVD q ∂t

QXOOR H YDOH

& ∇ • ( ρV ) = 0 QHO FDVR GL IOXLGR LQFRPSUHVVLELOH ρ = ρ ( x, y , z ) = FRVWDQWH

&

∂ρ ∂t & ∇ • (V ) = 0

ρ∇ • V = -

QHO FDVR VWD]LRQDULR 1HO FDVR GL FDPSR VWD]LRQDULR SDVVLDPR GHILQLUH LO IOXVVR SHU XQLWj GL DQJROR VROLGR SHU VXSHUILFL FKH VRWWHQGRQR DOOR VWHVVR DQJROR VROLGR HG DSSDUWHQJRQR DG XQ WXER GL IOXVVR ULSUHQGHQGR OD Ω2 & & & Ψ = ³ V (Ω)d Ω = ³³ ρV • n dθdφ Ω1

S

& & dm dt V GRYH ρV = & DVVXPH LO VLJQLILFDWR GL PDVVD FKH IOXLVFH DWWUDYHUVR O·XQLWj GL dΩ V DQJROR VROLGR QHOO·XQLWj GL WHPSR )OXVVR GL FDULFKH HOHWWULFKH 3

6L VXSSRQJD FKH LQ XQ GRPLQLR D ⊆ R VLDQR SUHVHQWL GHOOH VRUJHQWL GL FDPSR HOHWWULFR RVVLD GHOOH FDULFKH HOHWWULFKH LQ PRWR LQ QXPHUR SDUL DG n FRQ m SRUWDWRUL GL FDULFD GLIIHUHQWL H VL LQGLFKL FRQ ni LO QXPHUR GL SRUWDWRUL GL FDULFD GL WLSR i − esimo SHU i = (1..m) • • •

q i LO YDORUH GHOOD FDULFD GHO SRUWDWRUH GL WLSR i − esimo SHU i = (1..m) & Vi LO YHWWRUH YHORFLWj GHO SRUWDWRUH GL WLSR i − esimo SHU i = (1..m)

&RPH HVHPSLR GL SRUWDWRUL GL FDULFD SRVVLDPR HQXPHUDUH JOL HOHWWURQL L SURWRQL JOL LRQL SRVLWLYL H QHJDWLYL GL PROHFROH LQROWUH YDOH QDWXUDOPHQWH OD UHOD]LRQH VHJXHQWH GRYH QTOT LQGLFD OD FDULFD WRWDOH n

QTOT

= ¦ ni q i i =1

/H FDULFKH HOHWWULFKH SUHVHQWL LQ D VRQR DOOR VWHVVR WHPSR HOHPHQWL FKH JHQHUDQR LO FDPSR HOHWWULFR HG HOHPHQWL VRWWRSRVWL DOO·LQIOXHQ]D GHO FDPSR VWHVVR H TXLQGL DVVRJJHWWDWL DOOD IRU]D JHQHUDWD GDO FDPSR 3HUWDQWR OH FDULFKH VXELVFRQR XQR VSRVWDPHQWR RVVLD VRQR JHQHUDOPHQWH LQ PRWR DG HVFOXVLRQH GHL FDVL LQ FXL ULVXOWDQR YLQFRODWH DG HVHPSLR SHU PRWLYL PHFFDQLFL R ILVLFL FRPH QHO FDVR GL XQ GLHOHWWULFR SRODUL]]DWR ,O PRWR GHOOH FDULFKH JHQHUD SRL XQ FDPSR PDJQHWLFR FKH D VXD YROWD LQIOXLVFH VXO PRYLPHQWR VWHVVR GHOOH FDULFKH LQ VRVWDQ]D OD SUHVHQ]D GL FDULFKH LQ PRWR JHQHUD XQ FDPSR HOHWWURPDJQHWLFR FKH D VXD YROWD FRQFRUUH DO PRYLPHQWR GHOOH FDULFKH WDOH


(OHPHQWL GL )RWRPHWULD &DSLWROR

VLWXD]LRQH ILVLFD YLHQH PDWHPDWLFDPHQWH GHWHUPLQDWD H GHVFULWWD GDOOH HTXD]LRQL GL 0D[ZHOO 3RVVLDPR GXQTXH DIIHUPDUH FKH LQ RJQL SXQWR P ( x, y , z ) GHO GRPLQLR GL HVLVWHQ]D D ′ GHO

&

FDPSR HOHWWURPDJQHWLFR FKH SXz HVVHUH SL DPSLR GL D HVLVWH XQD IRU]D F FKH DJLVFH VXOOH FDULFKH DFFHOHUDQGROH SHUWDQWR D ′ SXz HVVHUH SHQVDWR FRPH VHGH GL XQ FDPSR

& & A = A( x, y, z ) LQWHJUDQGR LO TXDOH VL GHWHUPLQD LO FDPSR & & FLQHWLFR GHOOD YHORFLWj V = V ( x, y, z ) SHU RJQL SXQWR P ( x, y , z ) GL D ′ DWWUDYHUVR YHWWRULDOH GL DFFHOHUD]LRQH O·HTXD]LRQH VHJXHQWH

& &2 & & dV d V & V & = A= t0 + n0 dt dt r

GRYH LQ ULIHULPHQWR DOOD OLQHD GL IOXVVR • •

& t 0 q LO YHUVRUH WDQJHQWH & n0 q LO YHUVRUH QRUPDOH r LO UDJJLR GL FXUYDWXUD

• $GRWWLDPR RUD XQ SXQWR GL YLVWD PDFURVFRSLFR QHO VHQVR FKH OD FDULFD SUHVHQWH LQ XQ FHUWR YROXPH τ DSSDUWHQHQWH DO GRPLQLR D′ SXz HVVHUH GHWHUPLQDWD DWWUDYHUVR O·LQWHJUDOH GL YROXPH VHJXHQWH

Qτ = ³³³ ρdτ τ

GRYH ρ

= ρ ( x, y, z ) q OD IXQ]LRQH GHQVLWj GL FDULFD GHILQLWD GDO SXQWR GL YLVWD PDWHPDWLFR dQτ FRPH ρ = PHQWUH GDO SXQWR GL YLVWD ILVLFR UDSSUHVHQWD OD SRU]LRQH GHOOD FDULFD dτ QTOT FRPSUHVD QHO YROXPH τ /·DSSURFFLR PDFURVFRSLFR FRQVLVWH QHO IDWWR FKH RJQL YROXPHWWR dτ q VXIILFLHQWHPHQWH SLFFROR FKH SHU OH SUREOHPDWLFKH ILVLFKH FKH VL VWDQQR

DQDOL]]DQGR QRQ KD DOFXQD LPSRUWDQ]D OD VXD VWUXWWXUD ILVLFD H JHRPHWULFD LQWHUQD H TXLQGL SXz HVVHUH SHQVDWR FRPH XQ SXQWR FDUDWWHUL]]DWR ILVLFDPHQWH GD XQD JUDQGH]]D VFDODUH FRQWLQXD OD GHQVLWj GL YROXPH LQ PRGR GHO WXWWR DQDORJR DO FRQFHWWR GL SXQWR PDWHULDOH LQ GLQDPLFD LQ TXHVWR VL SRVVRQR XWLOL]]DUH L PHWRGL FODVVLFL GHOO·$QDOLVL PDWHPDWLFD '·DOWUD SDUWH LO dτ q VXIILFLHQWHPHQWH JUDQGH GD FRQWHQHUH XQ QXPHUR GL SRUWDWRUL GL FDULFD FRVu HOHYDWR GD WUDVFXUDUH JOL HIIHWWL GRYXWL DOOD QDWXUD GLVFUHWD GHL SRUWDWRUL RVVLD VL SRVVRQR WUDVFXUDUH OH LQGLYLGXDOLWj GHL VLQJROR SRUWDWRUL H JOL HIIHWWL TXDQWLVWLFL 7DOH DSSURFFLR q GHO WXWWR DQDORJR D TXHOOR FKH VL XWLOL]]D QHO FDVR GL XQ IOXLGR DG HVHPSLR XQ OLTXLGR FKH YLHQH FRQVLGHUDWR FRPH XQ FRQWLQXR WUDVFXUDQGR OD VWUXWWXUD GHJOL HOHPHQWL FRVWLWXHQWL LO IOXLGR )DWWD TXHVWD SUHPHVVD q IDFLOH FRPSUHQGHUH FRPH LO PRGHOOR GHO SDUDJUDIR SUHFHGHQWH ULVXOWD SHUIHWWDPHQWH DSSOLFDELOH DO FDVR SUHVHQWH ULRWWHQHQGR HVDWWDPHQWH OH VWHVVH HTXD]LRQL FDPELR VROR LO VLJQLILFDWR ILVLFR GHOOH JUDQGH]]H SUHVHQWL 3HUWDQWR GHWWD dS XQD VXSHUILFLH OD FDULFD dq WUDQVLWD DWWUDYHUVR LO WXER GL IOXVVR q GDWD GD

& & & dq = ρ V cos(ψ )dS dt = ρ V • n dS dt = dΨ dt


(OHPHQWL GL )RWRPHWULD &DSLWROR

/D TXDQWLWj FKH HVSULPH OD FDULFD FKH WUDQVLWD QHOO·XQLWj GL WHPSR DWWUDYHUVR O·XQLWj GL

& j HG q GDWD GD dq & & dt j = ρV = cos(ψ )dS

VXSHUILFLH q LQGLFDWR FRQ LO YHWWRUH

& V & V

3HU LO IOXVVR DWWUDYHUVR XQD VXSHUILFLH ILQLWD YDOH GXQTXH

& & & & dq Ψ = ³³ ρ V • n dS = ³³ j • ndS =i dt S S

dq YLHQH GHWWD LQWHQVLWj GL FRUUHQWH HOHWWULFD H IRUQLVFH OD FDULFD HOHWWULFD FKH dt SDVVD DWWUDYHUVR OD VXSHUILFLH S QHOO·XQLWj GL WHPSR 6H S q XQD VXSHUILFLH FKLXVD FKH UDFFKLXGH XQ YROXPH τ YDOH DQFKH LQ TXHVWR FDVR GRYH i

=

& & & ∂ρ Ψ = ³³ j • ndS = ³³³ ∇ • ( ρV )dτ = - ³³³ dτ S τ τ ∂t

'D FXL VHJXH O·HTXD]LRQH GL FRQWLQXLWj

& ∂ρ ∇ • ( j) = ∂ t & ∇ • ( j) = 0

QHO FDVR VWD]LRQDULR RSSXUH LQ DVVHQ]D GL FDULFD (635(66,21, '(//·,17(*5$/( ', )/8662 5LFRUGLDPR OH HVSUHVVLRQL GHO SURGRWWR VFDODUH LQ QHOOH GLYHUVH FRRUGLQDWH

& & V • n = v x n x + v y n y + v z n z FRRUGLQDWH FDUWHVLDQH & & V • n = v r n r + r 2 [vθ nθ + sin(θ ) 2 vφ nφ ] FRRUGLQDWH VIHULFKH ULIHULWH D EDVH QDWXUDOH & & V • n = wr nr + wθ nθ + wφ nφ FRRUGLQDWH VIHULFKH ULIHULWH DL YHUVRUL

'D FLz VHJXRQR OH VHJXHQWL HVSUHVVLRQL GHOO·LQWHJUDOH GL IOXVVR Ψ

& & = ³³ V • n dS = ³³ (v x n x + v y n y + v z n z ) dxdy S

S

& & 2 2 2 Ψ = ³³ V • n dS = ³³ v r n r + r [vθ nθ + sin(θ ) vφ nφ ] r dθ dφ

{

S

}

S

& & 2 Ψ = ³³ V • n dS = ³³ ( wr n r + wθ nθ + wφ nφ ) r dθ dφ S

S

&DVR SDUWLFRODUH

,QGLFDWR FRQ Ω O·DQJROR VROLGR ULFRUGDQGR OH H VL KD


(OHPHQWL GL )RWRPHWULD &DSLWROR

& & & & & dΨ = V • n dS = V dS cos(ψ ) = V dS ′ = V r 2 dΩ

Ω2 & & & & & 2 Ψ = ³³ V • n dS = ³³ V cos(ψ ) dS = ³³ V dS ′ = ³ V r dΩ S

S

Ω1

S

*

$QDOL]]DQGR OD VL GHGXFH FKH QHO FDVR LQ FXL LO FDPSR V DEELD LO PRGXOR SURSRU]LRQDOH DOO·LQYHUVR GHO TXDGUDWR GHOOD GLVWDQ]D GHOOD VRUJHQWH GL FDPSR GDOOD

* α V = 2 LQ FXL α LQGLFD LO FRHIILFLHQWH GL SURSRU]LRQDOLWj VL RWWLHQH r

VXSHUILFLH S RVVLD

XQ IOXVVR LQGLSHQGHQWH GDOOD VXSHUILFLH PD GLSHQGHQWH VROR GDO YDORUH GHOO·DQJROR VROLGR Ω2 Ω2 Ω2 & & & 2 α 2 V • n dS = V r dΩ = r dΩ = α ³³ ³ ³ r2 ³ dΩ = αΔΩ S Ω1 Ω1 Ω1

Ψ=

,Q DOWUL WHUPLQL LO IOXVVR q XJXDOH SHU RJQL VXSHUILFLH VRWWHVD DOOR VWHVVR DQJROR VROLGR 6L SXz TXLQGL GHILQLUH LO IOXVVR ULIHULWR DOO·DQJROR VROLGR LQ PRGR GHO WXWWR DQDORJR D TXDQWR VYLOXSSDWR QHO SDUDJUDIR VHQ]D OD OLPLWD]LRQH GHOO·DSSDUWHQHQ]D GHOOH VXSHUILFL DOOR VWHVVR WXER GL IOXVVR 6L FRQVLGHUL RUD OD H VXSSRQLDPR FKH • •

&

&

& = v r ∂ r OP = v r r0 & & OD VXSHUILFLH S VLD FDUDWWHUL]]DWD GDOOD QRUPDOH n = r0

LO FDPSR V DEELD VROR XQD YDULDELOLWj UDGLDOH V

DEELDPR • QHO FDVR GL VXSHUILFLH DSHUWD

Ψ=

³³ {v n r

r

+ r 2 [vθ nθ + sin(θ ) 2 vφ nφ ] }r 2 dθdφ =

S

2

r

S

* α V = v r = 2 ULWURYLDPR O·HVSUHVVLRQH SUHFHGHQWH GHO IOXVVR VL ULFRUGL r

VH •

³³ v r dθdφ

O·HVSUHVVLRQH GHOO·DQJROR VROLGR LQ IXQ]LRQH GHOOH FRRUGLQDWH VIHULFKH QHO FDVR GL VXSHUILFLH FKLXVD DSSOLFDQGR LO WHRUHPD GHOOD GLYHUJHQ]D H ULFRUGDQGR OD

Ψ=

1

³³ v r dθdφ = ³³³ r ∂ (r v )dτ 2

r

τ

S

*

VH V

= vr =

α r2

2

2

r

r

VHJXH

∂r (r 2v r )= ∂r (α ) = 0 Ψ = 0

'XQTXH LO IOXVVR DWWUDYHUVR XQD TXDOVLDVL VXSHUILFLH FKLXVD q QXOOR 2VVHUYD]LRQH

,O FDVR DQDOL]]DWR QHO SDUDJUDIR SUHFHGHQWH q PROWR LPSRUWDQWH SRLFKp DG HVVR VL ULFRQGXFRQR


(OHPHQWL GL )RWRPHWULD &DSLWROR

,O FDPSR HOHWWULFR JHQHUDWR GD FDULFKH SXQWLIRUPL FKH OHJJH GL &RXORPE q GDWR GD

,O FDPSR JUDYLWD]LRQDOH OHJJH GL 1HZWRQ F

& E=

q & r0 4πε 0 r 2 1

&

=G

m& r0 r2

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBB



(OHPHQWL GL )RWRPHWULD &DSLWROR

12=,21, (/(0(17$5, ', )2720(75,$

1HO SUHVHQWH FDSLWROR YHQJRQR EUHYHPHQWH LOOXVWUDWL • L PRGHOOL PDWHPDWLFL FKH VRQR DOOD EDVH GHOO·LQWHUSUHWD]LRQH ILVLFD GHL IHQRPHQL OXPLQRVL PRGHOOR RQGXODWRULR JHRPHWULFR • L FRPSRUWDPHQWL GHOO·RFFKLR XPDQR FRPH ULFHYLWRUH RWWLFR • OH SULQFLSDOL JUDQGH]]H IRWRPHWULFKH

