Global Sustainability
全球 STEM 联盟 (资料汇编) 2014年12月5日
Empowering the Next Generation of Scientific Innovators
托起下一代科学教育的希望, 引领中国 教育产业链的变革
Global Sustainability
Last revised December 2014
目录 1. 纽约科学院 1.1 简介 1.2 纽约科学院科学联盟简介 1.3 纽约科学院科学家无国界项目简介 1.4 纽约科学院科学与城市项目简介 2. 全球STEM联盟 2.1 全球STEM联盟简介 2.2 全球STEM联盟发展背景 3. STEM教育内容和范围 3.1 - STEM小学教育- 培养孩子好奇心 3.2 - STEM高中教育- 科学网络云集英才 3.3 - STEM成人教育- 教师与在职工作者的专业培训 3.4 - STEM高等教育- 圆女性的科学梦 3.5 - STEM科学联盟- 科学家的资源共享平台 3.6- 全球STEM联盟青少年学院介绍 4. 全球STEM联盟在中国 4.1 基金会与纽约科学院签约- 牵头中国区域STEM联盟 4.2 基金会出席纽约科学院全球STEM联盟研讨会 4.3 中国STEM联盟第一阶段工作计划 深圳 4.4 参加STEM中国调研的部分专家顾问 5. 案例分析 5.1 全球STEM联盟与思科合作 打造大型网络开放平台 5.2 思科全球副总裁的倡议书 5.3 思科公司关于STEM项目的案例介绍 5.4 全球STEM与跨国企业合作案例 百事可乐 ARM TATA 5.5 全球STEM在巴塞罗那与马来西亚的实施方案 5.6 员工STEM培训案例 - 对于潜在商业风险评估培训 6. 附录 相关英文参考文献 6.1 思科全球副总裁的倡议书英文版本 6.2 全球STEM联盟青少年学院英文版本 6.3 全球STEM联盟涵盖范围英文版本 6.4 全球STEM联盟中国调研的部分专家顾问英文版本 6.5 全球STEM联盟部分学术论文
3
4
1.1简介
1. 纽约科学院
纽约科学院(NYAS)成立于1817年,在世界100多个国家拥有22000多名会员及会员机构。该学院 倡导科普教育,鼓励科技创新,致力于通过科学的发展和进步来应对全球在环境、资源、健康等 方面面临的挑战。著名科学家爱因斯坦、爱迪生、达尔文也曾经是纽约科学院院士,目前纽约科 学院的会员中有27位获诺贝尔奖科学家。 纽约科学院的项目涉及不同领域,主要研究领域有生命科学、工程与物理学、环境学、社会学、文 化&科学、职业规划、科学教育、营养学等8个专业板块,这八个板块内容配合纽约科学院的三个 主要发展项目交替展开,包括:科学联盟、科学与城市、科学家无国界。 不同于任何专业科学学会,纽约科学院在最热门的领域中为大量的研究会做着连续性工作,这些 领域包括:新型传染性疾病、神经系统疾病,微生物学、基因染色体医学、生物化学医药学-核 糖核酸、化学生物学、完整基因图谱、神经免疫技术。感官技术,系统生物学、计算机生物学、 生物信息学等。其大部分在生命科学的研究是与杰出的电子工程师、计算机科学家、数字家、物 理学家和化学家合作的,致力于在新的研究领域中使物理学和生命科学相关联。 地处纽约的世界贸易中心,纽约科学院独特的地理优势与悠久的历史,为科学家与学者提供了一 个公共平台进行学术研讨、心得交流、能力培训等。以培养科学人才,促进人才交流理念为指导 核心,来自不同国家、企业和非营利性组织积极参纽约科学院的各个项目,将科技创新理念融入 教育、培训、国际会议、机构合作,积极搭建科技创新平台,培养下一代人才。 纽约科学院的年鉴网站收集自1982 年以来,世界科学界重要的学术论文以及研讨资料。纽约科学 院的年鉴网站不仅是众多科学家进行学术资料调研的重要数据库。同时,纽科院的数据库也为联 合国、联合国教科文组织、联合国妇女儿童基金会、世界银行等众多国际组织提供详尽的区域调 研报告,促进科学交流以及文化传播。 纽约科学院发行的《纽约科学院记录》是在全美国发行时间最长的科学类系列丛书,会员可以在 网上来打印这些资料,纽科院还为会员发放杂志《更新》,为了提高非纽约地区基本会员的服务, 纽约科科学院建立了科学家无国界项目,其重要组成部分是利用创新的传播机制把90%的会议和 研讨会的内容公布。这种网络会议档案称为“电子简报”。电子简报的特点:(1)通过学院的网 站可以把最近8个星期的每个研讨会和会议的科学结论邮寄过来;(2)它们的格式也是唯一的。 这专为两种人设计:一种是没有时间,但是需要快速得到每次会议最重要内容的人;另一种是学 生,他们想发掘报告更深意义。 同时,纽约科学院还召开会议,探讨在非生命科学领域中学生们所感兴趣的东西,例如:线形理 论、氢能源、绿色建筑、非洲居民与饥饿抗争、青少年智力开发、全球变暖、以及智力扩容理 论,学生会员不用到现场参加研讨会和会议,因为90%的报告(包括未公布的信息)都可以在科 学院的网站上找到。
1.2 纽约科学院科学联盟简介 自纽约科学院1817年建立,该机构一直致力于推动科技创新与交流。科学联盟,作为纽约科学院的 一个重要的科学平台,从2003年至今已经有53个世界领先科研机构以及将近8000余名来自世界顶尖 学府的科学家。科学联盟关注职业规划,以及专业能力培训。 纽科院科学联盟53个科研机构成员: 耶鲁大学、麻省理工学院、加州大学伯克利分校、威尔康乃尔医学院、雪城大学、 哥伦比亚大学、哥伦比亚大学医学中心、纽约大学医学院、洛克菲勒大学、罗格斯大学、圣约翰 大学、纽约州立大学、纽约市立大学、乔治城大学、纽约理工大学、纽约洛克菲勒大学、罗格斯 大学、圣约翰大学、纽约州立大学、利哈伊大学、奥尔巴尼医学院;阿尔伯特·爱因斯坦医学 院、史蒂文斯理工学院、西奈山医学院、亚利桑那科学中心、巴德学院、脑外伤基金会、伯克医 学研究院、巴鲁克学院、布鲁克林学院、大学史泰登岛研究生中心、亨特学院、约翰·杰伊学 院、莱曼学院、Medgar埃弗斯学院、纽约市技术学院、冷泉港实验室、该范斯坦医学研究所、基 因泰克、郭士纳斯隆 - 凯特琳研究生院、斯隆 - 凯特琳癌症中心; 科学联盟独特优势: 教育与咨询- 为学员提供独特的职业发展规划与战略定位。 启蒙与引导 - 为合作伙伴提供讲座、培训,网络课程提升人际沟通、传播、创业技能,同时这个 项目的成员可以有机会与STEM项目的学生进行一对一互动。 网络资源共享 - 合作伙伴可以解除纽约科学院的出版期刊、杂志、年鉴,以及世界上领先的科研 项目。同时纽约科学院的《科学》杂志是世界上创办最早的科学期刊之一。 填充社交网络 - 纽约科学院的会员与世界的科学家互动交流,同时纽约科学院的联络群网络了世 界上顶尖的科学家与科研机构,同时有机会与纽约科学院的资助公司、政府领导人见面、搭建资 源共享平台。 名誉与地位 - 纽约科学院云集世界领先的科研机构与诺贝尔奖得主,会员包括了美国总统杰斐 逊、梦露、托马斯·爱迪生、巴斯德、达尔文、玛格丽特·米德和爱因斯坦。
1.3 纽约科学院科学家无国界项目简介 纽约科科学院建立了科学无国界项目,其重要组成部分是利用创新的传播机制把90%的会议和研 讨会的内容公布。这种网络会议档案称为“电子简报”。电子简报的特殊性:(1)通过学院的网站可 以把最近8个星期的每个研讨会和会议的科学结论邮寄过来;(2)它们的格式也是唯一的。专为 两种人设计:一种是没有时间,但是需要快速得到每次会议最重要内容的人;另一种是学生,他 们想发掘报告更深的意义。 科学家无国界项目网站:https://www.scientistswithoutborders.org/ 1) 科学家无国界项目的整体介绍 科学家无国界是一个基于网络的协作虚拟社区,致力于为当前世界最紧迫具有挑战性的难题提供共 享空间以及解决方式。通过网络平台, 我们的会员以及科研专家集众家之所长,解决关键的特定科学 领域的问题。网络用户通过在我们的网站注册信息,可以与其他用户连接,交换观点,分享资源, 较快 项目的推进程度。通过利用高科技技术通信、促进开放式创新、可持续发展。科学家无国界系统 包括个人、以科技研究为导向的科研机构、各级学术机构、非政府组织。 2)科学家无国界项目的合作伙伴, 以及目前与企业与政府的合作模式 纽约科学院、联合国开发署、比尔与梅琳达·盖茨基金会、萨克勒研究所、百事可乐、强生公
5
6
司、 Sight and Life、非洲科技研究中心、非洲绿色研究中心、美国生理协会、美国农学协会、美 国细胞生物协会、生物医学中心、地球研究所、国际科学基金会、科学与发展网络、可持续发展 能源研究所等。 3)科学家无国界项目的理念以及运作模式 合作项目涉及公共卫生方面: 与比尔和梅琳达·盖茨基金会和营养科学萨克勒研究所合作,利用网络平台,发起网络广告、问 卷、研讨,一共45天的时间。研讨后,选出一些专家学者作为“全球营养数据”的评委,同时鼓励世 界上的年轻学生积极参加“全球营养数据”比赛,研讨当今世界营养不足问题的解决方式。 与百事可乐以及营养科学萨克勒研究所合作,建立 “营养创新奖项”。鼓励51个国家的学生以及学 者参加比赛,提出解决当前世界母婴营养问题的对策,同时百事可乐建立一个价值一万美金的奖 项。 与强生公司合作,针对世界上营养神经健康的问题,强生公司建立一个价值一万美金的奖项,鼓 励科学家跨国界合作,提出一些解决精神疾病的建设性意见。 在可持续能源发展方面: Sight and Life 和营养科学萨克勒研究所合作,建立一个价值为 2.5 万美金的奖项,鼓励营养包装的 可再生循环,同时保持食品的新鲜程度。纽约科学院与美国国际开发署合作,建立“美国-俄罗斯 清洁能源奖项”,鼓励专家学者相互沟通,探讨当今美俄中的营养问题以及能源问题的潜在挑战, 收集数据,并利用思科的技术搭建技术合作交流平台帮助美俄专家网上交流。 在领导力发展方面: 与洛克菲勒基金会合作,利用互联网将政府官员,非营利机构,媒体,个人聚集在一起,探讨科 技网络对社会带来的影响。
1.4 纽约科学院科学与城市项目简介
纽约科科学院建立的科学与城市项目促进科学城市发展,为会员提供大量的科学城市探索系列活 动。扩大会员与科学家以及科研活动的接触面积,提升会员整体的科学素质。
7
联合国教科文组织总干事博科娃
纽科院主席南希﹒其菲尔致词
国际电信联盟秘书长马都尼﹒图儿
2.全球STEM联盟 2.1简介 STEM代表科学(Science)、技术(Technology)、工程(Engineering)、数学(Mathematics)。全球STEM联盟是由纽约科学院发起,联合国教科文组织、国际电信联盟支持的一个由 各国政府、跨国公司、非政府组织参与的为应对21世纪教育、创新和人才挑战的联合行动,利 用所搭建的网络学习平台,结合地面实体教学的方式,培养青少年对科学的兴趣和创新能力, 为人类培养下一代科技人才。 STEM联盟已经面对美国、埃及、马来西亚、西班牙等国家的众多学校、学生逐步实施、推广 了五年多的时间,目前越来越多的全球机构、企业(如百事可乐、思科等)参与进来,也得到 更多国家以及地方政府的大力支持。 为了进一步推进全球STEM联盟的发展,全球可持续发展基金会(GSDF)联合纽约科学院 (NYAS),协同全球STEM联盟的共同发起机构 -- 联合国教科文组织(UNESCO)、国际电信 联盟(ITU)一起,于2014年9月22日在联合国纽约总部举行了全球STEM联盟官方启动仪式。 众多联合国高级官员、部分参与STEM国家领导人、各国STEM联盟成员单位代表以及若干世界 跨国公司负责人出席了声势浩大的启动典礼。
