E-LEARNING INTERACTIVE OPEN SCHOOL (E-LIOS) Innovative STEM Education E-lios platform is a new educational platform that provides to teachers and educators the ability to create their own educational scenarios. Its innovation is that provides a structured framework where a teacher can follow guidance steps and built an educational scenario. Apart from this structured form, e-lios platform introduces two main innovative aspects. First, provides the field: “students life stories” where students can upload their own stories and secondly, within the same philosophy, e-lios platform introduces the “life skills” tab mainly for teachers, but also for adults wishing to share their life experiences. These two aspects of the e-lios platform are straightly introducing personal experiences into learning procedure, developing thus scenarios based on transformative learning.
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
1
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
CHIOTELIS IOANNIS (JOHN) PhD, MSc, Physicist Innovative STEM Education
E-Learning Interactive Open School (E-LIOS)
ISBN: 978-960-87091-7-1 Copyright: Koleza Eugenia, Ioannis (John) Chiotelis This e-book version was funded by the European project ERASMUS+ KA2 with Program code: 2015-1EL01-KA201-014029 and title E-LIOS (E-Learning Interactive Open School). The Project E-LIOS Is an action of the Axis: Collaboration for innovation and exchange of good practice in the field of school education of the European Program ERASMUS+ KA2. Supervisor: Koleza Eugenia.
2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education 2
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
Περιεχόμενα Open Innovative Virtual Playful Learning for Schools in the Digital Era ................................................. 6 Stylianos Mystakidis, MSc, PMP, Phd scholar ..................................................................................... 6 E-Learning Interactive Open School ........................................................................................................ 7 CTY Greece: Identifying and addressing the learning needs of Greece’s talented students ............... 7 Bulgarian Education in the Digital Era ..................................................................................................... 8 Deyana Peykova (deyana@mail.bg).................................................................................................... 8 Our school need of changes .................................................................................................................... 9 Maria Nikolova, Bulgaria..................................................................................................................... 9 E-learning in Italy as a strategy to foster Innovation in education ....................................................... 10 Erina Guraziu, (formazione@opencom-italy.org) ............................................................................. 10 E-Learning Interactive Open School: Liceo Scientifico Piero Calamandrei ........................................... 11 Maria Rosaria Zeno (wirdnam@gmail.com) ..................................................................................... 11 POLISH EDUCATION ............................................................................................................................... 15 Aleksandra Chlasta-Górna (Szkoła Podstawowa Jankowie Przygodzkim) ........................................ 15 ICT in Education in Romania .................................................................................................................. 17 Petrică Alina ...................................................................................................................................... 17 Expectations from e-lios and a short review of expectation situation in Turkey ................................. 18 Ercan KÜÇÜKARSLAN (ekucukarslan@gmail.com)............................................................................ 18 Education in Turkey ............................................................................................................................... 19 Karadeniz Uğur (uk002@mynet.com) ............................................................................................... 19 E-Learning in Italy as a strategy to foster Innovation in education. ..................................................... 20 Erina Guraziu, formazione@opencom-italy.org................................................................................ 20 System of Polish Education ................................................................................................................... 28 Aleksandra Chlasta – Górna, achlastagorna@poczta.fm .................................................................. 28 Expectations of Turkey from an E-Learning Interactive Open School................................................... 34 Ercan Küçükarslan, ekucukarslan@gmail.com .................................................................................. 34 ICT in Education in Romania .................................................................................................................. 37 Petrica Alina....................................................................................................................................... 37 Our school need of changes .................................................................................................................. 45 Maria Nikolova, Bulgaria ................................................................................................................... 45 Education in Italy ................................................................................................................................... 50 3
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
Maria Rosaria Zeno, wirdnam@gmail.com ....................................................................................... 50 Bulgarian Education in the Digital Era ................................................................................................... 57 Deyana Peykova, deyana@mail.bg ................................................................................................... 57 System of Polish Education ................................................................................................................... 62 Aleksandra Chlasta – Górna, achlastagorna@poczta.fm .................................................................. 62 EDUCATION IN TURKEY ......................................................................................................................... 68 Uğur Karadeniz, uk002@mynet.com ................................................................................................ 68 GOOD PRACTICES .................................................................................................................................. 74 From barter to electronic money .......................................................................................................... 74 By Deyana Peykova (deyana@mail.bg) and Snezhana Krasteva (krasteva@abv.bg) Hristo Smirnenski Primary School, Rakovski, Bulgaria ................................................................................. 74 How many stars can I see at night? ....................................................................................................... 82 Alina Petrica....................................................................................................................................... 82 Cylinder and cone .................................................................................................................................. 86 Svilen Stoyanov ................................................................................................................................. 86 HOW TO DO SCRATCH (Christmas animate greeting e-card) ................................................................ 89 Svilen Stoyanov ................................................................................................................................. 89 RESEARCH PAPERS................................................................................................................................. 93 Greek Model Experimental Schools. Too good to last? An attempt to evaluate. ................................. 93 Chiotelis, Ioannis, johnchiotelis@yahoo.gr, Theodoropoulou, Maria mariatheodoropoulou@ymail.com Department of Primary Education, University of Patras, ......... 93 Εκπαίδευση και ΤΠΕ στα σχολεία της Ανατολικής Ευρώπης .............................................................. 100 Χιωτέλης Ιωάννης, johnchiotelis@yahoo.gr ................................................................................... 100 A STEM Educational Scenario: “From Water Power to Hydrogen Fuel Cells” .................................... 110 Chiotelis Ioannis, Theodoropoulou Maria ....................................................................................... 110 A model educational scenario for the on-line educational platform e-lios: Holocaust in e-lios Plattform. Ένα πρότυπο εκπαιδευτικό σενάριο για την ηλεκτρονική εκπαιδευτική πλατφόρμα elios:Το Ολοκαύτωμα στην πλατφόρμα e-lios. ..................................................................................... 119 Plota Despoina, despoinaplota@gmail.com ................................................................................... 119 Chiotelis Ioannis, johnchiotelis@yahoo.gr ...................................................................................... 119 Ανάγκες εξ αποστάσεως εκπαίδευσης στα σχολεία της Ανατολικής Ευρώπης ................................. 130 Χιωτέλης Ιωάννης, johnchiotelis@yahoo.gr Δημακόπουλος Γεώργιος, geodimako@gmail.com .. 130 ONLINE EDUCATIONAL WORKING GROUPS. WHAT CAN STUDENTS’ "FACEBOOK" REVEAL? ............ 140 CHIOTELIS IOANNIS johnchiotelis@yahoo.gr THEODOROPOULOU MARIA mariatheodoropoulou@ymail.com ................................................................................................. 140 4
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
Οι αναπηδήσεις μιας ελαστικής μπάλας. Πλήθος και χρονική διάρκεια αναπηδήσεων................... 151 Χιωτέλης Ιωάννης, johnchiotelis@yahoo.gr, Λύρη Αναστασία, natasaliri@yahoo.gr ................... 151 Ψηφιακές Δυνατότητες στην Εκπαίδευση: Διείσδυση της Εκπαιδευτικής Τεχνολογίας στα Σχολεία της Ανατολικής Ευρώπης........................................................................................................................... 162 Χιωτέλης Ιωάννης, Δημακόπουλος Γεώργιος, Θεοδωροπούλου Μαρία johnchiotelis@yahoo.gr, geodimako@gmail.com, mariatheodoropoulou@ymail.com ........................................................ 162 Πλήρης επίλυση του προβλήματος της αναπηδώσας μπάλας........................................................... 173 Χιωτέλης Ιωάννης, Λύρη Αναστασία, Θεοδωροπούλου Μαρία johnchiotelis@yahoo.gr, natasaliri@yahoo.gr, mariatheodoropoulou@gmail.com .............................................................. 173 PROPOSALS FOR GOOD PRACTICES..................................................................................................... 184 Measurement of volume, mass weight, density ................................................................................. 184 Linear Motion Study ............................................................................................................................ 186 Periodic movements-oscillations ........................................................................................................ 188 Elasticity- Hooke’s Law of elasticity..................................................................................................... 190 Force synthesis and Force analysis...................................................................................................... 192 Force Torque ....................................................................................................................................... 194 Law of Hydrostatic Pressure ................................................................................................................ 196 Buoyancy-Archimedes’ Law ................................................................................................................ 198 Thermal expansion-Boiling .................................................................................................................. 200 THE E-LIOS PLATFORM USAGE INSTRUCTIONS ................................................................................... 202
5
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
Open Innovative Virtual Playful Learning for Schools in the Digital Era Stylianos Mystakidis, MSc, PMP, Phd scholar In this keynote presentation we will explore the following topics: What is the potential of Open Education, Social Virtual Reality and Playful Design for Innovative School Teaching and Learning? How can we implement innovative, flexible training for in-service teachers and educators? What are some inspirational examples of technology enhanced learning (e-learning, blended learning etc.) in Europe and beyond? Stylianos is the eLearning Manager of the Center for Vocational Education at the University of Patras in Greece. He is also the Content Manager for European Commission’s website on Educational Innovation and E-learning, Open Education Europa. As certified E-learning & Virtual Immersive Environment Expert he has designed innovative blended learning programs, coordinated project teams for the production of e-learning educational material and Open Educational Resources for higher and vocational education. He teaches frequently as Adjunct Professor in several European and US universities. He has won national and international awards for innovative and effective use of open education for professional development and career counseling. His areas of expertise and research interests focus on technology-enhanced learning and include learning innovation with the use of collaborative web applications, 3d virtual immersive environments, gamification approaches, serious games and playful design in conjunction with open education and MOOCs. More specifically he is applying game mechanics in attendance-based teaching and e-learning and studying ways to enhance teaching and open education. He has also extensive training experience in faculty development, adult education and teacher training having worked as trainer and instructional designer for the Greek National Center for Public Administration and the National School for Public Administration. Finally, he is invited as Expert to participate in the organization of major European Commission events. Among others he has served as Online Discussion Animator and Social Media Moderator for the Digital Agenda Assembly (2012) and as Learning Technologist for the Education in the Digital Era conference (2014) and the Open Education Europa Portal (2015). Links Academic & Professional Profile (LinkedIn, Academia) Professional Social Media Presence (Twitter, Google+) Presentations (Slideshare)
6
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
E-Learning Interactive Open School CTY Greece: Identifying and addressing the learning needs of Greece’s talented students A significant grant provided by the Stavros Niarchos Foundation to the Johns Hopkins Center for Talented Youth set forth the collaboration of these two institutions with a third, Anatolia College, one of the most distinguished educational institutions in Greece. The endeavor of the collaboration was to provide academically gifted students in Greece – and ultimately across Southeastern Europe - with the opportunity to attend advanced and challenging educational programs. The establishment and operation of CTY Greece is part of the Niarchos foundation’s effort to help relieve some of the dire consequences stemming from the financial crisis in Greece. Through a mathematics and reasoning-based School and College Ability Test (SCAT), administered for the first time in the academic year 2013-2014, and with the addition, in the following year, of a spatial ability test (STB) - which can help determine a child’s ability in a potentially useful and defined area of intelligence - until now the Center has tested more than 4000 students in 16 cities, identifying academically advanced students and providing to a large number of them challenging programs matched to their abilities. In the context of CTY’s fundamental mission to support and encourage the academic ability of talented youth all over Greece and to foster an inclusive community of students representing different socio-economic classes, CTY Greece has managed to offer more than 160 full and half scholarships to highly able Greek students in the last two years. CTY Greece welcomed its first students in the summer of 2014 in a three-week residential program sited at the beautiful Anatolia campus, has offered weekend programs to eligible students in several Greek cities and in addition began offering a series of online distance courses a year ago in order to offer eligible students opportunities to accelerate and enrich their learning at home, irrespective of their location, thus reaching out to talented youth living in remote areas of Greece. The online programs are offered through a platform called Plato, designed by CTY Greece to provide gifted students in grades pre-3-9 challenging academic course work. The platform brings together the best resources for each course, including multimedia resources, interactive virtual classrooms, texts and student guides and assigns to each student a qualified CTY instructor who provides guidance, feedback, encouragement, and evaluation. CTY Greece Online Programs courses are available year-round to students who prefer online learning conditions and who, according to the educational research worldwide, on average, performed better than those receiving face-to-face instruction. At present the Online Program covers computer science topics such as Scratch programming and Web design and are aimed at elementary and junior high school students. The Center is planning to expand its online program to cover subject areas such as Creative Writing, Physics and Biology which will be available in the following academic year.
7
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
Bulgarian Education in the Digital Era Deyana Peykova (deyana@mail.bg) Implementation of electronic educational resources in Bulgarian education is one of the main priorities of the Ministry of Education and Science. In 2005 a Strategy for Introduction of ICT in Bulgarian schools was adopted. The main aim was building a new learning environment which can teach students to seek and find information, to analyze and use it in the learning process. Following the plan, many schools were equipped with computers free access to the Internet, electronic books were released, and the process started to reach planned goal. In accordance with the plan teachers had to present their lessons in a modern way, by engaging the students’ attention and their active participation in the learning process. The Ministry created an educational portal, distance learning platforms and educational content in all disciplines, thus students were given the opportunity to widen their knowledge in the subjects. Teachers were required qualifications to work with different software and parents were given the opportunity to monitor their children's development and to participate actively in the school life. A Plan for effective introduction of ICT in Education and Science (2014-2020) was started in 2015 in addition to 2005 Strategy. Its main objectives that are linked with the ambition to provide more opportunities and equal access to education at the level of modern requirements of national and international standards, regardless of the place of residence and the attained level of education. The aim is to build people who can be sufficiently adaptable to life in the modern information society. The interest in high technology and e-learning will be encouraged. All the activities according to the Plan are under the motto: E-Learning. The ambition is to increase the interest and motivation of students in the learning process through the use of innovative methods based on IT solutions. It is planned to build a national cloud ICT infrastructure for the needs of Education and Science, as well as a national electronic platform for managing learning and content incl. digital environment for video tutorials, teleconferences and development. The national education portal will be updated and the creation of electronic textbooks with interactive content in all subjects such as e-books in PDF format, multimedia lessons will be encouraged. Using digital e-learning platforms and electronic educational resources contributes to raising the standard of education because of multi-sensory approaches, different methods of teaching and learning (Blended learning, Flipped learning), etc. They introduce a new learning model based on interaction between teachers, students and ICT tools. Digital e-learning platform can increase students' motivation to the learning process; facilitate sharing of resources; provide greater flexibility when and where the tasks to be carried out; provide access to data anytime, anywhere; meet the different learning styles and enable students to learn according to their individual pace; improve the digital competence of students, teachers and parents.
8
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
Our school need of changes Maria Nikolova, Bulgaria Our school is small rural school in little village Stefan Karadzha. It is located near 12 km from the municipality centre Glavinitsa and 60 km from the district center Silistra. The school "Otec Paisii" is a primary school. 65 students aged 7 to 15 and 24 children aged 4 to 6 train here. Đžur students complete the primary school after the 8th grade currently. From next year they will complete primary school after 7th grade. The pedagogical staff is of 14 teachers including the director, including 3 men and 11 women. Teachers participate in courses and seminars to develope their pedagogical competences. One teacher participate and complete few online training courses in European Schoolnet Academy. These courses are related to the classroom of the 21st century and use of new technologies in the classroom. In our school there are three types of school training, which is distributed in the following educational areas: General education: Bulgarian language and literature, Foreign language (English), Mathematics, ICT, Social sciences and civic education (History and civilization, Geography and economics), Natural sciences and ecology (Biology and health education, Physics and astronomy, Chemistry and ecology), Arts (Music and Art), Lifestyle and technology, Physical culture and sports. Advanced training: Bulgarian language and literature, Mathematics. Additional training: Folklore of ethnic, entrepreneur. Our motto is: "Learning to live together, regardless of religion or social origin and ethnicity." The mission of the school is to meet the needs of the students. We have one goal: to motivate students to study and work to improve their knowledge and skills. Our other goal is to consolidate the relationship family-school permanent. Our main goal is to achieve a high quality of education and ensure equal access to education for all children. To "open " educational system, to optimize the conditions and environment for learning. Our students often absent from school for a long time. Their parents work abroad. We have students on their own training who live abroad or in other places in Bulgaria. Teachers and students wish to use a platform that can state more friendly all new technology to schools and education. Teachers in smal school in vilages need of access to material related to what they teaching. Our students need the same too. Therefore the e-learning is an advantage. But we haven't access in available e-resources. E-learning can provide us extra educational pathways. We need of access research centers, institutes and laboratories. We are so far from culture institutes, theaters and muzeums. The virtual visit can provide the necessary knowledge. Elearning resurses we promote cooperation between educators, educators and students, educators and parents and of course between students. This will encourage educators to materialize their ideas and use innovative educational tools. Our teachers, students and parents need of changes, especially, they wait reform quickly and hope to developing in school.
9
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
E-learning in Italy as a strategy to foster Innovation in education Erina Guraziu, (formazione@opencom-italy.org) Development of E-learning practices in Italy are strictly connected to Country’s strategy to adopt the Digital Agenda for Europe, the Europe 2020 Initiative. In 2012, the Italian Government has adopted the Italian Digital Agenda Strategy, which pursues the general objectives of growth, employment and quality of life through an innovative digital process. According to European scoreboards (broadband, internet activity and skills, e-government, ICT in schools, research and innovation) Italy ranks 25th out of 28 Member States. Italy falls into the cluster of low-performance countries, where it performs below average. Notwithstanding, Italy has shown progress. In order to overcome backwardness and in line with the Italian Digital Agenda, in 2015 the Italian Government has legislated the Law 107 on School Reform, named “The Good School”, where digitalization is a priority for infrastructures, education and competences of teachers. The National Plan for Digital Schools is the operative document adopted by the Government in order to implement the Law. The following are the most important challenges outlined in the Plan: innovation of school system, digital education opportunities. As stated in the Plan, according to OCSE 2013, Italy is ranked at first place for ICT needs of teachers: 36% of Italian teachers have declared not to be sufficiently ready for digital didactics. Therefore, the National Plan highlights the need for an organic innovation of Italian schools, with programs and actions that include: development and access to digital environments, devices, platforms, training, education and competences. Distant learning is adopted in Italy mainly at Higher Education, where digital platforms allow students to attend lessons and be tutored appropriately. This is the case of USiena (University of Siena), Bocconi University, University of Padoa and others. Nevertheless, some interesting applications of distant learning in Italian schools are real, although few: • “Lepida project”: Distant learning for mountain schools of Reggio Emilia area, which involves 60 schools; • “Smart Inclusion 2.0”: distant learning in Tuscany for children who are obliged to pass long periods at hospitals. As a conclusion, it is prior for Italy to increase the number of teachers that own digital competences: Law 107 foresees that each school should have a Digital Coordinator, but the way forward is long and targeted efforts should be implemented. In fact, digital competences of teachers are essential for adopting widely tele-didactics at school system.
10
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
E-Learning Interactive Open School: Liceo Scientifico Piero Calamandrei Maria Rosaria Zeno (wirdnam@gmail.com) The Liceo Scientifico Piero Calamandrei is a five-year state school educating students between 13 and 18 years old. The school is located in Ponticelli, a neighbourhood in the suburb of Naples, and has about 1,500 students from 9th to 13th grade. The school initially opened in 1976 in the industrial centre of Napoli but was subsequently relocated in its current site in 1989. The students come from diverse family backgrounds as the area enjoys a diversified economic and cultural base. The students are almost exclusively Italians, with only a handful of foreign origin pupils whose families have moved to the area for employment and are well integrated in our local community. We also have a couple of cultural exchange students who are spending a gap year in Italy and attend our Liceo. There are 3 main educational paths in the school: scientific, classical and linguistic. The students can choose their path on initial enrolment. The core of the educational model is well balanced in all streams and each year combines basic academic subjects common to all students with chosen paths that the student wants to deepen. This cross curricular approach involves all areas of study in both humanities and math and science. The Scientific stream focuses predominantly on mathematics, informatics and modern sciences. The classical stream focuses mainly on humanistic studies, art, history, literature and philosophy. The Linguistic stream focuses on modern languages and students can learn English, French, Spanish and German with Italian teachers along with mother tongue lecturers. English language is compulsory regardless of the stream chosen. Classrooms are equipped with white boards connected to the internet. All the teachers are supplied with a tablet and an electronic register is in place. Our school is an official test centre for Cambridge language certification of English, and it has been included among the best 15 schools in the world in 2014 by the Cambridge board itself. The Liceo has been awarded as a finalist in the top three schools in the category "Excellent business growth". Liceo Calamandrei is the leading school for CLIL (content language integrated learning) methodology authorized by the Ministry of Education in our region. We organize courses for teachers who want to improve both the English language and the CLIL methodology. Our school provides many extracurricular courses to improve language, informatics and literature skills for all grade students. Students enjoy lessons in language, physics, and science and informatics laboratories. E-learning could be a further step for those who thrive in our hightech world and prefer a more technological approach to the classroom lesson. In our liceo we aim to create an atmosphere where students with different backgrounds and abilities will feel involved and proud to belong to their school, empowering them to succeed in a world dominated by fast changing technologies. Education in Italy
11
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
Maria Rosaria Zeno, (wirdnam@gmail.com)
The basis of the current schooling system was laid in 1946, when Italy became a parliamentary republic. Since then, state education has formed the real backbone of the didactic system in the country. Compulsory school, which lasts from 6 to 16, is free, which means you do not need to pay any registration fee. Free state education is available to children of all nationalities who are resident in Italy. Children attending the Italian education system can start with the Scuola dell'Infanzia also known as Scuola Materna (nursery school), which is non-compulsory, from the age of three.