02'(//, 0$7(0$7,&, '(, )(120(1, /80,126, /·DSSURFFLR PDFURVFRSLFR GHOO·DQDOLVL GHL IHQRPHQL OXPLQRVL YLHQH WUDWWDWR DWWUDYHUVR LO PRGHOOR RQGXODWRULR FKH q VXVFHWWLELOH GL XQD DSSURVVLPD]LRQH FKH Gj RULJLQH DOO·RWWLFD JHRPHWULFD O·DSSURFFLR PLFURVFRSLFR YLHQH LQYHFH XWLOL]]DWR TXDQGR O·DQDOLVL GHL IHQRPHQL q VSLQWD ILQR DO OLYHOOR GHJOL HOHPHQWL FRVWLWXHQWL OD PDWHULD SHU FXL GLYHQWDQR LPSRUWDQWL WXWWD XQD VHULH GL IHQRPHQL GHQRPLQDWL TXDQWLVWLFL LQ FXL OD VWUXWWXUD GHOOD PDWHULD ULVXOWD VLJQLILFDWLYD H TXLQGL QRQ q SRVVLELOH WUDVFXUDUH OD GLVFRQWLQXLWj GHOOD VWHVVD PHQWUH GL IDWWR D OLYHOOR PDFURVFRSLFR OD PDWHULD q YLVWD FRPH XQ FRQWLQXR

02'(//2 21'8/$725,2 (48$=,21, ', 0$;:(// 1HO PRGHOOR RQGXODWRULR OD OXFH q YLVWD FRPH XQ IHQRPHQR HOHWWURPDJQHWLFR JRYHUQDWR GDOOH HTXD]LRQL GL 0D[ZHOO 7DOH LPSRVWD]LRQH q DYYDORUDWD GDO IDWWR VSHULPHQWDOPHQWH YHULILFDELOH FKH VH VL SURGXFH XQ·RQGD HOHWWURPDJQHWLFD FRQ FRQWHQXWR VSHWWUDOH DSSDUWHQHQWH DOO·LQWHUYDOOR GL OXQJKH]]H G·RQGD λ min ≅ 380 nm λ max n ≅ 780 nm HVVD ULVXOWD ULOHYDELOH GDOO·RFFKLR XPDQR SHUWDQWR XQD TXDOVLDVL SHUWXUED]LRQH HOHWWURPDJQHWLFD GL TXHVWR WLSR YLHQH GHWWD ´OXFHµ 2JQL IHQRPHQR HOHWWURPDJQHWLFR q FDUDWWHUL]]DWR GDOOH VHJXHQWL JUDQGH]]H • • • • • •

& E YHWWRUH FDPSR HOHWWULFR & D & YHWWRUH LQGX]LRQH HOHWWULFD H & YHWWRUH FDPSR PDJQHWLFR B & YHWWRUH FDPSR PDJQHWLFR j FDULFD HOHWWULFD

ρ GHQVLWj GL FDULFD

& )LVVDWD XQD VXSHUILFLH S FRQ YHUVRUH GHOOD QRUPDOH n GHOLPLWDWD GDO FRQWRUQR l FRQ

&

YHUVRUH GHOOD WDQJHQWH t VSHULPHQWDOPHQWH q SRVVLELOH ULFDYDUH OH VHJXHQWL OHJJL LQWHJUDOL


(OHPHQWL GL )RWRPHWULD &DSLWROR

OHJJH GL LQGX]LRQH

OHJJH GL $PSHUH

& &

S

l

& &

³ H • t ds = ³³

l

& &

³ E • t ds = − ∂t ³³ B • ndS & & ∂ j • ndS + S ∂t

& &

³³ D • ndS S

/D YHUVLRQH GLIIHUHQ]LDOH GL WDOL OHJJL RWWHQXWH DSSOLFDQGR LO WHRUHPD GL 6WRNHV FRVWLWXLVFH OH HTXD]LRQL GL 0D[ZHOO • D HTXD]LRQH GDOOD OHJJH GL LQGX]LRQH

& & ∂B ∇ × E = − ∂t

• •

D HTXD]LRQH GDOOD OHJJH GL $PSHUH

& & & ∂D ∇ × H = j + ∂t

'DOOH HTXD]LRQL GL 0D[ZHOO VL ULFDYDQR LQROWUH • • •

& ∇ • B = 0 & ∇•D = ρ & ∂ ∇ • j = − ρ HTXD]LRQH GL FRQWLQXLWj ∂t

9DOJRQR LQILQH OH UHOD]LRQL FRVWLWXWLYH GHO PH]]R VHGH GHO FDPSR HOHWWURPDJQHWLFR 1HO FDVR GL XQ PH]]R RPRJHQHR OLQHDUH H VWD]LRQDULR WDOL UHOD]LRQL VRQR GDWH GD • •

& & D = εE & & B = μH

'RYH OH JUDQGH]]H ε SHUPHDELOLWj GLHOHWWULFD H μ SHUPHDELOLWj PDJQHWLFD VRQR GHL WHQVRUL GHO RUGLQH 1HO FDVR GL XQ PH]]R • VROR OLQHDUH TXLQGL QRQ RPRJHQHR QRQ LVRWURSR QRQ VWD]LRQDULR OH GXH JUDQGH]]H ε H μ VRQR VHPSUH WHVL WHQVRUL PD YDQQR HVSUHVVL VHFRQGR XQD OHJJH LQWHJUDOH IXQ]LRQH GL SXQWR H GHO WHPSR • QHO FDVR GL XQ PH]]R OLQHDUH HG LVRWURSR ε H μ VRQR GHJOL VFDODUL FKH GHYRQR DQFRUD HVVHUH HVSUHVVL FRQ OHJJH LQWHJUDOH • QHO FDVR GL XQ PH]]R OLQHDUH VWD]LRQDULR LVRWURSR HG RPRJHQHR ε H μ VRQR GHOOH FRVWDQWL 6H WDOH PH]]R q LO YXRWR YDOH


(OHPHQWL GL )RWRPHWULD &DSLWROR

ε0 =

10 −9 F −7 H μ 0 = 4π 10 36π m m

1HO VHJXLWR VL VXSSRQH VHPSUH FKH LO PH]]R VLD OLQHDUH RPRJHQHR VWD]LRQDULR HG LVRWURSR 6RWWR TXHVWH LSRWHVL OH HTXD]LRQL GL 0D[ZHOO GLYHQWDQR

­ & & °∇ • H = 0 & ­ ∂H ° °°∇ × E = − μ & ρ ° ∂t & FRQ ®∇ • E = ® ε °∇ × H& = &j + ε ∂E ° & ∂ °¯ ° ∂t j=− ρ ∇ • °¯ ∂t (48$=,21( '·21'$ 'DOOH HTXD]LRQL GL 0D[ZHOO q SRVVLELOH GHWHUPLQDUH OD FRVLGGHWWD HTXD]LRQH G·RQGD FRVWLWXLWD GD XQ·HTXD]LRQH GHO VHFRQGR RUGLQH OLQHDUH DOOH GHULYDWH SDU]LDOL • &DVR RPRJHQHR UHODWLYR DG XQ GRPLQLR LQ FXL QRQ YL q SUHVHQ]D GL FDULFKH

& & j = 0 H ρ = 0

& & ­ ∂H °∇ × E = − μ ∂t ° & & ° ∂E ®∇ × H = ε ∂t ° & °∇ • E = 0 ° ¯

& & & & & ∂H ∂ ∇ × ∇ × E = − μ∇ × ∇ ∇ • E − ∇ 2 E = −μ ∇ × H ∂t ∂t & & ∂§ ∂ · − ∇ 2 E = −μ ¨ ε E ¸ ∂t © ∂t ¹

(

)

& ∂2 & 2 ∇ E = εμ 2 E ∂t

&DVR QRQ RPRJHQHR q OD VLWXD]LRQH SL JHQHUDOH LQ FXL OH FDULFKH VRQR GLYHUVH GD ]HUR ,Q TXHVWR FDVR RFFRUUH GHILQLUH GXH IXQ]LRQL SRWHQ]LDOH

& & & A GHWWD SRWHQ]LDOH YHWWRUH H WDOH FKH B = ∇ × A & ∂ & Π GHWWD SRWHQ]LDOH VFDODUH H WDOH FKH E = −∇Π − A ∂t

$OORUD q SRVVLELOH GHGXUUH OD VHJXHQWH FRSSLD GL HTXD]LRQL


(OHPHQWL GL )RWRPHWULD &DSLWROR

­ 2 ρ ∂2 εμ ∇ Π = Π=− ° 2 ε0 ∂t ° ® & 2 °∇ 2 A& = εμ ∂ A& = − j °¯ ε0 ∂t 2 $QDOLVL GHOO·HTXD]LRQH G·2QGD 2PRJHQHD

,Q UHOD]LRQH DOO·DQDOLVL GHOOH VROX]LRQL GHOO·HTXD]LRQH G·RQGD VL YDOXWD VROR LO FDPSR HOHWWULFR LQ TXDQWR LO FDPSR PDJQHWLFR VL GHULYD LQ PRGR DQDORJR VL FRQVLGHUL XQ FDPSR HOHWWULFR GHVFULWWR FRPH VHJXH

&

E

& & & = E x [Φ( x, y, z , t )]x0 + E y [Φ( x, y, z , t )] y 0 + E z [Φ ( x, y, z , t )]z 0

GRYH E x , E y , E z H Φ ( x, y , z , t ) VRQR IXQ]LRQL DUELWUDULH GHULYDELOL H t LO WHPSR 3HU VHPSOLILFDUH OD WUDWWD]LRQH VL XWLOL]]L LO VHJXHQWH IRUPDOLVPR •

OH FRRUGLQDWH VSD]LDOL ( x, y , z ) YHQJRQR LQGLFDWH FRQ ( x

OD FRRUGLQDWD WHPSRUDOH t YHQH LQGLFDWD FRQ x

L YHUVRUL ( x 0 , y 0 , z 0 ) FRQ (e1 , e 2 , e3 )

OH FRPSRQHQWL GHO FDPSR ( E x , E y , E z ) FRQ ( E

∂ j Ei ≡

1

, x 2 , x 3 )

4

& & &

1

, E2,E3)

∂E i ∂x j

&RQ WDOL QRWD]LRQL OD DVVXPH OD IRUPD VHJXHQWH &

1 1 2 3 4 2 1 2 3 4 3 1 2 3 4 E = E [Φ(x , x , x , x )]e1 + E [Φ(x , x , x , x )]e2 + E [Φ(x , x , x , x )]e3

RSSXUH LQ QRWD]LRQH FRQWUDWWD LQ FXL VL VXSSRQH GL XWLOL]]DUH OD FRQYHQ]LRQH GL (LQVWHLQ SHU OD VRPPDWRULD FKH SUHYHGHUH GL VRWWRLQWHQGHUH LO VLPEROR GL VRPPDWRULD H HIIHWWXDUH OD VRPPD VXJOL LQGLFL LQ DOWR HG LQ EDVVR ULSHWXWL

& E = E i [Φ ( x 1 , x 2 , x 3 , x 4 )]ei

9DOXWLDPR OH GHULYDWH ULVSHWWR DO WHPSR H ULVSHWWR DOOH YDULDELOH VSD]LDOL H TXLQGL SHU ( j = 1..4) H (i = 1..3) VL KD

∂ j E i = ∂ Φ E i ⋅ ∂ j Φ GD FXL GHULYDQGR GL QXRYR

(

)

∂ 2 j E i = ∂ j ∂ Φ E i ⋅ ∂ j Φ = ∂ jΦ E i ⋅ ∂ j Φ + ∂ Φ E i ⋅ ∂ 2 j Φ

∂ j E = ∂ E ⋅ (∂ j Φ) + ∂Φ E i ⋅ ∂2 j Φ 6L VXSSRQJD FKH OH GHULYDWH VHFRQGH GL Φ VLDQR WXWWH QXOOH GD FXL VHJXH 2

2 Φ

i

i

2

∂2 jΦ = 0 ∂ jΦ = k j + g Φ = k j x j + h ∂

2

E i = ∂2Φ E i ⋅ (∂ j Φ) = ∂2Φ E i ⋅ (k j ) 2

j

2


(OHPHQWL GL )RWRPHWULD &DSLWROR

j

GRYH g H h VRQR GXH IXQ]LRQL DUELWUDULH FKH QRQ GLSHQGRQR GD x H k j q XQD FRVWDQWH 'DO SUHFHGHQWH ULVXOWDWR RSHUDQGR OH LQWHJUD]LRQL ULVSHWWR D WXWWH OH YDULDELOL VL SXz GHGXUUHWH FKH OD FRQGL]LRQH ∂

2

j

Φ = 0 HTXLYDOH DG LPSRUUH DOOD Φ OD VHJXHQWH VWUXWWXUD

Φ( x1 , x 2 , x 3 , x 4 ) = k1 x1 + k 2 x 2 + k 3 x 3 + k 4 x 4

FKH GHILQHQGR • • •

& K = k1e1 + k 2 e2 + k 3 e3 YHWWRUH FRVWDQWH k 4 = −ω & r = x1e1 + x 2 e2 + x 3 e3 YHWWRUH SRVL]LRQH

VL SXz SRUUH QHOOD IRUPD

& ' Φ ( x 1 , x 2 , x 3 , x 4 ) = K • r − ωx 4

6L YDOXWL RUD O·RSHUDWRUH QDEOD TXDGUR DSSOLFDWR DOOD ULFRUGDQGR OH

§ 3 · ª3 º ª3 º & 2 2 ∇ 2 E = ∇ 2 E iei = ¨¦ ∂2 h E i ¸ ei = «¦ (k h ) ⋅ ∂2Φ E i » ei = «¦ (k h ) »∂2Φ E i ei ¬ h=1 ¼ ¬ h=1 ¼ © h=1 ¹

'·DOWUD SDUWH

2

∂ 4E = ∂ i

2

Φ

E ⋅ (k 4 ) = ∂ 2

i

2

Φ

E ⋅ω ∂ i

2

2

Φ

E =

GD FXL VRVWLWXHQGR

i

∂24E

i

ω2

ª 3 º 2 k ( ) « » ¦ h º & ª 3 2 2 2 i h=1 « » ∂2 4 E ie ∇ E = «¦ (k h ) »∂ Φ E ei = i 2 « ω » ¬h=1 ¼ « » ¬ ¼

2UD VH VL SRQH OD VHJXHQWH FRQGL]LRQH 3

¦ (k )

2

h

= vω 2 GRYH v =

h=1

VHJXH

1

εμ

ª 3 º 2 «¦ (kh ) » 2 « h=1 2 » = v = εμ « ω » « » ¬ ¼

GD FXL VRVWLWXHQGR QHOOD VL RWWLHQH O·HTXD]LRQH G·RQGD RPRJHQHD $OORUD SRVVLDPR WUDUUH OH VHJXHQWL FRQFOXVLRQL O·HTXD]LRQH QHOOD IRUPD

&

E

& ' & ' & ' & & & = E x [ K • r − ωt )]x0 + E y [ K • r − ωt ] y 0 + E z [ K • r − ωt ]z 0