8
面临当前的世界经济一体化, 最有价值的技能就是你的知识, 良好的教育不再是机会的通道,而是必 不可少的条件 - 美国现任总统 贝拉克 奥巴马 随着全球人口呈指数的增长,世界经济体系变得更加交错纵横,相互关联 自然资源却逐渐变为稀缺 资源 并越来越局限地为世界公民提供食物 清洁能源 基础药物治疗的满足和在区域间扩展 但是 我们可以通过科学探索和科技创新 来有效克服当前世界挑战 科学 技术 工程和数学 STEM 在未来的国家安全和公民生活保障中发挥着重要作用 为了进一步的解决当前世界矛盾 纽约科学院尝试一种创新方式强调STEM教育联盟的重要性 近 年来 纽约科学院已经先后研发了一系列有变革性的活动 在为不同年龄层的学生提供人生规划 的同时 激发引导学生对于科技领域的兴趣 营造以科学家 学生和教育工作者为群体的社区 并为这些社区提供丰富的教育资源 纽约科学院提升全球STEM联盟的整体教育素养 从初级幼教 到成人的专业教育 最终建立一个横跨不同年龄层与受众群体的有效教育回路 1986年 美国国家科学委员会发表 本科的科学 数学和工程教育 报告 首次明确提出STEM教 育的纲领性建议 2006年 美国总统布什公布 美国竞争力计划 提出知识经济时代的教育目 标之一是培养具有STEM素养的人才 并称其为全球竞争力的关键 2007年美国参众两院一致通过 美国竞争法 该法规对STEM教育的重视反映了美国社会的一种共同关注趋势 2011年 奥巴 马总统推出了新版 美国创新战略 该战略指出 美国未来的经济增长和国际竞争力取决于其 创新能力 STEM教育必须得到加强 在中国 STEM教育有着重要意义 首先 STEM可以作为教育兴国的突破性方向 STEM教育将 会对中小学教育 高等教育等多个领域产生系统性的影响 对于我国产业的转型 劳动力水平的 提高将会产生积极的促进作用 帮助国家经济从劳动密集型向技术密集型转变 其次 STEM教育 可以推进教育体系的改革 以为中国培养适应21世纪挑战的复合型创新型人才为目标 切实推进 STEM教育的研究与实践 第三 STEM教育可以推进技术教育与工程教育改革 在实际的社会分 工中从事技术和工程的人数要远远高于从事科学和数学的工作的人数 而在中学教育中 我们更 加偏重科学和数学的教育 技术教育和工程教育比重应得到增加 最后 STEM教育可以推进科学 和数学教育改革 通过STEM教育培养学生科学阅读 科学推理 科学建模 科学工程的科学能 力 而数学教育是STEM教育的基础 技术深入 工程论证 科学建模都需要数学作为基础
9
国际电信联盟 - 致力于连通世界 国际电信联盟 ITU 负责划分全球的无线电频谱和卫星轨道 制定技术标准 以确保网络和技术 的无缝互连 并努力为世界欠发达社区提供ICT接入 与其它联合国机构不同的是 ITU既有公共 部门成员 也有私营部门成员 除193个成员国以外 国际电联 ITU 成员中包括ICT监管机构 领先学术机构和大约700家私营公司 国际电联有助于管理和调控应急服务 供水 电网和食品配 送链 有助于医疗 教育 政府服务 金融市场 交通系统和环境管理 它还使人们得以随时甚 至随处与同事 朋友和家人相互沟通 目前,在可持续发展的引导下,国际电信联盟 ITU 将STEM教育作为一个重要推进项目, 在移动促 发展与智能可持续发展模式的过程中, 逐步培育监管与市场环境,高效发展技术与网络, 采用新的ICT 应用,推进针对有具体需求的人群数字包容性 同时 在开展能力建设的要求下 通过STEM的网 络平台 收集数据 开展能力建设活动 加强网络安全 帮助发展应急通信的网络并促进可持续 发展的进一步推动 同时 国际电信联盟也致力于伙伴关系的建立 对进一步推进IT发展以及社 会部署有重要的意义
联合国教科文组织 联合国教科文组织 UNESCO 正致力于整合科学 技术 工程和数学 STEM 发展纳入国家发 展和教育政策 并与纽约科学院 NYAS 国际电信联盟 ITU 合力 政府 机构 学术界以 及非营利性组织一起 建立全球STEM联盟 女孩和妇女作为联合国教科文组织的特别关注对象 通过STEM联合国教科文组织妇女在科学课程 鼓励和支持更多女性进入科学事业 并通过联合国 教科文组织的全球伙伴关系进一步推进世界女性教育 通过制定教育政策以及对于先进实验室进行投资 联合国教科文组织给与世界女性一个与男性平 等接受教育的机会 同时利用新的通信技术培育发展青少年的创造力 这些均为提升世界平均就 业年龄以及创业机会 创造了更多的机会
10
3.STEM教育内容和范围 3.1 - STEM小学教育- 培养孩子好奇心 项目介绍 在美国,很多城市失业率居高不下,但仍有成千上万的高薪岗位为生产和技术工作人员提供就业 机会。原因之一在于,美国小学生教育中对于学生的科技STEM教育不足:一般区域的学生每周接 受科学教育的时间不足三个小时。很多有科学天赋的孩子仅仅因为教育资源的缺失,失去了个人 深造和提升经济保障的机会。 纽约科学院的STEM辅导教育项目应对当前挑战,以经过特殊训练的研究生为辅导员,让经过培训 的研究生与博士生与中小学生一对一进行交流。这个项目为纽约州在经济上处于不利地位的中小 学校和社区提高教学质量。2010年,来自700多名研究生与博士后代表世界上领先教育机构,为超 过10,000名儿童与100个组织, 提供131,000余小时的科学和数学教育。在培训的项目中,中学生得 到帮助,并有机会和来自世界先进学府的学生深入交流,分享经历,同时为研究生提供不可多得 的教育经验。 2012年,美国国家科学基金会颁发纽约科学院和纽约州立大学2,950,000美元,以资助纽约地区的六 个蛀主要区域中美国女童子军和克林顿全球倡议的推广。在2014年,学院在马来西亚与巴塞罗那 推出有关项目的国际网站。2014年春,纽约科学院和纽约市教育局推出科学家常驻试点项目,其 中11位导师与教师合作,指导25-30位学生,为他们设计合适的课程。国内和国外的很多教育试点 也接受了强化培训,网络搭建,这包括对于同龄人的培训,信息搜集,项目实施的拓展与实践。 覆盖领域
实施区域与合作伙伴
特邀合作伙伴建议
- 纽约:纽约市,奥斯威戈,尤蒂卡,长岛,奥尔巴尼和雪城/纽 约州立大学,美国国家 科学基金会,纽约市青年和社区发展 - 西班牙:巴塞罗那巴塞罗那/市长办公室 - 马来西亚:马来西亚吉隆坡/国立大学,总理办公室,纽约大学 工程学院 - 卡塔尔:教育/最高教育委员会,锡德拉,卡塔尔基金会,卡塔 尔大学,多哈 - 旧金山,得克萨斯州,爱荷华州/美国女童子军,克林顿全球 倡议 - 墨西哥/教育部
评估机制 通过从美国国家科学基金会的资助,ASPM对于此项目进行评价。第1年,评估发现学生在短时间 的STEM培训后,对于科学兴趣有显著增长。同时,该评估发现,学生信心的增强程度和科学的教 育方法与有效的教育实践正相关。区域站点应该逐渐加入外部评价机制, 或者利用纽约科学院的 内部评价标准进行进一步衡量,这包括:导师调研,新闻访谈,有效的观察和指导方法。
3.2 - STEM高中教育- 科学网络云集英才 项目介绍 2013年,纽约科学院与马来西亚总理合作,创立了一个高中STEM教育的项目。马来西亚大学与纽 约科学院联手,为天赋少年,教师,优秀大学教育工作者提供一系列名为 “诺贝尔头脑风暴”的研 讨会。将近有250位参与者参加了这次以及2014年的相同主题培训。诺贝尔经济学奖得主理查德· 罗伯茨先生目前担任得主驻场协助制定研究项目的参与者。纽约科学院与合作伙伴一起,搭建软 实力培训项目,提升学生的领导才能。 培训的方式有:研讨会、在线课程、经验交流会,有效地 为高中学生未来发展提供建议。 在纽约市,纽约科学院推出了高中学徒计划,邀请在特定领域有天赋的学生成为助教,辅导学生 在相关领域的功课。除此之外,这些有天赋的孩子可以:1)参加在线课程; (2)和科学家进行一 对一沟通;(3)参加特定内容的教师培训与科学教育。 目前这个项目受到纽约市教育部的好评。 在过去的四年中,纽约市高中学生参加各种编程设计培训,包括我们的联盟机器人混战,STEM Bonanza和科学规划。2013年, 纽约科学院正式筹备组建高中科学教育项目组。 覆盖领域
实施区域与合作伙伴
特邀合作伙伴建议
- 纽约/纽约市教育局/平克顿基金会 - 马来西亚/马来西亚国民大学,总理办公室,第一夫人办公室,马 来西亚神童教育项目. - 英国/英国华威大学,Iggy.net - 澳大利亚(悉尼和墨尔本)/联邦政府,维多利亚州政府,澳大利 亚科学院,总督的办公室,莫纳什科学学院 - 卡塔尔/教育部,卡塔尔国际基金会,卡塔尔国际研究基金会 - 印度尼西亚/印尼 - 澳大利亚中心 - 俄罗斯/美国联邦政府
评估机制 通过评估每个培训项目后,学生对于科学教育的态度变化,兴趣程度和学习效率来衡量高中STEM 项目的有效程度。评价的方法包括:前置和后置的调查,观察和设计,由学院的工作人员进行了 采访。该评估的目的是建立一个反馈回路,以提高课程质量,提升师资队伍的整体实力。STEM 高中项目已经吸纳300余名学生参加相关会议,为将近250名学生举办讲座和类似的参与活动。
11
12
3.3 - STEM成人教育- 教师与在职工作者的专业培训 项目介绍 当前,特级教育的专家和教师仅可可有限的访问一些国际教育资料。有限的教育资源无法为教师 提供充分、全面和具体的课程设计理念。在职教育者的STEM培训为当前的教育工作者提供第一手 教育资源,为一线教师和二三线教师的沟通建立有效的反馈回路,并促进教育资源的共享和教育 心得的交流。 自2010年,STEM教师培训项目开展,这个项目在新泽西和纽约州的公立科学教育老师提供了4800 个会员身份。并为他们提供众多国际知名杂志出版物,在线的教育资源,并针对不同年龄层的教 育需求提供有效的教学方法指导。此外,该学院提供个人在线课程,培训教师的综合技能。 除了支持现有的教师培训项目,纽约科学院积极参与创新实践。通过全球STEM创新联盟,纽约科 学院聘请数百名研究生和博士开展教育培训项目。目前,通过与100kin10和纽约市教育局以及美国 女童子军组织的合作,纽约科学院积极聘用公立学校教师。 最后,通过全球STEM联盟,纽约科学院一直积极推动各种政府机构教学项目的推动并有效地缓解 全球科学和教育人才的短缺。目前,通过STEM联盟项目,已经有超过80位来自马来西亚的教育工 作者和来自纽约的1000名教育工作者推动这个项目。 覆盖领域
实施区域与合 作伙伴
- 纽约/100kin10, 纽约市教育部 - 马来西亚/马来西亚国民大学,总理办公室,第一夫人办公室,马来西 亚神童教育项目 .