Scuola Primaria (Primary School) At the age of six, children start their formal, compulsory education with the Scuola Primaria (Primary School). In order to comply with a European standard for school leaving age, it is possible to enter the Scuola Primaria any time after the age of five and a half. Here children learn how to read and write and study a wide range of subjects including maths, geography, Italian, English and science. They also have music lessons, computer studies and social studies. Religious education is optional. Scuola Primaria lasts five years. At the age of eleven students begin their Secondary education. Scuola Secondaria di Primo Grado (First Grade Secondary School) All children aged between eleven and fourteen must attend the Scuola Secondaria di Primo Grado (First Grade Secondary School). Students must attend at least thirty hours of formal lessons per week, although many schools provide additional activities in the afternoons such as computer studies, music lessons and sports activities. Formal lessons cover a broad range of subjects following a National Curriculum set by the Ministero della Pubblica Istruzione, MPI (Ministry of Public Education). At the end of each term, students receive a school report. At the end of the third year, students sit a written and oral exam. They then move onto the Scuola Secondaria di Secondo Grado (Second Grade Secondary School). Italy is known to be one of the few countries in the world where a distinct, well defined choice about a pupil's future professional career needs to be taken as early as 14. Italian high schools are of different types, depending on the focus of their teachings. Scuola Secondaria di Secondo Grado (Second Grade Secondary School) There are two types of Scuola Secondaria di Secondo Grado in Italy: the Liceo (similar to a British grammar school), which is more academic in nature, and an Istituto, which is essentially a vocational school. For the first two years all students have the same core curriculum of Italian language and literature, science, mathematics, foreign language, religion, geography, history, social studies and physical education plus some other subjects which are specific of the chosen school, for example Latin in our Liceo. 12
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
Liceo Scientifico Piero Calamandrei Our school, The Liceo Scientifico Piero Calamandrei is a five-year state school educating student between 13 and 18 years old. The school is located in Ponticelli, a neighbourhood in the suburb of Naples, and has about 1,500 students from 9th to 13th grade. The school initially opened in 1976 in the industrial centre of Napoli but was subsequently relocated in its current site in 1989. The students come from diverse family backgrounds as the area enjoys a diversified economic and cultural base. The students are almost exclusively Italians, with only a handful of foreign origin pupils whose families have moved to the area for employment and are well integrated in our local community. We also have a couple of cultural exchange students who are spending a gap year in Italy and attend our Liceo. There are 3 main educational paths in the school: scientific, classical and linguistic. The students can choose their path on initial enrolment. The core of the educational model is well balanced in all streams and each year combines basic academic subjects common to all students with chosen paths that the student wants to deepen. This cross curricular approach involves all areas of study in both humanities and math and science. The Scientific stream focuses predominantly on mathematics, informatics and modern sciences. The classical stream focuses mainly on humanistic studies, art, history, literature and philosophy. The Linguistic stream focuses on modern languages and students can learn English, French, Spanish and German with Italian teachers along with mother tongue lecturers. English language is compulsory regardless of the stream chosen. Classrooms are equipped with interactive multimedia boards connected to a wireless network. All the teachers are supplied with a tablet and an electronic register is in place. Our school is an official test centre for Cambridge language certification of English, and it has been included among the best 15 schools in the world in 2014 by the Cambridge board itself. The Liceo has been awarded as a finalist in the top three schools in the category "Excellent business growth". Liceo Calamandrei is the leading school for CLIL (content language integrated learning) methodology authorized by the Ministry of Education in our region. We organize courses for teachers who want to improve both the English language and the CLIL methodology and even in CLIL methodology activities that foster digital skills and integrate technology enhance learning. Our school provides many extracurricular courses to improve language, information technology and literature skills for all grade students. Students enjoy lessons in language, physics, science and multimedia laboratories. E-learning could be a further step for those who thrive in our hightech world and prefer a more technological approach to the classroom lesson.
13
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
In our liceo we aim to create an atmosphere where students with different backgrounds and abilities will feel involved and proud to belong to their school, empowering them to succeed in a world dominated by fast changing technologies. In order to receive the Diploma di Scuola Superiore also known as the Diploma di MaturitĂ , (Secondary school diploma), students must pass written and oral exams at the end of the fifth grade. The Diploma di Scuola Superiore is generally recognised as a university entrance qualification, although some universities have additional entrance requirements. A few changes have just been introduced in Italy with the 107/2015 law which regulates the Italian school system. According to this new legislation, digital innovation and laboratory practice are instrumental to a successful education. The National Plan for a digital school aims to develop and improve digital skills and competences as follows: Students: activities aimed at digital development Teachers and school office staff: personal development courses aimed at innovation and digital culture; School organization: technological and organizational strategies to ease data sharing, governance; didactic and laboratory data exchange to improve professional development; Infrastructures: strengthening of network. Schools cannot ignore the digital innovations that now regulate the whole world and acquiring suitable digital skills for teachers and educators is the only way to be fully up to date. We must fully encompass this new world but at the same time it is essential not to overlook our rich history of classical culture.
14
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
POLISH EDUCATION Aleksandra Chlasta-Górna (Szkoła Podstawowa Jankowie Przygodzkim) Education in Poland is obligatory for children aged 6-18. Small children (aged 3-6) start their education in the kindergarten. When they are 6- 7 years old, they start to attend the primary school. Teenagers aged 12-15 attend lower secondary school (middle school) after which they can choose their upper secondary school: the vocational school, the technical school or the high school. Students who graduate from either the technical school or the high school and pass national school leaving exams called, “matura” can continue their education at the university or the polytechnics.
Our school in Jankow Przygodzki is a complex of the following: pre-school groups, the primary school and the lower secondary school. In two pre-school groups small children acquire social skills, playing games they learn the alphabet and numbers, they train their manual skills during arts and crafts, they sing, play games and learn about our area, its traditions and nature. As for education in the primary school, it is divided into two stages. For the first three years (Years 13), under the supervision of one teacher children mainly learn to read and write in Polish, they learn to count, they develop their art, music and sport skills. Also, they start to learn the first foreign language – English. During the second stage (Years 4-6), the number of subjects increases; children need to learn Polish, English, Maths, Science, History, Art, Music, Technology, IT, and PE, each subject with a different teacher. When in the lower secondary school, teenagers have even more subjects; apart from Polish, English, Maths, Art, Music, PE, IT, History, and Technology, they also learn German, Geography, Biology, Chemistry, Physics, Social Studies, and Education for Safety.
What is considered an important advantage of our school is the fact that we provide students with basic knowledge and skills necessary for further education. Our school employs 30 experienced teachers, all holding master's degrees (some with postgraduate studies or courses that enable teachers to teach more than one subject). Our school also employs a pedagogue – a speech therapist who helps all the students with learning or speaking problems. Apart from teaching, the staff organizes after-school activities and classes which aim either at developing students' talents, knowledge and interests or at helping students catch up with the material.
However, our school has some problems to face. First, Zespol Szkol Szkola Podstawowa i Gimnazjum w Jankowie Przygodzkim is located in the rural area, about 6 km from the nearest town (Ostrow Wielkopolski) and about 100 km from cities of Poznan and Wroclaw. Therefore, any trip to the museum, cinema, theatre, university or even upper-secondary school takes some 15
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
time and money. Also, some of our students commute to school from nearby villages and need to get back home just after finished class due to the bus timetable. Any after-school activities (sport, foreign language, music or art classes) can be organized in the afternoon, as a result of which they are not attended by many students whose parents cannot drive them back to our school due to financial or organizational reasons. Moreover, the community living in this area is quite homogenous as far as religion and nationality are concerned. Since all our students come from Polish families who are mainly Catholic, they lack contact with peers who are different from them (for example: in terms of nationality, religion, culture or traditions). Finally, although our school has some modern equipment, it still has no professional laboratories, for example biology lab, chemistry lab or foreign language lab. E-learning seems to bring solutions to our problems. Thanks to the digital platform with numerous useful resources our students would be able to learn, develop their passions or catch up with the material at home. Also, their parents could engage in their education and would be able to support their children with success. The contact with various schools, universities and institutions for both teachers and students would improve the quality of education, the attractiveness and effectiveness of classes. Video – conferences and video-lessons would enable students and teachers to meet people from various parts of Europe and would „open” our school to the world, to other cultures and traditions.
16
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
ICT in Education in Romania Petrică Alina The education landscape is experiencing radical change which is redesign of the existing infrastructure of future learning environments. Technology is a high spend consideration for most schools yet smarter spending on the right equipment and infrastructure ensures that learners are engaged and motivated and that every pupil reaches their potential. In recent years, ICT skills have become essential in the learning process, once with the development of technology and thus of e-learning products. Romania is part of the group of countries where ICT subjects are transversal, specific skills being developed and included into the teaching process of other subjects, thus the assessment not being conducted directly. ICT is a framework of technologies designed for many purposes. Specifically, for the education domain, it can enhance communication, creation and information management through all its components: computers, the Internet, broadcasting technologies and telephony. The benefits are translated into improvement in efficiency and effectiveness of education at all levels and in both formal and non-formal settings. Based on the priorities set forth by the European Commission and undertaken by Romania, the instructions to be followed related to ICT in education may be organized in 2 categories, in conformity to the specificity of learning process. This kind of education relies mainly on OER resources and Web 2.0 on learning and evaluation based on projects and e-Portfolio of results of the pupil or student, on creation of original digital content and interaction. The resources used within this project are the ICT technologies for the support of extracurricular networking activities (creation camps, experience exchange, visits of international study and eHoliday project). For a more flexible learning process we can implement the ICT technologies type Web 2.0. This activity requires a flexible education system within which ICT skills act as core competences. Web 2.0 platforms are currently used for professional development as well as for enhancing training within the classroom. By using Web 2.0 tools pupils and students can prepare both complexes inter/trans-disciplinary curriculum projects and extracurricular projects to develop social and entrepreneurial skills. Social media sites can be used for documentation on innovative concepts such as "classrooms in the mirror" or distribution of the latest Web 2.0 applications for schools. Due to the novelty represented by the technological factor, students will be stimulated to become more involved in the learning process, which, over time, will have a positive impact on their school performance, with potential to reduce the dropout rate. Interactive visual materials and additional sources of information provided by the Internet will increase student engagement. Using ICT will also allow the adaptation of learning subjects according to students’ skills, supporting personalized and individualized learning. 17
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
Expectations from e-lios and a short review of expectation situation in Turkey Ercan KÜÇÜKARSLAN (ekucukarslan@gmail.com) When it comes to say something about education in Turkey, remarkable developments can be seen more clearly in last 10 years. Statics shared in Turkish Statistical Institute web site, it is possible to say that the number of schools, teachers, students, classrooms and schooling ratio is going on a right way, contrary the increase on the total number of students is very high. However, because of inner and outer immigration issues occurred last years will not lead Turkish education to keep these statistics in same level. Demographic view of students, parents’ profile is also is going to be changing. In this point, time and space free solutions like interactive, open school applications is more important than ever. Digital e-learning platforms can be considered for; drop-out students wish to go on their educational life, anybody left school because of early age marriage, low-level income owners have to work to give contribution to their families, individuals have to be included on education in the middle of education-terms, like migrants esp. coming from far-east part of Turkey, Iraq, Syria, etc., someone wish to get extra education to be more competent, individuals have a job but have no time to maintain or start their education, someone faces geographical obstacles, any student suspended their education because of treatments like physical, intellectual, sometimes addictions like drug, disabled individuals have no opportunity to go on their education on formal ways Will be the main targets we are looking forward to using any kind of online platform that they can get/maintain their education.
18
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
Education in Turkey Karadeniz Uğur (uk002@mynet.com) It is compulsory to complete a 12-years education in Turkey which consists of 4 years of Primary, Secondary and Higher level each. Kindergarten education is also being emphasized while it is optional in recent years. In order to establish the kindergarten education across the whole country, numerous schools have been built and the number of the nursery teachers has been doubled. In terms of secondary or high-school (Lyceum) education, drastic changes have been in use. Once there were various types of high-school as normal, technical, vocational etc… There are two main types of high-schools now. One is called Anatolian High Schools, which is apart from vocational ones, and another one is of the vocational including the technical schools. Vocational schools have got importance in recent years. A lot of school buildings and workshops have been made for the vocational and technical schools. Almost every high school has got smart boards and ICT laboratories. Most of the students also have got tablet PCs. In spite of all these advancements and technical advantages, neither teachers nor students have the necessary ICT qualifications to make use of those advantages. ICT courses are being arranged in various times for teachers, but these were not applicable enough. Open schools are also available for the drop-out students, aged people or for early-school leavers. There are digital courses for them on the national net, however, those students are not as lucky as the normal students. Not all of them have tablet PCs or even internet connection in their houses. Even if they have pc or internet, they don’t have enough time to follow the courses due to long laboring hours. Enhancing Digital Learning with the improving their labor lives would be very useful for them and the country’s education prospect.
19
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
E-Learning in Italy as a strategy to foster Innovation in education. Erina Guraziu, formazione@opencom-italy.org Summary 1. Presentation 2. Italian Digital Agenda 3. Italian Law 107 named “The Good School” 4. National Plan for Digital Schools 5. Who are the Digital Coordinators? 6. Distant learning and Digital Platforms in Italy: some good practices Abstract Development of E-learning practices in Italy are strictly connected to Country’s strategy to adopt the Digital Agenda for Europe, the Europe 2020 Initiative. In 2012, the Italian Government has adopted the Italian Digital Agenda Strategy, which pursues the general objectives of growth, employment and quality of life through an innovative digital process. According to European scoreboards (broadband, internet activity and skills, e-government, ICT in schools, research and innovation) Italy ranks 25th out of 28 Member States. Italy falls into the cluster of low-performance countries, where it performs below average. Notwithstanding, Italy has shown progress. In order to overcome backwardness and in line with the Italian Digital Agenda, in 2015 the Italian Government has legislated the Law 107 on School Reform, named “The Good School”, where digitalization is a priority for infrastructures, education and competences of teachers. The National Plan for Digital Schools is the operative document adopted by the Government in order to implement the Law. The following are the most important challenges outlined in the Plan: innovation of school system, digital education opportunities. As stated in the Plan, according to OCSE 2013, Italy is ranked at first place for ICT needs of teachers: 36% of Italian teachers have declared not to be sufficiently ready for digital didactics. Therefore, the National Plan highlights the need for an organic innovation of Italian schools, with programs and actions that include: development and access to digital environments, devices, platforms, training, education and competences.
20
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
Distant learning is adopted in Italy mainly at Higher Education, where digital platforms allow students to attend lessons and be tutored appropriately. This is the case of USiena (University of Siena), Bocconi University, University of Padoa and others. Nevertheless, some interesting applications of distant learning in Italian schools are real, although few: “Lepida project”: Distant learning for mountain schools of Reggio Emilia area, which involves 60 schools; “Smart Inclusion 2.0”: distant learning in Tuscany for children who are obliged to pass long periods at hospitals. As a conclusion, it is prior for Italy to increase the number of teachers that own digital competences: Law 107 foresees that each school should have a Digital Coordinator, but the way forward is long and targeted efforts should be implemented. In fact, digital competences of teachers are essential for adopting widely teledidactics at school system. Key-words: Digital Agenda Strategy, Good School, Digital Competences, e-learning, Erina Guraziu 3 1. Presentation Education is going digital and schools are now considered innovative if they digitalize teaching and learning methodologies, use digital tools and put in practice Knowledge Platforms. Italy has to recover some low-performances outlined in the European scoreboards (broadband, internet activity and skills, e-government, ICT in schools, research and innovation), where Italy ranks 25th out of 28 Member States.
Chart 1: European Scoreboard, 2015 21
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
The Italian Law named “The Good School” and the National Plan for Digital Schools have envisaged a Digital Coordinator in each school, to facilitate schools’ active participation in the achievement of Italian Digital Agenda and the Digital Agenda for Europe. 2. Italian Digital Agenda In March 2015, the Ministry of Economic Development – Department of Communication – has published the Italian Digital Agenda (ADI). The study gives a presentation of supported initiatives and projects and represents a reference point for all actions to be undertaken in Italy, in line with the aims of the European Digital Agenda. Out of the Agenda Initiatives, the “Digital Italy Plan” is the major one. It includes the “National Broadband Plan” and the “National Plan for Next Generation Networks”. Moreover, there are many Italian research and innovation projects that can speed up fast Internet development, single digital market creation, identification of standards and interoperable solutions, digital inclusion, confidence and security in digital content and services. The realisation of Agenda’s objectives is assured by the Agency of Digital Italy (AgID), which also takes care of controlling that national projects and initiatives are coherent to European Digital Agenda. As far as training and education are concerned, the Agenda promotes the spread of digital competences for enterprises, citizens and Public Administration, also in cooperation with school institutions. In order to foster digital competences, the Plan envisages the creation of a National Coalition for Digital Competences. Its work is lined up with the Strategy for Digital Competences Coalition, that outlines priorities, timeline and activities to deliver in the following years. The Coalition is the main tool of the National Strategy for fostering and supporting digital literacy initiatives. It acts via the support, integration and promotion of national and local projects, aligning them to the National Digital Agenda. The Agency of Digital Italy has realised the Digital Competency Platform, that promotes and supports projects on digital competencies in all Italian territory, creating also a network for sharing successful initiatives. The attended results are: development of basic digital competences, e-leadership, specific digital competences, taking particularly into account the new professionals and the small and medium enterprises’ needs. 3. Italian Law 107 named “The Good School” The Law, approved on 15.7.15 modernizes school system in Italy, to foster a higher-skilled workforce and managerial class. The new rules seek to give schools more independence in setting curricula and managing operations and give students and heads greater responsibilities. 22
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
The main points of the reform concern: introduction of merit-based components for teacher salaries: each year, the best-performing teachers in each school will receive a one-off bonus. teacher recruitment: over 100,000 teachers, who have until now been employed on short-term contracts, will be recruited on a permanent basis in 2015/16. While around half of these teachers will be filling existing positions, the other half will be entering new posts; school autonomy: school heads will have greater autonomy in managing human, technological and financial resources and will be subject to external evaluation every three years; curriculum: some subjects may be introduced or strengthened: music, arts, economics, law and sports. In particular, introducing/strengthening economics may help raise Italian students’ financial literacy levels, which are very low by international standards (OECD 2014b). digital and language skills: the reform includes: (i) a national three-year plan (‘Piano Nazionale Scuola Digitale’) to strengthen digital competences among teachers and students, and improving internet connections in schools; (ii) opportunities for introducing the ‘content and language integrated learning’ (CLIL) methodology from primary level onwards work-based learning: traineeships are to become compulsory for students in the last three years of upper secondary education (at least 400 hours for students in vocational education and 200 hours for students in general education). 4. National Plan for Digital Schools The National Plan is quite new in Italy, ruled by Law 107 “The Good School”, art 56 – 62, it is one of its main pillars. The aim of the Plan is to make digital technology a didactic tool for building competences, more specifically: development of digital competences of students; strengthening of didactic and laboratory tools; adoption of organizational and technological tools in order to help governance, transparency and data sharing; training of teachers for didactic innovation and development of digital culture; training of administrative staff, in order to support digital innovation of administration. In order to enhance laboratory teaching, school institutions can organize local laboratories in collaboration with local and public entities, chambers of commerce, industry, handicrafts, agriculture, Universities, associations, foundations, professional training organizations, enterprises. 23
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
The plan rethinks education, students’ skills and training of teachers by setting priorities, actions, funds, resources and creating opportunities for institutional collaboration with Ministries, Regional and Local administrations and networking with other schools. 4.1 The Plan structure The plan has been organized in 4 essential fields, organized in objectives, actions, activities, timeline and indicators. Moreover, the plan envisages support and tutoring dedicated to schools, in order to assure the achievement of an innovative and digitalized society, starting from the heart of education. Tools: Access: Ultra-broadband fibre in all schools; Internal wiring of all school spaces (LAN/WLan); Connectivity Canon: the right of Internet starts at school. Venues and environments for learning: Environments of integrated digital learning: digital classrooms, economically sustainable, in order to equip the highest number of classrooms; alternative venues of learning, which are bigger than traditional classrooms, furnished both for single and group activities, they can be reshaped continuously in accordance to specific activities; mobile laboratories, available for all disciplines and students, they are able to transform a “normal” classroom in a multimedia space and accelerate interaction between students in the same class and beyond borders. Practical Learning Plan: creation of creative laboratories for key competences; digitalization of vocational courses; realization of local laboratories that foster employment; School-friendly laboratories, activating courses at museums, research organizations, technological parks, foundations, associations and other Creative Factories. Innovative School Buildings. Digital Identity: Single-Sign-On (Unique identification system); A digital profile of each student; A digital profile of each teacher Digital Administration: School digital administration; Electronic register; School Data Strategy. Competences, contents: Students’ competences: Unique framework for students’ digital competences: Foundation Literacies (literacy, numeracy, scientific literacy, ICT literacy, financial literacy, cultural and Civic literacy), Competences (critical thinking/problem-solving, creativity, communication, collaboration), Character Qualities (curiosity, initiative, persistence/grit, adaptability, leadership, social and cultural awareness); 24
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
Innovative sceneries for the development of applied digital skills; A research unit for the required 21st Century skills; Computing thought to the whole primary school; Update contents of “Technology” curriculum at Junior High Schools Digital, Entrepreneurship and Job: A CV of digital entrepreneurship; Girls in Tech & Science; Digital Careers Plan; Dual system with digital enterprises. Digital Contents: Minimal standards and interoperability of online environments for didactics; Promotion of Open Educational Resources and guidelines for the self-production of educational contents; School libraries as literacy environments for digital informative resources. Training: Training of teachers: In-service training for innovative didactics and organization; Strengthened initial training on innovative teaching processes; Technical assistance to first cycle schools; New training for new recruits Tutoring and Support: Staff training: A digital coordinator in each school; Local agreements; Stakeholder’s club for digital schools; A gallery of good practices; Transfer a long-lasting tutoring to innovative networks; Digital schools observatory; A scientific committee that puts the Plan in line with international practices; Plan monitoring; A three years training offer plan. 4.2 The Plan timeline Most of actions are planned to be concluded within December 2016, bringing a real digital change in the school environment. The Plan envisages a cultural transformation that starts at school and penetrates families, also those situated in the disadvantaged rural areas. Schools are the most powerful demand multiplier for innovation and change in the Country, but also Europe wide.