(OHPHQWL GL )RWRPHWULD &DSLWROR

& ' Φ( x1 , x 2 , x 3 , t ) = K • r − ωt 1 GHYRQR YDOHUH OH FRQGL]LRQL LQROWUH OD JUDQGH]]D v = KD XQ QRWHYROH

YHULILFD O·HTXD]LRQH G·RQGD 7UD L SDUDPHWUL GHOO·DUJRPHQWR

εμ

VLJQLILFDWR ILVLFR LQ TXDQWR LQGLFD OD YHORFLWj GL VSRVWDPHQWR GHOOD SHUWXUED]LRQH HOHWWULFD QHO FDVR GHO YXRWR v

=

1

ε0μ0

= c ≅ 3 10 8

m H TXLQGL XQ·RQGD HOHWWURPDJQHWLFD s

QHO YXRWR VL SURSDJD DOOD YHORFLWj GHOOD OXFH 6ROX]LRQH SHU OH 2QGH 3LDQH

6L FRQVLGHUL OD VHJXHQWH HVSUHVVLRQH FRPSOHVVD

&

E GRYH • •

& & & = E 0 e −i ( K •r −ωt )

& E 0 q FRVWDQWH & & & K = β − iα YHWWRUH R FRVWDQWH GL SURSDJD]LRQH FRVWDQWH HG LQ JHQHUH FRPSOHVVR LO FKH LPSOLFD O·HVLVWHQ]D GL XQD DWWHQXD]LRQH GHO PRGXOR GHO FDPSR & VLWXD]LRQH FKH VL YHULILFD QHO FDVR GL PH]]L GLVSHUVLYL α YLHQH GHWWD FRVWDQWH

&

GL DWWHQXD]LRQH H β FRVWDQWH GL IDVH &RQ WDOL FRQYHQ]LRQL VL KD

&

E

& & & & & = E0 e − (α • r ) e −i ( β •r −ωt )

$SSOLFDQGR OH IRUPXOH GL (XOHUR SRVVLDPR VFULYHUH &

& & & & & & & & E = E0 e − j ( K •r −ωt ) = E 0 [cos( K • r − ω t ) + i sin( K • r − ω t )]

GD FXL VHJXH

&

E 0 e

& & − (α • r )

& & & & & & [cos( β • r − ω t ) = Re[ E ] = E 0 Re[e − j ( K •r −ωt ) ]

5LFRUGDQGR FKH O·HTXD]LRQH G·RQGD q OLQHDUH FRPPXWD FRQ LO VLPEROR 5H GL SDUWH UHDOH

& & § & ∂2 & · ∂2 Re¨ ∇ 2 E − εμ 2 E ¸ = ∇ 2 Re E − εμ 2 Re E ∂t ¹ ∂t ©

()

()

( FLz LPSOLFD FKH O·DQDOLVL GHO FRPSRUWDPHQWR GHOOD FRPH VROX]LRQH GHOO·HTXD]LRQH G·RQGD SXz HVVHUH HIIHWWXDWD VXOOD SUHQGHQGR LQ VHJXLWR OD SDUWH UHDOH SHU DYHUH O·HVSUHVVLRQH QHO FDPSR UHDOH 2UD OD q XQ FDVR SDUWLFRODUH GHOOD H TXLQGL FRVWLWXLVFH XQD VROX]LRQH GHOO·HTXD]LRQH G·RQGD H TXLQGL SDVVDQGR DOOD SDUWH UHDOH SRVVLDPR GLUH FKH DQFKH OD UDSSUHVHQWD XQD VROX]LRQH GL WDOH HTXD]LRQH WDOL VROX]LRQL VRQR TXLQGL GHOOH RQGH FRVLQXVRLGDOL GL SXOVD]LRQH ω

=

v 2π = 2πν H OXQJKH]]D G·RQGD λ = vT = GRYH v T ν

q LO PRGXOR GHOOD YHORFLWj GHOO·RQGD H YHQJRQR GHWWH RQGH SLDQH


(OHPHQWL GL )RWRPHWULD &DSLWROR

/D UDJLRQH GL TXHVWD GHQRPLQD]LRQH VHJXH GDO IDWWR FKH • OH VXSHUILFL HTXLIDVH RVVLD LO OXRJR JHRPHWULFR GHL SXQWL LQ FXL OD IDVH

& & & & Φ(r , ωt ) = ( β • r − ω t ) ULVXOWD FRVWDQWH VRQR GDWH GD SLDQL SHUSHQGLFRODUL D β

& & & & & & & • r0 − ω t ) = ( β • r − ω t ) β • (r − r0 )

( β

OH VXSHUILFL HTXLDPSLH]]D RVVLD LO OXRJR JHRPHWULFR GHL SXQWL LQ FXL O·DPSLH]]D & & & IDVH (α • r ) ULVXOWD FRVWDQWH VRQR GDWH GD SLDQL SHUSHQGLFRODUL D α

& & & & & & & • r0 ) = (α • r ) α • (r − r0 )

3HU TXDQWR ULJXDUGD LQROWUH OD YHORFLWj GL IDVH RVVLD OD YHORFLWj GL XQ ULIHULPHQWR QHO TXDOH XQ RVVHUYDWRUH YDOXWD OD IDVH FRVWDQWH YDOH TXDQWR VHJXH

& & & dΦ (r , ωt ) = ( β • dr − ω dt ) = 0

& dr& & & β• = ω ω = β • V = βv cos(ψ ) dt v

ω

=

β cos(ψ ) &

*

GRYH ψ q O·DQJROR FRPSUHVR WUD L YHWWRUL V H β H β

&

1HO FDVR α

& & = β v = V

= α = 0 YDOH β = ω εμ H TXLQGL

v=

1

1 εμ cos(ψ )

/D GHWHUPLQD]LRQH GHO FDPSR PDJQHWLFR VL RWWLHQH GDO FDPSR HOHWWULFR XWLOL]]DQGR O·HTXD]LRQH OD D HTXD]LRQH GL 0D[ZHOO

&

& & ∂H ∇ × E = −μ ∂t

*

GD FXL GL GHGXFH FKH LO YHWWRUH H q DQFRUD XQ·RQGD SLDQD SHUSHQGLFRODUH D E 6ROX]LRQH *HQHUDOH DWWUDYHUVR OR 6YLOXSSR LQ 6HULH GL 2QGH 3LDQH

&RPH JLj QRWDWR LQ SUHFHGHQ]D O·HTXD]LRQH G·RQGD ULVXOWD HVVHUH OLQHDUH D FRHIILFLHQWL FRVWDQWL QHO FDVR GL PH]]R VWD]LRQDULR /D SURSULHWj GL OLQHDULWj VHPSOLILFD HQRUPHPHQWH O·DQDOLVL GHL IHQRPHQL HOHWWURPDJQHWLFL LQ TXDQWR SHUPHWWH GL DSSOLFDUH LO SULQFLSLR GL VRYUDSSRVL]LRQH GHJOL HIIHWWL 6L ULFRUGL D WDOH VFRSR FKH VRWWR RSSRUWXQH FRQGL]LRQL GL UHJRODULWj GHOOD IXQ]LRQH GL FDPSR QRUPDOPHQWH YHULILFDWH SHU TXDQWLWj FKH GHVFULYRQR JUDQGH]]H ILVLFKH DG HVFOXVLRQH GHJOL LQVLHPL GL GLVFRQWLQXLWj LQ FXL RFFRUUH XWLOL]]DUH OH VROX]LRQL JHQHUDOL]]DWH FKH LPSLHJDQR OH GLVWULEX]LRQL LO FDPSR

& & E = E ( x, y, z , t ) ULVXOWD


(OHPHQWL GL )RWRPHWULD &DSLWROR

WUDVIRUPDELOH VHFRQGR )RXULHU 3HUWDQWR VH VL HVHJXH OD WUDVIRUPDWD GL )RXULHU ULVSHWWR DOOD YDULDELOH WHPSR VL RWWLHQH O·LQWHJUDOH LQGLFD O·LQWHJUDOH SULQFLSDOH GL &DXFK\ • •

& +∞ & E ( x, y, z , ω ) = ³ E ( x, y, z , t )e −iωt dt WUDVIRUPDWD GLUHWWD −∞ & 1 +∞ & E ( x, y , z , t ) = E ( x, y, z , ω )e iωt dω DQWLWUDVIRUPDWD ³ − ∞ 2π

/D WUDVIRUPD]LRQH HVHJXLWD VXOOH YDULDELOL WHPSRUDOL SXz HVVHUH HIIHWWXDWD DQFKH VXOOH WUH YDULDELOL VSD]LDOL $G HVHPSLR VXOOD YDULDELOH x YDOH • WUDVIRUPDWD GLUHWWD • •

& 1 +∞ & E (x, y,z,ω ) = E (kx , y,z,ω )e ixkx dx DQWLWUDVIRUPDWD ULVSHWWR D x ³ −∞ π 2 & 1 +∞ +∞ & i(xkx +ωt ) E (x, y,z,t) = dxdω DQWLWUDVIRUPDWD ULVSHWWR D t 2 ³ ³ −∞ E (kx , y,z,ω )e 2 π ( ) −∞

$OORUD VH VL LQGLFD FRQ

& E (k x , k y , k z , ω ) OD WUDVIRUPDWD GL )RXULHU GHO FDPSR HOHWWULFR

ULVSHWWR DOOH WUH YDULDELOL VSD]LDOL HG DOOD YDULDELOH WHPSR DWWUDYHUVR O·RSHUDWRUH GL DQWLWUDVIRUPD]LRQH SRVVLDPR ULFDYDUH LO FDPSR QHOOH YDULDELOL GL SDUWHQ]D VHFRQGR OD VHJXHQWH HVSUHVVLRQH LQWHJUDOH

&

E ( x, y , z , t ) H SRQHQGR • •

=

+∞+∞ +∞

1

(2π ) ³ ³ ³ ³ 4

− ∞− ∞− ∞

+∞

−∞

& E ( x, y , z , t )

& i ( xk + yk + zk +ωt ) E (k x , k y , k z , ω )e x y z dxdydzdω

& & & & K = k x x0 + k y y 0 + k z z 0 & & & & r = xx0 + yy 0 + zz 0

YDOH

& & K • r = kx x + ky y + kz z

GD FXL VHJXH FKH O·LQWHJUDQGR GHOOD VL SXz VFULYHUH FRPH

&

E ( k x , k y , k z , ω )e

i ( xk x + yk y + zk z +ωt )

& & & = E ( k x , k y , k z , ω ) e i ( K • r +ω t )

FKH UDSSUHVHQWD XQ·RQGD SLDQD HG q TXLQGL VROX]LRQH GHOO·HTXD]LRQH G·RQGD /·HVSUHVVLRQH JUD]LH DOOD YDOLGLWj GHO SULQFLSLR GL VRYUDSSRVL]LRQH GHJOL HIIHWWL VXJJHULVFH DOORUD FKH LQ JHQHUDOH RJQL VROX]LRQH GHOO·HTXD]LRQH G·RQGD SRVVD HVVHUH HVSUHVVD FRPH VRPPD LQWHJUDOH GL LQILQLWL WHUPLQL LQILQLWHVLPL GL WLSR RVVLD FRPH VRPPD LQWHJUDOH GL LQILQLWH RQGH SLDQH LQILQLWHVLPH 6LFFRPH LQROWUH RJQL RQGD SLDQD q FDUDWWHUL]]DWD GD XQD VSHFLILFD OXQJKH]]D G·RQGD λ RG LQ PDQLHUD HTXLYDOHQWH GD XQD VSHFLILFD IUHTXHQ]D VWDQWH LO OHJDPH

λ = vT =

v

ν

XQ JHQHULFR FDPSR HOHWWURPDJQHWLFR


(OHPHQWL GL )RWRPHWULD &DSLWROR

SXz HVVHUH DQDOL]]DWR DQFKH VWXGLDQGR LO VXR FRQWHQXWR VSHWWUDOH RVVLD OD VXD GLVWULEX]LRQH QHO GRPLQLR GHOOH IUHTXHQ]H DWWUDYHUVR OD FRPSRVL]LRQH GHL FRQWULEXWL GHO WLSR 'DOOD WHRULD GHOOD WUDVIRUPDWD GL )RXULHU VL GHGXFH FKH GDO SXQWR GL YLVWD VSHWWUDOH LQ FXL YLHQH DQDOL]]DWR LO PRGXOR H OD IDVH GHOOD JUDQGH]]D WUDVIRUPDWD LQ IXQ]LRQH GHOOD OXQJKH]]D G·RQGD R GHOOD IUHTXHQ]D • XQ·RQGD SLDQD GHO WLSR q FDUDWWHUL]]DWD GD XQD ULJD LQ FRLQFLGHQ]D GHOOD OXQJKH]]D G·RQGD R GHOOD IUHTXHQ]D GHOO·RQGD • XQD JHQHULFD RQGD KD LQYHFH XQR VSHWWUR FRQWLQXR GHWHUPLQDWR GDJOL FRQWULEXWL FRVWLWXLWL GDOOH RQGH SLDQH GHO WLSR &/$66,),&$=,21( '(//( 21'( (/(77520$*1(7,&+( 5LSUHQGHQGR OH FRQVLGHUD]LRQL VYROWH DOOD ILQH GHO SUHFHGHQWH SDUDJUDIR UHODWLYD DOO·DQDOLVL VSHWWUDOH q SRVVLELOH VWDELOLUH XQD FODVVLILFD]LRQH GHOOH RQGH HOHWWURPDJQHWLFKH LQ IXQ]LRQH GHOO·LQWHUYDOOR GL OXQJKH]]H G·RQGD R GL IUHTXHQ]H /D WDEHOOD VXFFHVVLYD ULSRUWD OD FODVVLILFD]LRQH VSHWWUDOH

'HQRPLQD]LRQH

/XQJKH]]D G·RQGD QHO YXRWR

)UHTXHQ]D

OIP O IP

(+] (+]

5DJJL γ

O ILQ O SP

(+] 3+]

5DJJL ;

O SP O QP

3+] (+]

5DJJL 89

QP QP

7+] 3+]

5DGLD]LRQH YLVLELOH

QP QP

7+] 7+]

5DGLD]LRQH LQIUDURVVD

QP O PP

*+] 7+]

5DJJL FRVPLFL

2QGH UDGLR

P P

0+] *+]

PHWULFKH 9+) 79

O P O2 P

0+] 0+]

GHFDPHWULFKH FRUWH

P P

0+] 0+]

HWWRPHWULFKH PHGLH

P O NP

N+] 0+]

NLORPHWULFKH OXQJKH

NP O NP

N+] N+]

PLULDPHWULFKH 9/) UDGLRDLXWL DOOD QDYLJD]LRQH

NP NP

N+] N+]

NP O NP

+] N+]

PLFURRQGH UDGDU 79

2QGH D IUHTXHQ]D DFXVWLFD WHOHIRQLD

7DEHOOD &ODVVLILFD]LRQH VSHWWUDOH GHOOH RQGH HOHWWURPDJQHWLFKH &RPH HYLGHQ]LDWR QHOOD WDEHOOD VRSUDVWDQWH OR VSHWWUR YLVLELOH YD GD

λmax n ≅ 780 nm

λmin ≅ 380 nm D

OH RQGH FKH HPHWWRQR LQ WDOH VSHWWUR VRQR RQGH OXPLQRVH FLRq

UDGLD]LRQL HOHWWURPDJQHWLFKH SHUFHSLELOL GDOO·RFFKLR XPDQR FKH GLVWLQJXH OH GLYHUVH OXQJKH]]H G·RQGD DWWUDYHUVR XQD VHQVD]LRQH ILVLRORJLFD GHQRPLQDWD FRORUH