特邀合作伙伴 建议
- 不丹/不丹教育部 -卡塔尔/卡塔尔基金会,卡塔尔大学 - 阿根廷/布宜诺斯艾利斯市长办公室
评估机制 国内方面,纽约科学院提供4800个免费教育资格,也可以用来支持每个学校的师资力量,以问卷的 形式对学生进行问卷调查来测试他们对于项目的满意程度。将近1000多名科学家参与了培训的项 目,同时,问卷也抽样调查了学生对于网络训练的满意程度。 近百分之八十的学生表达了对于测 试的满意程度。
3.4 - STEM高等教育- 圆女性的科学梦 项目介绍 纽约科学院坚信,任何人的才华和能力都不应该在追求科学的道路上停滞; 课堂,实验室和办公 室的多样性提升了教育以及科研的综合创造力。 世界上很多年轻有抱负的女性因为文化和家庭的背景,没有机会接触先进的科学理念。没有家属 的陪同,很多年轻的女性没有办法独自世界旅行。2012年,美国当时的国务卿希拉里·克林顿宣 布推出NeXXt学者奖励计划,与青年妇女以穆斯林为主的国家的妇女联谊,邀请她们到美国高校 访问,并鼓励她们获得在科学STEM领域的学士学位。这些来自中东国家的女性国际学者与一位美 国的女性研究生或者博士后进行经验交流。 这个项目不仅鼓励更多年轻女性融入STEM的教学项 目中,而且促进了文化交流,和职业规划的良性循环。 2014年春季,超过100名学者和导师完成了第一年的活动,并将继续在秋季进行。此外,有50位国 际访问学者和辅导员参与第二年的培训。该计划的人数逐渐增多,预计到2014年,将有超过100人 参加此项目。
实施区域与合作伙 伴:
实施区域与合作伙 伴:
- 美国/美国政府,38个女子学院的财团 - 全球/纽约科学院院士,克林顿全球倡议 - 澳大利亚/维多利亚政府 - 卡塔尔/卡塔尔基金会,卡塔尔大学
其中一个NeXXt学者奖励计划的主要目标是:保持年轻女性在STEM领域的旺盛求知欲望。目前, 该方案保留了92%的学者(导师94%)。参加者前、后调查,记录每年的满意项目及其对未来的规 划建议的看法。
3.5 - STEM科学联盟- 科学家的资源共享平台 项目介绍 纽约科学院为研究生和科学研究员提供丰富的职业咨询和专业发展培训。这不仅给年轻的科学家 提供在专业发展方向的合理定位,同时也为研究员、物理学家、教授、工程师和年轻的创业者提 供了一个国际平台。目前,超过8000个研究生和博士生研究员提供了丰富的专业发展资源,筹备 了超过75个大型会议和培训课程。在2013年至2104年学年,有超过3000名学生和博士后参加科学联盟职业发展 计划。百分之八十的参与者表示,他们提高了参与项目以及与人合作的分析问题和解决问题的能力。
13
14
3.5 - STEM科学联盟- 科学家的资源共享平台 项目介绍 纽约科学院为研究生和科学研究员提供丰富的职业咨询和专业发展培训。这不仅给年轻的科学家 提供在专业发展方向的合理定位,同时也为研究员、物理学家、教授、工程师和年轻的创业者提 供了一个国际平台。目前,超过8000个研究生和博士生研究员提供了丰富的专业发展资源,筹备 了超过75个大型会议和培训课程。在2013年至2104年学年,有超过3000名学生和博士后参加科学联 盟职业发展计划。百分之八十的参与者表示,他们提高了参与项目以及与人合作的分析问题和解 决问题的能力。
图1
图2
图3
图4
图1: 纽约科学院主席埃利斯·鲁宾斯坦为非盟委员会主Dr. Nkosazana Dlamini Zuma 颁奖 图2: 纽约科学院主席埃利斯·鲁宾斯坦与马来西亚总理纳吉布在STEM启动仪式上 图3: 全球可持续发展基金会CEO严雪瑞女士和纽约科学院主席南希·其菲尔 图4: 马来西亚总理纳吉布在STEM全球启动仪式上致辞
3.6. 全球STEM联盟青少年学院 纽约科学院STEM联盟是一个由政府、企业、学校、非营利组织引领,集众家之所长,致力于提升 世界青少年科学教育水平的国际项目。联盟侧重于三个方向-代际沟通、基础技能培训、全球科 技教育网络搭建。联盟的三个主攻战略强调了STEM项目的特殊性:不仅解决了教师师资力量和人 口分布的矛盾,缩减了学校技能培训和专业技校能力培训的差距,同时给世界的青少年一个平等 接受科学教育的机会,鼓励更多有科学天赋的青少年发展自己的才能,成为有用的人才。 全球STEM联盟青少年学院搭建了一个虚拟的网络的平台和科研中心,启发有天赋的青少年发展自 己的潜能。这个平台包含人才测试机制﹑能力分析与优化﹑人生规划与指导﹑在线课程学习﹑亲 身实践经验﹑纽科院会员﹑亲身活动体验﹑写作中心辅导﹑有效教育规划﹑杰出贡献领域﹑以及 全球STEM联盟峰会交流。 全球STEM联盟青少年学院将游戏的理念应与于教育实践。利用网络游戏和高精尖技术,引导青 少年在使用高科技的同时,以互动的模式接受网络教学,发掘自己的科学潜能。青少年学院课程 着重提升学生的基础能力,建立可行性的操作方案,为青少年搭建一个网络平台。以此平台为基 础,青少年发挥所长,与专业科技人才互动沟通。并且,青少年学院独特的人才测试机制人性化 考量青少年天赋,制定了六个相辅相成的机制。STEM课程将逐步提升青少年的传播技能﹑社交能 力﹑项目管理策划能力﹑团队合作能力和批判性思考的能力。青少年在学习STEM课程的同时,寓 教于乐,发掘自己的潜能并尝试对未来发展理性定位。另外,教师通过学生对网络平台使用的反 馈,不断优化课程设置,为学生在科研领域的研究保驾护航。 项目组成部分: 人才测试机制:传统意义上,学校核政府通过使用智商测试,依据孩子的智商分数将孩子分入不 同的课程项目。青少年学院力图制定一套独特的人才鉴定模式,包括:游戏化的测试理念﹑公开 制造挑战的思维训练模式﹑及时的教师反馈系统﹑和面对当前科研挑战的对策。与以移动手机网 络游戏著称的公司Galxyz的合作,青少年学院将建立一套独特的STEM游戏模式,充分发掘孩子的 潜能。同时,此项目有将与纽约科学院强强联合,大力发展科技网络平台,力争用人性化的模式 进行人才测试。 能力分析与优化:青少年学院的学生具备不同的科研经历。学生可以利用能力分析软件,查找自 己在知识储备﹑语言能力﹑数学能力和个人发展能力上的弱势,并利用网络课程和培训弥补弱 势,强化优势, 找到兴趣和未来发展方向的结合点。 同时,这个项目将推荐一些列课程,和相关 领域的教育机构联手搭建人性化的教育平台,集众家之所长。 人生规划与指导:利用Everwise和思科的软件,青少年学院的学生与专家进行一对一的职业测试 与人生规划咨询。这些专业人士包括:STEM专业课程开发的专家,有多年相关科研经验的教授, 来自机构社会女性工程师的资深工作人员,瑞典青年学院和布拉瓦特尼克获奖得主。永富平台利 用人性化信息检索机制,匹配需求或相近的导师与学生。导师将参与合作开发与美国国务部计划 指导和培训协议。学员和导师将人生规划作为一项长期的发展规划,利用结构化的活动和在先课 程,积极参与学术研究,为未来的发展做准备。永富和思科是现在发展此项目有的主要合作方, 这个项目将于2015年完成。 在线课程学习:青少年学院的成员将有机会参与网络课程实践,提升自己在领导力,科学写作, 人际传播,创业等多方面的技能。另外,以内容为主题的学习将与STEM相关领域的课程有效结 合。网上课程以培养学生领导力为核心,情景教学,提升学生团队合作与创业实践能力。学生将
15
16
进一步学习市场营销与企业经营模式,包括:公开演讲的培训﹑对于信息分类和加工的整合的能 力提升﹑辅助学生确立研究问主题﹑进行背景调查﹑建立调研项目。同时,写作中心为学生提供 与写作表达相关的咨询。 亲身实践经验:利用科学家无国界项目中专家的技能,青少年学院学生依照自己的爱好选择科学 调研项目,充分发挥自己的特长,与来自不同国籍的小小科学家合作,用创造性方式解决目前科 学领域面临的难题和挑战。青少年科学院也会充分参与公民教学项目。该平台将充分利用网络空 间,扩大接触信息的路径和管理工具的模式,以帮助学生建立真实的科研体验。教育课程将出版 并为大众教育的普及更好服务。 纽科院会员资格:所有青少年学院的成员会获得纽约科学院的会员身份,访问纽约科学院近200年 搜集的研究杂志,近20年以科学为主题的会议与多媒体产品,并有效利用思科制作的职业测试软 件。另外,纽约科学院用折扣的价格提供与纽约科学院有合作关系公司的网络资料。 亲身活动体验:获得最高级别的参与者有机会申请实习,并获得前往纽约出席少年科学院首脑会 议的所有费用。此外,纽约科学院及合作机构将从少年科学院选拔人才,为特定的项目提供科研 支持。 写作中心辅导:少年科学院将建立不同学科的科研项目,关注相应的研究领域。学生与纽约科学 院专家进行一对一的互动辅导。网络写作中心将构建一个虚拟的网络平台,为学生提供大量的文 献和相关书籍,同时检测学生的参与程度和针对辅导内容的吸收率。 有效教育规划:通过网络数据平台反馈分析结果,教师可以改进教学模式﹑增加课堂互动机制﹑ 提升课堂吸收率﹑挖掘学生的科学潜能,实现人才战略。 杰出贡献领域:纽约科学院将出版一册名为“智商测试背后的故事”的教育论文精选集。 这本精选 集将收集当前领先的教育研究论文,包括新人才衡量标准﹑评价机制﹑资优教育﹑埃杜游戏﹑有 效区域化教育战略﹑和教师培训的配备模式。
4.全球STEM联盟在中国 4.1 全球可持续发展基金会与纽科院签约- 牵头中国区STEM联盟
2014年9月,全球可持续发展基金会与纽约科学院签约,作为全球STEM联盟在中国的唯一牵头机 构,借助全球STEM联盟、纽科院的经验,推动具有中国特色的STEM项目,以帮助激发和鼓励智 慧儿童、天才少年进入科学领域,协助中国培养面向未来、面向世界的科技创新人才。 全球可持续发展基金会配合联合国及其有关机构,致力于配合联合国千年目标和后2015计划,推 动全球可持续发展,专注于全球范围的科技创新、资源与金融、妇女和儿童、老龄与生命科学、 文化和遗产、合作伙伴等领域。
4.2 基金会项目负责人出席纽约科学院全球STEM联盟研讨会 2014年10月1日,全球可持续发展基金会合作发展部负责人刘玮先生应邀出席纽约科学院在世界贸 易中心总部报告厅举办的 “造福下一代 -- 全球 STEM 国际科技教育与创新”研讨会。研讨会由纽约 科学院执行副总裁兼首席营运官 TC Westcott 女士、纽约科学院高级副总裁、全球伙伴关系负责人 Lorraine Hariton 女士组织并主持。纽约大学工程学院副院长 Robert N Ubell 先生致开幕词。Robert N Ubell 先生强调,科技发展不仅是社会生产了的推动力,也是教育中的核心部分。应对全球可持 续发展的需要,纽约科学院的全球STEM项目,将会培养孩子对科技创新的兴趣,提升个人的创新 力,搭建公共创新平台。 在研讨会上,纽约科学院特别邀请了 Evervise 科技公司的创立人之一、雅虎公司董事长 Maynard Webb 先生、World Learning 全球顶尖学术机构总裁兼首席执行官 Donald Steinberg 先生和与会代 表人员进行了富有成效的交流,给来自世界各地的联盟成员提供了一个交流和经验分享的机会。 雅虎公司董事长 Maynard Webb 先生在此次研讨会上做的重要发言强调了科技生产力的重要性。他 说,科技教育起源于孩子的兴趣,打造信息平台、增加公众接触信息的机会是 STEM 主要发展战 略。World Learning 全球顶尖学术机构总裁兼首席执行官 Donald Steinberg 在发言中强调,个人发 展的关键离不开个人的知识水平和技能。STEM 全球科技发展联盟不局限于科技创新,更重要的 是提升一个人解决问题和分析问题的角度。他也介绍了目前 World Learning 在埃及高中学校开发 的课程体系。这套课程体系旨在提升孩子对科学技术的兴趣,鼓励女性在科学技术领域发展自己 的兴趣爱好,将科技创新,合作双赢的理念落实到每个孩子的生活中。 继全球 STEM 联盟9月22日在纽约联合国总部启动后,来自不同国家、企业和非营利性组织积极 参与 STEM 全球科技联盟,全球可持续发展基金会合作发展部负责人刘玮先生表示,支持大型 STEM 的区域项目,将科技创新的理念融入教育,积极提升STEM科技创新式教育,培养下一代科技 人才,是全球可持续发展基金会参与发起并支持STEM全球科技联盟的初衷,目前基金会正在和有 关部门、机构制定具体执行计划,明年上半年在中国启动 STEM 项目。
17
18
图1
图2
图1: 研讨会发言,中间为雅虎公司董事长 Maynard Webb先生,右为 World Learning 全球顶尖学术 机构总裁 兼首席执 行官Donald Steinberg 图2: 全球可持续发展基金会合作发展部 负责人刘玮先生在研讨会现场
4.3 中国STEM联盟第一阶段工作计划(深圳) 背景资料 基于全球可持续发展基金会(GSDF)与纽约科学院高层的相互沟通,纽约科学院的工作人员了解 基金会计划在中国推广全球STEM项目联盟的计划。 基于纽约科学院过去在发展科学、技术、工 程和数学(STEM)教育项目的经验, STEM项目是专门满足国家的特定的劳动力和经济发展的需 要,纽科院非常愿意搭建一套完善的适宜中国发展需要的STEM项目。 计划建议书 纽约科学院提出一个为期六个月的项目书,通过与全球可持续发展基金会的合作, 制定出在中国 深圳切实可行的方案以及明确完成项目需求的明确机制。为了全面的了解深圳STEM项目的需求, 纽约科学院的工作人员主要是专注于六个月的项目考察:(1)了解STEM教育在深圳的发展现 状;(2)考察并了解现有的深圳教育培训市场; (3)找出STEM教育与教育培训市场中两者之间 的差距;(4)建议的具体政策和方案,并有效地在深圳缩小教育质量与教学资源分布差距。在项目 过程中,学院的工作人员将具体采取以下措施: 数据回顾与分析 学院的工作人员会进行相关的文件,报告,以及与现有STEM教育和培训相关项目的调研与分析。 目的是为了更好的了解中国的STEM教育现状。 组建项目咨询组 纽科院与基金会的工作人员相互合作分析为STEM项目的发展组建一个项目委员会, 以提供STEM 项目的知识产权与网络铺设的项目。纽约科学院的工作人员将会与中国的同事合作,以确定深圳 政府,各个行业和职工队伍/教育机构中对于地区发展与教育资源匹配程度的需求,政策的扶持以 及相关的类似机构。咨询组将不断推动项目发展实施的进度,帮组学习小组充分了解各个教育机 构以及教育背景的提供者,并提供深入的研究成果,以帮助STEM项目的发展。 旅行计划