5. Who are the Digital Coordinators? The National Plan for Digital Schools rules the role of Digital Coordinators. They are teachers who coordinate the development of digital competences at school environment, targeting teachers, students and administrative staff. The Headmaster identifies the Coordinator of the school, who is supported by an ICT teacher. It is Coordinator’s responsibility to collaborate with the National Coalition of Digital Competences, promoted by the Italian Digital Agency, in order to develop jointly the Digital
25
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
literacy. The collaboration envisages the organization of training sessions beyond teaching hours, in school venues, opened beyond teaching hours. The action range of the coordinator includes three fields: Internal training: motivate internal training on Plan’s issues, through the organization of training laboratories, the coordination of active participation of staff to educational activities organized by professional training institutions; Involvement of school community: enhance active participation of students in the organization of digital workshops or similar activities; involve families and other local stakeholders in the creation of a shared digital culture; Creation of innovative solutions: identify sustainable methodologies and technologies to spread within school environment, in accordance to school needs: e.g. use of special tools for teaching, which the school has just adopted, dissemination of innovative practices realized in other schools, coding laboratories for pupils. 6. Distant learning and Digital Platforms in Italy: some good practices 6.1 Lepida Project The project has created a distant learning for mountain schools of Reggio Emilia Region, involving 60 schools. The ratio is to overcome geographic obstacles of pupils located in small villages, where schools close because of low number of pupils (less then 18). How it works: the teacher communicates via a webcam with group of students located in other small villages, where schools are equipped with broadband and can use multimedia contents. 6.2 Smart Inclusion 2.0 The Tuscan project has created a distant learning for children who are obliged to pass long periods at hospitals. The ratio in this project is to support children who face health obstacles to become active participants in school activities. How it works: an open source software allows distant learning services, entertainment and management of clinical data, supporting children as well as health care staff to use innovative tools during health care process. References
Legge 13 luglio 2015, n. 107 “Riforma del Sistema nazionale di istruzione e formazione e delega per il riordino delle disposizioni legislative vigenti”, GU n. 162 del 15-7-2015, Rome European Commission, DG CNECT, (2016) Digital Economy and Society Index 2016, Country Profile, Italy 26
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
European Commission, DG EAC, (2015) Education and Training Monitor 2015 Italy (Luxembourg, Publications Office of the European Union) Ministero dell’Istruzione dell’Università e della Ricerca (2015) Piano Nazionale Scuola Digitale Presidenza del Consiglio dei Ministri (2015) Strategia per la crescita digitale 2014-2020 http://www.agid.gov.it/agenda-digitale/competenze-digitali , 06/01/2016 https://ec.europa.eu/digital-single-market/scoreboard/italy#4-integration-of-digital-technology , 06/01/2016 http://www.tecnicadellascuola.it/item/1014665-la-teledidattica-approda-al-meyer-difirenze.html?t=storico , 06/01/2016 http://gazzettadireggio.gelocal.it/reggio/cronaca/2011/05/04/news/la-teledidattica-per-salvarele-piccole-scuole-di-montagna-1.231319 , 06/01/2016 http://www.istruzione.it/scuola_digitale/index.shtml , 06/01/2016 http://www.firenzepost.it/2013/09/10/scuola-sistema-di-teledidattica-a-pisa-per-alunni-inospedale/ , 06/01/2016 http://www.cooperationlab.it/index.php?option=com_content&view=article&id=206:smartinclusion-20&catid=25&Itemid=59 , 06/01/2016 http://csaf.provincia.udine.it/data/servizi/teledidattica/Default.aspx , 06/01/2016 http://elearning.unisi.it/moodle/ , 06/01/2016 http://www.dimt.it/2015/07/27/le-competenze-digitali-entrano-nei-programmi-scolasticiministeriali-da-definire-il-ruolo-di-agid-e-del-docente-coordinatore/ , 06/01/2016
27
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
System of Polish Education Aleksandra Chlasta – Górna, achlastagorna@poczta.fm Summary This article consists of two parts. Part One presents the system of education in Poland. The structure of the education is discussed, from pre-school to higher education, including the number of subjects, national exams and the organization of the school year. Also, aspects of supervision and financing in public schools are presented. Part Two focuses on the presentation of Zespół Szkół in Janków Przygodzki. Abstract Key-words: Polish education, national examinations, subjects, Zespół Szkół w Jankowie Przygodzkim 1. Structure of educational system in Poland Compulsory education lasts 12 years in Poland; it starts when children are 6 years old and finishes when teenagers reach the age of 18. However, many Polish students continue their education much longer. A great majority of Poles attend state schools which offer good education. Still, there is also a variety of private schools, located usually in cities, which also provide their students with a good level of education. Yet, whereas education in Polish state schools is free, parents need to pay high fees if their offspring attend private schools. Polish education consists of a few levels: pre-school education, primary schools, lowersecondary and upper-secondary schools, optional post-secondary schools and higher education. The school year typical for primary and secondary education lasts 10 months and is divided into two terms. It starts on 1st September and finishes on Friday, close to 24th June. The date of the end of the first term and the beginning of the second term is usually connected with winter breaks at school. The time of the break is regulated by the Ministry of Education and is different for schools around Poland since it depends on the voivodeship the school is located in. Likewise, the time of all holidays and national examinations at schools is regulated by the Ministry of Education and is published at the end of August each year. In Polish primary and secondary schools lessons last 45 minutes and are separated by breaks which are from 5 to 20 minutes long. Children spend their breaks in school corridors or 28
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
playgrounds, always supervised by teachers. In primary and secondary education, the students' aquisition of knowledge must be assessed with the use of various tools such as: short tests, tests, oral presentations, homework, projects, etc. Grading includes marks from one to six; whereas six is the highest mark given for outstanding performance, one is the lowest mark meaning the complete lack of minimum knowledge or skills. 1.1. Pre-school education Pre-school education is available for children aged from 3 to 6. It is organized in two ways: there are pre-school groups in primary schools and there are kindergartens. What makes the biggest difference is the aspect of fees; whereas the former are free, the latter must be paid for. Also, in kindergartens children are provided with a few meals, usually breakfast, lunch and tea. Pre-school education aims to teach through plays and games. The greatest attention is paid to develop children's social skills, manual skills, and basic knowledge about the world, the country and the area where the child lives. Also, children are taught letters, numbers, and basics of a foreign language. Whereas three and four-year-olds can attend pre-school groups, all Polish children aged 6 must be involved in regular pre-school activities, either in primary schools or in nursery schools.
1.2. Primary education Primary schools operate on the basis of general educational plan which determines the minimum weekly number of lesson periods of particular subjects. There are two cycles of education in six - year primary schools, both lasting 3 years. At the lower level of the primary school children, aged 7 – 9, have 20 - 23 lessons each week. The main components taught at this stage are: reading and writing in Polish, counting, music, arts and crafts, basics of IT, elements of science, PE, one foreign language (usually English). There is one teacher who has majority of lessons with students; the exception can be foreign language classes. At the higher level of the primary school, when children are aged 10 – 12, the number of lessons increases to 25 – 28 lessons weekly. The main components taught at this stage are: Polish, Maths, Science, History, two foreign languages (normally English and German), PE, IT, Technology, Music, Art, each subject taught by a different teacher. 29
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
Education in the primary school finishes with the Certificate of Completion of Primary School Education. For the last few years all students graduating from primary schools have been obliged to take a primary school-leaving examination called „Sprawdzian Szóstoklasisty” (6grade Student Test) which has been divided into three parts: Polish language and literature, Maths and Science, a foreign language. However, according to new regulations, from the school year 2016/2017 students graduating from the primary school will not be obliged to take the examination. 1.3. Lower secondary education Similarly to primary schools, lower secondary schools also operate on the basis of general educational plan which determines the minimum weekly number of lesson periods of particular subjects. At this stage, the education lasts 3 years and the minimum weekly number of all lessons is 29-31. Subjects taught at the lower-secondary level aim to provide basic knowledge and skills to all students and consequently to prepare students to further education in various types of upper-secondary schools. The curriculum includes: Polish, two foreign languages (normally English and German), Maths, History, Biology, Geography, Physics, Social Studies, PE, IT, Art, Music, Education for Safety, Technology. Moreover, when in lower-secondary school, each student needs to take part in minimum one educational project which he/she chooses himself, prepares with his peers, guided by a teacher, and presents to other students. Also, in April, the oldest students of the lower-secondary school are obliged to take three-part school-leaving national examinations in Polish and History, Maths and Science, one foreign language. The results of these exams called „Egzamin Gimnazjalny” (The Lower-Secondary School Exam) and marks on the Certificate of Completion of Lower-Secondary School determine the upper-secondary school the teenager is accepted to.
1.4. Upper secondary education Having graduated from the lower-secondary school, a student has a choice of three types of upper-secondary schools: vocational, technical and high schools. As it has already been stated in the previous paragraph, this choice depends on the grades on the school-leaving certificate and points gained at school-leaving examinations. However, it must be added that the choice is also determined by the future career a student wants to follow. Polish vocational schools offer only basic general knowledge but provide their students with 30
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
professional training in specific professions like: carpenters, waiters, cooks, hairdressers, plumbers etc. After two years, graduates achieve the Certificate of Completion of Education in Basic Vocational School and can start their career path. Polish high schools prepare their students to higher education, providing them with good knowledge and skills. During three years, students attend compulsory classes offering knowledge at a basic level and take part in obligatory classes at an extended level. Having received the Certificate of Completion of Education in High School, students take national school-leaving exams in May. The obligatory exams include three written parts in Polish, Maths and a foreign language and two oral parts in Polish and a foreign language (all at the basic level). Also, students are obliged to take at least one exam at an extended level (e.g. a foreign language, Polish, Maths, Biology, History, Geography, Social Studies, IT, physics, etc.). The decision is connected with the future studies since the examinations are entrance exams to studies. Finally, technical secondary schools combine the offer of vocational and high schools as on one hand they prepare for the national school-leaving exams, and on the other hand they provide training in specific professions ( e.g IT progammers, accountants, carpenters, hairdressers, tailors, forest rangers, etc). The education lasts four years, during which students need to take national vocational exams. Having graduated the school with the Certificate of Completion of Education in the Technical Secondary School, students can also write national school-leaving exams, the same as graduates of high schools. Upper-secondary schools also operate on the basis of general educational plan which determines the minimum weekly number of lesson periods of some subjects (basic knowledge), whereas in case of other subjects a school can make its autonomous decision as far as the maximum number of lesson periods is concerned (extended knowledge, professional training). 1.5. Post secondary schools Post-secondary schools predominantly cater for students progressing from general upper secondary schools, and programmes are typically from one to 2.5 years in duration. Graduates of upper-secondary schools can be trained here as nurses, accountants, administrative personnel for enterprises and hotels, computer specialists, librarians.
31
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
1.6. Higher education After secondary school and with certificates proving passing national school-leaving exams, students can take higher education. There are various types of higher education institutions: universities, polytechnics, economic academies, agricultural academies and others. Day studies in state higher schools are free of charge. Since 2008/2008 academic year Polish higher education system has been divided into three stages: bachelor degree (3 – 3.5 years) , master degree (2 – 2,5 years) and doctor. This system applies to all fields of education except Law, Pharmacy, psychology, Veterinary Medicine, Medicine and Dentistry, which are still based on two-stage system (Master and Doctor). 2. Supervision and finances in education Ministry of National Education coordinates, controls and regulates the work of schools in Poland. It elaborates educational policies at the national level, it coordinates other governing bodies and controls higher education institutions. At the lower level, schools are supervised in two ways. As far as educational supervision is concerned, schools are subject to education officers working in departments of education. As far as administration and financial supervision is concerned, local governments are responsible for supporting and controling schools. Likewise, it is the Ministry of Finances that finances education in Poland, distributing money to local governments: voivodeships, municipalities, and poviats, which subsidise schools in their area. 3. Basic information about Zespół Szkół in Janków Przygodzki
Figure 1: the building of Zespół Szkół in Janków Przygodzki Zespół Szkół in Janków Przygodzki is a complex of two schools: the primary school and lowersecondary school, located in a village in the west of Poland, about 100 km from Wrocław and 32
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
120 km from Poznań. Education in Janków Przygodzki dates back to 1815. The buiding has been rebuilt and modernised a few times. Today it is the biggest school building in the district of Przygodzice. The teaching staff numbers 30 teachers with the head teacher Barbara Szymanowska and the depty teacher Albin Bednarczyk. The school is attended by 300 students, 180 learning in the primary school and 120 learning in lower-secondary school. Students usually learn in groups of 20; there are 2 pre-school groups, 8 groups in primary school and 6 groups in lowersecondary school. Zespół Szkół in Janków Przygodzki has many classrooms equipped with modern technology (laptops, computers, interactive whiteboards). In corridors there are lockers for younger pupils. The school provides warm meals to students (soup, tea) in a school canteen. Also, there is a special playroom for the youngest students. The school premises include a playground, a sports field, a running track, and three beach volleyball pitches. Apart from regular lessons, the school offers after-school activities (e.g. Volleyball classes, aerobics, maths classes, language classes, etc), speech tharapist's help, library classes. Moreover, during winter and summer holidays children can take part in some activities and trips. The school takes its pride in outstanding sports results at a regional and national level in volleyball, beach volleyball and aerobics. What is more, a number of our students win knowledge competitions in foreign languages, maths, science.
33
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
Expectations of Turkey from an E-Learning Interactive Open School Ercan Küçükarslan, ekucukarslan@gmail.com
Summary Remarkable developments seen more clearly in last 10 years. Statics shared in Turkish Statistical Institute web site, it is possible to say that the number of schools, teachers, students, classrooms and schooling ratio is going on a right way, contrary the increase on the total number of students is very high. However, because of inner and outer immigration issues occurred last years will not lead Turkish education to keep these statistics in same level. Demographic view of students, parents’ profile is also is going to be changing. In this point, time and space free solutions like interactive, open school applications is more important than ever. Key-words: drop-out, ESL (Early School Leaving), migration, disabled, e-learning, distance learning.
1. Presentation Digital e-learning platforms can be considered for drop-out students wish to go on their educational life, anybody left school because of early age marriage, low-level income owners have to work to give contribution to their families, individuals have to be included on education in the middle of education-terms, like migrants esp. coming from far-east part of Turkey, Iraq, Syria, etc., someone wish to get extra education to be more competent, individuals have a job but have no time to maintain or start their education, someone faces geographical obstacles, any student suspended their education because of treatments like physical, intellectual, sometimes addictions like drug, disabled individuals have no opportunity to go on their education on formal ways
34
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
A short review of situation in Turkey One of the main Strategic Targets Of Ministry of National Education, (2015-2019) is participation and continuation of any disadvantaged gorups exist in Turkey. Sample statistics for target groups has dropped out of formal educaion (special target group an online platform may focus on) %37,1 -18 years-old %25,7 -17 years-old %18,8 -16 years-old %13,7 -15 years-old %4,1 -14 years-old
Conclusion Online educational opportunities are big chance to expand Lifelong Learning, Interactive and user-friendly online education will be useful for the lessons have low sucess rate, Web portals delivering videos, exercises on science subjects supporting students would be fruitful to overcome drop-out reasons on academic subjects, It is necessary to use flipped classroom practices, Can be also a chance for new approaches like mentoring, peer education, facilitiator, Project based learning, use social media for education.
References
Arastaman, G. (2009). Lise Birinci Sınıf Öğrencilerinin Okula Bağlılık (School Engagement) Durumlarına ilişkin Öğrenci,Öğretmen ve Yöneticilerin Görüşleri. Pamukkale Üniversitesi Eğitim Fakültesi Dergisi, 26. Avrupa Komisyonu (2013). Reducing early school leaving: Key messages and policy support (http://ec.europa.eu/education/policy/strategic-framework/doc/esl-group-report_en.pdf, Access Date: 14.05.2016)
35
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
European Commission (2012). Europe 2020 Target: Early Leavers From Education and Training (http://ec.europa.eu/europe2020/pdf/themes/29_early_school_leaving.pdf, Access Date: 14.05.2016) M.E.B. (2009). MEB 2010-2014 Stratejik Planı (sgb.meb.gov.tr/Str_yon_planlama_V2/MEBStratejikPlan.pdf, Access Date: 14.05.2016) M.E.B. (2011). Devamsızlık ve Okulu Terk Riski Durum Saptamasıve İhtiyaç Analizi(Draft) (http://ysop.meb.gov.tr/dosyalar/adey/ihtiyacanaliziraporu.pdf, Access Date: 14.05.2016) M.E.B., UNICEF (2013). Ortaöğretimde Sınıf Tekrarı, Okul Terk Sebepleri ve Örgün Eğitim Dışında Kalan Çocuklar Politika Önerileri Raporu.( http://www.meb.gov.tr/earged/unicef/S%C4%B1n%C4%B1f%20Tekrar%C4%B1,%20Okul %20Terki%20Politika%20Raporu.pdf, Access Date: 14.05.2016)
36
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
ICT in Education in Romania Petrica Alina Summary Driven by socio-economical dynamics and supported by several national programmes aimingto increase the access to ICT equipments and to quality eContent, Roman ian education institutions began to include 15 years ago new technologies in their development agenda. Several initiatives are trying to keep up with the European and global eLearning trends, principles and actions, focusing on the acquisition of IT equipment and their administrative usage and shifting towards an appropriate education software integration and human resource training. Still being less favoured in this field than what education innovators expect (due to the obsolete national legislative provision), schools, higher education institutions and trening companies are slowly adapting their curriculum to allow the creation of new technologyenhanced learning settings in various areas. The theory and practice of eLearning are continuously improving, in the aim of levering the quality of Romania´s education and trening system. The present paper reviews the relevant documents and experiences concerning the implementation of ICT in education in Romania, taking into consideration documents provided by the Ministry of Education and Research, SIVECO Romania, the World Bank, the Ministry for Information Technology, eLearning Romania and other significant companies, universities and NGOs involved in the eLearning process, alongside with relevant regional and local reports. Nowadays, most of the Romanian efforts in the area of elearning are directed towards the educational use of ICT. A coherent strategic document dealing specifically with technology enhanced education is under development and its policy recommendations could represent the accent needed for a responsible usage of computers and Internet for education purposes,on a large scale. But the sustainable results could only be achieved through a more proactive attitude of education policy makers, of the education practitioners and of the entire society, because such a shift goes far beyond a simple governmental decision and the education renewing is not the responsibility of a single institution. Keywords ICT in Romanian education system, elearning, computer-assisted instruction, Romanian 37
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
Abstract The Romanian National Curriculum for compulsory education focuses on the eight domains of key-competences concerning lifelong learning, promoted by the European Framework. Inorder to develop the digital competence, the new Romanian Education Act (2011) established that, starting with the 2012-2013 school-year, the Information and Communication Technology (ICT) subject will become for the very first time a part of the Romanian National Curriculum, as an elective subject for primary education (for the following school year, this decision involves only the preparatory grade and it will gradually extend to subsequent grade levels, acquiring the status of compulsory subject for secondary education in the future). This paper includes a review of current legislative documents on education, existing studies and reports, curricular documents, and by means of the five interviews conducted (4 teachers who teach either in urban or rural schools and a school inspector), we attempt to anticipate the obstacles related to the introduction of ICT in the Romanian National Curriculum, as well as to identify possible solutions that may narrow the gap between expectations and reality.