(OHPHQWL GL )RWRPHWULD &DSLWROR

)/8662 ', 327(1=$ ', 81·21'$ (/(77520$*1(7,&$ 6L YXROH RUD GHWHUPLQDUH OD SRWHQ]D RVVLD O·HQHUJLD SHU XQLWj GL WHPSR FKH YLHQH WUDVSRUWDWD GD XQ·RQGD HOHWWURPDJQHWLFD H TXLQGL DQFKH GD XQ·RQGD OXPLQRVD $ WDOH VFRSR VL FRQVLGHULQR OH HTXD]LRQL GL 0D[ZHOO H SHU VHPSOLFLWj VL VXSSRQH VHPSUH FKH LO PH]]R VHGH GHOOD SURSDJD]LRQH RQGRVD VLD OLQHDUH RPRJHQHR HG LVRWURSR

& & & ∂B ­& °° H • ∇ × E = − H • ∂t & ® & & & & & ∂ D °E • ∇ × H = j • E + E • °¯ ∂t

(

)

(

)

6RWWUDLDPR OD SULPD H OD VHFRQGD HTXD]LRQH GRSR DYHUOH SUHPROWLSOLFDWH VFDODUPHQWH

&

&

ULVSHWWLYDPHQWH SHU H H E

& & & & & & & & & ∂D & ∂B H • ∇× E − E • ∇× H − j • E − E • −H• =0 ∂t ∂t

(

)

(

)

6L SRQJD

&

P 6L RWWLHQH

'D FXL

' & = E×H

& & & & & & & H • ∇ × E − E • ∇ × H = ∇ • (E × H ) = ∇ • P

(

)

(

)

& & & & & & ∂D & ∂B −H• = 0 ∇ • P − j • E − E • ∂t ∂t &

,O YHWWRUH P YLHQH GHQRPLQDWR YHWWRUH GL 3R\QWLQJ • KD OH GLPHQVLRQL GL XQD SRWHQ]D VX XQLWj GL VXSHUILFLH H SHUWDQWR VL PLVXUD LQ

ªWatt º «¬ m 2 »¼

• q GLUHWWR VHFRQGR OD GLUH]LRQH GL SURSDJD]LRQH GHO FDPSR HOHWWURPDJQHWLFR 3HU TXDQWR ULJXDUGD LO VLJQLILFDWR ILVLFR GHL WHUPLQL GHOO·HTXD]LRQH VL KD LQ ULIHULPHQWR DOO·XQLWj GL YROXPH

& ∇ • P HVSULPH OD SRWHQ]D HPHVVD GDO FDPSR QHOO·XQLWj GL YROXPH & & & & & & • j • E = ji • E + j c • E HVSULPH OD SRWHQ]D GHO FDPSR VXOOH FDULFKH JHQHUDWH GD & & HVVR j H OD SRWHQ]D HPHVVD GDOOH FDULFKH LPSUHVVH ji & & & ∂D & ∂E ∂ § 1 & 2 · • E• = εE • = ¨ ε E ¸ HVSULPH OD SRWHQ]D HOHWWULFD LPPDJD]]LQDWD ∂t ∂t ∂t © 2 ¹

•


(OHPHQWL GL )RWRPHWULD &DSLWROR

& & & ∂B & ∂H ∂ § 1 & 2 · • H• = μH • = ¨ μ H ¸ HVSULPH OD SRWHQ]D PDJQHWLFD LPPDJD]]LQDWD ∂t ∂t ∂t © 2 ¹

3DVVDQGR DOOD IRUPXOD]LRQH LQWHJUDOH GHOOD VL RWWHQJRQR OH HVSUHVVLRQL GHOO·LQWHJUDOH GL IOXVVR GHO YHWWRUH GL 3R\QWLQJ FKH UDSSUHVHQWD OD SRWHQ]D FKH IOXLVFH DWWUDYHUVR XQD VXSHUILFLH FKLXVD S

& & & ∂ §1 & 2· §1 & 2· P d τ j E d τ ε E d τ ∇ • = • + + ¨ ¸ ¨ μ H ¸ dτ ³³³ ³³³ ³³³ ³³³ ¹ ¹ τ τ τ ©2 τ ∂t © 2

&& & & ∂ §1 & 2· §1 & 2· ³³ P n dS = ³³³ j • E dτ + ³³³ ¨ ε E ¸ dτ + ³³³ ¨ μ H ¸ dτ ¹ ¹ S τ τ ©2 τ ∂t © 2

,O IOXVVR

&& Ψ = ³³ P n dS GHO YHWWRUH GL 3R\QWLQJ HVSULPH GXQTXH OD SRWHQ]D WUDVSRUWDWD S

[

]

GDOO·RQGD FKH IOXLVFH DWWUDYHUVR OD VXSHUILFLH S H VL PLVXUD LQ Watt DG HVVR VL DSSOLFDQR WXWWH OH FRQVLGHUD]LRQL VXJOL LQWHJUDOL GL IOXVVR VYLOXSSDWH QHO &DSLWROR LQ SUDWLFD LO YHWWRUH GL 3R\QWLQJ q XQ YHWWRUH GHQVLWj FKH HVSULPH XQD JUDQGH]]D ILVLFD O·HQHUJLD QHOO·XQLWj GL WHPSR H QHOO·XQLWj GL VXSHUILFLH LQ PRGR DQDORJR DL YHWWRUL

*

ρV H

& j DQDOL]]DWL QHL SDUDJUDIL H LQ UHOD]LRQH DOOR VWXGLR GHO IOXVVR GL XQ

IOXLGR H GL FDULFKH HOHWWULFKH 1HOOH FRQVLGHUD]LRQL IRWRPHWULFKH RG LQ JHQHUDOH GL DQDOLVL GHL IHQRPHQL OXPLQRVL LO IOXVVR GL SRWHQ]D q XQD GHOOH JUDQGH]]H IRQGDPHQWDOL LQ TXDQWR L ULFHYLWRUL GL OXFH LQ VRVWDQ]D UHDJLVFRQR H ULOHYDQR SURSULR OD SRWHQ]D GHOO·RQGD OXPLQRVD D FXL VRQR VRWWRSRVWL QHO FDVR GHOOD IRWRPHWULD RFFRUUH DWWLYDUH GHOOH DFFRUWH]]H SDUWLFRODUL OHJDWH DOOD VSHFLILFLWj GHOO·RFFKLR XPDQR FRPH YHUUj GHVFULWWR QHO VHJXLWR

02'(//2 21'8/$725,2 $335266,0$=,21( *(20(75,&$ 6L q YLVWR QHO SDUDJUDIR SUHFHGHQWH FKH LO YHWWRUH GL 3R\QWLQJ q GLUHWWR VHFRQGR OD GLUH]LRQH GL SURSDJD]LRQH GHOO·RQGD HOHWWURPDJQHWLFD HG KD PRGXOR SDUL DOOD SRWHQ]D GHOO·RQGD SHU XQLWj GL VXSHUILFLH WDOH YHWWRUH q SHUSHQGLFRODUH DOOH VXSHUILFL HTXLIDVH IURQWH G·RQGD HG q WDQJHQWH DOOD OLQHD GL FDPSR OXQJR OD TXDOH VL VYLOXSSD LO IOXVVR GL HQHUJLD SURGRWWR GDOO·RQGD


(OHPHQWL GL )RWRPHWULD &DSLWROR

)LJXUD 9HWWRUH GL 3R\QWLQJ QHO FDVR GL RQGH SLDQH

1HOO·LSRWHVL LQ FXL OR VSHWWUR GHOO·RQGD VL HVWHQGD QRQ ROWUH LO YDORUH λ max OD JHRPHWULD GHO PH]]R GL SURSDJD]LRQH q WDOH SHU FXL GHWWD YDOJD

λmax << d min

d min OD GLPHQVLRQH SL SLFFROD ULOHYDELOH

ULVXOWDQR WUDVFXUDELOL JOL HIIHWWL GL GLIIUD]LRQH WLSLFL GHO

FRPSRUWDPHQWR RQGRVR ,Q TXHVWR FDVR L IHQRPHQL SURSDJDWLYL SRVVRQR HVVHUH LQWHUSUHWDWL DWWUDYHUVR LO VROR LPSLHJR GHO YHWWRUH GL 3R\QWLQJ FKH YLHQH D FRVWLWXLUH LO FRVLGGHWWR UDJJLR OXPLQRVR 3HUWDQWR VL SXz GLUH FKH SHU λ max → 0 GRYH ILVLFDPHQWH FRQ λ max → 0 VL LQWHQGH FKH OH JUDQGH]]H JHRPHWULFKH GHJOL RJJHWWL SUHVHQWL QHO PH]]R GL SURSDJD]LRQH VRQR PROWR PDJJLRUL GL λ max LQ PRGR GD SRWHU WUDVFXUDUH L IHQRPHQL GLIIUDWWLYL q SRVVLELOH XWLOL]]DUH XQD DSSURVVLPD]LRQH GHO PRGHOOR RQGXODWRULR FKH VRVWLWXLVFH DOOH RQGH L UDJJL OXPLQRVL 7DOH PRGHOOR YD VRWWR LO QRPH GL RWWLFD JHRPHWULFD VL SDUOD GL RWWLFD LQ TXDQWR WDOH DSSURVVLPD]LRQH q VSHVVR XVDWD SHU O·LQWHUSUHWD]LRQH GHL IHQRPHQL OXPLQRVL

12=,21, ', )2720(75,$ /R VWXGLR GHOOD IRWRPHWULD q VWUHWWDPHQWH FRUUHODWR FRQ OD SHUFH]LRQH GHOOR VWLPROR YLVLYR GD SDUWH GHOO·RFFKLR XPDQR FKH YLHQH YLVWR FRPH XQ SDUWLFRODUH ULFHYLWRUH OXPLQRVR $ OLYHOOR TXDOLWDWLYR QHOO·DQDOLVL GHOOR VWLPROR YLVLYR q VSHULPHQWDOPHQWH GHWHUPLQDELOH LO IDWWR FKH DOFXQH VRUJHQWL OXPLQRVH ULVXOWDQR SL ´EULOODQWLµ GL DOWUL DG HVHPSLR VH VL JXDUGD LO VROH GLUHWWDPHQWH GXUDQWH XQD JLRUQDWD VHUHQD VL KD XQD VHQVD]LRQH PROWR IRUWH GHWWD GL DEEDJOLDPHQWR VLFXUDPHQWH IDVWLGLRVD H SL IRUWH GL TXHOOD FKH VL SHUFHSLVFH DG HVHPSLR JXDUGDQGR XQR VFKHUPR FKH HPHWWD XQD OXFH ULIOHVVD VRUJHQWH VHFRQGDULD Ë FKLDUR TXLQGL FKH LO VROH q XQD VRUJHQWH OXPLQRVD SL EULOODQWH GHOOR VFKHUPR $OWUL DVSHWWL TXDOLWDWLYL GHOOR VWLPROR OXPLQRVR VRQR OD WLQWD GHWWD DQFKH WRQR GL FRORUH H OD VDWXUD]LRQH 8QD OXFH PRQRFURPDWLFD RQGD HOHWWURPDJQHWLFD SLDQD VLQXVRLGDOH q SHUFHSLWD FRPH XQ FRORUH SXUR VHFRQGR OD FODVVLILFD]LRQH ULSRUWDWD QHOOD WDEHOOD VHJXHQWH /XQJKH]]H G RQGD

&RORUH

QP

YLROHWWR

QP

FLDQR R LQGDFR


(OHPHQWL GL )RWRPHWULD &DSLWROR

/XQJKH]]H G RQGD

&RORUH

QP

D]]XUUR

QP

YHUGH

QP

JLDOOR

QP

DUDQFLRQH

QP

URVVR

7DEHOOD &RUULVSRQGHQ]D HPLVVLRQH PRQRFURPDWLFD FRORUH 4XDQGR VL KD XQ FRORUH SXUR VL GLFH FKH OD VDWXUD]LRQH q SDUL DG XQR 5LFRUGDQGR RUD FKH QRUPDOPHQWH XQ·RQGD HOHWWURPDJQHWLFD q GDWD GD XQR VYLOXSSR LQ VHULH VRPPD LQWHJUDOH GL RQGH SLDQH PRQRFURPDWLFKH LO VXR VSHWWUR QRQ q XQD ULJD PD XQ FRQWLQXR LQ XQ LQWHUYDOOR GL OXQJKH]]H G·RQGD &Lz VLJQLILFD FKH OD SHUFH]LRQH YLVLYD LQ WHUPLQL GL FRORUH YLHQH GHWHUPLQDWD GDOOD PHGLD SHVDWD GHOOH GLYHUVH FRPSRQHQWL PRQRFURPDWLFKH H TXLQGL OD SHUFH]LRQH GL FRORUH SXz YDULDUH LQ PRGR FRQWLQXR GDO YLROHWWR DO URVVR 6L GHILQLVFH DOORUD WLQWD OD FRPSRQHQWH VSHWWUDOH PRQRFURPDWLFD GRPLQDWH VL SDUOD DQFKH GL FRORUH GRPLQDQWH RVVLD TXHOOD FKH QHOOD PHGLD GHOOH FRPSRQHQWL DUPRQLFKH SHVD GL SL 1HO FDVR LQ FXL OD SHVDWXUD VSHWWUDOH GHOOH RQGH PRQRFURPDWLFKH VL FRPSHQVL SHU RJQL FRPSRQHQWH RVVLD QRQ HVLVWD XQD FRPSRQHQWH GRPLQDWH WLQWD VL RWWLHQH XQD OXFH ELDQFD H VL SDUOD GL VDWXUD]LRQH QXOOD ,O YDORUH GHOOD VDWXUD]LRQH YDULD TXLQGL GD XQR D ]HUR HG LQGLFD LO JUDGR GL SXUH]]D GHOOD OXFH LQWHQGHQGR FRQ WDOH GHILQL]LRQH TXDQWR OD OXFH LQ FRQVLGHUD]LRQH VL DYYLFLQL DG XQD OXFH PRQRFURPDWLFD 1HO SUHVHQWH GRSR DYHUH LOOXVWUDWR OH FDUDWWHULVWLFKH GHOO·RFFKLR XPDQR LQ ULIHULPHQWR DOOD VXR FRPSRUWDPHQWR FRPH ULFHYLWRUH GL OXFH YHQJRQR GHVFULWWH LQ PRGR GHWWDJOLDWR OH JUDQGH]]H IRWRPHWULFKH XWLOL]]DWH QHOOD WUDWWD]LRQH GHL IHQRPHQL OXPLQRVL • )OXVVR OXPLQRVR • ,QWHQVLWj OXPLQRVD • /XPLQDQ]D • /XPLQRVLWj • ,OOXPLQDPHQWR /D GHWHUPLQD]LRQH GHOOH JUDQGH]]D SUHFHGHQWL VL EDVD IRQGDPHQWDOPHQWH VXO IOXVVR GL SRWHQ]D HG D WDOH VFRSR IDUHPR ULIHULPHQWR DO YHWWRUH GL 3R\QWLQJ H SHU OD SURSDJD]LRQH VXSSRUUHPR YDOLGD O·DSSURVVLPD]LRQH JHRPHWULFD

&203257$0(172 '(//·2&&+,2 80$12 &20( 5,&(9,725( $OO·LQWHUQR GHOO·RFFKLR XPDQR HVLVWRQR GXH VWUXWWXUH GHQRPLQDWH • %DVWRQFHOOL • &RQL , EDVWRQFHOOL VRQR VHQVLELOL D VRUJHQWL OXPLQRVH FKH HPHWWRQR SRWHQ]H WLSLFKH GHOOH FRVLGGHWWH FRQGL]LRQL GL RVFXULWj DG HVHPSLR GL QRWWH H QRQ VRQR LQ JUDGR GL SHUFHSLUH L FRORUL OD SHUFH]LRQH YLVLYD FKH FRLQYROJH L EDVWRQFHOOL q GHWWD YLVLRQH VFRWRSLFD , FRQL VRQR LQYHFH VHQVLELOL D VRUJHQWL OXPLQRVH FRQ SRWHQ]H VXSHULRUL D TXHOOH GHOOD YLVLRQH VFRWRSLFD DG HVHPSLR GXUDQWH LO JLRUQR LQ XQD ]RQD LOOXPLQDWD GDO VROH H VRQR LQ JUDGR GL SHUFHSLUH L FRORUL OD SHUFH]LRQH YLVLYD FKH FRLQYROJH L FRQL q GHWWD YLVLRQH IRWRSLFD 6L RVVHUYL SHU LQFLVR FKH WUD O·LQWHUYDOOR VFRWRSLFR H TXHOOR IRWRSLFR VL SDUOD GL YLVLRQH PHVRSLFD