纽约科学院的工作人员将与基金会合作,计划出详细的出访计划。此次出访目的是满足包括教育 部和对STEM发展项目投资感兴趣的企业。为了优化来自相关科学、教育、企业赞助商的需求,纽 约科学院将邀请重要的科学技术专家作为出访嘉宾,以及全球STEM项目联盟的倡导者,访问期 间,学院的工作人员将采访深圳各个行业,政府和STEM教育理念相关的各个教育机构对于教育的 需求和发展规划。现有的STEM项目对于现有技术服务、政策等相关机制进行探讨。最后,基于这 些访谈经验和在审核过程中了解的数据,学院的工作人员会与中国合作商共同合作,确保顺利完 成项目。 专业介绍 在出访过程中,纽约科学院工作人员将做一个简短的演讲,这将有助于相关组织者对于项目的了 解与执行。 项目工作会议 学院的工作人员将与咨询委员会和其他项目负责人合作,定期审查的项目成果并完善工作建议, 这将有助于解决项目实施过程中的需求。关注的特定区域将是一个技能培养可实施的地方,或者 是做个相关的教育集团,其中包括教育培训、技能应用。相关的企业、教育机构与培训单位不断 跟踪STEM的发展动态,平衡市场需求。 报告撰写和咨询小组审查 学院工作人员将准备该项目的成果并转化成报告。这个审核过程将包含如下建议 - 这可能包括特定 区域或虚拟STEM编程。咨询小组成员将审查的最后报告,并提供建议和意见。 最终摘要和报告确认 以咨询委员会的意见为基础,学院工作人员将完成项目报告,建立一个演示文稿,总结了项目的 调查结果和建议。项目的调查结果和建议将继续研讨,也在研讨如何保障相关合作商的利益。 项目时间表
项目配合
项目
时间
文件审核
2014年12月
项目开展与研发
2014年12月
咨询小组组建
2015年1月
旅行计划
2015年2月
报告撰写和咨询小组审查
2015年3月
报告的传递
2015年4月
最终摘要和报告确认
2015年5月
19
20 作为项目伙伴,纽约科学院的成员将会需要与深圳的地方专家、学者、相关人员进行沟通、交 流,了解深圳目前在科技STEM 上的发展前景、技术服务、联系方式。这些个人将会提供相应的 报告以及文件、相关联系方式的关系,以及对于计划旅行的安排等等。最后,这些地方的合作人 员将会与纽科院的一起协作,研发以个人与文化为依托的独特深圳STEM教育项目。 项目费用 纽约科学院总共需要$300,000美金的项目支持费用以及交通费用,包括机票,交通,酒店,住 宿,也一些细节上的安排。最终的费用将会超过最初的与基费用。方案的推出和实施将根据工作 的范围界定。 成果 提供高质量的STEM计划并介绍更多带有启发的心理咨询辅导专家,不仅可以影响学生的能力,也 可以影响他们对于生活的态度。通过提供一个可行性的报告与一个强大的社会交际网络,在全球 范围内,心理咨询专家可以与学生进行沟通交流,纽约科学院期待长期的项目合作与成功。由于 学生与导师在世界各地不断交流沟通,合作的成果可以最大化。明日的科学家可以相互学习,为 未来的全球合作与领导力的提升作准备,从而培养出新一代充满科学好奇的STEM专业人才。该 学院认为,从长远的角度,纽约科学院与当地专家的互动可以提升对于科学领域感兴趣的学生数 量,提升关注程度,提升科学项目在发展中国家的输出,更多的是提升教育,合作,与科技发展 在世界的整体成就。
4.4.参加STEM中国调研的部分专家顾问 Celina Morgan-Standard 副总裁,全球业务发展部 Celina是全球业务发展部的副总裁,专注于全球STEM联盟与全球STEM教育计划。Celina加入纽约 科学院之前,曾与与领先的教育机构塔克资本(Tucker Capital)在出版和媒体对经济增长的举措, 包括收购和合作上有重要建树。她在伙伴关系洽谈中,建议发展具有潜在挑战性的客户,如国家 地理杂志的杰森项目和巴特尔纪念研究所。她的专业领域集中在教育出版,教育技术和媒体。 Celina在瑞士富兰克林学院获得学士学位,并在在夏威夷大学马诺阿学校获得工商管理学位。 Meghan Groome, PhD 执行董事,教育和公共项目 Groome博士,教育及公共项目的执行主任,在自然历史美国博物馆(AMNH)做了三年顾 问,2010年加入纽约科学院。而在AMNH,Groome博士曾是政府关系和教育部门的专家。在她在 AMNH工作,Groome博士是全国州长协会的一位高级政策分析师,研发州长珍妮特·纳波利塔诺的 美国创新主动性项目,并和作撰写构建STEM议程。这部议程对国家和大型组织的框架进行分析, 目的是提升孩子从出生到高等教育中的资源匹配。Groome博士在哥伦比亚大学教育学院的科学教 育项目获得博士学位。她的研究重点是城市科学教育和改革。她与两位博士合作Dr.Ann Rivet博士 和 Dr. Angela Calabrese-Barton,调研美国的教育体系。在她的博士研究阶段,Groome博士创办了教 育咨询公司,专注于地方国家和国际教育的改革,包括在发展中国家大规模政策改革和学校的建 立。2005年,Groome博士是一个教育政策研究员,专注于学院教育与领导力;2012年,Groome博 士担任全球教育政策研究员,并在中国研究所专注于教育领导的培训。 Amber Schaub 主任,教育及公共项目 Amber Schaub 是纽约科学学院国际教育与育及公共项目主任。除了管理马来西亚的诺贝尔奖获得 者的有天赋的中学生项目,Amber女士推出了NeXXt学者计划,并负责管理国际教育项目,包括全 球STEM联盟。2012年,Amber女士投身于国际教育和科学管理,先后在能源产业与教育重组中做
出贡献。她曾参加“国外英语教学作为第二语言”项目,并就读于哥伦比亚大学教师学院,专注于 国际及跨文化研究,国际教育发展专业化等。2011年她获得教育国际教育发展硕士学位。在研究 生阶段,Amber女士茱莉亚音乐学院担任写作和交流中心辅导员,帮助美国与国际学生开发有效 的协作发展方案。Amber女士在刘易斯和克拉克学院获得了历史和法语学学士学位,以优异的成 绩毕业。 Joe Melendez青少年科学院,教育和公共项目的项目经理 作为少年科学院的项目经理,Joe评估STEM课后辅导计划与新课程模块,提供培训的导师的教育 模板。他是计算机科学教育方面的专家。他纽约新学校人文社科学院获得 教育学硕士学位。Joe在加入纽约科学学院之前,曾担任自由科学中心项目协调员和开发人员。在 科学中心,他实施了动手技术学校程序以及28小时培训方案-为一些智力上比较薄弱的学生提供 一些科技上的协助,比如Arduino的微控制器,3D设计和3D打印。乔还负责法巴斯夫的孩子实验 室,这是一个为有小孩的家庭实验室提供科研资料的研究中心。同时这个实验室还为女童子军的 培训制定研究方案。在进入教育行业前,乔曾经当过记者和计算机硬件专家。
21
22
5.案例分析 5.1思科:-打造大型网络开放平台 在教育全球化和信息化的背景下,基于“开放共享”理念的开放教育资源运动是全球教育发展的重 要趋势。大规模在线开放课程是开放教育资源运动的新发展和突破,对人类文明传承和知识学习 方式产生着深刻影响。目前纽约科学院与思科合作,设计自主学习模式和翻转课堂模式;在学 习支持上可以提供课程索引、评价、推荐等功能;在学习分析上可以支持课程海量数据的学习分 析,提高学习系统的适应性。构建了一个由技术环境、社会环境和教学环境组成的学习生态系 统,为开放教育带来了革新和新的发展。 自从进入信息时代以来,就有许多人认为教育需要根本性变革。著名管理学家德鲁克在 1992年 就曾说过:作为规律,对某一知识主体影响最大的变化往往并非出自本领域内。可以有把握的预 言,学校和大学,自从300年前以印刷品为核心重新组织以来从未改变过自己的形态,但他们也将 发生越来越激烈的变化。这一变化的动力部分来自新技术的发展,如计算机、录像和卫星技术; 部分来自知识工作者终身学习的需要;部分则来自人类学习机制的新理论。美国政府在 2010 年 11 月颁布的《国家教育技术计划》(简称NETP)中指出:如果想要看到教育生产力的显著提高, 就需要进行由技术支持的重大结构性变革,而不是进化式的修修补补。阿兰·柯林斯和理查德· 哈尔弗森在《技术时代重新思考教育》中也认为,在家上学、移动学习、泛在学习、工作场所学 习、翻转课堂等新型教育模式,使终身学习成为可能。技术时代需要重新思考学习、重新思考动 机、重新思考重要的学习内容(课程)、重新思考职业、重新思考学习与工作之间的过渡、重新 思考教育领导、重新思考政府在教育中的作用。 STEM教育的青少年学院以及各个实施项目的网络平台利用这种开放教育平台为教育普及以及终 审环境下进行教育,自主学习技工了有效灵活的渠道。这种状态下,学习者自主安排学习活动, 根据自身需求选择相关课程,通过有计划的视频观看、指导性的自觉阅读、针对性的系统练习、 个体参与互动带来的思考,完成课程的学习过程。同时,教师在使用这种在线平台的同时,可以 与自己的教学相结合,指导学生课下进行视频内容的学习、练习与交流,课堂上进行学习内容的 重点分析、知识总结,解决学生存在的问题,进行反馈评价。这种灵活平台赋予了学生更多的自 由,把知识传授的过程放在课堂外,使学生可以选择最适合自己的方式接受新知识;而把知识内 化的过程放在教室内,便于同学之间、同学和老师之间有更多的沟通和交流。 纽约科学院的网络平台不仅有效的将全球STEM教育的传播到世界各个地方,同时也在引领新的 科技以及教育的变革。依托于互联网,大数据下的新型教育模式将不断优化个性化教育,因材施 教,为更多的学生提供行之有效的职业发展与人生规划。
5.2思科全球副总裁的倡议书 尊敬的公司管理层:
世界在以互联网的速度变化。无论是公司、政府机构、学术院校,还是寻找工作机会的人群,每 个团体和个人都在飞速的让自己适应互联网变革 (IoE) 所带来的颠覆性改变,这一改变将在下一个 十年里创造出19万亿美元的经济价值。许多技术力量的汇集是互联网变革给机构和个人带来益处 的推动力量。例如,数字数据每两年翻一番,到2020年将有500亿个新终端设备连接到互联网上, 还有移动性,云端存储,分析类等多种应用将成级数快速发展。传感器、自动化和连接人、物、 数据及绑定到网络平台的过程都在日益改变着各行各业和各个机构。
但是,这一爆炸性技术变革的发展速度极快,使得目前的人才力量不能满足技术变革的发展速 度,及时设计,实施和开发出下一代的技术解决方案。其结果导致在世界范围内出现了严重的技 能短缺,特别是在科学、技术、工程和数学领域(STEM)。世界银行预测,在未来的十年内将有 200万个ICT(信息通讯技术)相关的工作机会得不到填补,也就是说到2022年酱油8.2%的人才缺 口。为了填补这个缺口,教育院校和培训机构需要大大提高其毕业生的数量,从现在到2022年, 预计每年要增加222000个毕业生。为了应对这一人才严重短缺的危机,各行各业的领军企业,慈 善组织和学术中心正在联手发起称为全球STEM联盟(GSA),这一项目的重点是用创新的方式促 进未来技术人才的培育,而这些技术人才将是推动这一新的信息时代发展中不可缺少的生力军。 这一项目始于2013年底,当时纽约科学院和思科公司联手启动了GSA全球STEM联盟,目的在于教 育和培育当今和未来的IoE企业家、科学家和发明家。其后,又有其他一些全球性公司和机构加 入了这一具有重要意义的项目,包括百事可乐公司、布宜诺斯艾利斯市市政府、澳大利亚联邦政 府、巴塞罗那市市政府、马来西亚政府、美国纽约州立大学(SUNY)等。我们已经为GSA建立了 坚实的基础,但GSA势必要扩大声势,要吸引更多的合作伙伴和赞助伙伴加入到这一全球性倡议 活动中,以推动STEM的发展、最终实现提高人类生活质量的目标。我们倡议有远见的公司和基金 会加入GSA ,成为GSA的创始赞助机构或GSA的顾问委员会成员。 这一全球性举措不仅是一个正义的事业,它还孕育着巨大的商机。根据真实研究数据,思科公司 预测互联网变革(IoE)将在未来的十年内为那些致力于为此变革寻找解决方案的机构和个人创造 出价值为19万亿美元的经济、社会和环境价值。然而,如果我们不能共同培育下一代人才,IoE的 潜在价值就得不到充分的体现,这个活动已经成为思科公司的当务之急。目前思科已经捐献了300 万美元给GSA项目,并在纽约科学院内安装了顶级技术设备建立了“概念证实”中心。纽约科学院院 长Ellis Rubinstein指出:“思科公司的赞助使得我们学院的年轻科学家和诺贝尔奖获得者能以前所 未有的规模在全球范围内激励启迪孩童”。通过思科网络技术学院,这一全世界最大的课堂已经培 训了超过400万名学生,我们有充分的成熟的经验,以推动多种行业中信息通信技术力量的发展。 我们已经确定您是属于经我们精心选出的有远识的管理者之一,这些特殊的管理者将最能把握全 球STEM联盟发展方向。 我们知道这一不断发展的举措将大大改善我们生活的每个侧面。我们相 信那些早期介入这一重要举措的机构将被誉为全球领军者,也将能最大程度的享受成果。我们希 望您能慎重考虑加入我们,作为合作伙伴、赞助机构或GSA顾问委员会成员来支持全球STEM联 盟。 如果您想进一步了解这一联盟和如何加入,请与我们联系。 并致良好祝愿! Wim Elfrink思科执行副总裁( 工业解决方案全球总联络官) 2014年5月9日
5.3思科公司关于STEM项目的案例介绍 思科利用合作的模式,通过网络平台,促进大学,个体与企业充分进行合作 1)利用思科的产品:Cisco WebEx Social为大学培训,会议,讨论提供沟通的信息渠道。 2)继续将Cisco Jabber, IM and Presence, WebEx 推广到市场。 3)利用Cisco Show and Share® (思科多年累积的案例以及电子数据收集分析系统)帮助老师,学 生和团队分享高清培训视频。 4)为大学老师进行培训. 5)利用WebEx Social(一种信息合作平台)创造,建立,经营一个多媒体信息交换平台 思科基于 STEM的理念, 制定了网络课堂衡量标准以及能力培训的主要方向.