Keywords: digital competence, ICT, Romanian National Curriculum Presentation In Romania, even before its EU accession, attention was paid to introducing ICT in education. In 2001, a governmental programme abbreviated SEI (Sistem Educaţional Informatizat – Educational IT-based System) was launched at national level and its purpose was “to computerise the Romanian educational system by endowing schools with the necessary equipment, by creating a wide range of custom software to facilitate the interaction between the learners and the subject syllabi, by psycho-pedagogically retraining teaching staff with a view embedded in the learnercentred approach and by laying the foundation of a computerised network as support for modern management” (Potolea and Noveanu, 2008) and to offer a complementary solution to traditional teaching. The conclusions of the Evaluation Report on Implementing SEI, published in 2008, show the progress that was made as compared to the situation described in the 2004 intermediary report. Thus, the number of teachers that use ICT was significantly greater than before, the number of lessons in which ICT was used increased and, to a similar extent, the teachers’ and students’ willingness to take part in more lessons that use ICT; the number of students per computer in a school decreased, especially at high school level. Another aspect pinpointed in the report was the ever increasing number of students that independently use the computer at home or in other locations than school, for communication purposes and for acquiring knowledge (Potolea and Noveanu, 2008). What is even more important, the report presented the gap between the rural and the urban areas, the former being obviously in a worse situation. 38
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
The potential of ICT for economic development and societal prosperity is emphasised throughout a series of European and national mid and long-term strategy-planning documents. Information Society is stated as a key element of the overall framework put in place to support economic growth. Knowledge-based economy and society is a goal for all the states, pushing forward significant efforts and important resources, involving –voluntarily or not- all economic and social structures at a trans-national, country or local level. The need to surpass the digital divide is addressed by developing countries through measures aimed at reducing functional blockages, stimulating research and innovations,developing the ICT sector and supporting regional economic development, but mostly training human resources. Adapting towards a knowledge economy is a challenge involving shifts, re-shaping the labour market (organization and quality of work, capacity building, institutional development, more competitiveness, new professions, people’s ability to learn, etc.) and the education system. First of all, knowledge society must be considered a learning society, where people have lifelong learning competencies and become acquainted with skills to manipulate, control and add value to information. Learner’s access to equipment and quality eContent is therefore stressed as important in building tomorrow’s Romanian “knowledge-society citizens”. Introducing ICT in education In 1998, the framework for compulsory education was designed and approved and a new curriculum was implemented starting with the 1998-1999 academic year. This was an opportunity to put emphasis on sustainable knowledge, as well as on acquainting students with new electronic means of manipulating the information. The improvement of school infrastructure and the connection of educational institutions to Internet have been the goals of two major-impact programmes: SEI (Sistemul Educational Informatizat – Education IT-based System) and RoEduNet (extending the Romanian educational information network). Beside these programmes, initiatives and projects aiming to support the innovation in education were undertaken by various institutions and individuals. ICTs in the pre-university education system The major needs to be addressed in the respect of using ICTs for instruction refers to the appropriate educational software, the skills to use it and the competences for teachers to build learning situations using various IT tools. Diverse support measures, teacher-training programs and computer-based learning material development projects are part of the introduction of ICTs in the classroom process. Various usages of ICTs in the education system give the measure of the complexity of this activity. Studies and reports are available in Romania referring to the implementation practices, effects, stakeholders’ perception and practitioners’ opinions. 39
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
IT and Informatics as curriculum subjects The National Council for Curriculum developed, in the late 90´s, a new curriculum for Informatics. Therefore, IT classes address specific objectives which deal with programming languages. In this area, a lot of high schools have success stories about outstanding results in ICT contests or Olympiads. “Elite” high schools have better results due to the better equipment and support provided to skilled students by teaching and management staff. Today, there are a lot of well-trained IT specialists in Romania, proving a high quality of education in this subject matter. Several years ago, Romania was considered to have 109 IT specialists (higher education graduated) per 100.000 inhabitants – one of the best percentages in the world. portal.edu.ro A communication platform for pupils and teachers was set up in early 2002 at the web address www.portal.edu.ro as a portal for the SEI programme, to support the educationsystem by providing teaching assistance materials, facilitating some administrative activities,encouraging the flow of information, etc. The platform currently reaches 3 million pages visited monthly. A number of over 100.000 user accounts – mostly teachers and students – are currently active on the SEI portal. AeL AeL (from Advanced eLearning) is the core of the SEI programme, offering support for teaching and learning; evaluation and grading; curriculum design and content management. It also assists process management and monitoring and administration, and provides tools for communication and synchronization between the local solutions within the national SEI framework. Within the AeL application, the local, regional and country administrations are provided with managerial and administrative support. The IT laboratories (local solutions) are integrated in a logical network comprising all the schools in a county. All Romanian counties are integrated in a national network connected to and coordinated by the SEI management unit located at the MER. ADLIC The ADLIC (Admiterea in liceu – High School admission) project was first implemented in 2001 to support the national admission and distribution of secondary school graduates in high schools and vocational centres. The project helped to centralize all the results of the secondary school graduation examination and each candidate’s preferences for certain high schools (each candidate can express hundreds of ordered options). Each secondary school graduate in Romania was distributed by an automated process. The project reduced the processing time of the admission and distribution dramatically (previously performed manually), also ensuring a high level of security and transparency. The project is considered a success; both because of its 40
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
immediate business benefits and because of the public impact produced by IT (including Internet) applied in a large scale, for its public interest and critical mission. The procedure and the project were therefore further applied. EvalMan The EvalMan (Evaluarea Manualelor - Evaluating Textbooks) project has offered IT support since 2002 for the recommendation and public acquisition of school manuals in Romania. This is a procedure organized by the MER. The publishing houses offer anonymous books for evaluation, and then a secure software system randomly selects for each subject a group of evaluators from a predefined list of certified professionals. This system allows the centralization of the evaluation results and helps to publish the results. RoEduNet The Romanian Education Network programme (RoEduNet) was initiated in June 1993 and began with the installation of the Central Node at the University Politehnica of Bucharest. From the very beginning RoEduNet was conceived as an open structure, offering free access to the academic, scientific and cultural nonprofit institutions. Once the first institution was connected – the University of Bucharest, August 1993 – the nucleus of the academic data communication infrastructure was created. The structure remains open to all universities as well as to non-profit scientific and cultural institutions. A large percentage of the education institutions in Romania are now connected to the Internet through RoEduNet. SEI programme (Sistem Educational Informatizat - Education IT-Based System) Enhancing education with new ICTs was stated in 1998 by the Ministry of Education and Research as a priority, and concrete actions were taken beginning 2001. The premises and incentive of SEI national programme are three-folded, based on: the social and political commitment (harmonisation within EU framework principles, objectives and actions), the ereadiness objectives and the education process efficiency development. The goal of the SEI programme is introducing IT as a teaching/learning tool in lower and upper secondary education. Schools are provided with computerized laboratories in order to support the IT-Based teaching/learning process. Besides the availability of technology in the school, it aims to establish a high level of interactivity and direct, personal experimentation of phenomena and scientific theories by learners. The program was approved in early 2001 by the Information Technology Promotion Group – a task force integrated by several ministries and presided by the Romanian Prime Minister – with an initial estimated budget of 200 mil. USD. It is
41
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
implemented in partnership by the state administration and the private sector, the main companies involved being SIVECO Romania, HP Romania, and IBM Romania.
ICTs and teacher training Centralised row data (made available by SIVECO Romania) of a survey run on 15,503 teachers using AeL indicates clearly the optimistic view of educators and administrators concerning the general use of educational software for education and, in particular,concerning the use of AeL for teaching, learning and administrating classroom activities. A lot of interesting suggestions were made for further improvement of the AeL platform –ergonomic design, new functions, enhanced or new applicability, additional modules and soon. As a general suggestion, almost all teachers recognised the usefulness of more trening sessions, both in using the computer and in using the computer for teaching. Furthermore, specialised training courses were requested.There is a clear need to help teachers initiate, prepare and manage educational activities with the use of new technologies. Teachers indicate that their level of choice is still limited due to a lack of learning objective-focused educational software, but most of all due to the lack of appropriate training courses. Teachers’ attitude and skills in using ICTs Most of the teachers and school managers complain about the difficulties in working with the educational software provided by the MER and about the lack of resources allocated for upgrades, for software acquisition from the free market and for appropriate training. Other sources indicate that the computer labs and the AeL platform are underused by teachers and pupils in high schools. Punctual questions also reveal that, with some interest, teachers can easily overcome the problems and set up good classes within AeL labs. The implementation of the SEI programme is a complex process and there have been many critical aspects to be dealt with during its various phases, derived from the programme’s scale. In spite of the difficulties, teachers and schools staff are optimistic. They consider that time and decision-makers will be able to solve the gaps of the school computerization process through a proper policy. Until more and more students are able to have their own computers at home, supported by the parents and pushed by the labour-market demands to gain more experience and skills, an increased rhythm of learning and formal curriculum integrating ICTs risks to remain behind, old-fashioned and not attractive. In order to have the teachers’ support, actions have been taken in several directions, atnational and regional level and in each school: mass-media campaigns, training of teachers and administrative personnel, dissemination sessions, seminars and workshops. A very strong emphasis was put on the acceptance of technology as a special tool (considering its power). 42
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
The main issues identified are: Fear for “replacement of the teacher by the computer” Fear for “the unknown”. The MER is currently implementing two methods to gain the teachers acceptance of the program: AeL training offered within SEI is officially equivalent with the courses that are mandatory for teachers within continuous training programs; Teachers receive special financial benefits for classes taught using computerassistedlearning (e.g. 1 physical hour of teaching is counted as 1,25 teaching hours etc.). Usually, training courses (other than those dealing with the AeL use) that teachers reach are Informatics courses, PC-oriented, and most of the curricula insist too much upon the operating system or even the “hardware architecture” of a PC. This often leads to a distorted vision on what a PC is and on the role of the computer in classroom activity. Furthermore, sometimes the courses are called Computer Assisted Instruction and the content presents the use of office tools. The confusion between PC literacy and knowing how to use educational software as a support tool for education is therefore spread between teachers, narrowing their positive attitude towards computers and diminishing their motivation to acquire skills for using ICTs for teaching and learning. Some demo-classes are run by teachers using computers, mostly to gain the appreciation of their colleagues or school inspectors, but the practitioners’ confidence in new technologies and their potential to build better learning situations is still low. Pre-service training According to a recent order of the Ministry of Education and Research (2005), the pre-service teacher training programmes provided by the Teacher Training Departments have been reorganized beginning with the university year 2005-2006. The new curriculum is structured in two modules: Module I (30 credits) is integrated in the first 3 (or 4) years of study (the Bachelor cycle).The graduating paper allows the graduate to teach only until he/she gets the “on-thejobconfirmation” certificate. Module II (30 credits) can be performed only after getting the Bachelor degree and it is mandatory in order to obtain the “on-the-job confirmation” certificate. This module includes a compulsory course of “Computer-Assisted Instruction”. The difficulties of developing and supporting an appropriate training course of Computer Assisted/ Based Instruction (CAI) stem from the lack of specialists and the lack of sufficient adequate software to furnish examples of a variety of types of usage in a specific academic area. 43
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
Some Teacher Training Departments within universities provide a CAI course, but most of them deliver PC literacy content under the name of Computer Assisted Instruction. In-service training The in-service teacher training can be organised by Teacher Training Departments in universities, by Teachers’ Houses (a support structure of the education system, comprised by one resource-centre institution in each county), by NGOs and by companies, through accredited training programmes. The need to provide more opportunities for in-service teachers was addressed by an early initiative to create a Distance Education Centre within the Institute of Educational Sciences (IES). Seven Distance Education Centres were equipped in 1997. The intention was that teachers would receive training in a series of modules supplemented by continuous tutoring. These activities were never implemented, due to the lack of political and financial support. In 2001, the National Council for Curriculum run series of courses for teachers, comprising general considerations about integrating ICTs in teaching and learning activities; examples of lessons making use of new technologies; examples of educational software and applications within classroom activities evaluating computer-based learning and suggestions for schoolbased curriculum development. Methodological guides for teachers were issued for every compulsory school level (at that time) – meaning two guides of Information and Communication Technologies in Teaching and Learning – distributed through Schools Inspectorates to primary and secondary schools. Even though there are many cases when large parts of some counties didn’t receive any material, the way such a big task was put in practice is considered a success. The information basis provided by these guides is good and useful, but every educational software example is either obsolete, impossible to purchase or develop by common teachers or addresses learning needs in an inappropriate manner. Maybe this narrow applicability is the reason why few teachers seem to remember today these guides and even fewer seem to use them. Recent projects get more attention from teachers and more support on behalf of the Ministry of Education and Research. Some projects, aiming to train teachers in using technologies for education, are even proposed and sustained by private companies. For instance, the Intel Teach training programme started a couple of months ago and will be implemented by SIVECO Romania during 2007-2008 for teachers on various subject-matters. Intel Teach Essentials Course is developed by Intel Corporation and the Institute of Computer Technology (USA) and promotes “a student-centred approach and active methods through a proper usage of new ICTs in the classroom”. The course comprises 32 hours of face-to-face training, 16 hours of practical activities and 42 hours of individual study. Around 100 trainers are currently being prepared to deliver the course to the education practitioners in Romania, with the aim to train 60.000 teachers by 2010. 44
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
Our school need of changes Maria Nikolova, Bulgaria Our school is small rural school in little village Stefan Karadzha. It is located near 12 km from the municipality centre Glavinitsa and 60 km from the district center Silistra. The school “Otec Paisii" is a primary school. 65 students aged 7 to 15 and 24 children aged 4 to 6 train here. Our students are roma children. Their mothers’ tongue is turkish language. They complete the primary school after the 8th grade currently. From next year they will complete primary school after 7th grade. The pedagogical staff is of 14 teachers including the director, including 3 men and 11 women. Teachers participate in courses and seminars to develop their pedagogical competences. One teacher participates and complete few online training courses in European Schoolnet Academy. These courses are related to the classroom of the 21st century and use of new technologies in the classroom. In our school there are three types of school training, which is distributed in the following educational areas:
General education: Bulgarian language and literature, Foreign language (English), Mathematics, ICT, Social sciences and civic education (History and civilization, Geography and economics), Natural sciences and ecology (Biology and health education, Physics and astronomy, Chemistry and ecology), Arts (Music and Art), Lifestyle and technology, Physical culture and sports.
Advanced training: Bulgarian language and literature, Mathematics.
Additional training: Folklore of ethnic, entrepreneur. Each teacher try to use new technologies and methods in their classes. One of important problems in our school is lack of interactive blackboard. We substitute it and use ordinary white board and multimedia. Computer laboratory is old, computers are obsolete there. Past year our school won in competition and earned 3 second hands notebooks. Most of teachers use own laptops. Internet connection in school is good but WiFi not holding all classrooms or schoolyard. Most of students in 5-8 grade have internet and computers or laptops at home. They have smartphones, but they prefer use these only for social media as Facebook and Instagram. 45
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
Our students not motivated use new digital technologies in learning process. They like better watch how teacher use new technologies and internet in class and they can't produce own projects independently. In this case we would point another problem in our school. It's that our students are not able to learn independently. Necessary equipment at our school is very poor and outdated. There is no science laboratory. Requirements in learning process are high and strong but we have difficulties and troubles ensure it. When our students continue education in secondary school they have problems there because they have never seen and worked in chemical laboratory example. The basic problem of our school is labor migration of families in Germany, Spain and France. In September 2011 the Pedagogical council in our school develop and accept a 3-year Program for prevention of early dropout of school and began collaborating with Amalipe Center for Interethnic Dialogue and Tolerance. We continue this Program accordant with National strategy until 2020. We have good results in this case in last years.
Figure 1: Results in early school drop prevent in last 6 years
Our first goal is to create a positive motivation in students to learn and achieve a key competence. Creating a positive motivation in students is very important in several aspects: - Supports the general atmosphere in school and in class; 46
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
- Encourage students to participate in collective forms of organization of different activities in class and in extracurricular activities (clubs, study groups, workshops, etc.); - The student achieves cooperation with the teacher and other students; - Students develop the ability to form an adequate self-esteem. We try reducing reasons for the low motivation of students to learn and use every opportunity to improve knowledge and skills of our students.
Figure 2: School theatre
We use various forms and ways to motivate students, including extracurricular forms of learning. They are a kind of social motivator of students. An important function of social reasons is that they can maintain interest in learning where there are no cognitive reasoning. (Николова, 2014)
47
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
Another impulse of the educational process in our school are participations in Erasmus + projects. Students are motivated to learn English language and to raise their digital skills in performing various activities on these projects. Our students participate in activities in collaborative writing. They created some products and have good experience in using web 2.0 tools etc.
Figure 3: Our team in Dorohoi, Romania, Erasmus + project "Travelling words" Our motto is: "Learning to live together, regardless of religion or social origin and ethnicity." The mission of the school is to meet the needs of the students. We have one goal: to motivate students to study and work to improve their knowledge and skills. Our other goal is to consolidate the relationship family-school permanent. Our main goal is to achieve a high quality of education and ensure equal access to education for all children. To "open " educational system, to optimize the conditions and environment for learning. Our students often absent from school for a long time. Their parents work abroad. We have students on their own training who live abroad or in other places in Bulgaria. Teachers and students wish to use a platform that can state friendlier all new technology to schools and education. Teachers in small school in villages need of access to material related to what they are teaching. Our students need the same too. Therefore, the e-learning is an advantage. But we 48
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
haven't access in available e-resources. E-learning can provide us extra educational pathways. We need of access research centers, institutes and laboratories. We are so far from culture institutes, theaters and museums. The virtual visit can provide the necessary knowledge. Elearning resources we promote cooperation between educators, educators and students, educators and parents and of course between students. This will encourage educators to materialize their ideas and use innovative educational tools. Figure 4: Scheme of our needs and expectation in E-lios Project Our teachers, students and parents need of changes, especially, they wait reform quickly and hope to
develop in school. Education should be interesting, meaningful and should also be near to real life. Further, it is our motto that financial constraints should not be a hurdle for getting proper education. The teachers should be the friendly guides to the natural growth and development of the children. References Николова, М. (2014) Мотивация за учене и учене чрез извънкласни форми на ученици от ромски произход, in Интеркултурното образование като средство за намаляване на отпадането на ромските деца от училище, (Veliko Tarnovo, National conference). 49
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
Education in Italy Maria Rosaria Zeno, wirdnam@gmail.com
Summary 1. Presentation 2. Scuola dell’Infanzia 3. Primary School 4. Scuola Secondaria di Primo Grado 5. Scuola Secondaria di Secondo Grado 6. University 7. Liceo Scientifico Piero Calamandrei Presentation The basis of the current schooling system was laid in 1946, when Italy became a parliamentary republic. Since then, state education has formed the real backbone of the didactic system in the country. Compulsory school, which lasts from 6 to 16, is free, which means you do not need to pay any registration fee. Free state education is available to children of all nationalities who are resident in Italy. Children who were not born in Italy, receive free public education, even after the end of compulsory school and if they are regular Italian residents. Third level education in Italy, just like primary and secondary, is mostly public. There are several private universities, some of them, such as Università Bocconi in Milan, are well known in the world. Many public universities are prestigious, too: Pisa, Pavia, Padova, Bologna, Naples are only some of the best known in the country.
50
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
PRIMARY AND SECONDARY CYCLES OF EDUCATION 2. ScuoLA dell’infanzia
As said, compulsory school, which is fee exempted, starts at the age of 6 (with the possibility to be anticipated to 5 1/2) and lasts until the age of 16. The percentage of alphabetization in the country reaches the almost totality, at 99%. Schools in Italy are mainly public, although some private institutions exist. Before entering the schooling system, children are usually introduced to non-compulsory nidi d'infanzia and sezioni primavera, the equivalent of crèches. These sections usually are for children of one to three years of age. They then enter the scuola dell'Infanzia, the rough equivalent of kindergarten. Here, children aged three, begin experiencing a more standardized schooling experience with classes, classmates and little learning sections with tasks. Often, they also eat at school and spend part of the afternoon there. 3. Scuola Primaria (Primary School) At the age of six, children start their formal, compulsory education with the Scuola Primaria (Primary School). In order to comply with a European standard for school leaving age, it is possible to enter the Scuola Primaria any time after the age of five and a half. Class sizes generally run about twenty-five children per class with a minimum of ten students. In small villages, “pluriclassi”, or mixed-level classes, have between six and twelve students. Municipalities manage transportation and school meals, most often asking for contributions but making exceptions for needy families. Children learn how to read and write and study a wide range of subjects including maths, geography, Italian, English and science. They also have music lessons, computer studies and social studies. Religious education is optional. Scuola Primaria lasts five years. Pupils no longer take a leaving exam at the Scuola Primaria. At the age of eleven they begin their Secondary education. 4. Scuola Secondaria di Primo Grado (First Grade Secondary School) Scuola Secondaria di Primo Grado was formerly known as scuola media. Pupils attend it until they turn fourteen years old. Formerly at age fourteen, compulsory education was considered complete. Now this limit has been raised to sixteen. While the schooling is free, books must be purchased at the secondary level. Class size is about 25 students per class. 51
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
Students must attend at least thirty hours of formal lessons per week, although many schools provide additional activities in the afternoons such as computer studies, music lessons and sports activities. Formal lessons cover a broad range of subjects following a National Curriculum set by the Ministero della Pubblica Istruzione, MPI (Ministry of Public Education). The curriculum includes: religion, Italian, English, history, geography, science, math, technology, information technology, art, music and physical education. At the end of each term, students receive a school report. At the end of the third year, students sit a written and oral exam. They then move onto the Scuola Secondaria di Secondo Grado (Second Grade Secondary School). 5. Scuola Secondaria di Secondo Grado (High School) Italy is known to be one of the few countries in the world where a distinct, well defined choice about a pupil's future professional career needs to be taken as early as 14. Italian high schools are of different types, depending on the focus of their teachings. They must be chosen during the final year of scuola secondaria di primo grado and the pupil must attend it until his/her 16th year of age. Italian High schools can be divided as such:
LICEI:
schools ISTITUTI TECNICI:
focusing
on schools
focusing
on
theoretical learning technical skills Istituto Liceo Artistico:has branches in fine arts, design, photography, sculpture etc.