(OHPHQWL GL )RWRPHWULD &DSLWROR

/·RFFKLR XPDQR QRQ q LQ JUDGR GL SHUFHSLUH RJQL WLSR GL RQGD HOHWWURPDJQHWLFD PD FRPH JLj RVVHUYDWR SUHVHQWD XQD VHQVLELOLWj FKH YD D ]HUR DO GL IXRUL GHOO·LQWHUYDOOR GL OXQJKH]]H G·RQGD FKH YD GD λ min ≅ 380 nm D λ max n ≅ 780 nm

&RHIILFLHQWH GL YLVLELOLWj

,QROWUH OD FXUYD GL VHQVLELOLWj q GLYHUVD D VHFRQGR GHO WLSR GL YLVLRQH VFRWRSLFD R IRWRSLFD

)LJXUD &XUYH GL YLVLELOLWj

/XQJKH]]D 9LVLRQH IRWRSLFD 9LVLRQH VFRWRSLFD /XQJKH]]D 9LVLRQH IRWRSLFD 9LVLRQH VFRWRSLFD G RQGD QP FRHI WH YLVLELOLWj FRHI WH YLVLELOLWj G RQGD QP FRHI WH YLVLELOLWj FRHI WH YLVLELOLWj

( ( ( ( ( (


(OHPHQWL GL )RWRPHWULD &DSLWROR

/XQJKH]]D 9LVLRQH IRWRSLFD 9LVLRQH VFRWRSLFD /XQJKH]]D 9LVLRQH IRWRSLFD 9LVLRQH VFRWRSLFD G RQGD QP FRHI WH YLVLELOLWj FRHI WH YLVLELOLWj G RQGD QP FRHI WH YLVLELOLWj FRHI WH YLVLELOLWj

7DEHOOD &XUYH GL YLVLELOLWj

( ( ( ,(

1HOOD )LJXUD H QHOOD WDEHOOD VRSUDVWDQWH VRQR ULSRUWDWH OH FXUYH GHL FRHIILFLHQWL GL YLVLELOLWj FKH GLPRVWUDQR FKH O·RFFKLR XPDQR KD LO PDVVLPR GL VHQVLELOLWj SHU HPLVVLRQL OXPLQRVH GL OXQJKH]]D G·RQGD • λ0 = 505nm QHO FDVR GHOOD YLVLRQH VFRWRSLFD FRUULVSRQGHQWH DG XQ FRORUH YHUGH •

λ0 = 555nm QHO FDVR GHOOD YLVLRQH IRWRSLFD FRUULVSRQGHQWH DG XQ FRORUH JLDOOR

YHUGH $OORUD QHOOH YDOXWD]LRQL IRWRPHWULFKH RFFRUUH WHQHUH FRQWR GL WDOL FXUYH LQ TXDQWR TXHVWH LQIOXHQ]DQR OD SHUFH]LRQH OXPLQRVD $G HVHPSLR VL VXSSRQJD GL DYHUH LQ YLVLRQH IRWRSLFD GXH VRUJHQWL OXPLQRVH D OXQJKH]]H G·RQGD λ0 = 555nm H λ = 500nm FKH HPHWWRQR DOOD VWHVVD SRWHQ]D W q FKLDUR FKH SHU OD SULPD VRUJHQWH O·RFFKLR SHUFHSLVFH WXWWD OD SRWHQ]D W PHQWUH SHU OD VHFRQGR YLHQH SHUFHSLWD XQD SRWHQ]D SDUL D 0,323 W VL FRQIURQWL OD WDEHOOD SUHFHGHQWH

*5$1'(==( )2720(75,&+( 8QR GHJOL RELHWWLYL GHOOD )RWRPHWULD q TXHOOR GL GHILQLUH XQD VHULH GL JUDQGH]]H ILVLFKH FKH SHUPHWWDQR GL YDOXWDUH L IHQRPHQL OXPLQRVL LQ UHOD]LRQH DOOD SHUFH]LRQH YLVLYD GHOO·RFFKLR XPDQR 8WLOL]]DQGR LO PRGHOOR RQGXODWRULR QHOOD VXD DSSURVVLPD]LRQH JHRPHWULFD FRPH JLj HYLGHQ]LDWR LQ SUHFHGHQ]D LO IHQRPHQR q LQWHUSUHWDELOH GD XQ SXQWR GL YLVWD VWUHWWDPHQWH ILVLFR DWWUDYHUVR XQ UDJJLR OXPLQRVR FKH WUDVSRUWD XQ ´IOXVVRµ G·HQHUJLD YHWWRUH GL 3R\QWLQJ D FXL q VHQVLELOH XQ ULFHYLWRUH OXPLQRVR SHU WHQHUH FRQWR GHOOD D]LRQH SHUFHWWLYD GHOO·RFFKLR XPDQR q QHFHVVDULR GXQTXH FRUUHODUH LO FRQWHQXWR ILVLFR OHJDWR DO YHWWRUH GL 3R\QWLQJ FKH VDSSLDPR HVVHUH XQD GHQVLWj GL SRWHQ]D HVSUHVVD IRQGDPHQWDOPHQWH LQ Watt DO FRPSRUWDPHQWR GHOO·RFFKLR DWWUDYHUVR OD FXUYD GHO FRHIILFLHQWH GL YLVLELOLWj LOOXVWUDWD QHO SDUDJUDIR SUHFHGHQWH ,Q VRVWDQ]D O·RFFKLR VL FRPSRUWD FRPH XQ ILOWUR SDVVD EDQGD GL LQWHUYDOOR (380nm, 780nm) QHL ULJXDUGD GHOOD SRWHQ]D HPHVVD GD XQD VRUJHQWH OXPLQRVD SHUWDQWR LQGLFDQGR FRQ •

& P (λ ) OD WUDVIRUPDWD GL )RXULHU GHO YHWWRUH GL 3R\QWLQJ v(λ ) OD FXUYD GL YLVLELOLWj GHOO·RFFKLR

• VL GHILQLVFH OD VHJXHQWH TXDQWLWj

&

I λ

& = v ( λ ) P (λ )

WDOH JUDQGH]]D UDSSUHVHQWD OD SRWHQ]D QHO GRPLQLR GHOOD IUHTXHQ]D OXQJR OD GLUH]LRQH GL

&

SURSDJD]LRQH GHILQLWD GD P (λ ) PHGLDWD GDOOD FXUYD v(λ ) GHOO·HPLVVLRQH OXPLQRVD SHU XQLWj GL VXSHUILFLH H SHU OXQJKH]]D G·RQGD GHQVLWj GL SRWHQ]D 6H RUD VL HVHJXH O·DQWLWUDVIRUPDWD GL )RXULHU GHOOD VL RWWLHQH OD JUDQGH]]D SUHFHGHQWH QHO GRPLQLR GHO WHPSR FKH LQGLYLGXD OD SRWHQ]D HVSUHVVD GDO YHWWRUH GL 3R\QWLQJ ILOWUDWD GDOOD FXUYD GL YLVLELOLWj GHOO·RFFKLR


(OHPHQWL GL )RWRPHWULD &DSLWROR

&

I

=

1 2π

& 1 ( ) (λ )e jλt dλ = v λ P ³−∞ 2π ∞

6L RVVHUYL SHU LQFLVR FKH OD JUDQGH]]D

&

& v ( λ ) P (λ )e jλt dλ ³

780 nm

380 nm

& I q XQD JUDQGH]]D YHWWRULDOH FKH KD OD VWHVVD

GLUH]LRQH GL P )/8662 /80,1262 6LD •

L XQD VRUJHQWH OXPLQRVD SXQWLIRUPH RVVLD WDOH FKH VLD SRVVLELOH WUDVFXUDUH OH VXH GLPHQVLRQL ULVSHWWR DOOD JHRPHWULD GHO VLVWHPD S XQD VXSHUILFLH LQYHVWLWD GDOOD OXFH GHOOD VRUJHQWH

)LJXUD )OXVVR /XPLQRVR

6L VXSSRQJD LQROWUH GL DSSOLFDUH O·DSSURVVLPD]LRQH JHRPHWULFD LQ PRGR FKH VL SRVVD XWLOL]]DUH OD VFKHPDWL]]D]LRQH ULSRUWDWD QHOOD )LJXUD OD TXDOH LPSOLFD FKH RJQL FRQR

&

GL YHUWLFH L UDSSUHVHQWD XQ WXER GL IOXVVR SHU LO YHWWRUH I 6L GHILQLVFH IOXVVR OXPLQRVR Φ DWWUDYHUVR OD VXSHUILFLH S O·LQWHJUDOH GL IOXVVR GHO

&

YHWWRUH I FKH HVSULPH OD SRWHQ]D RVVLD O·HQHUJLD SHU XQLWj GL WHPSR FKH IOXLVFH DWWUDYHUVR S Φ

& & = ³³ I • n dS S

1HOO·LSRWHVL GL VWD]LRQDULHWj VXSSRQHQGR TXLQGL FKH QRQ FL VLD DVVRUELPHQWR GL HQHUJLD LQ XQ TXDOVLDVL YROXPH UDFFKLXVR GD XQD VXSHUILFLH FKLXVD GD FXL

& ∇ • I = 0) YDOH

TXDQWR LOOXVWUDWR QHO SDUDJUDIR LO IOXVVR Φ TXLQGL GLSHQGH VROR GDOO·DQJROR VROLGR Ω RVVLD WXWWH OH VXSHUILFL FKH VRWWHQGRQR OR VWHVVR DQJROR VROLGR VRQR DWWUDYHUVDWH GDOOR VWHVVR IOXVVR H VL SRVVRQR DSSOLFDUH OH GL VHJXLWR ULSRUWDWH Ω2 & & & & & Φ = ³³ I • n dS = ³³ I • n sin(θ )dθdφ = ³ I (Ω) dΩ S

Ω1

S


(OHPHQWL GL )RWRPHWULD &DSLWROR

& dΦ I (Ω) = dΩ

,Q VRVWDQ]D TXLQGL q VXIILFLHQWH YDOXWDUH LO IOXVVR FKH DWWUDYHUVD OD VXSHUILFLH FKH GLVWD r = 1 GDOOD VRUJHQWH LQGLFKLDPROR EUHYHPHQWH FRQ Φ 1 H VLD S1 WDOH VXSHUILFLH IDFHQGR ULIHULPHQWR DOOD )LJXUD

)LJXUD 'LPLQX]LRQH GHO IOXVVR GDOOD GLVWDQ]D GDOOD VRUJHQWH

1 DOO·DXPHQWDUH GL r r2 ,QIDWWL LQGLFDQGR FRQ Φ r LO IOXVVR FKH IOXLVFH DWWUDYHUVR OD VXSHUILFLH S r FKH GLVWD r GDOOD VRUJHQWH L VL KD 1DWXUDOPHQWH LO IOXVVR SHU XQLWj GL VXSHUILFLH GHFUHVFH FRPH

Φ1 = Φ r

Φ1 Φ r Φ Φr Φ 1 §Φ · = 1 = r = 2 ¨¨ 1 ¸¸ dΩ dΩ dS1 § dS r · dS r r © dS1 ¹ ¨ 2 ¸ © r ¹

3HU TXDQWR ULJXDUGD O·XQLWj GL PLVXUD QHO VLVWHPD 6, YLHQH XWLOL]]DWR LO OXPHQ LQGLFDWR FRQ LO VLPEROR >OP@ GHILQLWR FRPH VHJXH XQD UDGLD]LRQH PRQRFURPDWLFD GL OXQJKH]]D G RQGD λ = 555 nm PDVVLPR GHOOD FXUYD GL YLVLELOLWj IRWRSLFD FKH HPHWWD XQD SRWHQ]D GL 1W JHQHUD XQ IOXVVR OXPLQRVR SDUL D 683 lm Ë LPSRUWDQWH HYLGHQ]LDUH FKH LO OXPHQ QRQ q XQD JUDQGH]]D IRQGDPHQWDOH PD q XQD JUDQGH]]D GHULYDWD LQ TXDQWR VL ULFRQGXFH DOO·XQLWj GL PLVXUD GHOOD ,QWHQVLWj /XPLQRVD 1HOOD WDEHOOD VHJXHQWH VRQR ULSRUWDWH DOFXQH VRUJHQWL OXPLQRVH FRQ O·LQGLFD]LRQH GHOOD SRWHQ]D HPHVVD HVSUHVVD LQ Watt H GHO IOXVVR OXPLQRVR HVSUHVVR LQ OXPHQ 6RUJHQWH SRWHQ]D :DWW )OXVVR /XPLQRVR OP


(OHPHQWL GL )RWRPHWULD &DSLWROR

6RUJHQWH SRWHQ]D :DWW

)OXVVR /XPLQRVR OP

/DPSDGD SHU ELFLFOHWWD : /DPSDGD DG LQFDQGHVFHQ]D : /DPSDGD IOXRUHVFHQWH / : /DPSDGD YDSRUL GL +J DG DOWD SUHVVLRQH : %XOER IOXRUHVFHQWH : /DPSDGD DORJHQXUL PHWDOOLFL : /DPSDGD [HQRQ DUFR OXQJR : 7DEHOOD 9DORUL GHO IOXVVR OXPLQRVR SHU DOFXQH VRUJHQWL ,17(16,7­ /80,126$ /·LQWHQVLWj OXPLQRVD HVSULPH LO YDORUH GHO IOXVVR OXPLQRVR SHU XQLWj GL DQJROR VROLGR 3RQLDPR

& I = I (Ω) H SRLFKp UDJLRQLDPR VXJOL DQJROL VROLGL ULFRUGDQGR OD VL KD

FKH I ULVXOWD IXQ]LRQH GHOOH VROH (θ , φ )

& I = I (Ω) = I (θ , φ )

$OORUD VL GHILQLVFH ,QWHQVLWj OXPLQRVD XQ YHWWRUH GLUHWWR FRPH PRGXOR I VLD GDWR GDOOD FKH YLHQH QHO VHJXLWR ULSHWXWD

& & I RVVLD FRPH P LO FXL

& dΦ I (Ω ) = dΩ

,Q JHQHUDOH LO OHJDPH WUD IOXVVR HG LQWHQVLWj VL SXz HVSULPHUH DQFKH DWWUDYHUVR OD UHOD]LRQH LQWHJUDOH FRPH GL VHJXLWR ULSRUWDWR Φ

φ2 θ2 & & = ³³ I • n dS = ³ dφ ³ I (θ , φ ) sin(θ )dθ φ1

S

θ1

6XSSRQHQGR GL YROHUH YDOXWDUH LO IOXVVR OXPLQRVR FRPSOHVVLYR HPHVVR LQ XQ JHQHULFR DQJROR VROLGR Ω QHO FDVR VHPSOLFH GL LQWHQVLWj I FRVWDQWH GDOOD SUHFHGHQWH UHOD]LRQH VHJXH φ2

θ2

φ1

θ1

Φ = ³ dφ ³ I (θ , φ ) sin(θ )dθ = IΔφ [cos(θ ) − cos(θ + Δθ )] = IΩ 1HO FDVR Ω = 4π UHODWLYR DO IOXVVR HPHVVR LQ RJQL GLUH]LRQH VL KD GXQTXH Φ = 4πI GD FXL VL RWWLHQH OD FRVLGGHWWD LQWHQVLWj VIHULFD PHGLD I =