23
24 Customers
University Public -private partnership
Collaborations Goals
Cisco Collaboration Services Project Descriptions
Facilitate collaboration between academia and industry to expose students to the needs to industry, and help energize industry with the ideas, creativity, and skills of the students
1) Building on the collaboration infrastructure, add Cisco WebEx social to provide online workspaces for every meeting, document, or chat associated with a project 2) Integrate Cisco Jabber, IM and Presences, and WebEx conferencing 3) Implement Cisco WebEx conferencing to help world-wide teaching staff to share best practices 4) Integrate Cisco Show and Share to help teachers, students, and project team members to share high-definition video 5) Create, build, and manage a high-level design to deploy WebEx Social in a multivendor environment 6) Provide operational training for the University s staff
“STEM 职业规划的能力要求”“下一代教育的重点培养方向” 以及“思科的网络课堂体系” 这三个部分 如何有机形成一个整体,有效提升STEM教育质量。STEM 职业规划的能力要求 - 要求提升学生解 决问题与分析问题的能力。 下一代教育的重点培养方向 - 在STEM职业规划要求的基础之上,通过提升学生的数学运算以及物 理题目分析能力来提升学生的能力。 思科的网络课堂体系 - 通过收集学生的数学以及物理测试成绩来分析是否达到STEM职业规划能力 要求。 备注: 1)关于STEM的专门的网站:http://www.changetheequation.org/stemworks 网站以“改变现有的公式”为主题,从STEM教育的企业合作,数据等角度介绍了此项目。 2)有关STEM的起源:美国K-12 教育标准制:http://www.ed.gov/k-12reforms
5.4. 全球STEM与其他跨国企业合作案例
25 案例一:Pepsico (百事可乐) Pepsico(百事可乐)是一家以食品经营为主的公司。近年来,百事可乐公司以可持续能源发展为主 线,在教育方面发展STEM项目,储备科技人才,实现 “可持续人才战略”。在环境方面,进行营养 学科研,研发有利于环境与人体健康的绿色食品,成立“下一代STEM委员会”,促进科技教育,实 现可持续人才战略。 在与纽约科学院的项目合作,侧重员工培训以及一对一辅导项目.纽约科学院为Pepsico 的员工进 行培训,然后这些受到训练的员工分别与当地学校的科学专业的学生进行互动,为学生提供全面 的职业咨询,以及未来发展的人生规划与建议.这种合作可以帮助Pepsico扩大在区域的知名度与 影响力,同时可以让Pepsico接触到这个区域的更多年轻群体.同时,Pepsico 会在纽约科学院定期 举办相关展览,邀请科研机构的科学家到纽约科学院展示自己的科研成果,分享经验,与Pepsico 的员工交流互动。 同时,百事可乐注重营养方面的研究。百事可乐公司与纽约科学院设立了一个科学家无国界的 奖项, 支持先进营养学以及母亲幼儿营养研究。百事可乐公司在公司内部设立STEM委员会,注 重对于年轻人才的储备与员工的培训。与2014年12月份,百事可乐公司将在纽约科学院举办有关 STEM的人才见面交流活动,增大百事可乐员工与高科技人才的接触机会,进一步促进公司在营养 以及科研方向的研究成果。 案例二: ARM ARM是英国一家以作电子高新技术,计算机软件,为网络科技提供配套服务的英国公司,ARM着 力打造企业文化, 提升社会公益形象。 ARM以公司的技术团队研发为核心,结合“STEM教育,环 境,社区搭建,与技术发展”四个部分为依托,建设企业形象。 在英国ARM不仅积极推动STEM 教育,同时于代码俱乐部, 英国剑桥大学俱乐部和 Raspberry Pi基金会合作。ARM将纽约科学院 STEM项目中技术层面的(解码与编码)的课程提供给代码俱乐部和 Raspberry Pi基金会,提升企 业在社会中的公益形象扩充企业文化,同时在领先技术科研机构以及大学网络人才以建立ARM 员工与当地学生交流的平台。纽约科学院为ARM提供了相应的网络宣传和国际会议中的演讲机 会,并将ARM 的LOGO放在STEM网站,提升ARM在美国知名度与影响力。 案例三: TATA 与TATA一家技术公司的合作,纽约科学院利用自己的先进科学理念为这个公司制作一些视频介绍 机器人的制作过程。以此为平台,促进世界各地学生与这个科研机构的交流沟通。机器人制作竞 赛是STEM教育发展中非常独特的教育内容。不仅可以激发学生对于科学的兴趣,同时可以拓展学 生对于不同科学话题的接触程度。机器人竞赛需要学生对于科学以及数字有很多的敏感程度,同 时对于物理学中的加速度,质量,守恒定律,参加比赛的过程很好的扩充参赛选手的知识储备。 同时,在比赛当天的题目是全新的,为了让学生可以充分发挥自己的实力,独立的面对于解决难 题。 这样的比赛不仅提升学生对于科学的兴趣以及参与程度,提升公司在社会面前的工艺形象。
5.5. 全球STEM在巴塞罗那与马来西亚的实施方案
26 1. 西班牙的开展STEM是直接由市场办公室发起的.西班牙市长极力推荐STEM,并对于这项目的 投资定位.得到市长办公室支持后,STEM项目在巴塞罗纳的五所大学里实施.偏重在教育培训. 在巴塞罗那还没有特定的职业培训或者夜校,所以STEM在巴塞罗那的项目充分结合了当地的教育 文化发展特点。另外一个重点是纽约科学院为巴塞罗那市提供了一个"科学联盟"这个平台上不 仅可以扩大网络资源,更可以为学生提供有效的人生指导。(科学联盟也是纽约科学院的重要的 部分之一,这里拥有一个强大的科学家联盟,提供网络平台,对企业家进行培训,在就业指导与 人生规划)。 2. 马来西亚的合作方式:马来西亚的学校选择STEM项目,政府在为学校拨款.每年,马拉西 亚的学生都会参加纽约科学院的青少年活动,马来西亚的学生在访美期间,参观美国自然,历史 与科技博物馆。感受美国的科技文化,启发孩子创造性思维。
5.6. 员工STEM培训案例 - 对于潜在商业风险评估培训 议题 1、 2、 3、 4、
提升学员对医药市场投资的了解与认识,和对于潜在投资风险的意识 了解在未来医药投资市场中的挑战 在于其他学员的互动中,扩展在医药与学术界的人脉 训练学员在短时间内思考分析的逻辑调查能力,人际沟通能力,团队合作能力与协商能力
培训重点 针对美国的医药市场的目前运作模式,面对大型资产的投资以及市场竞争压力,很多医药公司改 变投资策略,整合投资方案,在收集数据,预测市场风险后,在对特定的项目进行投资。这个培 训结合了“游戏互动”的理念,将学员分成6个不同的小组,在组员共同协作与协商中,提升对于医 药市场的危机意识,以及个人协商,合作和观察的能力。 对于医药投资领域潜在风险的评估的培训 首先由 Catenian 公司合伙人Florian Jehle与经理 Jan-Philipp Kruse提供美国医药市场的一些的基础 背景资料以及不同的投资领域,比如生物制药,技术投资,药物研发等。其次,培训老师介绍了 这个培训活动的主要的游戏方法。游戏主要有7个环节,每一个环节都是一个相对独立的项目。每 一轮项目中,每一组都有机会得到三个不同的投资项目。根据项目的资金,成本以及库存量,每 一个小组要在短时间内确定自己的资金是否自己保证项目顺利进行,同时充分利用剩余资金投资 其他小组的项目,并且在资金不足的情况下寻找合适的商业伙伴来支撑这个项目。 每一轮,投资的每一个项目都会根据置筛子的结果来决定项目的结束与进行。每一个项目有三个 阶段,三个阶段后,这个小组开始收益新的资本。然而每一个项目的阶段需要根据置筛子的结果 的大小来确定项目的去或者留。在这个过程中,不仅每一个小组的成员需要精诚团结,制定研究 投资方案,同时每一个小组也要与外界的另外5个小组进行沟通,充分结合“游戏体验”的理念,寻 求合作与多赢。在每一轮游戏中,都会有中间休息时间。培训方会根据培训的休息时间适当作调 整,提供有关医药领域的风险预测评估模型,如何有效做出决定来应对市场挑战等。这个活动旨 在提升大家对于医药行业风险的预测能力,同时也在考察人与人之间的互动与反思。根据日常接 触习惯,掌握好人居沟通与协商能力,也是这个活动带给大家的反思与启发。
6.附录:相关英文参考文献 6.1 思科全球副总裁的倡议书英文版本 May, 9, 2014 Dear Executive: The world is changing at Internet speed. Whether it s a business, government organization, academic institution or job seeker, everyone is rapidly adjusting to new disruptive realities brought on by the Internet of Everything (IoE) revolution, which stands to create $19 trillion in economic value over the next decade. Many technology forces are converging to drive IoE benefits for organizations and people. For example, digital data is doubling every two years, 50 billion new devices will be connected to the Internet by 2020, and mobility, cloud storage, analytics and all kinds of applications are multiplying exponentially. Sensors, automation and connections to people, things, data and processes tied to network platforms are increasingly transforming industries and organizations everywhere. However, this explosion of technological change is growing at a faster pace than the talent pool needed to design, deploy and develop this next-generation of technology solutions. As a result, a severe skills gap is emerging worldwide, especially in in the fields of Science, Technology, Engineering and Mathematics (STEM). The World Bank estimates that during the next decade there will be two million unfilled ICT (Information Communications Technology)-related jobs globally, correlating with a projected talent gap of 8.2 percent by 2022. To address this gap, education and training institutions will need to increase the number of technical graduates significantly 222,000 more each year between 2014 and 2022. In order to address this serious shortfall in talent, leading companies across industries, philanthropic organizations and academic centers have joined together. Called the Global STEM Alliance (GSA), this campaign focuses on innovative ways to catalyze growth for a future workforce that’s essential to drive this new information age. This movement began late last year when the New York Academy of Sciences and Cisco created the GSA to educate and empower current and future generations of IoE entrepreneurs, scientists and innovators. Since then, a number of other global organizations have joined this important cause, including PepsiCo., the City of Buenos Aires, the national government of Australia, The City of Barcelona, the national government of Malaysia and The State University of New York (SUNY). We have established a solid foundation, but it s imperative to grow the GSA with new partners and sponsors for this global initiative for more STEM development, which ultimately can improve the quality of life everywhere. We encourage visionary companies and foundations to serve as funding sponsors or on the Global STEM Alliance s Advisory Committee. This is not only the right thing to do, but it also makes good business sense. Based on real-world case studies, Cisco expects that the Internet of Everything will generate up to $19 trillion over the next decade in
27
28
terms of total economic, social and environmental value to those embracing its solutions. However, IoE s potential cannot be fully realized unless we collectively nurture the next generation of talent to fulfill these new and growing demands. This has become a top priority for Cisco. Cisco s has gifted $3 million to GSA and we are installing cutting-edge technologies to power a new Proof of Concept Center at NYAS. Cisco s gift is helping our Academy s young scientists and Nobel Prize winners inspire children throughout the world on an unprecedented scale,� said Ellis Rubinstein, president and chief executive officer of NYAS. Through the Cisco Networking Academy, the world s largest classroom that has trained more than 4 million students, we have ample, proven experience driving ICT careers in a variety of industries. We have identified you as among a highly select group of visionary executives who can best influence the direction of the international Global STEM Alliance. We know this growing initiative will make an enormous difference to the betterment of our collective well-being. We believe that those organizations participating in the early stages of this critical movement will be recognized as global leaders who also reap the most benefits from the outcomes. We hope you seriously consider joining us in supporting the Global STEM Alliance as a partner, sponsor or member of the GSA Advisory Committee. Please don t hesitate to let me know if you are interested in learning more about the Alliance and how you can participate. Sincerely,
Wim Elfrink Executive Vice President, Industry Solutions and Chief Globalisation Officer
6.2.全球STEM联盟青少年学院英文版本 The New York Academy of Science Junior Academy The Global STEM Alliance is a collaboration between governments, companies, schools and NGOs led by the New York Academy of Sciences to increase access to great STEM education for kids around the world. The Alliance will focus on three strategies – intergenerational mentoring, building foundational skills and building a global network of STEM innovators. These strategies will directly address the STEM paradox by increasing the STEM literacy across the school aged population, reduce the skills gap between schools and the workforce and decrease the Excellence Gap, the fact that historically underprivileged groups make up a disproportionally small percentage of students in enrichment programming. The failure to engage students with talent leads to the loss of millions of high skill STEM workers in places that desperately need them. The first major initiative of the Global STEM Alliance will be the development and launch of the Junior Academy, a virtual learning and research platform to identify, inspire and prepare gifted students around the world. The platform will include novel talent identification mechanisms, course work and authentic virtual research experiences, access to mentors, a virtual writing center and in person learning experiences such as internships and a Global STEM summit. Using gamification techniques including a sophisticated system of virtual badging that unlocks incentives and demonstrates students “leveling up” through the program, the Junior Academy will aim to engage students using the latest technology. The Junior Academy curricula will focus on increasing students’ foundational skills by building an actionable scientific network of their peers and top STEM professionals. In addition to talent identification mechanisms and diagnostic capabilities to customize programming, the JA will offer programming in six main areas: mentoring, online courses, virtual research opportunities, NYAS membership, a writing center, and in-person events such as internships and an annual global summit. These programs will help students build and practice foundational skills such as communication, networking, project management, teamwork, and critical thinking while learning about different STEM careers, understanding their own career interests better and working with their peers to solve scientific problems. In addition, it will address the needs of teachers by providing coursework in gifted pedagogy, supporting students in research opportunities and talent identification. Program Components Talent Identification Mechanisms: Traditionally, schools and governments use IQ tests to determine placement in gifted programs. The Academy seeks to replace this highly flawed system with scalable talent identification mechanisms including gaming, Open Innovation Challenges, a teacher referral system, and third party global challenges. In partnership with Galxyz, a mobile gaming platform focused on creating engaging STEM games, the Academy will launch a STEM game to identify talent students in 2015. In addition, the Academy plans to focus a volume of the Annals of the New York Academy of Sciences to collect the latest research and promote innovative approaches to go beyond the IQ test. Diagnostic Programming: Students who enter the Junior Academy will represent a wide variety of preparatory experiences. A student can participate in diagnostic programming to help them determine gaps in their content knowledge, math and language skills along with an Individual Development Plan (IDP) to help them understand their interests and strengths. This programming will then recommend appropriate
29
30