ISTITUTI PROFESSIONALI: schools focusing
on
professional
skills
tecnico
indirizzo
a Istituto
professionale
a
tecnologico: focuses on indirizzo dei servizi: has techical skills such as branches in agriculture, health mechanics,
logistics, and social services, hospitality
electronics etc. (divided and gastronomy, commerce. in branches) Istituto
Liceo Classico: focuses on classical philosophy literatures.
languages, and
tecnico
indirizzo
a Istituti
a
dell'industria
e
economico: focuses on dell'artigianato:branches
in
administration,
indirizzo
professionale
industrial
and
artisanal
accounting, marketing or production, techical assistence tourism.
and maintenance. 52
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
Liceo Scientifico: focuses on
biology,
chemistry,
physics
and maths. Liceo
Linguistico:
focuses on foreign languages Liceo
musicale
e
coreutico: has branches in music and dance. Liceo delle scienze umane: focusing on humanities
and
psychology . There are two types of Scuola Secondaria di Secondo Grado in Italy: the Liceo (similar to a British grammar school), which is more academic in nature, and an Istituto, which is essentially a vocational school. For the first two years all students have the same core curriculum of Italian language and literature, science, mathematics, foreign language, religion, geography, history, social studies and physical education plus some other subjects which are specific of the chosen school, for example Latin in our Liceo. Liceo Classico (Classical High School): This lasts for five years and prepares the student for university level studies. Latin, Greek and Italian literature form an important part of the curriculum. During the last three years philosophy and history of art are also studied. Liceo Scientifico (Scientific High School): Lasts for five years with an emphasis on physics, chemistry and natural sciences. The student also continues to study Latin and English. Liceo Artistico (Fine Arts High School): Studies can last four to five years and prepare for university studies in painting, sculpture or architecture Liceo Scienze Umane (Teacher Training School): Studies last for five years and prepare future primary school teachers. There is also a three-year training course for nursery school teachers, but this diploma does not entitle students to then enroll at a university. 53
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
Istituto d'Arte (Artistic Schools): Studies last three years and prepare for work within an artistic field and leading to an arts qualification (diploma di Maestro d'Arte). Istituti Tecnici (Technical Institutes): Studies last five years and prepare for both university studies and for a vocation. There is a majority of students in technical schools that prepare students to work in a technical or administrative capacity in agriculture, industry or commerce. In order to receive the Diploma di Scuola Superiore also known as the Diploma di MaturitĂ (Secondary school diploma), students must pass written and oral exams. The first written exam requires an essay, written in Italian, on an aspect of literature, history, society or science. The second written exam requires the student to write a paper relating to their chosen specialization. The third exam is more general and includes questions regarding contemporary issues and the student's chosen foreign language. After completing the written exams, students must take an oral exam in front of a board of six teachers. These exams cover aspects of their final year at school. Successful students receive various types of Diploma according to the type of school attended. The Diploma di Scuola Superiore is generally recognized as a university entrance qualification, although some universities have additional entrance requirements.
6. University University is available to all students if they have completed five years of secondary school and received an upper secondary school diploma. It is possible for students who have attended vocational schools to attend university. If a student attended a four-year secondary school program, an additional year of schooling is necessary to qualify for university. Those attending university after completing their Diploma di Scuola Superiore go for three years (four years for teaching qualifications) to achieve their Laurea (Bachelor's Degree). Vocational education is called the Formazione Professionale. The first part of this lasts for three years, after which they are awarded the Qualifica Professionale. The second part, which lasts for a further two years, leads to the Licenza professionale also known as the MaturitĂ professionale.
7. Liceo Scientifico Piero Calamandrei Our school, The Liceo Scientifico Piero Calamandrei is a five-year state school educating student between 13 and 18 years old. The school is Ponticelli, a neighbourhood in the suburb of Naples, and has about 1,500 students from 9th to 13th grade. 54
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
The school initially opened in 1976 in the industrial centre of Napoli but was subsequently relocated in its current site in 1989. The students come from diverse family backgrounds as the area enjoys a diversified economic and cultural base. The students are almost exclusively Italians, with only a handful of foreign origin pupils whose families have moved to the area for employment and are well integrated in our local community. We also have a couple of cultural exchange students who are spending a gap year in Italy and attend our Liceo. There are 3 main educational paths in the school: scientific, classical and linguistic. The students can choose their path on initial enrolment. The core of the educational model is well balanced in all streams and each year combines basic academic subjects common to all students with chosen paths that the student wants to deepen. This cross curricular approach involves all areas of study in both humanities and math and science. The Scientific stream focuses predominantly on mathematics, informatics and modern sciences. The classical stream focuses mainly on humanistic studies, art, history, literature and philosophy. The Linguistic stream focuses on modern languages and students can learn English, French, Spanish and German with Italian teachers along with mother tongue lecturers. English language is compulsory regardless of the stream chosen. Classrooms are equipped with interactive multimedia boards connected to a wireless network. All the teachers are supplied with a tablet and an electronic register is in place. Our school is an official test centre for Cambridge language certification of English, and it has been included among the best 15 schools in the world in 2014 by the Cambridge board itself. The Liceo has been awarded as a finalist in the top three schools in the category “Excellent business growth". Liceo Calamandrei is the leading school for CLIL (content language integrated learning) methodology authorized by the Ministry of Education in our region. We organize courses for teachers who want to improve both the English language and the CLIL methodology and even in CLIL methodology activities that foster digital skills and integrate technology enhance learning. Our school provides many extracurricular courses to improve language, information technology and literature skills for all grade students. Students enjoy lessons in language, physics, science and multimedia laboratories. E-learning could be a further step for those who thrive in our hightech world and prefer a more technological approach to the classroom lesson. 55
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
In our liceo we aim to create an atmosphere where students with different backgrounds and abilities will feel involved and proud to belong to their school, empowering them to succeed in a world dominated by fast changing technologies. In order to receive the Diploma di Scuola Superiore also known as the Diploma di Maturità , (Secondary school diploma), students must pass written and oral exams at the end of the fifth grade. The Diploma di Scuola Superiore is generally recognised as a university entrance qualification, although some universities have additional entrance requirements. A few changes have just been introduced in Italy with the 107/2015 law which regulates the Italian school system. According to this new legislation, digital innovation and laboratory practice are instrumental to a successful education. The National Plan for a digital school aims to develop and improve digital skills and competences as follows: •
Students: activities aimed at digital development
•
Teachers and school office staff: personal development courses aimed at innovation and digital culture;
•
School organization: technological and organizational strategies to ease data sharing, governance; didactic and laboratory data exchange to improve professional development;
•
Infrastructures: strengthening of network.
Schools cannot ignore the digital innovations that now regulate the whole world and acquiring suitable digital skills for teachers and educators is the only way to be fully up to date. We must fully encompass this new world but at the same time it is essential not to overlook our rich history of classical culture. References http://www.understandingitaly.com/profile-content/education.html http://www.lifeinitaly.com/moving/school-system.asp http://www.italymagazine.com/featured-story/back-school-10-things-you-should-know-aboutitalian-school-system Liceo Scientifico Calamandrei, Maria Rosaria Zeno 56
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
Bulgarian Education in the Digital Era Deyana Peykova, deyana@mail.bg Summary Information and communication technologies (ICT) are the modern challenge for education and an essential element of the modern school. They open up new possibilities for improving the educational process at school. The implementation of ICT in schools optimizes the learning process and increases its effectiveness. Digital educational materials and resources are widely used in the learning process. We see that both teachers and students are ready and want new technologies and digital learning. Ensuring students’ access to such resources accomplishes one of the goals of technology – teaching and learning should not take place in a particular classroom but where the students need. In this research paper I will present the current situation in Bulgarian schools and the new Strategy for Introduction of ICT in learning process in order to make teaching and learning more attractive and effective and how our school faces the changes in education. Keywords: digital learning, information and communication technologies, electronic resources, digital platforms, distance learning
Abstract Implementation of electronic educational resources in Bulgarian education is one of the main priorities of the Ministry of Education and Science. In 2005 a Strategy for Introduction of ICT in Bulgarian schools was adopted. The main aim was building a new learning environment which can teach students to seek and find information, to analyze and use it in the learning process. Following the plan, many schools were equipped with computers free access to the Internet, electronic books were released, and the process started to reach planned goal. In accordance with the plan teachers had to present their lessons in a modern way, by engaging the students’ attention and their active participation in the learning process. The Ministry created an educational portal, distance learning platforms and educational content in all disciplines, thus students were given the opportunity to widen their knowledge in the subjects. Teachers were required qualifications to work with different software and parents were given the opportunity to monitor their children's development and to participate actively in the school life. A Plan for effective introduction of ICT in Education and Science (2014-2020) was started in 2015 in addition to 2005 Strategy. Its main objectives are linked with the ambition to provide more opportunities and equal access to education at the level of modern requirements of national and international standards, regardless of the place of residence and the attained level of education. The aim is to build people who can be sufficiently adaptable to life in the modern information society. The interest in high technology and e-learning will be encouraged. All the activities according to the Plan are under the motto: E-Learning. 57
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
The ambition is to increase the interest and motivation of students in the learning process through the use of innovative methods based on IT solutions. It is planned to build a national cloud ICT infrastructure for the needs of Education and Science, as well as a national electronic platform for managing learning and content incl. digital environment for video tutorials, teleconferences and development. The national education portal will be updated and the creation of electronic textbooks with interactive content in all subjects such as e-books in PDF format, multimedia lessons will be encouraged. Using digital e-learning platforms and electronic educational resources contributes to raising the standard of education because of multi-sensory approaches, different methods of teaching and learning (Blended learning, Flipped learning), etc. They introduce a new learning model based on interaction between teachers, students and ICT tools. Digital e-learning platform can increase students' motivation to the learning process; facilitate sharing of resources; provide greater flexibility when and where the tasks to be carried out; provide access to data anytime, anywhere; meet the different learning styles and enable students to learn according to their individual pace; improve the digital competence of students, teachers and parents. School structure and educational process Hristo Smirnenski Primary School is located in a small town called Rakovski in the region of Plovdiv, the second biggest town in Bulgaria. Although industry and agriculture are developed in the region, Rakovski is a rural town. Traditionally, the school organizes activities which develop students’ key competencies and skills in various areas of public life. Respecting students’ interests the school strives to meet the specific individual needs and interests of students in the school or outside; to create conditions for realizing their creative and individual abilities and personality development; to make the school healthy and enjoyable place for the students. Hristo Smirnenski School includes two different structures: one is for pupils aged from 7 to 10 years and the other one covers pupils from 11 to 14 years. We also have pre-school groups for 5 and 6-year-old pupils from the minority whose parents can’t pay a kindergarten tax. As with the curriculum, the number of students per class is mandated by the Ministry of education. First to fourth grade classes must be between 16 and 22 students – average 20 in our school. Fifth to eighth grade classes must be between 18 and 26 students – average 26 in our school. The classes are mixed gender and comprised primarily of Bulgarian students and a minority of Roma students. First to fourth grades have got 32 school weeks which means 25 class sessions per week or 5 class sessions per day. They study Bulgarian, Maths, Natural Studies, Social studies, English, Art, Music, Sports, Technologies class. Fifth to eighth grades have got 34 school weeks which means 30 class sessions per week or around 6 class sessions per day. They study all these subjects plus Geography, History, Chemistry, Physics, ICT. 58
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
All the students have got 2 class sessions per week with their class tutor. One of these class sessions is included in the curriculum and students study rules for safety in the street, how to protect themselves when there is natural disaster for example fire, earthquake. They learn about different jobs. During the other class sessions class tutors meet students’ parents and discuss problems. There is an extra Sports session once a week which is not in curriculum so that students can get more exercise. Every detail of curriculum is mandated by National Ministry of Education. More emphasis is put on Bulgarian, Math, Foreign Languages and ICT, which are studied nearly every day. The remaining subjects are studied around once or twice a week. Bulgarian and Math are studied intensively because students are tested in these two subjects’ areas on standardized high school entry exams at the end of 7th grade. Based on the results of these exams, students have the option of applying to a variety of specialized schools. These are public schools but entry is very competitive and subjects range from Foreign languages to Tourism. Students have had ICT classes for three years now. Students are required to study ICT when they are in the fifth grade. When they have finished the seventh grade they have acquired skills to work with Microsoft Office and Internet, Skype, e-mail, MSN, and Paint. Students develop presentations which are uploaded to the school site, they usually create videos. Bulgarian Education in the Digital Era - Plan for effective introduction of ICT in Education and Science (2014-2020) Modern society is now rapidly becoming mobile. This means that access to information and services should be provided continuously, regardless of time and location of the users. In order to ensure mobility new computing devices (laptops, smartphones, tablets, etc.) and new technologies in information resources and services (i.e. 'Cloud' technology) appeared. The modern student and all participants in the education and development process at all levels - parents, teachers and scientists must have permanent access to electronic educational resources and services. The mobility of everyone involved in the educational process will be based on mobile learning in the new information society. Main objectives that the Plan should achieve:
• Increasing students’ interest and motivation in the learning process using innovative methods based on ICT;
• Providing students in isolated areas with opportunities for success, providing access to high quality educational resources;
• Promoting the creation of digital content; • Promoting the interactive learning and critical thinking; • Raising the students’ interest to high technology, identifying students with IT skills and promoting their technological education; 59
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
• Implementation of a system for management of education. Priorities of the Plan
• National cloud ICT infrastructure for the needs of education and science; • National electronic platform for learning management and content incl. digital environment for video tutorials, teleconferences;
• Initiation of legislation for digital learning content and ICT skills; • Renewal of the national education portal and creation of electronic textbooks with interactive content in all subjects and providing centralized access to all existing digital resources and integration of additional approved means such as electronic textbooks in PDF format and multimedia tutorials;
• Free resources of interactive digital content, supporting the educational process; • Educational portals; • Educational applications and games, including created by students through a series of competitions;
• Virtual panoramas of famous sites of Bulgarian history and culture; • Preparation and certification of teachers for innovative use of ICT in the classroom; • Starting a national initiative to supply cheap and reliable smart devices (laptops, tablets, etc.)
• Providing software tools for managing user devices in order to use them for the needs of the learning process - the external evaluation, etc.;
• Creating a gateway to higher education which will include communication platform between companies and students / research institutes; platform for real involvement of students in research projects;
• • • •
Interactive laboratories; Internet access in classrooms and infrastructure for smart classrooms; Wireless (WiFi) infrastructure in educational institutions and research institutes; Analysis of business processes at school level, create a detailed plan for implementation of specialized information systems in various schools;
• A network connecting Regional Directorates of Education, universities and research centers. How does the school face the challenge of digital education? 1. School vision about the introduction of ICT Improving the quality of education through effective using of modern information and network technologies The vision of the school defines the main activities required for its implementation. The main objective of the school authorities is to introduce new educational technologies in the learning process, thus enriching educational content and make it accessible for every student. 60
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
Currently, the school has a wireless internet connection, two terminal equipped computer labs and most of the classrooms are provided with laptops and projectors. We have two interactive boards. Teachers use ICT in their lessons, thus engaging the students' attention and encourage them to participate actively in the educational process. The both computer labs at school are equipped with 15 computers in each room. Each class is divided into two groups, so each student can work independently. All of the computers are connected with the teacher’s computer. WINDOWS 10 Operating system is installed in each computer. The teacher can present the new content and can control the students using the program CLASSROOM MANAGEMENT. Each computer is a “station” and the teacher can observe students’ work any time. He also can use this system to block some dangerous content. It is found that when teachers use ICT in learning process, students’ academic achievements are better, they are more motivated to study the subjects. So, our objectives during the E-LIOS project is integration ICT in all educational levels - from the preschool class to eighth grade. Using electronic content, interactive tools, on-line training and unlimited free internet access we want to meet the new "digital" needs of the students and to turn them in active participants in the educational process. Besides the introduction of ICT in all subjects’ teachers are usually provided with training in different digital technologies - creating a blog which helps for easier communication with students and parents, using interactive software and lessons in all subjects, using social networks to exchange information, presenting opportunities to work on joint projects in different online platforms such as eTwinning, etc. 2. Key areas of action during E-LIOS project • Providing necessary equipment / laptops, projectors / for each class and teacher. • Implementation of e-learning content in all subjects; • Additional training for teachers working with electronic textbooks and other educational software; • Implementation of interactive and adaptive tests.; • Building e-communication between teachers and parents and between teachers and students; • Using software to create a virtual classroom; • Using social networks for exchanging knowledge, skills and good practice • Cooperation with the partners for development and transfer of innovative methodologies and training materials and sharing best practices in the schools.
61
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
System of Polish Education Aleksandra Chlasta – Górna, achlastagorna@poczta.fm
Summary This article consists of two parts. Part One presents the system of education in Poland. The structure of the education is discussed, from pre-school to higher education, including the number of subjects, national exams and the organization of the school year. Also, aspects of supervision and financing in public schools are presented. Part Two focuses on the presentation of Zespół Szkół in Janków Przygodzki. Abstract Key-words: Polish education, national examinations, subjects, Zespół Szkół w Jankowie Przygodzkim 1. Structure of educational system in Poland Compulsory education lasts 12 years in Poland; it starts when children are 6 years old and finishes when teenagers reach the age of 18. However, many Polish students continue their education much longer. A great majority of Poles attend state schools which offer good education. Still, there is also a variety of private schools, located usually in cities, which also provide their students with a good level of education. Yet, whereas education in Polish state schools is free, parents need to pay high fees if their offspring attend private schools. Polish education consists of a few levels: pre-school education, primary schools, lowersecondary and upper-secondary schools, optional post-secondary schools and higher education. The school year typical for primary and secondary education lasts 10 months and is divided into two terms. It starts on 1st September and finishes on Friday, close to 24th June. The date of the end of the first term and the beginning of the second term is usually connected with winter breaks at school. The time of the break is regulated by the Ministry of Education and is different for schools around Poland since it depends on the voivodeship the school is located in. Likewise, the time of all holidays and national examinations at schools is regulated by the Ministry of Education and is published at the end of August each year. 62
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
In Polish primary and secondary schools’ lessons last 45 minutes and are separated by breaks which are from 5 to 20 minutes long. Children spend their breaks in school corridors or playgrounds, always supervised by teachers. In primary and secondary education, the students' acquisition of knowledge must be assessed with the use of various tools such as: short tests, tests, oral presentations, homework, projects, etc. Grading includes marks from one to six; whereas six is the highest mark given for outstanding performance, one is the lowest mark meaning the complete lack of minimum knowledge or skills. 1.1. Pre-school education Pre-school education is available for children aged from 3 to 6. It is organized in two ways: there are pre-school groups in primary schools and there are kindergartens. What makes the biggest difference is the aspect of fees; whereas the former is free, the latter must be paid for. Also, in kindergartens children are provided with a few meals, usually breakfast, lunch and tea. Pre-school education aims to teach through plays and games. The greatest attention is paid to develop children's social skills, manual skills, and basic knowledge about the world, the country and the area where the child lives. Also, children are taught letters, numbers, and basics of a foreign language. Whereas three and four-year-old can attend pre-school groups, all Polish children aged 6 must be involved in regular pre-school activities, either in primary schools or in nursery schools.
1.2. Primary education Primary schools operate on the basis of general educational plan which determines the minimum weekly number of lesson periods of particular subjects. There are two cycles of education in six - year primary schools, both lasting 3 years. At the lower level of the primary school children, aged 7 – 9, have 20 - 23 lessons each week. The main components taught at this stage are: reading and writing in Polish, counting, music, arts and crafts, basics of IT, elements of science, PE, one foreign language (usually English). There is one teacher who has majority of lessons with students; the exception can be foreign language classes. At the higher level of the primary school, when children are aged 10 – 12, the number of lessons increases to 25 – 28 lessons weekly. The main components taught at this stage are: Polish, Math, Science, 63
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
History, two foreign languages (normally English and German), PE, IT, Technology, Music, Art, each subject taught by a different teacher. Education in the primary school finishes with the Certificate of Completion of Primary School Education. For the last few years all students graduating from primary schools have been obliged to take a primary school-leaving examination called „Sprawdzian Szóstoklasisty” (6grade Student Test) which has been divided into three parts: Polish language and literature, Maths and Science, a foreign language. However, according to new regulations, from the school year 2016/2017 students graduating from the primary school will not be obliged to take the examination. 1.3. Lower secondary education Similarly to primary schools, lower secondary schools also operate on the basis of general educational plan which determines the minimum weekly number of lesson periods of particular subjects. At this stage, the education lasts 3 years and the minimum weekly number of all lessons is 29-31. Subjects taught at the lower-secondary level aim to provide basic knowledge and skills to all students and consequently to prepare students to further education in various types of upper-secondary schools. The curriculum includes: Polish, two foreign languages (normally English and German), Maths, History, Biology, Geography, Physics, Social Studies, PE, IT, Art, Music, Education for Safety, Technology. Moreover, when in lower-secondary school, each student needs to take part in minimum one educational project which he/she chooses himself, prepares with his peers, guided by a teacher, and presents to other students. Also, in April, the oldest students of the lower-secondary school are obliged to take three-part school-leaving national examinations in Polish and History, Maths and Science, one foreign language. The results of these exams called „Egzamin Gimnazjalny” (The Lower-Secondary School Exam) and marks on the Certificate of Completion of Lower-Secondary School determine the upper-secondary school the teenager is accepted to.