Φ 4π

3HU TXDQWR ULJXDUGD O·XQLWj GL PLVXUD QHO VLVWHPD 6, YLHQH XWLOL]]DWD OD FDQGHOD LQGLFDWD FRQ LO VLPEROR >FG@


(OHPHQWL GL )RWRPHWULD &DSLWROR

GHILQLWD FRPH VHJXH O LQWHQVLWj OXPLQRVD LQ XQD GHWHUPLQDWD GLUH]LRQH GL XQD VRUJHQWH FKH HPHWWH XQD UDGLD]LRQH PRQRFURPDWLFD GL OXQJKH]]D G RQGD λ = 555 nm SDUL DQFKH DOOD IUHTXHQ]D GL 7K] PDVVLPR GHOOD FXUYD GL YLVLELOLWj IRWRSLFD FRQ XQD SRWHQ]D LQ TXHOOD VWHVVD GLUH]LRQH SDUL D : VU /D FDQGHOD q XQD XQLWj IRQGDPHQWDOH HG LO OXPHQ VL ULIHULVFH DG HVVD WUDPLWH OH UHOD]LRQH GLPHQVLRQDOH [lm] = [cd â‹… sr ] HG DG 1 cd FRUULVSRQGH LO IOXVVR GL 1 lm QHOO·DQJROR GL XQR VWHUDUDGLDQWH 1HOOD WDEHOOD VHJXHQWH VRQR ULSRUWDWH DOFXQH VRUJHQWL OXPLQRVH FRQ O·LQGLFD]LRQH GHOOD ORUR OXPLQRVLWj HVSUHVVD LQ FDQGHOH ,QWHQVLWj 6RUJHQWH /XPLQRVD FG /DPSDGD SHU ELFLFOHWWD VHQ]D ULIOHWWRUH FG /DPSDGD DG LQFDQGHVFHQ]D GD : FG /DPSDGD IOXRUHVFHQWH : FG /DQWHUQD GL XQ IDUR FG 7DEHOOD 9DORUL GL LQWHQVLWj OXPLQRVD SHU DOFXQH VRUJHQWL /80,1$1=$ 1HO FDVR LQ FXL QRQ VLD SRVVLELOH WUDWWDUH OH VRUJHQWL OXPLQRVH FRPH SXQWLIRUPL RFFRUUH LQWURGXUUH XQD JUDQGH]]D FKH WHQJD FRQWR GHOOH GLPHQVLRQL ILVLFKH GHOOH VWHVVH LQ PHULWR DOOD HPLVVLRQH GHO IOXVVR OXPLQRVR $ WDOH VFRSR FRQVLGHULDPR XQD JHQHULFD VRUJHQWH HVWHVD OD FXL VH]LRQH q LQGLFD FRQ OD FXUYD UDSSUHVHQWDWD QHOOD )LJXUD WDOH VRUJHQWH SXz HVVHUH SHQVDWD VXGGLYLVD LQ WDQWL HOHPHQWL SXQWLIRUPL dS RJQXQR GHL TXDOL SUHVHQWD XQD SURSULD FDUDWWHULVWLFD GLSHQGHQWH GDOOD FRQGL]LRQL ILVLFKH GHOOD VWUXWWXUD PDWHULDOH FRVWLWXHQWH OD VRUJHQWH DG HVHPSLR HVVD SRWUHEEH HVVHUH FRPSRVWD GD PDWHULDOL GLYHUVL D WHPSHUDWXUD GLIIHUHQWL & & 6LD LQROWUH n LO YHUVRUH GHOOD QRUPDOH D S VXOO·HOHPHQWR dS H VLD ψ O·DQJROR WUD n H O·DVVH FKH FRQJLXQJH LO SXQWR GL RVVHUYD]LRQH FRQ

dS ,O YDORUH GHO GLIIHUHQ]LDOH dS q LQGLFDWR QHOOD )LJXUD SDUL DO VHJPHQWR WDQJHQWH dS = AB G·DOWUD SDUWH GDO SXQWR GL RVVHUYD]LRQH OD VXSHUILFLH SHUFHSLELOH VXSHUILFLH DSSDUHQWH q GDWD GD dS ′ = A′B ′ H GD

VHPSOLFL FRQVLGHUD]LRQL JHRPHWULFKH VL GHGXFH

dS ′ = dS cos(ψ )


(OHPHQWL GL )RWRPHWULD &DSLWROR

)LJXUD /XPLQDQ]D GL XQD VRUJHQWH HVWHVD

2VVHUYLDPR LQROWUH FKH LO YDORUH GHO IOXVVR OXPLQRVR FRPSUHVR QHOO·DQJROR Ω DXPHQWD DOO·DXPHQWDUH GHOOD VXSHUILFLH H TXLQGL VXJOL HOHPHQWL GLIIHUHQ]LDOL TXHVWR IDWWR YLHQH WUDGRWWR FRPH GLSHQGHQ]D OLQHDUH GHO IOXVVR GD dS ′ LQ VRVWDQ]D VL WUDVFXUDQR JOL LQILQLWHVLPL GL RUGLQH VXSHULRUH DO SULPR 6L RVVHUYL FKH LO FRHIILFLHQWH GL SURSRU]LRQDOLWj GLSHQGH • GDOOD QDWXUD GHOOD VRUJHQWH QHO SXQWR FRQVLGHUDWR • GDO SXQWR GL YLVWD RVVLD GDOO·DQJROR ψ

3HUWDQWR LQGLFDWR FRQ L ′ WDOH FRHIILFLHQWH VL KD

L ′ = L ′( x, y, z ,ψ )

5LWRUQDQGR DO IOXVVR VL SXz VFULYHUH

dΦ = L ′( x, y, z ,ψ ) cos(ψ ) dS dΩ

'D FXL VHJXH

L ′( x, y, z ,ψ ) =

dΦ cos(ψ ) dS dΩ

FKLDPHUHPR /XPLQDQ]D GHOOD VRUJHQWH OD VHJXHQWH TXDQWLWj YHWWRULDOH

& & I GRYH & q LO YHUVRUH GL I I

& & I L = L ′ & I

'D FXL VL GHGXFH L ( x, y , z ,ψ )

=

dΦ I = cos(ψ ) dS dΩ cos(ψ ) dS


(OHPHQWL GL )RWRPHWULD &DSLWROR

GRYH L

& = L

3RVVLDPR GXQTXH DIIHUPDUH FKH OD OXPLQDQ]D HVSULPH O·LQWHQVLWj OXPLQRVD SHU XQLWj GL VXSHUILFLH DSSDUHQWH 3HU TXDQWR ULJXDUGD O·XQLWj GL PLVXUD QHO VLVWHPD 6, WUDWWDQGRVL GL XQD LQWHQVLWj OXPLQRVD SHU XQLWj GL VXSHUILFLH VL XWLOL]]D OD JUDQGH]]D GHULYDWD

ª cd º «¬ m 2 »¼

$ WDOH JUDQGH]]D q G·XVR GDUH LO QRPH GL QLW LQGLYLGXDWD GDO VLPEROR >QW@ GHILQLWD TXLQGL FRPH UDSSRUWR WUD FDQGHOH H PHWUL TXDGUDWL

[nt ] = ª« cd2 º» ¬m ¼

1HOOH DSSOLFD]LRQL SHU VHPSOLFLWj VL WUDVFXUD OD GLSHQGHQ]D GHOOD OXPLQDQ]D GDO SXQWR GHOOD VXSHUILFLH H VL FRQVLGHUD VROR TXHOOD UHODWLYD DOOD GLUH]LRQH 1HO FDVR LQ FXL L IRVVH DQFKH LQGLSHQGHQWH GDOOD GLUH]LRQH VL RWWLHQH OD FRVLGGHWWD VRUJHQWH GL /DPEHUW R GLIIXVRUH ODPEHUWLDQR FDUDWWHUL]]DWD GDO IDWWR FKH OD OXFH YLHQH GLIIXVD XQLIRUPHPHQWH LQ RJQL GLUH]LRQH 1HOOD WDEHOOD VHJXHQWH VRQR ULSRUWDWH DOFXQL HVHPSL GL VRUJHQWL FRQ O·LQGLFD]LRQH GHOOD ORUR OXPLQDQ]D HVSUHVVD LQ QLW 6RUJHQWH

/XPLQDQ]D

6ROH

cd

m2

9

â‹… 10

&LHOR VHUHQR

3

3

2

2

â‹… 10 ÷ â‹… 10

&LHOR FRSHUWR

â‹… 10 ÷ â‹… 10

/XQD

3

â‹… 10

)LDPPD GL FDQGHOD

3

/DPSDGD DG LQFDQGHVFHQ]D D EXOER FKLDUR /DPSDGD DG LQFDQGHVFHQ]D D EXOER VPHULJOLDWR /DPSDGD DG LQFDQGHVFHQ]D D EXOER RSDOL]]DWR /DPSDGD D YDSRUL GL VRGLR EDVVD SUHVVLRQH /DPSDGD WXERODUH IOXRUHVFHQWH 2JJHWWL FKLDUL FRQ LOOXPLQD]LRQH GLXUQD HVWHUQD 2JJHWWL FKLDUL VRWWR IRUWH LOOXPLQD]LRQH LQWHUQD

â‹… 10 6

7

4

5

4

4

4

4

3

3

3

4

2

3

â‹… 10 ÷ â‹… 10 â‹… 10 ÷ â‹… 10 â‹… 10 ÷ â‹… 10 â‹… 10 ÷ â‹… 10 â‹… 10 ÷ â‹… 10 â‹… 10 ÷ 1 â‹… 10

â‹… 10 ÷ â‹… 10 2JJHWWL FKLDUL VRWWR GHEROH LOOXPLQD]LRQH LQWHUQD ÷ 6WUDGH EHQ LOOXPLQDWH 7DEHOOD 9DORUL GL LQWHQVLWj OXPLQRVD SHU DOFXQH VRUJHQWL


(OHPHQWL GL )RWRPHWULD &DSLWROR

/80,126,7­ 6XSSRQLDPR RUD GL DYHUH XQD VXSHUILFLH HVWHVD S H GL LQWHJUDUH LQ XQ VHPLVSD]LR Ω = 2π OD TXDQWLWj

dΦ = L cos(ψ ) dΩ dS

RVVLD GL YDOXWDUH LO IOXVVR OXPLQRVR SHU XQLWj GL VXSHUILFLH HPHVVR GDOOD VRUJHQWH LQ WXWWR LO VHPLVSD]LR 6L RWWLHQH π

2π 2

dΦ = dS 2π

³ ³ L cos(ψ ) sin(ψ ) dφdψ 0 0

π

π

2

2 dΦ = ³ dφ ³ L cos(ψ ) sin(ψ ) dψ = 2πdS ³ L cos(ψ ) sin(ψ ) dψ dS 0 0 0

π

2 dΦ = 2π ³ L cos(ψ ) sin(ψ ) dψ dS 0

/D TXDQWLWj HVSUHVVD GDOOD YLHQH GHQRPLQDWD /XPLQRVLWj HG HVSULPH LO IOXVVR OXPLQRVR HPHVVR GDOO·XQLWj GL VXSHUILFLH LQ WXWWR LO VHPLVSD]LR XWLOL]]HUHPR LO VLPEROR Lu SHU LQGLFDUH WDOH JUDQGH]]D 1HO FDVR SDUWLFRODUH LQ FXL OD OXPLQDQ]D L GHOOD VRUJHQWH IRVVH FRVWDQWH RVVLD QHO FDVR GL VRUJHQWH ODPEHUWLDQD VL KD π

2

Lu

= 2πL ³ cos(ψ ) sin(ψ ) dψ = πL 0

7UDWWDQGRVL GL XQ IOXVVR VX O·XQLWj GL VXSHUILFLH O·XQLWj GL PLVXUD XWLOL]]DWD SHU OD OXPLQRVLWj q OXPHQ GLYLVR PHWUL TXDGUDWL

ª lm º «¬ m 2 »¼ ,//80,1$0(172 6L VXSSRQJD RUD XQ FHUWR IOXVVR OXPLQRVR Φ FKH LQYHVWH XQD VXSHUILFLH S 6L SDUOD DOORUD GL IOXVVR Φ LQFLGHQWH VXOOD VXSHUILFLH S LOOXPLQDWD 6L GHILQLVFH XQD JUDQGH]]D ILVLFD GHQRPLQDWD LOOXPLQDPHQWR FKH LQGLYLGXD OD TXDQWLWj GL IOXVVR LUUDGLDWR GDOOD VRUJHQWH FKH LOOXPLQD OD VXSHUILFLH SHU XQLWj GL VXSHUILFLH DO FRQWUDULR GHOOD LQWHQVLWj OXPLQRVD FKH ULIHULVFH LO IOXVVR DOO·XQLWj GL DQJROR VROLGR 5LSUHQGHQGR OH SUHFHGHQWL QRWD]LRQL ULFRUGDQGR FKH LO IOXVVR q XJXDOH LQ RJQL VXSHUILFLH QHO FDVR VWD]LRQDULR HG LQGLFDQGR FRQ E O·LOOXPLQDPHQWR VL KD


(OHPHQWL GL )RWRPHWULD &DSLWROR

dΦ = I ⋅ cos(ψ )dΩ GD FXL E

=

dΦ dΩ I ⋅ = I ⋅ cos(ψ ) = cos(ψ ) dS dS r 2

'DOOD VL HYLQFH FKH O·LOOXPLQDPHQWR GHFUHVFH LQ IRUPD TXDGUDWLFD GDOOD GLVWDQ]D GHOOD VRUJHQWH OHJJH GHO GHFDGLPHQWR TXDGUDWLFR FRPH JLj RVVHUYDWR LQ SUHFHGHQ]D FLz YDOH SHU XQD VRUJHQWH SXQWLIRUPH PHQWUH QHO FDVR HVWHVR RFFRUUH LQWHJUDUH VXOO·HVWHQVLRQH GHOOD VRUJHQWH YLVWD FRPH VRPPD LQWHJUDOH GL WDQWL HOHPHQWL SXQWLIRUPL L GLYHUVL FRQWULEXWL GL WDOL HOHPHQWL ,O FRQFHWWR GL LOOXPLQDPHQWR q LPSRUWDQWH SRLFKp DG HVFOXVLRQH GHJOL RJJHWWL FKH HPHWWRQR UDGLD]LRQL VRUJHQWL OXPLQRVH SULPDULH OD PDJJLRU SDUWH GHJOL RJJHWWL VRQR YLVLELOL SHUFKp YHQJRQR ´LOOXPLQDWLµ RVVLD YHQJRQR LQYHVWLWL GD XQ IOXVVR OXPLQRVR GL FXL QH ULIOHWWRQR XQD SDUWH VL GLFH LQ TXHVWR FDVR FKH VL FRPSRUWDQR FRPH VRUJHQWL VHFRQGDULH 6L RVVHUYL LQROWUH SHU LQFLVR FKH VH VL YXROH RWWHQHUH LO IOXVVR LQFLGHQWH VXOO·LQWHUD

&

VXSHUILFLH S RFFRUUH QDWXUDOPHQWH HIIHWWXDUH LO VROLWR LQWHJUDOH GL IOXVVR GHO FDPSR I 3HU TXDQWR ULJXDUGD O·XQLWj GL PLVXUD WUDWWDQGRVL GL XQ IOXVVR OXPLQRVR SHU XQLWj GL VXSHUILFLH VL XWLOL]]D OD JUDQGH]]D GHULYDWD OX[ LQGLYLGXDWD GDO VLPEROR >O[@ GHILQLWD FRPH UDSSRUWR WUD OXPHQ H PHWUL TXDGUDWL