course work. The Academy will partner with leading experts in diagnostics and assessment to apply proven systems and technology to help students understand their strengths and weaknesses. Mentoring: Using the Everwise and Cisco software, all JA members will have an opportunity to receive a year of career and research mentoring from an Academy member, STEM experts sourced from corporate partners, or other STEM professional drawn from leading STEM expert networks such as Society of Women Engineers, Young Academy of Sweden and Blavatnik Award winners. The Everwise platform matches mentors to mentees through a values based matching system that helps the mentee/mentor determine the best mentor/mentee for their needs. Mentors will participate in a program orientation and training protocol developed in partnership with the US Department of State. Mentees and mentors will participate in structured activities and curriculum online that focus on college readiness, research project support, and long term career planning that includes information about academic and industry perspectives. Everwise and Cisco are existing technology partners and will be in place in 2015. Online Courses: Junior Academy members will have the opportunity to participate in online courses around leadership, scientific writing and communication, entrepreneurship, outreach, and research. In addition, content course work will be made available in the STEM fields and English for STEM majors. Online course work around leadership will offer development skills in project design and management, entrepreneurship course work will focus on the basics of taking an idea to market, outreach course work will include skills in public speaking, how people learn, storytelling and different ways to promote one’s own work, and finally research course work will help students identify a research question, conduct background research and structure a research project. If students are already working on a project, they will have access to the writing center. Authentic Research Experiences: Using the depth of expertise in the Academy’s Scientists Without Borders program, Junior Academy members can participate in specially designed open innovation challenges modified to allow students from around the world to identify areas of common interest and work together to create solutions. In addition, Junior Academy members can work with data from and participate in Citizen Science Projects. The platform will host collaborative work spaces, access to data collection and management tools, and facilitation guides to help guide students along the authentic research process along with mentorship and moderators. Curriculum for use in school and out of school will be published to increase participation. New York Academy of Sciences Membership: All Junior Academy members will have the opportunity to receive a free NYAS membership in addition to their JA membership, allowing them to access almost 200 years of our research journal, a large library of multimedia products that capture nearly 20 years of scientific conferences and participate in virtual scientific and career programming offered via interactive webinars via Cisco’s WebEx products. In addition NYAS will access network partners such as iggy.net, nobel. org, and Scientific American to offer free or discounted content access content for JA members. In-Person Events: Participants who achieve the highest levels of the badges will have the opportunity to apply for internships and receive an invitation and all expenses paid trip to New York City to attend the GSA Junior Academy Summit. In addition, the Academy and its partners will recruit from the Junior Academy for local in person programming. Writing Center: Many Junior Academy members will be working on their own research projects at their home institution and will have the opportunity to receive one-on-one writing help from a scientist from
the NYAS network likely drawn from the Science Alliance membership. The writing center will be operated virtually through the Schoology platform. Academy staff will train and monitor the writing center volunteers. Educator Programming: Teachers often lack access to professional development around identifying, working with and promoting students with STEM talent. The Academy will offer online courses for teachers to help support in person programming at our partner schools. Contributions to the Field: The Academy will publish a volume of the Annals of the New York Academy of Sciences titled “Beyond the IQ Test” with research papers from the leading thinkers in the areas of talent identification, gifted education, edu gaming, and policies that help countries better identify and support their gifted students and strategies to upskill teachers.
6.3.全球STEM联盟涵盖范围英文版本 As the global population grows exponentially, economic systems become increasingly complex and inter-connected, and natural resources grow ever scarcer, the difficulties of providing the world’s citizens with even the basics of nourishing food, clean water, and competent medical care continue to mount and expand. But we can meet all of these challenges—and many more—by advancing scientific discovery and technological innovation. Thus, it is clear that science, technology, engineering, and math (STEM)-literate citizens will shape the future of global progress and security. To address this reality, the New York Academy of Sciences is developing innovative approaches to reinforce the leaky STEM pipeline. In recent years, the Academy has developed a transformative and wide-reaching complement of activities, with a focus on mentoring and inspiring students and scientists at all stages; fostering communities of scientists, students, and teachers; and delivering the scientific community’s wealth of resources directly to the students and educators who need them the most. The Academy seeks to create systemic improvements in global STEM literacy, from primary education to the professional level, ultimately establishing a feedback loop to foster the next generation of innovators. By providing invaluable resources to scientists at every stage of their lives and career development—from elementary school students to Nobel Prize winners—and by training and encouraging scientists to mentor their younger colleagues, the Academy is on the vanguard of ensuring that the world’s most pressing challenges are not only met but overcome—today, tomorrow, and forever. Supporting the Innovators of Today, Mentoring the Innovators of Tomorrow 1. Global STEM Alliance: Bringing together students and scientists from around the globe to address the challenges of the 21st century Program Description The Global STEM Alliance builds on the Academy’s current STEM mentoring activities (described below), which target a network of students and operate locally across New York State, New Jersey, Malaysia, and Barcelona, and in development, in the United Kingdom, Australia, Qatar, and South Africa. Current activities are grounded in strong partnerships with area universities—more than 25 in New York alone—and community-based organizations and schools; they also benefit from the support and participation of local corporations.
31
32
The mission of the Global STEM Alliance (GSA) is to increase global STEM engagement by inspiring students to pursue STEM careers. Through providing greater access to STEM learning resources, expert mentoring, and real-word STEM role models, the New York Academy Sciences aims to improve STEM engagement and increase the number of students who pursue STEM fields of study and ultimately enter STEM careers. Through a combination of site-based and virtual learning, the GSA will support student engagement and talent selection for participation in this global peer-to-peer and expert mentoring programs. The organization will initially seek to affect its mission through facilitating collaboration among corporate, nonprofit, and governmental organizations to develop a virtual learning platform that can provide global access to mentoring and collaboration opportunities to all students. Currently, the Academy and its network of young scientists and engineer mentors are inspiring thousands of middle and high school students across New York State, New Jersey, Malaysia, and Barcelona, and in development, in the United Kingdom, Australia, Qatar, and South Africa. One of the new elements in the Alliance is aimed at gifted and talented students. A series of tailored workshops, online classes, and scientific research experiences for secondary students, their teachers, and university faculty strengthen the STEM pipeline, helping students design projects that can be implemented in their local communities and preparing them for undergraduate and graduate studies in science. A pilot program, now entering its second year, has shown promising results and this year the workshops will be piloted both in-person and online. Details of the impact and evaluation can be found in Section 3. The Global STEM Alliance will officially launch during United Nations General Assembly Week with a series of programs including a celebration of our founding partners and release of a white paper outlining the global STEM crisis and our solution, the announcement of a women and girls’ focused commitment at the Clinton Global Initiative and programming for gifted and talented high school students in New York City. Current Founding Regions/Countries: United States, Australia, City of Barcelona, New York State, Malaysia, Rwanda Likely Founding Regions/Countries (in negotiation): Qatar, Bhutan, Sweden, United Kingdom, South Africa, Mexico, Coalition of Least Developed Countries, Indonesia, Saudi Arabia, Israel Current Founding Partners: Cisco, PepsiCo 2. Primary-School Students: Nurturing Scientific Curiosity Program Description While unemployment in the country remains stubbornly high, there remain thousands of unfilled positions in high-paying manufacturing and technology jobs for people with the right skills and education. One reason for this desperate lack is that primary school STEM education in the United States is shockingly inadequate: the average elementary-school student in this country receives a total of less than three hours of science and math instruction per week. Many children with the ability to thrive in the new, high-tech workforce or join the next generation of pioneering researchers simply do not have the resources they need to move forward, and will effectively be shut out of the very employment opportunities most likely to lead to economic security.
The Academy’s Afterschool STEM Mentoring Program meets this challenge head-on by placing specially trained graduate students as tutors and role models in afterschool programs operating in economically disadvantaged middle schools and community-based organizations throughout New York State. Since the program began in 2010, over 10,000 children at over 100 organizations have received more than 131,000 hours of hands-on science and math education from over 700 graduate students and postdoctoral fellows representing some of the world’s best universities. The middle-school students get an incomparable leg-up in their education, and the opportunity to interact with a role model who shows them by example that a career in the sciences is a viable and exciting option, while the young scientists, in turn, gain valuable teaching experience. In 2012, the National Science Foundation awarded the Academy and the State University of New York a $2.95 million grant to scale the Program to six sites in New York, while in 2013, the Girl Scouts of the USA and the Academy presented a commitment to scale the Program across the country at the Clinton Global Initiative (http://www.youtube.com/watch?v=Px_PxOKamqM). In 2014, the Academy launched two international sites in Malaysia and Barcelona. In the spring of 2014, the Academy and the New York City Department of Education launched the Scientists-in-Residence pilot program, in which 11 mentors were partnered with teachers and placed in classrooms with 25-30 students to enact projects and help enhance students’ research experiences. Domestic and International sites receive intensive training, curriculum support, ongoing coaching and networking, inclusion of local staff in a cohort of their peers, site visits and detailed work plans and guidance for launching the programs. Enacted Regional Locations/Partners: New York: New York City, Oswego, Utica, Long Island, Albany and Syracuse/The State University of New York, National Science Foundation, New York City Department of Youth and Community Development Spain: Barcelona/Mayor’s Office of Barcelona Malaysia: Kuala Lumpur/National University of Malaysia, Prime Minister’s Office, New York University School of Engineering Invited Proposals/Partners: Qatar: Doha/Ministry of Education/Supreme Education Council, Sidra, Qatar Foundation, Qatar University, Ooredoo San Francisco, Texas, Iowa/Girl Scouts of the USA, Clinton Global Initiative Mexico/Ministry of Education Impact and Evaluation Through a grant from the National Science Foundation, ASPM is undergoing an external evaluation to understand the impact on the students and scientists/mentors. In Year 1, the evaluation found statistically significant impacts for the students including increased content gains, a greater interest in STEM careers and a more positive attitude towards STEM studies. The evaluation also found statistically significant outcomes for the scientists/mentors including increased confidence in teaching and actual improvements in inquiry teaching methods. Regional sites can opt to participate in the external evaluation for a small additional fee (for training) or use the Academy’s internal evaluation methods which include mentor surveys and interview protocols and observation and coaching methods.