1.4. Upper secondary education Having graduated from the lower-secondary school, a student has a choice of three types of upper-secondary schools: vocational, technical and high schools. As it has already been stated in the previous paragraph, this choice depends on the grades on the school-leaving certificate and points gained at school-leaving examinations. However, it must be added that the choice is 64
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
also determined by the future career a student wants to follow. Polish vocational schools offer only basic general knowledge but provide their students with professional training in specific professions like: carpenters, waiters, cooks, hairdressers, plumbers etc. After two years, graduates achieve the Certificate of Completion of Education in Basic Vocational School and can start their career path. Polish high schools prepare their students to higher education, providing them with good knowledge and skills. During three years, students attend compulsory classes offering knowledge at a basic level and take part in obligatory classes at an extended level. Having received the Certificate of Completion of Education in High School, students take national school-leaving exams in May. The obligatory exams include three written parts in Polish, Maths and a foreign language and two oral parts in Polish and a foreign language (all at the basic level). Also, students are obliged to take at least one exam at an extended level (e.g. a foreign language, Polish, Maths, Biology, History, Geography, Social Studies, IT, physics, etc.). The decision is connected with the future studies since the examinations are entrance exams to studies. Finally, technical secondary schools combine the offer of vocational and high schools as on one hand they prepare for the national school-leaving exams, and on the other hand they provide training in specific professions ( e.g IT progammers, accountants, carpenters, hairdressers, tailors, forest rangers, etc). The education lasts four years, during which students need to take national vocational exams. Having graduated the school with the Certificate of Completion of Education in the Technical Secondary School, students can also write national school-leaving exams, the same as graduates of high schools. Upper-secondary schools also operate on the basis of general educational plan which determines the minimum weekly number of lesson periods of some subjects (basic knowledge), whereas in case of other subjects a school can make its autonomous decision as far as the maximum number of lesson periods is concerned (extended knowledge, professional training). 1.5. Post secondary schools Post-secondary schools predominantly cater for students progressing from general upper secondary schools, and programmes are typically from one to 2.5 years in duration. Graduates of upper-secondary schools can be trained here as nurses, accountants, administrative personnel 65
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
for enterprises and hotels, computer specialists, librarians. 1.6. Higher education After secondary school and with certificates proving passing national school-leaving exams, students can take higher education. There are various types of higher education institutions: universities, polytechnics, economic academies, agricultural academies and others. Day studies in state higher schools are free of charge. Since 2008/2008 academic year Polish higher education system has been divided into three stages: bachelor degree (3 – 3.5 years) , master degree (2 – 2,5 years) and doctor. This system applies to all fields of education except Law, Pharmacy, psychology, Veterinary Medicine, Medicine and Dentistry, which are still based on two-stage system (Master and Doctor). 2. Supervision and finances in education Ministry of National Education coordinates, controls and regulates the work of schools in Poland. It elaborates educational policies at the national level, it coordinates other governing bodies and controls higher education institutions. At the lower level, schools are supervised in two ways. As far as educational supervision is concerned, schools are subject to education officers working in departments of education. As far as administration and financial supervision is concerned, local governments are responsible for supporting and controling schools. Likewise, it is the Ministry of Finances that finances education in Poland, distributing money to local governments: voivodeships, municipalities, and poviats, which subsidise schools in their area. 3. Basic information about Zespół Szkół in Janków Przygodzki
Figure 1: the building of Zespół Szkół in Janków Przygodzki Zespół Szkół in Janków Przygodzki is a complex of two schools: the primary school and lower66
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
secondary school, located in a village in the west of Poland, about 100 km from Wrocław and 120 km from Poznań. Education in Janków Przygodzki dates back to 1815. The buiding has been rebuilt and modernised a few times. Today it is the biggest school building in the district of Przygodzice. The teaching staff numbers 30 teachers with the head teacher Barbara Szymanowska and the depty teacher Albin Bednarczyk. The school is attended by 300 students, 180 learning in the primary school and 120 learning in lower-secondary school. Students usually learn in groups of 20; there are 2 pre-school groups, 8 groups in primary school and 6 groups in lowersecondary school. Zespół Szkół in Janków Przygodzki has many classrooms equipped with modern technology (laptops, computers, interactive whiteboards). In corridors there are lockers for younger pupils. The school provides warm meals to students (soup, tea) in a school canteen. Also, there is a special playroom for the youngest students. The school premises include a playground, a sports field, a running track, and three beach volleyball pitches. Apart from regular lessons, the school offers after-school activities (e.g. Volleyball classes, aerobics, maths classes, language classes, etc), speech tharapist's help, library classes. Moreover, during winter and summer holidays children can take part in some activities and trips. The school takes its pride in outstanding sports results at a regional and national level in volleyball, beach volleyball and aerobics. What is more, a number of our students win knowledge competitions in foreign languages, maths, science.
67
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
EDUCATION IN TURKEY Uğur Karadeniz, uk002@mynet.com Summary Turkish educational system has always been a matter of discussion and turmoil since the declaration of Republic, which is nearly a century. By the collapse of the Ottoman Empire, the education system had to be changed drastically as the life styles and the law of the public would be exposed to a similar kind of metamorphose. The laws and way of governing would be altering to European style, so the education system would be treated in the same way. However, that kind of change wouldn’t be easy as there were stereotyped beliefs and teaching styles coming from a tradition of centuries ago. The dominance of faith-based subjects had been decreased imminently and the positive sciences imported from the western world got the majority. Nevertheless, all these changes haven’t made the expected development in that hybrid innovated eastern country as it had for the ultra-technologic Europe. There had been changes in the system, books, staff, buildings, or laws continuously but no difference. At first, the period for the primary education had been 5 years for a long time. By the 1990s, it was altered to be 8 years which meant the death of the vocational high schools. In recent years, it has become 4 years primary,4 secondary and 4 high school. The main policy in educative means is “wait and see”. Another controversial issue is the abundance of proficiency exams. For instance, in order to be a teacher in a public school, one has to pass nearly 10 national proficiency exams except plenty of exams and finals during university. Every citizen has the right to education which is free of charge for the compulsory primary education. Except in specially licensed and foreign institutions, Turkish must be taught as the mother tongue. Since 2012, twelve years of education is compulsory for boys and girls, which can be divided into 4+4+4 years of schooling. The Ministry of National Education (MEB) runs educational administration of Turkey and is responsible for drawing up curricula, coordinating the work of official, private and voluntary organizations, designing and building schools, developing educational materials and so on. The Supreme Council of National Education discusses and decides on curricula and regulations prepared by the Ministry. In the provinces, educational affairs are organized by the Directorates of National Education appointed by the Minister but working under the direction of the provincial governor. The academic calendar generally begins in mid-September and extends through to mid-June, with some variations between urban and rural areas. The school day usually have a morning and an afternoon session, but in overcrowded schools there is a split session. Schools are in session for five days a week (Monday to Friday) in a total of 35-40 hours. There is a two week winter break between January - February. Universities usually organize the academic year into two semesters, usually between October - January and between February/March - June/July. 68
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
Abstract It is compulsory to complete a 12-years education in Turkey which consists of 4 years of primary, secondary and tertiary level each. Kindergarten education is also being emphasized though it is optional in recent years. To establish the kindergarten education across the whole country, numerous schools have been built and the number of the nursery teachers has been doubled. In terms of secondary or high-school(lyceum) education, drastic changes have been in use. Once there were various types of high-school as normal, technical, vocational etc. There are two main types of high-schools now. One is called Anatolian High Schools, which is apart from vocational ones, and another one is of the vocational including the technical schools. Vocational schools have got importance in recent years. A lot of school buildings and workshops have been made for the vocational and technical schools. Almost every high school has got smart boards and ICT laboratories. Most of the students also have got tablet PCs. In spite of all these advancements and technical advantages, neither teachers nor students don’t have the necessary ICT qualifications to make use of those advantages. ICT courses are being arranged in various times for teachers, but these were not applicable enough. Open schools are also available for the drop-out students, aged people or for early-school leavers. There are digital courses for them on the national net, however, those students are not as lucky as the normal students. Not all of them have tablet PCs or even internet connection in their houses. Even if they have pc or internet, they don’t have enough time to follow the courses due to long laboring hours. Enhancing Digital Learning with the improving their labor lives would be very useful for them and the country’s education prospect. Presentation The Turkish National Educational System is composed of two main sections: Formal Education and Non-formal Education. Formal Education Formal education is the regular education of individuals in a certain age group and given in schools. This includes Pre-School education, Primary education, Secondary education and Higher education institutions. Pre-School education Pre-Primary education is an optional education for children between 3-5 years of age who are under the age of compulsory primary education. The purpose of this education is to ensure physical, mental and sensory development of children and the acquisition of good habits, to prepare children for primary education, to create a common atmosphere of growth for those living in inconvenient circumstances and to ensure that Turkish is spoken correct and well. Preschool education is given in kindergartens, daycare homes, nursery classes in primary schools, 69
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
and in private nurseries, all under the supervision of the Ministry. They are usually concentrated in larger towns and cities. Primary Education With a new Law in 2012, four years of Elementary school + four years of Middle school is compulsory today, followed by four years of compulsory high school education (makes a total of 12 years compulsory education). Primary education is compulsory for all boys and girls at the age of 5,5 and is given free of charge in public schools. These schools provide eight (4+4) years of education. There are also private (and paid) schools under State control. In most of the primary schools, foreign language lessons start from 2nd grade. Most elementary school students dress similarly in a type of uniform to avoid any social class differences between rich and poor students. If the children fail to pass the class, he/she must repeat the same class next year. At the end of 8 years, successful students go for the Secondary education for 4 more years. The purpose of the primary education is to ensure that every child acquires the basic knowledge, skills, behaviors, and habits to become a good citizen, is raised in line with the national moral concepts and is prepared for life and for the next education level parallel to his/her interests and skills. Secondary Education Secondary education is compulsory for four years and covers general, vocational and technical high schools (Lycees) that provide four years of education (used to be 3 years until 2005). •
General high schools prepare students for higher learning institutions. Some of the secondary schools and the private secondary schools have foreign language preparatory classes. This kind of private lyceums have double language education (such as Italian Highschool, German Highschool, Austrian Highschool, French Highschool, and so on).
•
Vocational and technical high schools provide specialized instruction with the aim of training qualified personnel. o
Technical lyceums include special formations such as electricity, electronics, chemistry, machinery, motors, building, etc.
o
Vocational lyceums can be Industrial Vocational Lyceums; Girls' Vocational Lyceums (home economics etc.), Public Health Vocational Lyceums, Commercial Vocational Lyceums, Agricultural Vocational Lyceums, Meteorology Vocational Lyceums, Animal Husbandry Vocational Lyceums, Land Registration and Cadastral Vocational Lyceums, etc.
The purpose of secondary education is to give students a minimum common culture, to identify individual and social problems, to search for solutions, to raise awareness in order to contribute to the socio-economic and cultural development of the country and to prepare the students for higher education, for profession, for life and for business in line with their interests and skills. 70
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
In addition to normal high schools, there are also evening high schools usually operating in the same school building. These are designed to allow those who take up employment after primary (or middle school) to continue their formal education. Most of the high schools are owned by the State and provide free educational opportunities. In order to provide equal opportunities for the children with limited finances, there are State high schools with boarding facilities. These schools are free of charge and the students are placed according to the results of an examination. There are also many private high schools, which are paid by the parents, of course. Graduates of the high schools can attend universities if they can pass admission exams. Higher Education Turkish universities are either Republican institutions or Private ones. Universities, faculties, institutes, higher education schools, conservatories, vocational higher education schools, police and military academies and colleges, and application-research centers are considered as Higher Education institutions. Universities, faculties and institutes of four-year higher education schools are founded by Law, while the two-year vocational schools, departments and divisions are established by the Council of Higher Education (YÖK). Universities are under the supervision of this Council and their programs must be regularly accredited. The Council of Higher Education is a fully autonomous national board of trustees without any political or government affiliation. Universities have their rectors, deans, senate, and administrative boards, as well as student councils. In the universities, the instruction is generally in Turkish. Some universities use English, French and German as the language of instruction with one preparatory year if necessary. After the high school, the graduates enter a two-stage examination system known as YGS and LYS (formerly known as ÖSS - Student Selection Examination) in order to be admitted to Higher Education institutions. These nation-wide centralized examinations are administrated by the Student Selection and Placement Center (ÖSYM) every year, which determines candidates for the enrollment of each university and faculty after evaluating the grades of related subjects, their high school average results and their preferences according to the student capacity of each faculty. Those with good grades are qualified for the four-year undergraduate programmes and at the end they can get a Bachelor's Degree (BA), those who have grades at the limit can be admitted to the two-year higher education programs and at the end they can get an Associate's Degree (AA). Dentistry and Veterinary Medicine courses last for five years and Medicine for six years. After a four-year faculty, one can go further for his/her Master's Degree which lasts for two years with thesis and non-thesis options. Access to doctoral programs requires a master's degree and have a duration of minimum four years with a doctoral thesis at the end. The graduates of Medicine, Veterinary Medicine and Dentistry can directly apply to PhD/Doctorate programs.
71
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
The purpose of higher education is to raise the students in line with their interests and skills, in conformance to the science policy of the country and in consideration of qualified manpower needs of society at several levels, to do researches in scientific areas, to arrange for all kinds of publications that show the research and examination results and facilitate advancement of science and technology, to finalize the researches and examinations demanded by the government and to make comments, to make written or oral public announcements explaining the scientific data that shall increase the general level of Turkish society and enlighten the public, and to give non-formal education. According to the Law, higher education institutions are responsible for the training of their own academic staff. Meanwhile, Primary and Secondary school teachers are trained in universities for 4 years and they get a BA degree at the end. The major source of income of state universities is the funds allocated through the annual State budget, this is equivalent of about 60% of the total university income. In addition to this, a university can generate its own income from the services provided by that university, such as patient care in university hospitals. Student contributions to state universities form only 4% of the total university budget. Meanwhile, the student fees in private foundation universities are much higher. At present, enrolment in the private universities accounts for only 5% of the total. Clearly, state universities are by far carrying the major portion of the load of higher education in Turkey. In 2011 a total of 759,638 students were enrolled in AA, BA, Master's and Doctorate programs of 165 universities; 103 State and 62 Private. Non-Formal Education Non-formal education in Turkey is offered by a network of training centers who are supervised by the Ministry of National Education (MEB). Non-formal education services aim to teach reading-writing, help to continue education of students for finish their incomplete education, teach balanced nutrition and a healthy life style, teach people from various professions the knowledge and skills they need to improve themselves, and so on. There is also Distance Higher Education which is offered at the Open Education Faculty of Anadolu University. This program lasts for 2 or 4 years. Foreign Students Admission Foreign students who would like to enroll in the post-graduate programs of the Turkish institutions of higher education can apply directly to universities and must have completed their secondary education in a high school in which the education is equivalent to that of a Turkish lycee; they need to have it confirmed from a Turkish Embassy in their country and apply for a student visa. The applications of foreign students will be considered by the universities within their limit of the allocated places for foreigners. The students must also take the Foreign Student Entrance Examination (YĂ–S) which consists of two tests; a "basic learning skills test" where they must score at least 40, and a "Turkish language proficiency test" to see their Turkish 72
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
language level, if any. Language courses are organized for those who do not speak Turkish, and in some Turkish universities courses are taught in English, French or German. Foreign students must take the Graduate Education Entrance Examination or an international examination (GRE, GMAT, SAT, etc.) required by each university, the equivalency of which is recognized by the concerning university senate. The evaluation of the results of these examinations is carried out by the concerning universities References Sansal, Burak (2016) Education System in Turkey Ministry of National Education (MEB) Council of Higher Education (YĂ–K) Columbia University
73
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
GOOD PRACTICES From barter to electronic money By Deyana Peykova (deyana@mail.bg) and Snezhana Krasteva (krasteva@abv.bg) Hristo Smirnenski Primary School, Rakovski, Bulgaria Note: The unit is divided into three lessons. The first one introduces the History of money. The second one meets the students with the European union and the Euro as a common currency. There is an optional lesson /the third one/ for those who can apply in their school - From the cash to the electronic money. Lesson 1: History of money STEP 0: Introductory section and preparatory phase Short Description: In this lesson students learn about money and its place in the economy. They participate in a barter activity to understand the need for money, and then they learn about how money works in the society Keywords: money, history, euro, EU Target audience: students Age range: 10-13 Context: This lesson is the first one of the units “From barter to the electronic money” Time required: 1 lesson, 45 min Technical Requirements: laptop, projector Author’s background: Money is a key part of the economy and students need to understand its importance and history. Connection with the curriculum: History, English language Learning Objectives: To introduce learners to characteristics of different kinds of money and give them support in understanding the need of different kinds of money Guidance for preparation: Media components: PowerPoint presentation https://issuu.com/deyana/docs/history_of_money_lesson.pptx
“History
of
money”
74
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
Materials: Teachers will need the following supplies: Laptop and projector Students will need the following supplies: Scissors, pictures of different goods, color pencils Preparation for teachers: Preview the presentation used in this lesson to make certain that it works properly on the computer Print out pictures of cars, laptops, buildings, clothes, cars, gadgets, etc. and make enough copies for each group. STEP1: Pre-Experiment / Observation – Teaching Phase 1: Questions Eliciting Activities – provoke curiosity Lead-in What is money used for? Money appeared to respond to the need of such means, which could help the exchange of goods and would be accepted by everyone. It’s known that for a period of time salt was used for exchanging goods the way we use money now. So, what is money? It’s universal means to measure how much goods and services cost. What kind of money did people use through years? This question provokes students to give different answers. STEP 2: Pre-Experiment / Observation – Teaching Phase 2: Active Investigation – plan and conduct simple investigation Students are shown a presentation “History of money” to understand more about it. (The presentation is attached) STEP 3: Experiment / Observation – Teaching Phase 3: Creation – gather evidence from observation Roleplay “BARTER” The teacher divides the students into four groups. He gives them materials. Students have to “produce” things which will be exchanged between the groups. Their task is to produce as much as it takes to become equal exchange. 75
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
TASK: Students have got printed pictures of cars, laptops, buildings, clothes, cars, gadgets, etc. They must color and cut them. They need to color as many of them as they consider that could become equal exchange with the other group. For example, one group will exchange 3 pictures with a pen versus 5 pictures with a pencil on them. Once finished coloring and cutting out any group and any representation of what is produced, it is a kind of advertising. After each group presents the production, the students themselves decide what they want to buy and what you are willing to give for it, so that both parties can be satisfied.
STEP 4: Post-Experiment / Observation – Teaching Phase 4: Reflection – communicate explanation The teacher summarizes the outcomes of the group work. Students realize: - The value of each of manufactured goods and its value for the other group. - The way people exchange before the advent of money. Lesson 2: The euro STEP 0: Introductory section and preparatory phase Short Description: In this lesson students learn more about the euro as a common currency of EU. The lesson also describes the role of European Union. There is information about the previous currency of some European countries and interesting facts about it. 76
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
Keywords: euro, EU, currency Target audience: students Age range: 10-13 Context: This lesson is the second one of the units “From barter to electronic money” Time required: 1 lesson, 45 min Technical Requirements: laptop, projector Author’s background: With the start of the new year in 2002, the 12 members of the European Union launched a single currency across their borders, replacing individual country currencies. The euro (sign: €; code: EUR) is the official currency of the eurozone, which consists of 19 of the 28. The currency is also officially used by the institutions of the European Union and four other European countries, and is used daily by million Europeans as Outside of Europe, a number of overseas territories of EU members also use the euro as their currency. Connection with the curriculum: History, English language Learning Objectives: It is expected at the end of the lesson students: • To know various European currencies; • To understand the role of the euro in the development of the European Union. Guidance for preparation: Media components: PowerPoint presentation “The euro” https://issuu.com/deyana/docs/the_euro.pptx Websites about EU: http://europa.eu/kids-corner/countries/flash/index_en.htm Online game http://ec.europa.eu/economy_finance/netstartsearch/euro/kids/index_bg.htm
Materials: Teachers will need the following supplies: Laptop and projector Preparation for teachers: Preview the presentation and websites used in this lesson to make certain that they work properly on the computer
STEP 1: Pre-Experiment / Observation– Teaching Phase 1: 77
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
Questions Eliciting Activities – provoke curiosity Lead-in The teacher presents to students’ information about the EU and its role. He uses the site: http://europa.eu/kids-corner/countries/flash/index_en.htm There is a choice of language. Site is quite useful and provides information for the entire EU and the countries in it. By clicking the download goes to the country and its flag. The teacher can provoke and encourage students to talk about their favorite countries – Where have you been? What is the flag? What did you buy? How did you pay? After that they can check the information on the site together.