[lx] = ª« lm2 º» ¬m ¼

1HOOD WDEHOOD VHJXHQWH VRQR ULSRUWDWH DOFXQL VFHQDUL FRQ O·LQGLFD]LRQH GHOO·LOOXPLQDPHQWR HVSUHVVR LQ OX[ 6FHQDULR ,OOXPLQDPHQWR OX[ *LRUQDWD HVWLYD VROHJJLDWD JLRUQDWD HVWLYD FLHOR FRSHUWR 9HWULQH 8IILFL 1RWWH GL OXQD SLHQD 1RWWH VHUHQD VHQ]D OXQD 7DEHOOD 9DORUL GL LOOXPLQDPHQWR $3352)21',0(172 68//( 81,7­ ', 0,685$ 2OWUH DOOH XQLWj IRWRPHWULFKH LQGLFDWH QHL SUHFHGHQWL SDUDJUDIL QH YHQJRQR XWLOL]]DWH DOWUH VLD SHU OD GHILQL]LRQH GHL PXOWLSOL VLD SHU O·LPSLHJR GHOOH XQLWj PHWULFKH DQJORVDVVRQL 8QLWj VRWWRPXOWLSOL

1HOO·LSRWHVL GL HVSULPHUH O··XQLWj GL DUHD LQ FHQWLPHWUL TXDGUDWL VL KDQQR OH VHJXHQWL XQLWj •

ª cd º GHQRPLQDWD 2 ¬ cm »¼

«

VWLOE LQGLYLGXDWD GDO VLPEROR >VE@


(OHPHQWL GL )RWRPHWULD &DSLWROR

1DWXUDOPHQWH OD UHOD]LRQH WUD OH GXH QLW H VWLOE q OD VHJXHQWH 1 sb •

=

cd cd cd = − 4 2 = 10 4 2 = 10 4 nt 2 cm 10 m m

ª lm º «¬ cm 2 »¼ GHQRPLQDWD SKRW

1DWXUDOPHQWH OD UHOD]LRQH WUD OH GXH OX[ H SKRW q OD VHJXHQWH 1 phot

=

lm lm lm = − 4 2 = 10 4 2 = 10 4 lux 2 10 m cm m

•

ª lm º «¬ m 2 »¼ FRPH DEELDPR JLjYLVWR D WDOH XQLWj YLHQH GDWR LO QRPH GL lux QHO VLVWHPD

6L ,Q OHWWHUDWXUD DOFXQH YROWH DO WDOH XQLWj YLHQH DQFKH GDWR LO QRPH GL PHWUR FDQGHOD FKH SRVVLDPR LQGLYLGXDUH FRQ LO VLPEROR >PFG@ 8QLWj /DPEHUW

Ë SRVVLELOH HVSULPHUH OH

ª cd º «¬ cm 2 »¼ DQFKH DWWUDYHUVR OH FRVLGGHWWH XQLWj /DPEHUW $ WDOH

VFRSR ULFRUGLDPR O·HTXD]LRQH

Lu = πL 7DOH UHOD]LRQH OHJD QHO FDVR GL XQ GLIIXVRUH ODPEHUWLDQR OD OXPLQRVLWj DOOD OXPLQDQ]D H GLFH FKH

= 1

•

SHU XQD OXPLQRVLWj SDUL DG Lu

•

VL RWWLHQH XQD OXPLQDQ]D SDUL D L

1

=

Ï€

7XWWR FLz VXJJHULVFH GL GHILQLUH XQD XQLWj GL PLVXUD GHQRPLQDWD DSRVWLOE LQGLFDWD FRQ LO VLPEROR >DVE@ GHILQLWD FRPH VHJXH DVE q LO YDORUH GL OXPLQDQ]D GL XQD VRUJHQWH FKH HPHWWH XQD OXPLQRVLWj SDUL DG

1

lm H YDOH m2 1 asb

=

1 cd cd ≅ 0,318 2 2 π m m

6H O·XQLWj GL VXSHUILFLH YLHQH PLVXUDWD LQ FHQWLPHWUL TXDGUDWL VL GHILQLVFH XQD XQLWj GL PLVXUD GHQRPLQDWD /DPEHUW LQGLFDWD FRQ LO VLPEROR >/@ GHILQLWD FRPH VHJXH


(OHPHQWL GL )RWRPHWULD &DSLWROR

/ q LO YDORUH GL OXPLQDQ]D GL XQD VRUJHQWH FKH HPHWWH XQD OXPLQRVLWj SDUL DG

1

lm = 1 phot H YDOH cm 2 1 L

=

1 cd 10 4 cd = = 10 4 asb π cm 2 π m2

$OWUH GHQRPLQD]LRQL XWLOL]]DWH VRQR metroLambert LQGLFDWR FRQ LO VLPEROR>P/ HTXLYDOHQWH DOO·XQLWj DSRVWLOE RVVLD q • XQ PRGR GLYHUVR GL FKLDPDUH OD VWHVVD XQLWj milliLambert LQGLFDWR FRQ LO VLPEROR>PP/@ H GHILQLWR FRPH VHJXH • 1mmL

= 10 −3 L = 10mL = 10asb =

10 cd π m2

8QLWj $QJORVDVVRQL

1HO FDVR LQ FXL YHQJDQR XWLOL]]DWH OH XQLWj PHWULFKH DQJORVDVVRQL WXWWH OH SUHFHGHQWL XQLWj KDQQR XQD DQDORJD GHILQL]LRQH FKH FKLDPHUHPR DQJORVDVVRQH 3HU FRPRGLWj DOOR VFRSR GL FKLDULUH OH FRQVLGHUD]LRQL VYLOXSSDWH QHO VHJXLWR QHOOD WDEHOOD VHJXHQWH VRQR ULSRUWDWL UDSSRUWL GL FRQYHUVLRQH WUD FHQWLPHWUL FP H XQLWj DQJORVDVVRQL SLHGL IW H SROOLFL LQFK 5DSSRUWR GL FRQYHUVLRQH OLQHDUH LQFK FP IW FP

9DORUH

5DSSRUWR GL FRQYHUVLRQH OLQHDUH

FP LQFK FP IW 7DEHOOD &RQYHUVLRQL PHWULFKH OLQHDUL

9DORUH

5DSSRUWR GL FRQYHUVLRQH TXDGUDWLFR

9DORUH

5DSSRUWR GL FRQYHUVLRQH TXDGUDWLFR

inch 2 cm 2

cm 2 inch 2

ft 2 cm 2

cm 2 ft 2

7DEHOOD &RQYHUVLRQL PHWULFKH TXDGUDWLFKH 6L ULFRUGD LQROWUH FKH 1 ft = 12 inch 6L KDQQR TXLQGL OH RYYLH WUDVSRVL]LRQL VHJXHQWL •

ª cd º ª cd º «¬ m 2 »¼ → « ft 2 » ULFRUGDQGR L YDORUL GL FRQYHUVLRQH VL KD ¬ ¼

9DORUH


(OHPHQWL GL )RWRPHWULD &DSLWROR

1

cd 1 cd 1 cd 10 4 cd cd ≅ = = ≅ 10,76 2 2 2 −4 2 2 930,27 cm 930,27 10 m 930,27 m ft m

•

ª cd º ª cd º «¬ cm 2 »¼ → «¬ inch 2 »¼ ULFRUGDQGR L YDORUL GL FRQYHUVLRQH VL KD 1

1 cd cd cd ≅ ≅ 0,1548 2 2 2 6,4609 cm inch cm

•

ª lm º ª lm º «¬ m 2 »¼ → « ft 2 » ULFRUGDQGR L YDORUL GL FRQYHUVLRQH VL KD ¬ ¼

1

10 4 lm lm lm ≅ ≅ 10,76 2 2 2 930,27 m ft m

•

ª lm º ª lm º «¬ cm 2 »¼ → «¬ inch 2 »¼ GHQRPLQDWD DQFKH IRRW FDQGOH ULFRUGDQGR L YDORUL GL

FRQYHUVLRQH VL KD

1

1 lm lm lm ≅ ≅ 0,1548 2 2 2 6,4609 cm inch cm

3HU TXDQWR ULJXDUGD OH XQLWj /DPEHUW VL SDVVD GD GHQRPLQDWD IRRW /DPEHUW H GHILQLWD FRPH VHJXH 1 fL =

[L] D [ fL] XQLWj GL PLVXUD

1 cd π ft 2

5LFRUGDQGR L YDORUL GL FRQYHUVLRQH VL KD 1 fL HG DQFKH

=

§ 10 4 cd · 1 cd 10,76 cd −4 ¨¨ ¸ = 10,76 10 −4 L = 1,076mL ≅ = 10 10 , 75 2 ¸ 2 2 Ï€ ft Ï€ m © Ï€ m ¹

1 fL

=

1 cd 10,76 cd cd ≅ ≅ 3,4262 2 2 2 π ft π m m

2VVHUYD]LRQL

/D SUHVHQ]D GL XQD PROWHSOLFLWj GL XQLWj GL PLVXUD LPSOLFD FKH PROWH JUDQGH]]H SRVVRQR HVVHUH HVSUHVVH LQ SL PRGL H ELVRJQD IDUH DWWHQ]LRQH SHU HYLWDUH HUURUL QHO SDVVDJJLR GD XQD XQLWj GL PLVXUD DG XQ·DOWUD 9HGLDPR XQ HVHPSLR 6L VXSSRQJD GL DYHUH XQD VXSHUILFLH GL XQR VFKHUPR LOOXPLQDWD FKH FRVWLWXLVFD TXLQGL XQD VRUJHQWH VHFRQGDULD VL YXROH FDOFRODUH O·LQWHQVLWj OXPLQRVD I GL WDOH VRUJHQWH VFKHUPR RVVLD LO IOXVVR SHU XQLWj GL VWHUDUDGLDQWL


(OHPHQWL GL )RWRPHWULD &DSLWROR

, SDUDPHWUL FKH DEELDPR D GLVSRVL]LRQH VRQR •

/XPLQDQ]D L

•

*XDGDJQR α ≤ 1 FKH UDSSUHVHQWD XQ QXPHUR SXUR

•

6XSHUILFLH S GHOOR VFKHUPR

6XSSRQHQGR YDOLGH O·LSRWHVL VHPSOLILFDWLYD GL FRQVLGHUDUH L FRVWDQWH LQ RJQL SXQWR GHOOR VFKHUPR HG LQ RJQL GLUH]LRQH YDOH OD VHJXHQWH UHOD]LRQH I = αLS

9DOXWLDPR RUD OH WUH VLWXD]LRQL VHJXHQWL LQ FXL O·LQWHQVLWj I YLHQH VHPSUH PLVXUDWD LQ FDQGHOH cd

[ ]

•

&DVR LPSLHJR GHOOH XQLWj PHWULFKH GHFLPDOL H GHOOH XQLWj IRWRPHWULFKH GHO VLVWHPD 6, o

ª cd º L YLHQH PLVXUDWD LQ « 2 » ¬m ¼

o

S LQ m 2

[ ]

,QGLFKLDPR FRQ LO SHGLFH 1 OH JUDQGH]]H HVSUHVVH FRQ WDOL XQLWj ( I 1 , L1 , S1 ) LQ FXL

I 1 = αL1 S1 FRQ L YDORUL HVSUHVVL QHOOH XQLWj VRSUD ULSRUWDWL

•

&DVR LPSLHJR GHOOH XQLWj PHWULFKH GHFLPDOL H GHOOH XQLWj IRWRPHWULFKH FRPH GL VHJXLWR o

L YLHQH PLVXUDWD LQ /DPEHUW [L ]

o

S LQ m 2

[ ]

,QGLFKLDPR FRQ LO SHGLFH FXL I 2 •

2 OH JUDQGH]]H HVSUHVVH FRQ WDOL XQLWj ( I 2 , L2 , S 2 ) LQ

= αL2 S 2 FRQ L YDORUL HVSUHVVL QHOOH XQLWj VRSUD ULSRUWDWL

&DVR LPSLHJR GHOOH XQLWj PHWULFKH DQJORVDVVRQL SLHGL H GHL IRRWODPEHUW o

L YLHQH PLVXUDWD LQ [ fL ]

o

S LQ ft 2

[ ]

,QGLFKLDPR FRQ LO SHGLFH FXL I a

a OH JUDQGH]]H HVSUHVVH FRQ WDOL XQLWj ( I a , La , S a ) LQ

= αLa S a FRQ L YDORUL HVSUHVVL QHOOH XQLWj VRSUD ULSRUWDWL

(VHJXLDPR XQ FRQIURQWR WUD L GLYHUVL FDVL DSSOLFDQGR OD •

&DVR I 1 YLHQH FRUUHWWDPHQWH YDOXWDWD LQ FDQGHOH H SHUWDQWR

I = I1 •

I 2 YLHQH HVSUHVVD FRPH LO SURGRWWR GL /DPEHUW SHU PHWUR FKH ULFRUGDQGR OD QRQ FRUULVSRQGH DO YDORUH QXPHULFR GL I SRLFKp RJQL /DPEHUW YDOH 10 4 cd FDQGHOH 3HUWDQWR VL KD π m2 10 4 I= I2

&DVR

Ï€

•

I a YLHQH HVSUHVVD FRPH LO SURGRWWR GL IRRW /DPEHUW SHU SLHGH TXDGUDWR FKH ULFRUGDQGR OD QRQ FRUULVSRQGH DO YDORUH QXPHULFR GL I SRLFKp RJQL &DVR


(OHPHQWL GL )RWRPHWULD &DSLWROR

IRRW /DPEHUW YDOH VFKHUPR LQ

1 cd FDQGHOH 3HUWDQWR VH VL HVSULPH OD VXSHUILFLH GHOOR π ft 2

ft 2 VL KD

I=

VH VL HVSULPH O·DUHD LQ

1

π

Ia

[m ] DOORUD RFFRUUH XWLOL]]DUH O·HTXLYDOHQ]D HVSUHVVD GDOOD 2

I=

10,76

π

I a ≅ 3,4262 I a

9HGLDPR XQ HVHPSLR QXPHULFR

α = (1,3)−1

S1 = 3,35 m 2 S a ≅ 36,05 ft 2

L1 = 23,37

π cd La = 23,37 ≅ 6,82 fL 2 10,76 m

'D TXHVWL GDWL GL LQSXW VHJXH

I = I1 =

Ia =

23,37 ⋅ 3,35 cd ≅ 60,20 cd 1,3

6,82 ⋅ 36,05 fL ⋅ ft 2 ≅ 189,13 fL ⋅ ft 2 1,3

( VL YHULILFD FKH

I a 189,13 ≅ ≅ 3,14 60,20 I BBBBBBBBBBBBBBBBBBBBBBBBBBBBBB


(OHPHQWL GL )RWRPHWULD 6LPEROL XWLOL]]DWL

6,0%2/, 87/,==$7,

& V

9(7725(

* & V • W

352'2772 6&$/$5( 75$ , 9(7725, V ( W

* & V × W

352'2772 9(7725,$/( 75$ , 9(7725, V ( W

' ∇ •V

',9(5*(1=$ '(/ 9(7725( V

' ∇ ×V

52725( '(/ 9(7725( V

∂x f

'(5,9$7$ 3$5=,$/( '(//$ )81=,21(

&

&

&

&

&

&

9$5,$%,/( x 266,$

f 5,63(772 $//$

∂f ∂x

∂2 f ∂x∂y

∂ xy f

'(5,9$7$ 0,67$ 6(&21'$ '(//$ )81=,21(

i = 1..n

,1',&( i &+( 38Ó $6680(5( 7877, , 9$/25, ,17(5, '$ 1 $ n

λ

/81*+(==$ '·21'$

T

3(5,2'2 ', 81·21'$ 6,1862,'$/(

ν

)5(48(1=$ ', 81·21'$ 6,1862,'$/(

> sr @

f 266,$

67(5$',$17,

Re(α )