33
34
3. High-School Students: A network of educational excellence Program Description In 2013, the Academy embarked on its first programming for high-school students through a partnership with the Prime Minister of Malaysia. With the National University of Malaysia, the Academy created a series of workshops called the Nobelist Mindset Program for gifted and talented high school students, teachers, and promising university faculty. Almost 250 participants have completed workshops in Malaysia and New York and another round is scheduled for fall 2014; Nobel Laureate Sir Richard Roberts currently serves as Laureate-in-Residence to help develop research projects with participants. With partners around the world, the Academy will scale up another soft skills program, Building STEM Leaders, to include workshops, online classes, and genuine research experiences for high-school students to prepare them for undergraduate and graduate studies in science. In New York City, the Academy launched the High School Apprenticeship Program, which places talented high school students as teaching assistants in the Afterschool STEM Mentoring Program. In addition to serving as teaching assistants, the students: (1) participate in an online course; (2) are mentored by a scientist; and (3) participate in content-specific teacher training with the goal of receiving New York City Department of Education science credit. For the past four years, New York City high school students have participated in various Academy programing including our FIRST Lego League Robotics Scrimmage, STEM Bonanza and scientific programming. In 2013 we began formalized programming to serve this age group. Enacted Regional Locations/Partners: New York City/ New York City Department of Education/Pinkerton Foundation Malaysia/National University of Malaysia, Prime Minister’s Office, Office of the First Lady, PERMATAPintar United Kingdom/University of Warwick, Iggy.net Invited Proposals/Partners: Australia (Sydney and Melbourne)/ Federal Government, Government of Victoria, Australian Academy of Sciences, Office of the Governor General, Monash Science School Qatar/ Ministry of Education, Qatar Foundation International, Qatar National Re search Foundation Indonesia/Indonesia – Australia Center Russia/US Department of State Impact and Evaluation Evaluations are designed for each workshop to measure content gains, attitudinal changes and efficacy of curriculum by Academy staff. Evaluation methodologies include pre- and post- survey instruments, observations and interviews designed and conducted by Academy staff. The evaluations are designed to create a feedback loop to improve the curriculum and inform the teaching staff of their efficacy. The Academy has informally impacted 350 high school students through informal programming such as the STEM Bonanza and scientific conferences since 2011. Since our formal programming began in 2013, we have impacted 250 students with multi-week and semester long programming.
4. Teachers and Post-Secondary Educators Program Description In another innovative approach to the problem of inadequate STEM education, the Academy has recognized that even the most motivated science and math teachers often have limited access to the resources they need to stay current on the latest developments in their subject, and therefore have difficulty keeping their curricula fresh, relevant, and adequate for providing the skills their students will need to succeed. The Science Teachers Program bridges that gap by providing front-line educators at the secondary and faculty level in STEM subjects first-hand access to the professional science community. Each year since its launch in 2010, the program provides 4,800 sponsored Academy memberships to public-school science and math teachers in New York and New Jersey, which provides them with access to all of the Academy’s conferences and many publications, as well as online resources tailored specifically to address their needs as educators. In addition, the Academy offers in person and online courses for educators in specialized teaching skills for graduate students, high school teachers and early stage faculty. In addition to supporting existing teachers, the Academy is actively engaged in creating new ones. Through the Afterschool STEM Mentoring Program (Described in Section 2), the Academy has engaged hundreds of graduate students and postdoctoral fellows through hands on teaching experiences. In partnership with 100kin10, the New York City Department of Education, Teach for America and the Girl Scouts of the USA the Academy is engaged in recruiting new public school teachers and recent research found that 17% of our scientist mentors were either now teaching or actively seeking teaching positions in the K-12 setting. Finally, through the Global STEM Alliance, the Academy has been engaged by various governmental agencies to design specific projects to address the global shortage of teaching talent and the reskilling of existing teachers. Through the GSA, the Academy has worked with 80 educators in Malaysia and over 1000 in the US. Enacted Regional Locations/Partners: New York/100kin10, New York City Department of Education Malaysia/National University of Malaysia, Prime Minister’s Office, PERMATAPintar Invited Proposals: Bhutan/HRH Jigyel Ugyen Wangchuck, King’s Challenge, Ministry of Education Qatar/Qatar Foundation, Qatar University Argentina/Mayor’s Office of Buenos Aires Impact and Evaluation: Domestically, the Academy has provided 4,800 free memberships to educators to attend education and scientific programming which can be used for professional credit with schools. Participants are surveyed and interviewed to gauge their satisfaction with the program. Over 1,000 scientists have participated in training to improve their teaching skills. Most were participants in the Afterschool STEM Mentoring program so participated in external evaluation activities detailed in Section 2. Other participants were evaluated using a mix of interview and survey instruments that were specifically designed for each course. Those evaluations demonstrate an 80% satisfaction rate with the programs.
35
36
5. Undergraduates: Supporting women in the pursuit of Scientific Careers The Academy strongly believes that no person of talent and ability should ever be discouraged from pursuing a STEM career, and that the overall quality and creativity of research and technological development are exponentially improved when there is a diversity of viewpoints in the classroom, the laboratory, and the office. The problems for young aspiring women scientists are magnified when they come from parts of the world that are traditionally apprehensive toward allowing women to travel internationally without the supervision of their families. In 2012, then-Secretary of State Hillary Clinton announced the launch of the NeXXt Scholars Program, which connects young women from predominantly Muslim countries with women’s colleges in the United States, and encourages them to earn Bachelor’s degrees in STEM fields. The international Scholars are paired with an American-born peer, and each young woman is mentored by a successful female graduate student or postdoctoral fellow. This empowers young women in STEM fields, promotes cultural exchange, and creates a positive cycle of career support. Throughout the spring of 2014, over 100 Scholars and mentors completed first year activities and will continue the program in the fall. Additionally, there are 50 Scholars and mentors participating in their second year of the Program. The Program will continue to grow, adding another 100 participants in fall 2014. Currently, Scholars come from 16 countries and attend 13 women’s colleges across the U.S. Enacted Regional Locations/Partners: United States/ US Department of State, a consortium of 38 Women’s Colleges Globally/New York Academy of Sciences, Clinton Global Initiative Invited Proposals: Australia/Government of Victoria Qatar/Qatar Foundation, Qatar University Impact and Evaluation One of the main goals of the NeXXt Scholars Program is to retain young women in the STEM fields. Currently, the Program has retained 92% of Scholars (and 94% of mentors). Participants are pre- and post-surveyed annually to determine their satisfaction with the program, their perception of self-efficacy growth related to program activities and their recommendations for future programming. Scholars are also benchmarked by their progress towards short- and long-term academic, professional and personal goals. Finally, they are also monitored for activity participation. 6. Early Career Scientists: Turning a science education into a science career As many young scientists reach the end of their graduate programs, they find the path to the next stage of their careers much less simple and clear than they had anticipated. The Academy’s Science Alliance provides more than 8,500 graduate students and postdoctoral fellows from 35 universities and research institutions with unique career development resources—including the opportunity to network with the very best and most distinguished researchers, physicians, professors, and engineers from around the world, as well as entrepreneurship training that guides them through the intricacies of funding and marketing that can turn innovative research into a real-world product or service.
In the 2013-2104 Academic year, over 3,000 students and postdoctoral fellows participated in Science Alliance professional development programs. 80 percent of those individuals who participated in these programs stated that they improved their ability to perform the designated skill as a result of participating in these workshops and seminars. 6.4 全球STEM联盟中国调研的部分专家顾问 Celina Morgan-Standard Senior Vice President, Global Business Development Celina Morgan-Standard is the Senior Vice President of Global Business Development focusing on key growth initiatives including the Global STEM Alliance and Global STEM education programs at the Academy. Celina joins the Academy from Tucker Capital where she worked with leading education organizations in publishing and media on growth initiatives including acquisitions and partnerships. She has negotiated partnerships and advised on challenging growth initiatives with clients such as The National Geographic’s JASON Project and Battelle Memorial Institute. Her sector expertise focuses on educational publishing and educational technology, and media. Celina received her B.A. from The Franklin College of Switzerland and studied for her MBA at the University of Hawaii at Manoa Schindler School of Business. Meghan Groome, PhD Executive Director, Education & Public Programs Dr. Groome, Executive Director of Education & Public Programs, joined the Academy in July of 2010 after spending almost three years as a consultant to the American Museum of Natural History (AMNH). While at AMNH, Dr. Groome worked on special projects in the Government Relations and Education Departments. Previous to her work at AMNH, Dr. Groome was a Senior Policy Analyst with the National Governors Association and worked on Governor Janet Napolitano’s Innovation America initiative and co-authored Building a STEM Agenda, a framework for states and large organizations to improve their science education pipelines from birth through graduate school. Dr. Groome completed her PhD at Teachers College Columbia University in Science Education with a focus on urban science education and reform and conducted field research with Dr. Ann Rivet and Dr. Angela Calabrese-Barton at middle schools across NYC. During graduate school, Dr. Groome co-founded uPublic, an education consulting company focused on local, national, and international education reforms including large-scale policy reforms in developing countries and school design. In 2005, Dr. Groome was an Education Policy Fellow for the Institute for Educational Leadership and in 2012, Dr. Groome served as a Global Education Policy Fellow in China for the Institute for Educational Leadership. Amber Schaub Director, Education & Public Programs Amber Schaub is Director of International Education for the Education & Public Programs at the New York Academy of Sciences. In addition to managing Malaysia’s Nobelist Mindset Project for gifted and talented Secondary School students, Ms. Schaub launched the NeXXt Scholars Program and also manages international initiatives including the Global STEM Alliance. Hired in spring 2012, Ms. Schaub is passionate about the intersection of international education and science, first coordinating and then managing initiatives in the energy industry. After teaching English as a Second Language abroad, she enrolled at Teachers College, Columbia University where she earned an MA in International & Transcultural Studies with a specialization in International Education Development in 2011. During her graduate studies, Ms. Schaub also served as the Writing and Communication Center
37
38
Coordinator at The Juilliard School, helping programs around writing and professional skills development for both American and international student populations. Ms. Schaub earned her BA from Lewis & Clark College in History and French Studies, graduating with Honors. Joe Melendez Program Manager for the Junior Academy, Education & Public Programs As program Manager for the Junior Academy, Joe evaluates and authors new curriculum modules for the Afterschool STEM Mentoring program, provides training to the mentors and is an expert in computer science education. A Liberal Studies graduate from The New School, Joe had worked as Program Coordinator and Developer for the Liberty Science Center before joining the Academy. At the Science Center he developed and implemented the Hands-On Technology after school program, a 28-hour workshop that introduces underserved middle-school students to prototyping technologies such as Arduino microcontrollers, 3D design, and 3D printing. Joe also managed BASF’s Kids Lab, a lab-based chemistry workshop for families with young children, and designed and taught STEM lessons for Boy Scouts and Girl Scouts. Before entering the world of education, Joe had worked as a reporter and computer hardware specialist.