STEP 2: Pre-Experiment / Observation – Teaching Phase 2: Active Investigation – plan and conduct simple investigation Students are shown a presentation “The Euro”. The teacher introduces to students the euro banknotes and coins and presents some previous currencies of the EU. (The presentation is attached) STEP 3: Experiment / Observation – Teaching Phase 3: Creation – gather evidence from observation Game: Banknote puzzle Online game where students have to arrange the parts of different euro banknotes. The time is limited. http://ec.europa.eu/economy_finance/netstartsearch/euro/kids/index_bg.htm
78
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
STEP 4: Post-Experiment / Observation– Teaching Phase 4: Reflection – follow up activities and materials Task for the students: Pretend that you represent one of the countries that did not change to use of the Euro. Present an argument to the people of your country as to why you should now make the change, or why you should not join the other countries. Include references to influences such as tourism, international trade, political sentiment, etc. Lesson 3: From the cash to the electronic money STEP 0: Introductory section and preparatory phase Short Description: In this lesson students learn more about the cash and electronic money – they will think about advantages and disadvantages of using both of them. Keywords: cash, electronic money, credit card Target audience: students Age range: 13-14 Context: This lesson is the third one of the units “From barter to electronic money”. This lesson is optional, it’s supposed that the children could be elder. Time required: 1 lesson, 45 min Technical Requirements: laptop, projector Author’s background: E-money, also known as digital money, electronic money and ecurrency, is a form of money that is digitally stored as opposed to actual paper or coin currency. The use of e-money typically involves computers, the Internet and wireless transfers. E-money is convenient because it doesn’t require the consumer to carry cash and can be used for making purchases and receiving payments any time, 24 hours a day, seven days a week. Connection with the curriculum: History, English language Learning Objectives: Students will recognize the purposes and benefits of electronic money. 79
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
Guidance for preparation: Media components: Video “Animation Electronic money” https://youtu.be/FwQJNFCiD5c Materials: Teachers will need the following supplies: Laptop and projector Students will need a copy of banknotes, pens, paper Preparation for teachers: Preview the video used in this lesson to make certain that they work properly on the computer Print out a copy of banknotes for each group STEP 1: Pre-Experiment / Observation– Teaching Phase 1: What are cash? Teacher divides the class into groups. He gives them a banknote 50 euro (a copy of a banknote) and they have to spend for: 1st group: buying important things for students 2nd group – payment for service connected with students’ needs 3rd group – payment for work (for example for repair of something) 4th group – payment for monthly costs (phone, electricity, taxes, insurances)
Teacher asks for four students to come up to the front of the class and act out the story to be the cashiers. Teachers encourages them to be dramatic as they act it out. Different scenario can be considered: If the group hasn’t got enough money If the cashier doesn’t accept cash and they have to pay only electronically If everything is OK ☺ All decisions and results in the groups must be discussed. STEP 2: Experiment / Observation – Teaching Phase 2: What is electronic money? 80
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
Electronic money is money that is exchanged electronically. This involves the use of computer networks, the internet. Electronic money means to pay electronically. Like banknotes and coins, electronic money can be used for payment of various goods and services stations, supermarkets and others. Electronic money can be transferred from many electronic devices, ATMs, terminals or the Internet. They can perform the same functions as cash: the purchase of various goods and pay for different services can be exchanged for cash, can be exchanged between people. They can be used in everyday life placing the card in the terminal or using contactless, wireless device on the Internet via a PC or mobile phone. Students are shown the video “Animation Electronic money” https://youtu.be/FwQJNFCiD5c to understand how the e-money works. They learn more about key card /credit card/ and how they can use it. STEP 3: Experiment / Observation – Teaching Phase 3: Teacher makes a discussion titled "Using credit cards. «Divide the class into three groups. Hand out paper and pen for each group. Place individual tasks for each group to discuss: Group 1 What are the advantages of using credit cards Group 2 - What risks hiding the use of credit cards Group 3 - What you need to know people to use credit cards Each group summarizes its findings of the paper. A representative of each group (the group's spokesperson) presents the conclusions reached by the group. STEP 4: Post-Experiment / Observation– Teaching Phase 4: Reflection – follow up activities Teacher summarizes the discussion. Resources: http://startsmart.com.au/home/startsmart-programs/
81
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
How many stars can I see at night? Alina Petrica STEP 0: Introductory section and preparatory phase Short Description: Students in this scenario will study the effects of light pollution on the observation of the stars at night and they will simulate with Stellarium. Keywords: Astronomy, Hands-On, Stellarium, observation, pollution, light. Target audience: Students at 7th grade Age range: 11+ years Context: After the constellations subject, this scenario will be implemented at home, and at school. Time required: 90 min (or 2 periods) Technical Requirements: ● Teacher: ● Computer with Stellarium and Excel ● Data projector and, if possible, an interactive board. ● Students: ● Computers with internet connection and Stellarium. Author’s background Connection with the curriculum: Astronomy at 7th grade, in Physics lessons Learning Objectives: Verify that the artificial light affects the observation of the stars at night Guidance for preparation STEP 1: Pre-Experiment / Observation– Teaching Phase 1: Questions Eliciting Activities – provoke curiosity To provoke curiosity, teachers can do it in two ways: 1. Presented the following time-lapse video http://vimeo. com/channels/eufisicatv/ 24551969
82
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
2) The students must to complete the tasks presented in the Worksheet 1 at home, in a night before this class lesson. Questions Eliciting Activities – define questions from current knowledge Questions from data: ●Do we see the same number of stars if we are in the same region? ●Can some students observe more stars than others? ●Can any factors (human, nature) influence our observation? ●Is any factor more important than another? STEP 2: Pre-Experiment / Observation– Teaching Phase 2: Active Investigation – propose preliminary explanation or hypotheses We can’t see many stars at night sky because of: ● City lights (even if we are in an urban region); ● The pollution from industry; ● The clouds; ● The moonlight; ● Volcano’s activity; ● The atmosphere, air; ● The satellites (too many). Active Investigation – plan and conduct simple investigation Worksheet 1 (at home before this class lesson) ●Using stellarium “Atmosphere” feature to explain different observations by changing the artificial light. ●Turn the lights off and on and ask the students explanations. Choose → Sky and window options [F4] In the “Atmosphere” area, select a value for artificial light. STEP 3: Experiment / Observation – Teaching Phase 3: Creation – gather evidence from observation ●After the first worksheet is completed at home, the teacher will collect the data to a spreadsheet and display the graphs. Observation of the Orion’s Constellation. 83
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
Source: Wikipedia Counting the stars using STELLARIUM and interactive board. Observation gathered from STELLARIUM. STEP 4: Experiment / Observation– Teaching Phase 4: Discussion – explanation based on evidence By using Stellarium the students concluded: ● Atmosphere has a little influence our night sky observation; ● Artificial light is more influent in our night sky observation; ● With the increasing of artificial light, the number of astronomical objects that we can see is reduced to a minimum. Discussion – consider other explanations STEP 5: Post-Experiment / Observation– Teaching Phase 5: Reflection – communicate explanation Poster created by the students with teacher’s help Reflection – follow up activities and materials Worksheet 2 Causes of light pollution, by their nature (natural and anthropogenic). Two measures to reduce light pollution. Best places to make the observation of the Universe. ● Homework Take a look to the constellation of Orion and register http://www.globeatnight.org/webapp/ (visit website to participation dates).
it
at:
Local places to make the observation at night. Created with Google Fusion Tables Reading: ● http://www.darksky.org/ ●http://www.cleveland.com/nation/index.ssf/2008/11/bigcity_light_pollution_may_go.html ● http://ngm.nationalgeographic.com/2008/11/light- Pollution/klinkenborg-text ● http://www.noao.edu/education/ 84
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
More activities: http://portal.discoverthecosmos.eu/en/node/191453 http://portal.discoverthecosmos.eu/en/node/191458 http://www.need-less.org.uk/ (online Sky Night simulator)
85
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
Cylinder and cone Svilen Stoyanov th
DATE: 22 of March 2016 SCHOOL: OU "Otec Paisii" GRADE: 8
th
NUMBER OF STUDENTS: 10
LESSON TOPIC: Cylinder and cone APPROACHES: Communicative approach SKILLS: Observation, classification, combination, monitoring. MAIN SKILL TARGETED: Observation, classification, solving practical problems. TIME: 45 min. BACKGROUND KNOWLEDGE: geometric notions and 3-D shapes and their properties OBJECTIVES: By the end of the lesson students will be able to: cognitive - describe every geometrical notion and shape - correlate them (through examples) with the real world affective - be concentrated - work as a team TECHNIQUES: enriched recommendation, groups, dialogue. TEACHING AIDS: student’s book, worksheets, unfolds of geometric bodies. PROCEDURE AND ACTIVITIES: The students separated in two parts. Students try to fill rectangle of different sizes and shapes triangles. 86
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
After the teacher introduced the lesson topic to the students using a different 3-D figures - prism and pyramid. The students were asked to make two figures from the unfolds of geometric bodies. Students made conclusions about the similarities and differences between the prism of the pyramid. After they repeat the procedure with cylinder and cone. They compare a bases and lateral surfaces of the bodies. Students recalled the formulas for finding the shell and each group decides task of finding environmentally surface of a geometric body. Next students recalled the formulas for finding the capacity of a cylinder and cone and each group received practical task of finding the capacity of the container in the shape of a cylinder. One group decided correctly the mathematical part of the problem but forgot to convert units of measurement. EVALUATION: At the end of the lesson, the teacher gave the students an assessment. Most of them were excited. EXTENSIONS AND ADAPTIONS: segment of the circle and capacity of a sphere. CRITIQUE: The students were able to understand the practical application of what they learned about geometric objects. Task of the shell of the cylinder and cone:
100 90 80 70 60
shell of the cylinder
50
shell of the cone
40 30 20 10 0 1st group
2nd group
87
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
Practice task of stage: 120
100
80 1st group
60
2nd group 40
20
0 Practice task of stage:
88
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
HOW TO DO SCRATCH (Christmas animate greeting ecard) Svilen Stoyanov Short Description With Scratch, you can program your own interactive stories, games, and animations — and share your creations with others in the online community. Scratch helps young people learn to think creatively, reason systematically, and work collaboratively — essential skills for life in the 21st century. Scratch is a project of the Lifelong Kindergarten Group at the MIT Media Lab. It is provided free of charge. https://scratch.mit.edu/ Keywords: coding, computing, traditions, Christmas Target audience: Bilingual Roman children with Turkish mother’s language Age range: 11-12, 5th grade Context Time required: 240 min in school and at home Technical Requirements Computer Lab, Internet access, PC, tablets, smartphones. Other resources: Google, Wikipedia, Google documents, Scratch Author’s background: Basic word processor, internet searching, image copying and/or processing, English language, Christmas traditions in Bulgaria. Connection with the curriculum: Bulgarian language and literature, IT Learning Objectives: Students are to create a short story and present it in the form of a animation. They learn •
how to use a WEB 2 tool
•
how to use the specific tool (Scratch)
•
how to create a story
•
how to choose and write the right short texts
•
how to use coding
We add in our Learning design and specific objectives and expected results of the activities in this lesson. 89
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
Aims Aims of lesson is to improve key competencies of students: to increase their skills in Bulgarian and English language; to increase their computing skills; in class they will learn how to learn; students will improve their social and citizen skills; they will become more proactive and enterprising; students will get new knowledges for different culture and traditions. Outcomes Knowledge: Students know new words in Bulgarian and English language. They learn and use new programming tool - Scratch Comprehension: Students understand how use computer code Application: Use application of general rules to use code and to use foreign languages Analysis: Students use algorithm and analytic operations Evaluation: Students get evaluation from their partners in group Affective learning outcomes: working in group, partnership, fun, attending, sympathy, mutual aid.
Procedure: 1st period: At home Activities: Investigate, Collaborate Time: 60 minutes At home students ask in Internet several information of Christmas. They share results with Google drive where upload documents and pictures. Teacher set in advance some keywords and phrases that students use when seek information from different sources: Christmas, Christmas evening, Christmas dinner, Christmas traditions in Bulgaria. Students compose Google document where share links who was find. 2nd period: In class Activities: Read Watch Listen, Discuss, Collaborate Time: 45 minutes Students continue to work in teams using the worksheet. They read texts of Christmas and discuss what dishes they could put on the Christmas evening table. Students are separate into 5 pairs. Then students allocate roles in each group. Students are separated into 5 pairs and will work together on a programming assignment. After they allocate roles in each pair: who will write code and who will navigator.
90
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
3rd period: In class Activities: Practice, Read Watch Listen Time: 45 minutes Each pair compose short texts in Bulgarian and after they translate them in English. Each pair read text, who was write. 4th period: In class Activities: Practice, discuss Time: 45 minutes Teacher familiarize students with Scratch. In each pair students discuss design of their projects and choose decors and sprites of their ideas. 5th period: In class Activities: Collaborate Time: 45 minutes Students create their “Scratch�. Students search in Internet other elements of their projects: pictures, music etc. and upload them in their Scratch works. Students make 5 Christmas greetings. They work in pairs. When finished they share links in School Facebook site. Students will share their projects in eTwinning too. Teachers evaluation The teacher evaluation is based on the story and animation they deliver. Criteria of assessment: CATEGORY 4 Images Images create a distinct atmosphere or tone that matches different parts of the story. The images may communicate symbolism and/or metaphors.
3 Images create an atmosphere or tone that matches some parts of the story. The images may communicate symbolism and/or metaphors.
2 An attempt was made to use images to create an atmosphere/tone but it needed more work. Image choice is logical.
1 Little or no attempt to use images to create an appropriate atmosphere/tone.
91
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
Grammar
Grammar and usage were correct (for the dialect chosen) and contributed to clarity, style and character development. Soundtrack - Music stirs a Emotion rich emotional response that matches the story line well. Voice - Voice quality Consistency is clear and consistently audible throughout the presentation.
Grammar and usage were typically correct (for the dialect chosen) and errors did not detract from the story.
Grammar and usage were typically correct, but errors detracted from story.
Repeated errors in grammar and usage distracted greatly from the story.
Music stirs a rich emotional response that somewhat matches the story line. Voice quality is clear and consistently audible throughout the majority (85-95%) of the presentation. Duration of Length of Length of Presentation presentation presentation was 2-3 was 2 minutes. minutes.
Music is ok, and not distracting, but it does not add much to the story.
Music is distracting, inappropriate, OR was not used.
Voice quality is Voice quality clear and needs more consistently attention. audible through some (70-84%) of the presentation.
Length of Presentation was presentation less than 1 was 1 minutes. minutes long OR more than 3 minutes.
Worksheet with instructions: 1. Connect to www.scratch.com and log in with your password. 2. Click on CREATE and chois your scene and sprite. Use codes and make your sprite move. 3. Change scene. Add your own elements in scene. 5. Make your "actor" speaking - add the text bubbles! 6. Share your project in school facebook site.
FINAL RESULT: You can see it here: https://scratch.mit.edu/projects/90893342/#fullscreen
92
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
RESEARCH PAPERS Greek Model Experimental Schools. Too good to last? An attempt to evaluate. Chiotelis, Ioannis, johnchiotelis@yahoo.gr, Theodoropoulou, Maria mariatheodoropoulou@ymail.com Department of Primary Education, University of Patras, Abstract. Since 2011 the Greek Ministry of Education introduced law 3966, instituting thus the Model Experimental Schools. New policies were applied to these special schools that differentiate them from other types of schools. The major changes were towards personnel recruitment, as for the very first time in Greek Public Education, teachers were recruited after evaluation and interview, and students were joined these schools after national exams, too. On the other hand, some of the innovative educational methods implemented were the excellence groups instituted for the very first time in Greek public schools, participation in European programs (e.g. ERASMUS+) and opento-society educational programs. Additionally, ICT was strongly introduced in learning procedure, teachers were encouraged to participate in highly rated in-service training courses and a serious number of Conferences were organized nationally. Despite, these remarkable educational achievements, on 2016 the government decided to make some serious changes in the law causing thus fatal setbacks to schools’ project plans. In many experimental schools the five-year educational plan, which was planned according to 3966 law, was brutally interrupted, as this type of schools actually didn’t exist anymore! As the initial plan was predicting a major evaluation after a five-year period, these crucial law changes canceled any type of evaluation, almost two years before the end of this period. Eventually, teachers were no more interested in producing and introducing innovation in their classrooms.
In this paper, we are trying to record the changes caused to the number and quality of educational activities (excellence groups, educational programs, innovative teaching methods) after these major law changes. We detected a dramatic decrease in the number of activities and exceptional disappointment to highly qualified teachers and educators. So, we are questioning ourselves: Were Model Experimental Schools too good to be Greek, or these changes were too Greek to be true?
Keywords.
Model Experimental Schools, evaluation, educational policy impact to Greek society.
1. Introduction Some years ago, in 2009, European Union, in order to improve the quality of the provided education, to empower and encourage creativity and innovation and offer equal opportunities, proposed and organized the 2020 agenda for education in Europe called “Europe 2020”. Within all the other parameters, “Europe 2020” predicts new innovative educational methods and techniques implemented in all European schools and all education levels [1]. Also, teachers’ and students’ mobilities were strongly proposed towards the direction of cooperation and good practices exchange. Greece as a member of European Union was invited to reform its educational policies towards the priorities of the “Europe 2020” agenda. These innovative educational approaches had to be addressed and set within a national educational framework. 93
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
Apart from these EU main strategies, Greece was facing the problem of bad results in PISA competitions impacting in low OECD placement in the global educational ranking [2],[3]. According to these two axes, a new pilot type of schools was proposed, the so called Model and Experimental Schools. In 2011 the 3699 law was proposed and voted by the Greek parliament under vast majority, establishing thus a new pilot type of schools. A wide call to public primary and secondary schools was announced in order to choose the initial hub schools. Finally, 61 schools from primary and secondary education were selected to become pilot schools characterized as Model and Experimental Schools. Law 3699 also predicted evaluation procedures for recruiting teachers and exams for students. Teachers evaluation was the first major matter that causes many protests and disagreements. Former teachers in the selected schools who didn’t accepted to be evaluated left the schools and a national call was announced to recruit new ones. This was also against former Greek laws that were ruling and predicting teachers’ mobility. As teaching years was the major criterion for position occupation and teachers’ mobility from school to school, this extra possibility for mobility, especially for young highly qualified teachers was a matter of debate but often caused great disagreements [4]. Despite, the problems caused mainly from new coming law adjustments at the beginning, Model and Experimental schools introduced many new innovative educational methods and techniques. Excellence and creativity groups, educational programs approached through ICT and modern teaching means, in service training, interschool contests, collaboration with Universities and Research Institutes, mentoring and conferences were some of the most remarkable activities [5]. Many schools regarding the need of financing their own activities, proposed successful European project e.g. ERASMUS+ financing thus their innovative ideas under the auspices of EU. The initial schedule for Model and Experimental schools was a five-year plan, including an evaluation after three-year time and finally a major evaluation at the end of the five years. The intermediate evaluation never fulfilled due to political reasons (elections), but since 2015 the new elected government banned any evaluation procedure and frizzed law 3699 concerning matters of Model and Experimental schools. Since then this type of Schools are under uncertain
conditions and unknown future. In this paper we are attempting to evaluate the impact of this type of schools to Greek education. We collected all data related to innovative activities and the propagation throughout these five years. We also inquired the impact of political reforms and decisions on teachers’ activities and school innovation.
2. Propagation of innovative activities in Greek Model and Experimental Schools Excellence and Creativity Groups. According to 3966 law, Model end Experimental Schools can organize and support Groups of excellence and creativity. Actually, this ability differentiates experimental schools from all other types of public schools in Greece. These groups are organized just after the main curriculum and mainly refer to non-typical education subjects. During our research we contacted all school authorities and additionally we visited all webpages and searched for excellence groups organized to all Model and Experimental Secondary Schools since 2012, recording also the respective deliverables. In case of lack of data, we contacted to each school of interest and gathered data instantly. In the following Figure 1 we can see the number of organized excellence groups to Secondary Level Experimental schools during the last 5 years:
Figure 1. Organized Excellence and Creativity Groups per school year in Model and Experimental Schools
As we can see from Figure 1, during the first three school years we recorded an increase to the number of the innovative excellence and 94
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
creativity groups. This increase is mainly attributed to the willingness of teachers to work on new ideas in collaboration with students and create in a totally new working and educational environment. Of course, teachers also aimed to supervise an excellence group in order to upgrade their cv under the condition of an evaluation after a three-year period. On the other hand, we recorded a decrease in the number of proposed and functionable groups during last two school years. This decrease was caused mainly after cancelling any type of evaluation and partly transforming the 3966 law. These changes discouraged teachers to propose and supervise new excellence groups as there was no kind of reward for extra effort. This is one of the most remarkable side effects of cancelling an evaluation procedure. Fair play between teachers triggered a sequence of activities mainly innovative towards the direction of excellence and creativity. Absence of fair play competence reflected to a reduce of non-typical educational projects. Someone, of course, can claim that this reduction is a result of a natural teachers’ fatigue after a stressed three-year continuous activity. But this opinion can easily be contradicted as not all teachers participated each year in excellent groups or innovative activities, so each year different teachers expressed the wish to propose and supervise a project. But, what we observed, is that the number of teachers expressing the willingness to supervise an educational activity was reduced dramatically just after the three-year period and alteration of the evaluation procedure.
3. Educational Programs We then considered the possibility of exceptional reaction in the excellence groups, because of their special character. Thus, we searched for similar data related to the educational projects. Greek schools can propose and compose educational programs related to cultural, environmental, athletic, vocational and health subjects. These programs also aim to non-typical education courses and are very common within all types of Greek public and non-public schools. In Model and Experimental Schools, educational programs proposed towards innovative directions, incubating ICT, new technologies, new ideas and developing strong relationships and collaborations with Universities and Research Institutes. As these educational programs are very common within Greek schools we initially
considered that will be similarly popular to experimental schools and not affected by law transformation. Though, as we can see in Figure 2, we recorded similar trend as the excellent group revealing the importance of motivation for teachers and educators.
Figure 2. Organized Educational Programs per school year in Model and Experimental Schools
We can even easily observe that within the first years of Model Experimental Schools there was a strong increase in composed and supervised educational programs, but just after the changes in law a strong decrease detected. We cannot discard in any way how beneficiary and triggering, motivation is, and under no type of reward gradually teachers are lowering their efforts. We must mention that teachers are always willing to supervise extra activities for students, but as these activities has no extra profit (these are no payable activities) they prefer to focus on typical education courses under the pressure of student’s’ families for success at their exams. We must mention that our research focused on Secondary education schools which are strongly related to exams for Universities.