3$57( 5($/( ', 81$ 48$17,7­ &203/(66$ α

³³ ...dS

,17(*5$/( (67(62 $' 81$ 683(5),&,( S &+,86$

s


(OHPHQWL GL )RWRPHWULD 6LPEROL XWLOL]]DWL

...dτ ³³³ τ

,17(*5$/( (67(62 $' 81 92/80( 683(5),&,( &+,86$ S

T

7(1625( '(/ 6(&21'2 25',1(

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBB

τ

/,0,7$72 '$//$


(OHPHQWL GL )RWRPHWULD 1RWH %LEOLJUDILFKH

127( %,%/,2*5$),&+( /D ELEOLRJUDILD GHJOL DUJRPHQWL WUDWWDWL q PROWR DPSLD H FRQVROLGDWD 3HU TXDQWR ULJXDUGD L FRQWHQXWL GHO &DSLWROR VRQR SUHVHQWL XQD PROWHSOLFLWj GL PDQXDOL GL $QDOLVL 0DWHPDWLFD H &DOFROR 9HWWRULDOH 3HU TXDQWR ULJXDUGD L FRQWHQXWL GHO &DSLWROR VL FRQVLJOLD •

SHU O·HOHWWURPDJQHWLVPR FODVVLFR LO WHVWR GL -XOLXV $GDPV 6WUDWWRQ µ7HRULD GHOO·(OHWWURPDJQHWLVPRµ WUDGRWWR LQ LWDOLDQR GDOOD (LQDXGL

3HU O·RWWLFD LO WHVWR GL *ULJRUM 6 /DQGVEHUJ µ2WWLFDµ LQ GXH YROXPL HGLWR LQ ,WDOLD GDOOH HGL]LRQL 0LU

Ë VWDWD SRL FRQVXOWDWD GRFXPHQWD]LRQH YDULD SHU L GDWL ULSRUWDWL QHOOH WDEHOOH BBBBBBBBBBBBBBBBBBBBBBBBBBBBBB


(OHPHQWL GL )RWRPHWULD ,QGLFH GHOOH 7DEHOOH

,1',&( '(//( 7$%(//(

7DEHOOD &ODVVLILFD]LRQH VSHWWUDOH GHOOH RQGH HOHWWURPDJQHWLFKH

7DEHOOD &RUULVSRQGHQ]D HPLVVLRQH PRQRFURPDWLFD FRORUH

7DEHOOD &XUYH GL YLVLELOLWj

7DEHOOD 9DORUL GHO IOXVVR OXPLQRVR SHU DOFXQH VRUJHQWL

7DEHOOD 9DORUL GL LQWHQVLWj OXPLQRVD SHU DOFXQH VRUJHQWL

7DEHOOD 9DORUL GL LQWHQVLWj OXPLQRVD SHU DOFXQH VRUJHQWL

7DEHOOD 9DORUL GL LOOXPLQDPHQWR

7DEHOOD &RQYHUVLRQL PHWULFKH OLQHDUL

7DEHOOD &RQYHUVLRQL PHWULFKH TXDGUDWLFKH

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBB


1R]LRQL HOHPHQWDUL GL )RWRPHWULD ,QGLFH GHOOH ILJXUH

,1',&( '(//( ),*85(

)LJXUD &RRUGLQDWH 6IHULFKH )LJXUD %DVH QDWXUDOH H YHUVRUL )LJXUD (OHPHQWR GL VXSHUILFLH )LJXUD ² $QJROR VROLGR LQILQLWHVLPR )LJXUD ² VLPLOLWXGLQH WUD FRQL )LJXUD ² $QJROR VROLGR ULIHULWR D VXSHUILFLH REOLTXD )LJXUD &DPSR JHQHUDWR GDOOD IRU]D SHVR )LJXUD &DPSR HOHWWULFR )LJXUD /LQHH GL IOXVVR )LJXUD /LQHH G IRU]D QHO FDVR GL XQ GLSROR HOHWWULFR )LJXUD 7XER GL IOXVVR )LJXUD )OXLGR DWWUDYHUVR XQ FLOLQGUR LQILQLWHVLPR )LJXUD 9HWWRUH GL 3R\QWLQJ QHO FDVR GL RQGH SLDQH )LJXUD &XUYH GL YLVLELOLWj )LJXUD )OXVVR /XPLQRVR )LJXUD 'LPLQX]LRQH GHO IOXVVR GDOOD GLVWDQ]D GDOOD VRUJHQWH )LJXUD /XPLQDQ]D GL XQD VRUJHQWH HVWHVD

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBB


(OHPHQWL GL )RWRPHWULD ,QGLFH GHOOH HTXD]LRQL

,1',&( '(//( (48$=,21,

­ x = r sin(θ ) cos(φ ) ° ÂŽ y = r sin(θ ) sin(φ ) ° z = r cos(θ ) ÂŻ ∂ r OP

& & & = sin(θ ) cos(φ ) x0 + sin(θ ) sin(φ ) y 0 + cos(θ ) z 0

§ sin(θ ) cos(φ ) r cos(θ ) cos(φ ) − r sin(θ ) sin(φ ) ¡ ¸ & & & ¨ ∂ r OP, ∂ θ OP, ∂ φ OP = ( xo , y 0 , z 0 ) ¨ sin(θ ) sin(φ ) r cos(θ ) sin(φ ) r sin(θ ) cos(φ ) ¸ ¸ ¨ cos(θ ) − r sin(θ ) 0 š Š

(

)

§ ∂ r OP • ∂ r OP ¡ §1 0 0 0 ¨ ¸ ¨ ¨ ¸ = ¨0 r 2 0 0 ∂ θ OP • ∂ θ OP G = ¨ ¸ ¨ 0 0 ∂ φ OP • ∂ φ OP ¸ ¨Š 0 0 Š š

(w

0

¡ ¸ 0 ¸ 2 2¸ r sin(θ ) š

= v r , wθ = rvθ , wφ = r sin(θ )vφ )

r

= [v x sin(θ ) cos(φ ) + v y sin(θ ) sin(φ ) + v z cos(θ )]∂ r OP + [v x r cos(θ ) cos(φ ) + v y r cos(θ ) sin(φ ) − v z r sin(θ )]∂ θ OP

+ [−v x r sin(θ ) sin(φ ) + v y r sin(θ ) cos(φ )]∂ φ OP

sin(θ ) sin(φ ) cos(θ ) ¡ § sin(θ ) cos(φ ) ¨ ¸ & & & ( x o , y 0 , z 0 ) = ∂ r OP, ∂ θ OP, ∂ φ OP ¨ r cos(θ ) cos(φ ) r cos(θ ) sin(φ ) − r sin(θ ) ¸ ¨ − r sin(θ ) sin(φ ) r sin(θ ) cos(φ ) ¸ 0 Š š

(

)

§ v r ¡ § sin(θ ) cos(φ ) sin(θ ) sin(φ ) cos(θ ) ¡§ v x ¡ ¨ ¸ ¨ ¸¨ ¸ ¨ vθ ¸ = ¨ r cos(θ ) cos(φ ) r cos(θ ) sin(φ ) − r sin(θ ) ¸¨ v y ¸ ¨ v ¸ ¨ − r sin(θ ) sin(φ ) r sin(θ ) cos(φ ) ¸¨ v ¸ 0 šŠ z š Š φš Š § v x ¡ § sin(θ ) cos(φ ) r cos(θ ) cos(φ ) − r sin(θ ) sin(φ ) ¡§ v r ¡ ¨ ¸ ¨ ¸¨ ¸ ¨ v y ¸ = ¨ sin(θ ) sin(φ ) r cos(θ ) sin(φ ) r sin(θ ) cos(φ ) ¸¨ vθ ¸ ¨ v ¸ ¨ cos(θ ) ¸¨ v ¸ − r sin(θ ) 0 Š zš Š šŠ φ š & & 2 2 2 2 2 2 V • V = (v r ) + r (vθ ) ∂ + r sin(θ ) (vφ ) ds

2

= (dr ) + r 2 (dθ ) ∂ + r 2 sin(θ ) 2 (dφ ) 2

2

2

dS

= r 2 sin(θ ) dθ dφ

dV

= r 2 sin(θ ) dr dθ dφ


(OHPHQWL GL )RWRPHWULD ,QGLFH GHOOH HTXD]LRQL

&

∇ • V

&

∇ • V

=

1 1 ∂ r r 2 vr + ∂ θ (sin(θ )vθ ) + ∂ φ (vφ ) 2 sin(θ ) r

=

1 1 1 ∂ r r 2 wr + ∂ θ (sin(θ ) wθ ) + ∂ φ (wφ ) 2 r sin(θ ) r sin(θ ) r

(

)

(

)

=

dS r2

dS

=

dS1 dS 2 = 2 (r1 ) (r2 ) 2

=

dS = sin(θ ) dθ dφ r2

Ω

= ³³ S

=

φ + Δφ θ + Δθ dS =³ dφ ³ sin(θ ) dθ = Δφ [cos(θ ) − cos(θ + Δθ )] 2 φ θ r

dS ′ dS = cos(ψ ) 2 2 r r

­1 °σ ° °1 ® °σ °1 ° ¯σ

dx 1 = v x ( x, y , z ) dt ρ dy 1 = v y ( x, y, z ) dt ρ dz 1 = v z ( x, y , z ) dt ρ & & Ψ = ³³ V • n dS S

&

dΨ cos(ψ )dS & dΨ = (∂ x v x + ∂ y v y + ∂ z v z ) dzdxdy = ∇ • Vdτ & & & Ψ = ³³ V • n dS = ³³³ ∇ • Vdτ V

=

τ

S

Ψ

=

Ω2

&

& &

³ V (Ω) dΩ = ³³V • n sin(θ )dθdφ

Ω1

&

S

V ( Ω ) =

dΨ dΩ n

QTOT

= ¦ ni q i i =1


(OHPHQWL GL )RWRPHWULD ,QGLFH GHOOH HTXD]LRQL

Ψ

& & = ³³ V • n dS = ³³ (v x n x + v y n y + v z n z ) dxdy S

S

& & 2 2 2 Ψ = ³³ V • n dS = ³³ v r n r + r [vθ nθ + sin(θ ) vφ nφ ] r dθ dφ

{

S

S

S

S

}

& & 2 Ψ = ³³ V • n dS = ³³ ( wr n r + wθ nθ + wφ nφ ) r dθ dφ Ω2 & & & & & = ³³ V • n dS = ³³ V cos(ψ )dS = ³³ V dS ′ = ³ V r 2 dΩ

Ψ

S

S

Ω1

S

& & ∂ & & E • t ds = − B • ndS ³l ∂t ³³S

³ H • t ds = ³³

& &

S

l

& & & & ∂ j • ndS + ³³ D • ndS ∂t S

& & ∂B ∇ × E = − ∂t & & & ∂D ∇ × H = j + ∂t & ∂2 & ∇ E = εμ 2 E ∂t 2

­ 2 ρ ∂2 εμ ∇ Π = Π=− ° 2 ε0 ∂t ° ® & 2 °∇ 2 A& = εμ ∂ A& = − j °¯ ε0 ∂t 2 & & & & E = E x [Φ ( x, y , z , t )] x 0 + E y [Φ ( x, y , z , t )] y 0 + E z [Φ ( x, y , z , t )] z 0 ∂

2

j

E i = ∂ 2 Φ E i ⋅ (∂ j Φ ) = ∂ 2 Φ E i ⋅ (k j ) 2

2

ª 3 (k h )2 º» ¦ « 3 & ª 2º 2 i 2 » ∂ 2 4 E i ei ∇ E = «¦ (k h ) » ∂ Φ E ei = « h =1 2 « ω » ¬ h =1 ¼ «¬ »¼ ª 3 2 º « ¦ (k h ) » » = v 2 = εμ « h =1 2 « ω » «¬ »¼ & & ' & ' & ' & & & E = E x [ K • r − ωt )]x 0 + E y [ K • r − ωt ] y 0 + E z [ K • r − ωt ] z 0


(OHPHQWL GL )RWRPHWULD ,QGLFH GHOOH HTXD]LRQL

&

& & & = E 0 e −i ( K •r −ωt ) & & − (α& • r& ) −i ( β& •r& −ωt ) E = E 0 e e & & & & & − (α& •r& ) & & [cos( β • r − ω t ) = Re[ E ] = E 0 Re[e − j ( K •r −ωt ) ] E 0 e & & & & & & & ( β • r0 − ω t ) = ( β • r − ω t ) β • ( r − r0 ) & & & & & & & (α • r0 ) = (α • r ) α • (r − r0 )

E

=

v

ω β cos(ψ )

& E ( x, y , z , t ) = &

1

+∞+∞ +∞

+∞

(2π )4 −³∞−³∞−³∞³−∞

E ( k x , k y , k z , ω )e

& i ( xk + yk + zk +ωt ) E (k x , k y , k z , ω )e x y z dxdydzdω

i ( xk x + yk y + zk z +ωt )

& & & = E (k x , k y , k z , ω )e i ( K •r +ωt )

&

' & = E × H & & & & & & ∂D & ∂B = 0 ∇ • P − j • E − E • −H• ∂t ∂t P

&& & & ∂ §1 & 2· §1 & 2· P n dS = j • E d τ + ε E d τ + ¨ ¸ ¨ μ H ¸ dτ ³³S ³³³ ³³³ ³³³ ¹ ¹ τ τ ©2 τ ∂t © 2 & & I λ = v (λ ) P (λ )

&

780 nm & & 1 jλt ( ) ( ) v λ P λ e d λ = v(λ ) P(λ )e jλt dλ ³−∞ ³ 2π 380 nm & & Φ = ³³ I • n dS

I

=

1 2π

S

Φ

Ω2 & & & & & = ³³ I • n dS = ³³ I • n sin(θ )dθdφ = ³ I (Ω) dΩ S

Ω1

S

& dΦ I (Ω ) = dΩ & dΦ I (Ω) = dΩ

φ2 θ2 & & Φ = ³³ I • n dS = ³ dφ ³ I (θ , φ ) sin(θ ) dθ S

φ1

θ1

& & I L = L ′ & I


(OHPHQWL GL )RWRPHWULD ,QGLFH GHOOH HTXD]LRQL

L( x, y , z ,Ďˆ )

=

dÎŚ I = cos(Ďˆ ) dS dΊ cos(Ďˆ ) dS

Ď€ 2 dÎŚ = 2Ď€ Âł L cos(Ďˆ ) sin(Ďˆ ) dĎˆ dS 0

Ď€ 2

= 2Ď€L Âł cos(Ďˆ ) sin(Ďˆ ) dĎˆ = Ď€L

Lu

0

E

=

1 sb

dÎŚ dΊ I â‹… = I â‹… cos(Ďˆ ) = cos(Ďˆ ) dS dS r 2 =

1 phot

cd cd cd = − 4 2 = 10 4 2 = 10 4 nt 2 cm 10 m m =

lm lm lm = − 4 2 = 10 4 2 = 10 4 lux 2 cm 10 m m

1 cd cd ≅ 0,318 2 2 π m m

1 asb

=

1 L

1 cd 10 4 cd = = 10 4 asb 2 2 π cm π m

=

1mmL

= 10 −3 L = 10mL = 10asb =

10 cd π m2

1

cd 1 cd 1 cd 10 4 cd cd ≅ = = ≅ 10,76 2 2 2 −4 2 2 930,27 cm 930,27 10 m 930,27 m ft m

1

cd 1 cd cd ≅ ≅ 0,1548 2 2 2 6,4609 cm inch cm

lm 10 4 lm lm ≅ 10,76 2 1 2 ≅ 2 930,27 m ft m 1

lm 1 lm lm ≅ ≅ 0,1548 2 2 2 6,4609 cm inch cm

1 fL =

1 cd π ft 2

1 fL

=

§ 10 4 cd ¡ 1 cd 10,76 cd −4 ¨¨ ¸ = 10,76 10 −4 L = 1,076mL ≅ = 10 10 , 75 2 ¸ Ď€ ft 2 Ď€ m2 Ď€ m Š š

1 fL

=

1 cd 10,76 cd cd ≅ ≅ 3,4262 2 2 2 π ft π m m


(OHPHQWL GL )RWRPHWULD ,QGLFH GHOOH HTXD]LRQL

I = αLS

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBB


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.