6.5.全球STEM联盟部分学术论文以及目前教育中的科研成果 1.研究STEM 在教师培训中的作用以及未来的发展方向 Alternative Certification Programs & Pre-Service Teacher Preparedness Adrie Koehler Charles R. Feldhaus Eugenia Fernandez Stephen P. Hundley This explanatory sequential mixed methods research study investigated motives and purpose exhibited by professionals transitioning from careers in science, technology, engineering and math (STEM) to secondary education. The study also analyzed personal perceptions of teaching preparedness, and explored barriers to successful teaching. STEM career changers were surveyed and interviewed. Study participants without industry experience and graduate degrees perceived themselves as being more prepared than study participants with industry experience and graduate degrees when developing lesson plans. Additionally, study participants without graduate degrees felt more prepared than those with graduate degrees in the area of classroom management. Overall, participants perceived themselves as most prepared in assessment and their content area and least prepared in classroom management and handling the psychological needs of their students. Specific recommendations for STEM alternative teacher education programs, instructors within these programs, and STEM career changers are included. 2. STEM教学法的案例分析以及应用 Facilitating Teaching and Learning Across STEM Fields James A. Ejiwale The reformation of the instruction of subjects across STEM fields has changed the role of STEM educators from being “dictators” in the classroom/laboratory to being facilitators of students’ activities. This new paradigm shift means STEM educators are no longer limited to
delivering instruction intuitively, but rather with effective facilitation of students’ activities. Thus, the STEM educator is now to assume the role of the creator of effective educational environments for learning while teaching. This is enhanced by instructional strategies and delivery that synergize diverse students, strategies, technologies, societies, and subjects. This article addresses a paradigm shift for STEM educators as facilitators, their roles as students’ activities enablers, and factors influencing effective facilitation in STEM programs. 3. STEM如何有效缓解佛罗里达教育科技人才不足以及经济发展滞后的现状 The Use of Regional Data Collection to Inform University Led Initiatives: The Case of a STEM Education SWOT Analysis Jerlando F. L. Jackson and LaVar J. Charles According to the National Science Foundation (NSF; 2006), science and engineering jobs constitute a growing sector of the United States economy. The number of science and engineering degrees has lagged behind this occupational growth.In describing Wisconsin’s technology profile, Winters, Strang, and Klus (2000) report that the state is nationally ranked 23rd in the number of Ph.D. scientists produced and 26th with regard to the number of Ph.D. engineers produced. Thus, enlarging the science, technology, engineering, and math (STEM) pipeline in Wisconsin is vital to increasing and maintaining its economic stature. This objective is perhaps most important in the seven-county region of southeastern Wisconsin (M7), as it accounts for 34% of the state’s workforce, and, according to the 2000 Census, is the most racially diverse area of the state. As such, this paper assesses the status of STEM affairs in Wisconsin’s M7 region in an effort to provide an environmental scan of its readiness to be reframed as a STEM corridor. A strengths, weaknesses, opportunities and threats (SWOT) analysis is conducted to understand how to: (a) boost student participation in STEM at all educational levels in the M7 region, (b) increase STEM participation in order to bolster industry hiring in the region, (c) convince more STEM graduates to remain in the M7 region and attract STEM professionals on the whole, and (d) gain a greater understanding of the activities or initiatives that cement cooperative relationships among STEM organizations. 4. 介绍美国现阶段在STEM领域的发展进度 The Current Status of STEM Education Research Josh Brown This paper explores the current Science, Technology, Engineering and Mathematics (STEM) education research base through an analysis of articles from eight journals focused on the STEM disciplines. Analyzed are both practitioner and research publications to determine the current scope of STEM education research, where current STEM education research is conducted and who is involved in current STEM education research. Articles from eight journals were selected based on the original authors’ discussion of STEM education in the articles. The findings in this article summarize the frequency of different research methods in STEM education, the outcomes of STEM education research, the participants in STEM education research, and the universities affiliated with STEM education research.
39
40 5. STEM在残疾儿童教育的作用 Using a Thinking Skills System to Guide Discussions during a Working Conference on Students with Disabilities Pursuing STEM Fields Audrey C. Rule and Greg P. Stefanich Students with sensory or motor disabilities are often dissuaded from pursuing science, technology, engineering, or mathematics (STEM) careers. They are frequently underprepared to succeed in post-secondary STEM coursework because of inadequate high school preparation and limited post-secondary accommodations. A two-day working conference stimulated dialogue to improve attitudes toward, to better support, and to plan accommodations for students with physical disabilities in STEM areas. Discussion questions during the five small group dialogue sessions that followed panels of speaker presentations were based on Edward de Bono’s (2000) CoRT ten Breadth thinking skills. These thinking skills broaden perception so that thinkers might see beyond the obvious, immediate, and egocentric. These ten strategies encouraged conference participants to consider all factors (CAF), rate the plus, minus, and interesting aspects of ideas (PMI), think about other people’s views (OPV), generate alternatives, possibilities, and choices (APC), list aims, goals and objectives (AGO) and then prioritize them (FIP), determine rules (Rules), consider consequences and sequels of actions (C & S), make a plan (Planning), and come to decisions (Decisions) in the context of the issues addressed by the conference. The CoRT Breadth thinking skills provided a robust structure for guiding meaningful discussions and are recommended for generating discussion questions for future working conferences. The ideas that were generated during discussions are reported so that readers who are secondary or post-secondary STEM instructors might consider implementing them in their classrooms and programs. 6. 认知语言学与教师教育对STEM项目的影响 Using a Thinking Skills System to Guide Discussions during a Working Conference on Students with Disabilities Pursuing STEM Fields Audrey C. Rule and Greg P. Stefanich Students with sensory or motor disabilities are often dissuaded from pursuing science, technology, engineering, or mathematics (STEM) careers. They are frequently underprepared to succeed in post-secondary STEM coursework because of inadequate high school preparation and limited post-secondary accommodations. A two-day working conference stimulated dialogue to improve attitudes toward, to better support, and to plan accommodations for students with physical disabilities in STEM areas. Discussion questions during the five small group dialogue sessions that followed panels of speaker presentations were based on Edward de Bono’s (2000) CoRT ten Breadth thinking skills. These thinking skills broaden perception so that thinkers might see beyond the obvious, immediate,and egocentric. These ten strategies encouraged conference participants to consider all factors (CAF), rate the plus, minus, and interesting aspects of ideas (PMI), think about other people’s views (OPV), generate alternatives, possibilities, and choices (APC), list aims, goals and objectives (AGO) and then prioritize them (FIP), determine rules (Rules), consider consequences and sequels of actions (C & S), make a plan (Planning), and come to decisions (Decisions) in the context of the issues addressed by the conference. The CoRT Breadth thinking
skills provided a robust structure for guiding meaningful discussions and are recommended for generating discussion questions for future working conferences. The ideas that were generated during discussions are reported so that readers who are secondary or post-secondary STEM instructors might consider implementing them in their classrooms and programs. 7. STEM有游戏设置与科学理念 Assessing the Impact of an Autonomous Robotics Competition for STEM Education CJ ChanJin Chung, Christopher Cartwright, and Matthew Cole Robotics competitions for K-12 students are popular, but are students really learning and improving their Science, Technology, Engineering, and Mathematics (STEM) scores through robotics competitions? If they are, how much more effective is learning through competitions than traditional classes? What is the best robotics competition model to maximize students’ STEM learning? One robotics competition designed to promote the use of math and science is Robofest. Robofest is an autonomous robotics competition with some unique features for STEM education. An example is that students need to solve unknown problems on the day of the competition. The Robofest competition requires the use of mathematics and sensors which discourages dead reckoning. Results from 5th-12th graders who completed a STEM assessment before and after the Robofest competitions found students in the Robofest group showed improvement and achieved higher scores in math and science after the competition. These results suggest robotics competitions modeled after Robofest have the potential to improve STEM learning. 8. STEM领导力的组建,全球合作以搭建伙伴型合作平台 Facilitating Collaboration Across Science, Technology, Engineering & Mathematics (STEM) Fields in Program Development James A. Ejiwale Collaboration plays a major role in interdisciplinary activities among Science, Technology, Engineering & Mathematics (STEM) disciplines or fields. It also affects the relationships among cluster members on the management team. Although effective collaboration does not guarantee success among STEM disciplines, its absence usually assures problems. More specifically, collaboration has the obvious roles of identifying talents coming together for a common purpose of combining knowledge and sharing responsibility, creativity, and experience of others. Facilitating collaboration across Science, Technology, Engineering, and Mathematics (STEM) fields in program development is critical to providing a strong educational foundation to all learners in STEM education. This synergistic effort among educators and other professionals across the STEM fields will enable effective knowledge sharing in program development. This paper addresses leadership and knowledge sharing among collaborators in STEM program development through facilitating collaboration across STEM fields.
41
42
9. STEM教育在大学教育对大学生的影响 Research Experience for Undergraduate Students and its Impact on STEM Education Wei Zhan Research experience has been proven to be effective in enhancing the overall educational experience for undergraduate students. In this article, two engineering research projects with undergraduate students’ involvement are discussed. The projects provided the undergraduate student researchers with motivation for independent research work and learning experiences in the areas of sensor characterization, analog and digital filter design, electronic circuit design, printed circuit board layout, and feedback control design. The students also helped a faculty member conduct research work and develop curricular materials. The seamless combination of learning, research, curriculum development, and outreach based on the research projects illustrates the importance of research with the involvement of undergraduate students. 10. 介绍了STEM在美国国际基金会的支持下,开展一个为期五年的项目,主要是以” 导师辅导”与”职 业测试”为主线 MemphiSTEP: A STEM Talent Expansion Program at the University of Memphis University of Memphis David Russomanno, Rachel Best, Stephanie Ivey, John R. Haddock, Don Franceschetti, Regina J. Hairston MemphiSTEP is a five-year STEM Talent Expansion Program at the U. of Memphis sponsored by the National Science Foundation. The project focuses on retention and persistence to graduation to increase the number of STEM majors and graduates. The project includes a summer Mathematics Bridge Bootcamp, research experiences for undergraduates, peer-student and faculty-student mentoring, grants for student professional organizations, STEM learning communities, and a faculty seminar on pedagogical approaches to STEM education. Although the project concentrates on all STEM areas across the campus and each year of a student’s undergraduate career, mathematics as used in science and engineering is a focal point in many of the project’s strategies and activities. The assessment results for the first summer Mathematics Bootcamp are presented in detail and lessons learned during year one for other components of the project are discussed. Results show that the Bootcamp was effective in fostering mathematics skills, increasing students’ awareness of/interest in STEM courses and careers, and facilitating networking opportunities, such that STEM students may work collaboratively with peers and faculty members. Overall, the paper intends to highlight program activities designed to foster retention and graduation, as well as the successes and lessons learned from year one program activities employed by MemphiSTEP. 11. 介绍了教师如何有效地利用这个STEM概念,设计有效的教学模式来引导学生学习 STEM High School Teaching Enhancement Through Collaborative Engineering Research on Extreme Winds Danielle Reynolds John A. Dubiski Career High School Nur Yazdani University of Texas at Arlington Tanvir Manzur Bangladesh University of Engineering and Technology
The Research Experiences for Teachers (RET) program on Hazard Mitigation at the University of Texas at Arlington (UT Arlington) involved area high school STEM teachers in engineering research with faculty and graduate students. The primary objective of the project was to train participating teachers in inquiry based research learning, research design, execution and implementation, and eventually to apply this knowledge of engineering and technological innovation to their high school STEM classrooms. The National Science Foundation (NSF) funded project included seven research projects with the common theme of natural and man-made hazards. The RET extreme wind project setup and results are described in this article. The project was implemented through classroom lectures, hands on training, field trips and workshops, enhanced lesson plans for high schools, and teacher professional development. The project had significant positive impact on enhancing the engineering research interest of the participating teachers. The classroom learning experience of the high school students of these teachers were greatly enhanced through the RET knowledge and enhanced lesson plans, increasing their interest in engineering as a career. 12. 介绍STEM中对于人文科学领域的学习,可以并行促进孩子的学习 The Prospect of an “A” in STEM Education Michael K. Daugherty 13. 介绍在大学二年级的学生中开展STEM讲座,对孩子未来在STEM的职业发展影响 Impact of a Sophomore Seminar on the Desire of STEM Majors to Pursue a Science Career Ryan D. Sweeder and Philip E. Strong Michigan State University This study focuses on the impact of a sophomore seminar on STEM majors’ desire to pursue a science career. This seminar was a component in a broader scholarship program and focused on helping students gain a more in-depth understanding of the process of science, exposing students to a range of career options, and providing opportunities for outside of class student-faculty/scientist interactions. Interviews and reflection papers by the fifteen students who completed the seminar suggest that the most common benefits from the course involved development and refinement of career decisions, fomenting ofself confidence and empowerment, and awareness of available resources to assist in the pursuit of a STEM career. The students very clearly indicated the importance and impact of a wide range of informal interactions between themselves and/ or faculty or other scientists, helping the students put a personal face on those who have previously pursued a science career. Additionally, the exposure to these scientists and their stories, along with a more complete discussion about the process of science (including funding, dissemination and ethics), spurred three of fifteen students to favorably reconsider the possibility of research as a career option. 14. 通过在美国高中引导学生选择STEM项目,参加项目的学生在未来的大学阶段有了更多的发展 High School Bridge Program: A Multidisciplinary STEM Research Program Jiang Zhe, Dennis Doverspike, Julie Zhao, Paul Lam and Craig Menzemer The University of Akron A Science, Technology, Engineering and Math (STEM) summer Bridge Program was developed for high
43
44
school students. The program was designed to encourage students to consider choosing an engineering major in college and to explore STEM as a future career. This was accomplished through a 10-week program involving multidisciplinary research activities. The participants in the program included 33 high school students. Among participants in position to make a choice in terms of attending college, 100% chose to continue on in college, and 86% chose to major in a STEM area. Comments received in focus groups suggested that the participants viewed the program positively and that it did impact their career plans. 15. 教师在课程中如何充分融入STEM的课程理念 A Teacher Observation Instrument for PBL Classroom Instruction Linda M. Stearns, Jim Morgan, Mary Margaret Capraro, and Robert M. Capraro Texas A & M University Teaching is a complex activity that requires making ongoing multiple, decisions and engaging in sporadic, responsive actions while performing pre-planned prescribed tasks. The enactment of the essential aspects of teaching can be assessed by using a well-designed observation instrument. After a sustained professional development on Science, Technology, Engineering, and Mathematics (STEM) Project- Based Learning (PBL), an observation instrument was used to assess the enacted STEM PBL activities in secondary mathematics and science classrooms. This article provides the background precipitating the need for an instrument, using an observation instrument to provide feedback to teachers and other stakeholders, and follow-up suggestions for those engaging in STEM professional development, including districts, schools, academies, service centers and university partners.