4. ERASMUS+ and Comenius Programs Another important aspect of these schools was the number of successful ERASMUS+ proposals applied for funding from EU. We recorded in total 21 ERASMUS+ projects funded with hundreds of thousands of euros. We can mention the Experimental High school of University of Patras, that applied successfully for totally over 100.000 euros from several projects. Regarding that the National annual funding is less than 8.000 euros per school, we can realize how important this amount is for each school. 95
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
Apart from the economical part, these programs are important for the extroversion of schools and openness to societies. Entangles and promotes collaboration between several partners, including Universities, research centres and companies. Additionally, schools, teachers and students through European mobilities are gaining a more cosmopolitan character in the same way the former Comenius programs did in the past. By the way we must mention that three schools also mentioned that are still gaining profits from their former Comenius projects regarding them as totally positive for the evolution of their schools. These European projects are really very important for the Greek schools as can provide them with finance towards a further growth and development. Since the beginning of these programs the vast majority of the experimental schools attempted to participate and become coordinators or partners to such European educational projects. It’s worth mentioning the example of the Experimental High School of University of Patras that invested a great amount of its project management from a European project to fully upgrade its computer lab. Apart from this option, these projects provide a great opportunity to enforce schools’ extroversion and dissemination of their good practices. Thus, we can present to our partners our good practices, but furthermore to incubate good practices from other European schools into our everyday educational, teaching and learning practice. So, we can easily realize the importance of these programs towards many different directions.
5. Innovative activities, Conferences and In-Service Trainings We then recorded all type of innovative activities including organized Conferences, InService Trainings and Distinctions of teachers and students. In the above Table 1 we can see all these activities in total during the five years. Innovative activities Distinctions Other kind of innovative activities Conferences and Training Workshops
485 287 More than 100 85
Table 1. Innovative activities, Distinctions, Conferences and In-Service Trainings
We must mention the great number of distinctions gained mainly from students’ works supervised by inspired teachers. We can refer first positions in international contests, first positions in Mathematics and Physics Olympiads and many national wins in relative contests. These achievements are strongly related to excellence, which was one of the initial goals of Model and Experimental Schools towards upgrading the teaching level nationally. Under specific conditions these educational philosophy can assist to PISA competitions and improve the standards of the Greek performance. As far as concerns the organized Conferences, we can mention that after 85 such activities, including workshops, trainings and many-days Conferences one of the main purposes of the Model and Experimental Schools the diffusion of good practices was fulfilled. As these schools initially set as pilot schools, under the framework of workshops and conferences they function as good practices hub schools, tried to communicate their educational practices widely and supported openness to society. Open invited talks during the Conferences were unique opportunities for all interested people to attend a more dedicated and special speech. On the other hand, 485 innovative activities of all types focusing on students’ best understanding is a remarkable number for a four-year period. These innovative approaches are also targeting to the European axes set by the EU through the “Europe 2020” agenda. Incorporating ICT, technology, new educational techniques and practices we altogether altered the level of the provided education. Some of these innovative practices strongly reflected to an international level adopted from many European schools as good teaching practices. Within the same framework the vast majority of these innovative activities are strongly related to the philosophy of the PISA tests. Finally, other type of activities, such as open science days, students’ science days, study visits, interdisciplinary educational scenarios, virtual visits, dialogues with experts, astronomical events and many others complete the so-called future school. All these activities were set to support the deep knowledge of students through hands on activities, inquiry-based learning and experimentation. Model and Experimental Schools achieved to upgrade the Greek educational system, wishing to continue 96
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
upgrading, in contradiction to against educational policies.
6. Reasons and reactions According to our findings we are strongly convinced that motivation is important for teachers and students to develop new educational techniques and good practices. Thus, just after the formation of Model and Experimental Schools, all teachers and educators realized that they have to prepare and organize educational projects within the framework of excellent groups, educational programs or innovative interdisciplinary activities. The rise of the number of such educational activities is attributed to this statement. Apart from this parameter, teachers and students also faced a properly structured educational environment to propose, support and supervise such activities. As Model and Experimental Schools based mainly on excellent activities, all teachers and students felt the need to participate into contests and cultivating their special talents to compensate under fair play conditions. We justify the great willingness for participation from students to this special knowledge incubator. We must also mention that according to law 3966 teachers were supposed to be evaluated after a three-year period. This evaluation was initially proposed as an advisory mean for teachers and educators. Under these conditions many teachers tried to present as many as possible good educational practices to upgrade their cv. After political reformations and law changes teachers never got this advisory evaluation. Furthermore, as the new educational policies were against any type of evaluation, teachers regarded this as a reason for lowering their efforts. Additionally, salary cuts and reduces also reasoned a general disappointment to teachers and educators. Although money was not the main motivation, and generally was not even a motivation, all other types of reward were also eliminated. Point system for personal or professional development was also cancelled and the only criterion for professional development was the years of professional experience. Gradually the number of activities was reduced as is shown in both charts presented in this paper. Teachers and educators since then focused their interest mainly on strictly personal development, applying for a second degree or a
Master’s degree. Of course, this reaction is somehow positive, but on the other hand students are not taking part so they didn’t gain profit from this alternative. As Model and Experimental Schools’ main goal was to raise the impact of knowledge exclusively for students, this reaction was crucially negative. Of course, we must mention that one of the main policies was to change the type of Model and Experimental Schools basically by changing the 3966 law. This, happened in 2015, reforming the main axes of experimental schools and discouraging any excellence activities. Thus, actually all schools were regarded the same without recording possible positive results from the former achievements of Model and Experimental Schools. On the name of school equality, honor distinctions, new educational techniques, innovative activities and more, were ignored and never embodied to all types of schools, towards the direction of educational upgrade.
7. Dissemination of Good Practices From our findings, presented in Table 1 we can see that 85 conferences, in service training events and workshops were organized by Model and Experimental Schools. This concludes into a huge number of more than 20 dissemination events per year. Model and Experimental Schools not only composed and supervised good practices within their own schools, but also diffused all these activities through dissemination events. In many cases these events were aimed not only towards teachers and educators, but also towards families, parents, relatives and local society in general. These activities are actually the basis of Open Schools to Open Societies especially when the subjects are of general interest. We can mention the 1st Student Science and Research Conference organized on 11-12th of March 2017 and the 1st and 2nd National Conference for contemporary good educational practices organized in Patras by the Experimental High School of University of Patras on October 2016 and October 2017. Furthermore, we can mention the virtual visit to IceCube a South Pole Research Laboratory for the neutrinos investigation, organized by a consortium of experimental public and private schools in Patras, on December 2015. This was an 97
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
open to society event that also incorporated an observation by telescopes. Within the same framework we can also mention many voluntary events related to social health affairs or charity events organized by the experimental schools. One of the most remarkable categories of events, is the info days for radioactivity and the so called “Day of the young researcher” organized once per year at the end of September. All these activities are included in the other type innovative activities (Table 1) and mainly are focused to school extroversion. Many schools also performed virtual visits to CERN open to people, families, parents and society. One of the highest impacts of Model and Experimental Schools is the extroversion of this type of schools and mainly the dissemination of good practices, as these activities are promoting scientific literacy to our societies. As technology and science propagates and develops fast it’s totally necessary and extremely important to support the scientific asset of people and society in order to make decisions or choose attitudes according to hard scientific data. The socalled scientific literacy is how people realizes and understands science and scientific matters and act accordingly (e.g. vaccination). Dissemination activities from schools are towards this exact direction of constantly informing people about new scientific findings.
impression especially as far as concerns Reading. The reasons for these disappointing rates are somehow also related to the Greek educational system, as it is strongly focused on the National exams. Students, parents and teachers are mainly interested on exams success more than developing scientific literature in schools. In Greek schools we are facing lack of learning interest to the rest of the lessons apart from those related to the exams. Students are willing to learn even details on subjects related to the exams but on the other hand they deny learning even the basics on general education subjects not related to anyway to their exams.
8. The PISA rating Greece has one of the most disappointed ratings in the PISA contest. According to these results Greece and consequently Greek education is not as good as OECD average in the fields
of Science, Mathematics and Reading. Although, these disappointing results students from Model and Experimental Schools never invited to participate in any way to this contest – evaluation. Especially in the field of Science (including Physics, Chemistry, Biology and generally Natural Sciences) the results are showing a constant reduce in performance since 2006, although we already rated low enough in general sequence (Figure 3). The same trends occurred at Mathematics and Reading ratings, causing a negative
Figure 3. Science performance of Greece in the PISA contest from 2006 until 2015.
We easily understand that holistic education and knowledge is very low in Greek secondary schools and especially in Greek High schools. Of course, we must mention that we need to apply or discover more attractive learning methods in order to raise students’ interest. Additionally, we might have to reform our learning subjects’ content and adjust it somehow to contemporary learning interests. Even towards this direction the Experimental Schools proposed new educational and learning methods, ways and approaches through their excellence groups, educational projects, innovative learning techniques and production of new educational material. We have already presented all these approaches and the great number of all these produced materials. We must 98
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
mention that all these activities focused on developing the scientific literacy of students growing thus their critical thinking and problemsolving ability. We believe that cultivating these characteristics we can achieve better pisa results. Authorities are attributing this disappointing rating into the different educational philosophy that dominates Greek average public Secondary school. They somehow claim that the type of PISA examination is not compatible to the Greek educational priorities and basis. As PISA is based on project, problem solving and inquiry-based learning methods, Greek educational system is not compatible as it’s mainly oriented towards a typical, old fashioned, exam cantered model. This philosophy is somehow in accordance to needs of Greek families, as they strongly persist on success in the exams for the Greek Universities. On the other hand, this educational model has some non-profound results revealed years later, as young people seem not to have the correct skills to adjust into modern employment conditions, find or start a job and earn money. In a way, unemployment and economic crisis can be attributed to these educational conditions at the very beginning of students’ mature life. Modern economics are strongly joined to personal skills and ability to adjust ourselves to constantly changing global conditions [7]. We can easily understand that all innovative approaches applied in Model and Experimental Schools are incorporating problem solving methods, project method and inquiry-based learning. We suggest students from Model and Experimental Schools must be invited to participate at PISA exams. In any way students from Model and Experimental Schools are gaining skills that can certainly assist them in their life time.
9. Conclusions As main conclusions we can mention the great number of excellence groups, educational programs and innovative practices supervised at Model and Experimental schools. Furthermore, evaluation of teachers and educators, acts as motivation towards proposition and implementation of new educational and pedagogical practices. Changes in central educational policies can dramatically change
trends and behaviour of teachers (mainly) and students (secondly). Model and Experimental Schools recorded a positive impact in Greek education, so many students applied for studying in this type of schools. We can also regard as positive the successful funding of projects and activities through European programs and the dissemination of good practices nationally and often in European level through funded mobilities. Finally, we must underline that we strongly need a new perspective in Greek educational system, as we must develop students’ scientific literacy. Apart from this we must also focus on holistic approach of knowledge mainly towards innovative educational activities, such as educational projects, creativity groups, extroversion activities and good practices exchange. Experimental schools have already applied for more than 5 years all these approaches and thus can provide priceless supervision to every interested teacher, school or learning organization.
10. Acknowledgements This research paper was funded by the European Program ERASMUS+ KA2 code: 2015-1-EL01-KA201-014029, titled: E-Learning Interactive Open School.
11. References [1] European Commission (EC). (2010). Europe 2020: A Strategy for smart, sustainable and inclusive growth. Working paper {COM (2010) 2020}. [2] Martens, W. (2010). Europe 2020 and Beyond. [3] Marlier, E. (2010). Europe 2020: towards a more social EU? (No. 69). Peter Lang. [4] https://goo.gl/sDpHYE [5] Katsillis, J., & Rubinson, R. (1990). Cultural capital, student achievement, and educational reproduction: The case of Greece. American sociological review, 270-279. [6] http://www.compareyourcountry.org/pisa/ country/GRC?lg=en [7] Murnane, R. J., & Levy, F. (1996). Teaching the New Basic Skills. Principles for Educating Children To Thrive in a Changing Economy. Free Press, 1230 Avenue of the Americas, New York, NY 10020.
99
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
Εκπαίδευση και ΤΠΕ στα σχολεία της Ανατολικής Ευρώπης Χιωτέλης Ιωάννης, johnchiotelis@yahoo.gr Περίληψη Στην παρούσα εργασία παρουσιάζεται έρευνα που έχει υλοποιηθεί σε χώρες της Ανατολικής Ευρώπης σχετικά με τις ανάγκες εξ αποστάσεως εκπαίδευσης και διείσδυσης της ψηφιακής τεχνολογίας στην εκπαίδευση. Μέσα από το δίκτυο δέκα συνεργαζόμενων σχολείων e-lios (e-learning interactive open school) ανιχνεύσαμε το βαθμό διείσδυσης νέων τεχνολογιών στην καθημερινή εκπαιδευτική πρακτική, το επίπεδο επιμόρφωσης των εκπαιδευτικών, τον αριθμό δυσπρόσιτων και απομακρυσμένων σχολείων ανά χώρα με ανάγκες εξ αποστάσεως μαθημάτων και τις δυνατότητες προσβασιμότητας στο διαδίκτυο. Αναζητήσαμε τις στρατηγικές που έχει αναλάβει κάθε χώρα ώστε να ενσωματώσει στην εκπαιδευτική διαδικασία τις νέες τεχνολογίες και να καλλιεργήσει κατ’ αυτό τον τρόπο τις ψηφιακές δεξιότητες των μαθητών και των εκπαιδευτικών. Στον ίδιο άξονα στρέψαμε την προσοχή μας στους εκπαιδευτικούς των συνεργαζόμενων σχολείων εντοπίζοντας τις δυσκολίες που συναντούν στην ενσωμάτωση τεχνολογικών εφαρμογών στην καθημερινή διδακτική τους πρακτική, αλλά και στην πρόθεσή τους για δημιουργία σύγχρονου και ασύγχρονου, διαδραστικού εκπαιδευτικού υλικού. ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Ανατολική Ευρώπη, ψηφιακή σύγκλιση, εξ αποστάσεως εκπαίδευση, ψηφιακή διείσδυση στην εκπαίδευση. Εισαγωγή Μελετώντας τις χώρες της ανατολικής Ευρώπης που συμμετέχουν στο πρόγραμμα elios συνειδητοποιούμε τους διαφορετικούς τρόπους με τους οποίους αντιμετωπίζουν την πρόκληση της ψηφιακής σύγκλισης. Η Ιταλία μια σύγχρονη ευρωπαϊκή χώρα αντιμετώπισε το 2012 την πρόκληση της ψηφιακής σύγκλισης. Η κυβέρνηση της Ιταλίας ενέταξε την ψηφιακή σύγκλιση στην εκπαίδευση στο πρόγραμμα «Ψηφιακή Ατζέντα για την Ευρώπη 2020», εντάσσοντας στο πλαίσιο του προγράμματός της την οικονομική ανάπτυξη, τη μείωση της ανεργίας και την αύξηση του βιοτικού επιπέδου μέσω της απόκτησης καινοτομικών ψηφιακών δεξιοτήτων (Legge 2015). Γίνεται αντιληπτό ότι η Ιταλία συνδυάζει την οικονομική ανάπτυξη και ευημερία με την εισαγωγή νέων τεχνολογιών στην εκπαίδευση.
100
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
Το 2012 η Ιταλία κατατασσόταν στην 25η θέση από τα 28 μέλη της Ευρωπαϊκής ένωσης σε υποδομές διαδικτύου, ΤΠΕ, έρευνας και καινοτομίας στην εκπαίδευση (Η Ελλάδα κατείχε την 26η) (European Commission, 2016). Η ιταλική κυβέρνηση εκπόνησε ένα φιλόδοξο σχέδιο ψηφιακής σύγκλισης με την ονομασία «Το Άριστο Σχολείο» (“The Good School”) (Ministero dell’Istruzione dell’Università e della Ricerca, 2015) (Presidenza del Consiglio dei Ministri 2015) ενισχύοντας τεχνολογικές δομές στα σχολεία όλων των βαθμίδων. Παράλληλα, εκπονήθηκε σχέδιο ευρείας επιμόρφωσης εκπαιδευτικών για την απόκτηση ψηφιακών δεξιοτήτων, ενώ ταυτόχρονα δημιουργήθηκαν υποστηρικτές ψηφιακές πλατφόρμες, εικονικά εκπαιδευτικά περιβάλλοντα και διατέθηκε αριθμός ηλεκτρονικών συσκευών στα σχολεία.
Σχήμα 1: Κατάταξη των 28 μελών κρατών της ΕΕ σε δομές ψηφιακής σύγκλισης και ανάπτυξης.
Η εξ αποστάσεως εκπαίδευση απομακρυσμένων και δυσπρόσιτων σχολείων υποστηρίχθηκε από δυο κύρια προγράμματα: Το “Lepida project” που υποστηρίζει 60 δυσπρόσιτα-απομακρυσμένα σχολεία στην περιοχή Reggio Emilia και το πρόγραμμα “Smart Inclusion 2.0” για μακροχρόνια νοσηλευόμενα σε νοσοκομεία παιδιά. Στη γειτονική Τουρκία σχεδόν όλα τα Λύκεια έχουν διαδραστικούς πίνακες τουλάχιστον σε μια αίθουσα, ενώ όλα σχεδόν τα Λύκεια διαθέτουν εργαστήριο Ηλεκτρονικών Υπολογιστών. Ωστόσο στην Τουρκία τα προβλήματα στη χρήση ΤΠΕ στην εκπαίδευση προκύπτουν από την ελλιπή επιμόρφωση των εκπαιδευτικών στους τρόπους ενσωμάτωσης ΤΠΕ στην καθημερινή διδακτική πρακτική. Κατά καιρούς διοργανώνονται εκπαιδευτικά σεμινάρια στη χρήση τεχνολογικών εφαρμογών στην εκπαίδευση, αλλά αποδεικνύονται μη εφαρμόσιμα και ρεαλιστικά. Παράλληλα, στην Τουρκία λόγω του μεγάλου αριθμού εγκατάλειψης του σχολείου (Komisyonu 2013), έχουν οργανωθεί «ανοιχτά σχολεία» (open schools) για ενηλίκους με διαδικτυακά και εξ αποστάσεως μαθήματα αναρτημένα σε ψηφιακές πλατφόρμες. Η ασύγχρονη εκπαίδευση στις μαθησιακές αυτές ομάδες είναι σημαντική, καθώς προσφέρει τη δυνατότητα καταμερισμού χρόνου ανάλογα με τις ιδιαίτερες προσωπικές ανάγκες του 101
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
καθενός. Τέλος, σημαντικές μετακινήσεις πληθυσμών στην ενδοχώρα της Τουρκίας, αλλά και αξιοσημείωτες δημογραφικές μεταβολές (προφίλ γονέων-παιδιών, χάσμα γενεών κ.α.) (M.E.B., UNICEF, 2009, 2011, 2013) επιβάλλουν την εισαγωγή ψηφιακών εφαρμογών στην τουρκική εκπαίδευση ειδικά προς την κατεύθυνση της ανοικτής και εξ αποστάσεως εκπαίδευσης (Arastaman, 2009). Στη Βουλγαρία η εισαγωγή ηλεκτρονικού εκπαιδευτικού υλικού στα σχολεία, όπως εκπαιδευτικές πλατφόρμες, ανοιχτές πηγές δεδομένων και ηλεκτρονικές τάξεις, είναι προτεραιότητα του Υπουργείου Παιδείας της Βουλγαρίας. Το 2005 καταρτίστηκε το στρατηγικό πλάνο εισαγωγής των ΤΠΕ στην εκπαίδευση με σκοπό να δημιουργηθεί σταδιακά ένα νέο περιβάλλον ψηφιακής μάθησης που θα επιτάχυνε την εκπαιδευτική διαδικασία και να συνέβαλλε στην ψηφιακή σύγκλιση. Σύμφωνα με το στρατηγικό πλάνο για τη ψηφιακή σύγκλιση, μεγάλος αριθμός σχολείων εξοπλίστηκε με ηλεκτρονικούς υπολογιστές, δωρεάν πρόσβαση στο διαδίκτυο και τα σχολικά εγχειρίδια διατίθενται πλέον και σε ηλεκτρονική μορφή. Ακολουθώντας το πλάνο οι εκπαιδευτικοί έπρεπε να εκπονήσουν μαθήματα σύμφωνα με τη νέα φιλοσοφία εκπαίδευσης, ενσωματώνοντας ΤΠΕ στην εκπαιδευτική διαδικασία. Το Υπουργείο Παιδείας της Βουλγαρίας, δημιούργησε εκπαιδευτικές πύλες με ηλεκτρονικό εκπαιδευτικό υλικό για όλα τα διδασκόμενα αντικείμενα, ενώ παράλληλα υποστήριξε πλατφόρμες εξ αποστάσεως εκπαίδευσης (Николова, 2014). Τέλος, οι εκπαιδευτικοί απόκτησαν πιστοποίηση στη χρήση εξειδικευμένων λογισμικών με εκπαιδευτικό προσανατολισμό. Ωστόσο, το 2014 εισήχθη ένα επικαιροποιημένο πρόγραμμα για την αποτελεσματικότερη εισαγωγή των ΤΠΕ στην Εκπαίδευση και την Έρευνα (20142020). Το πρόγραμμα ξεκίνησε το 2015 με κύριο στόχο την πλήρη, απρόσκοπτη και ανεμπόδιστη πρόσβαση στη γνώση και στην εκπαίδευση για όλους, ανεξάρτητα του τόπου διαμονής, το οικονομικού ή κοινωνικού επιπέδου. Φιλοδοξία του προγράμματος είναι η παροχή κινήτρων στους μαθητές ώστε να ενισχύσουν τις ψηφιακές τους δεξιότητες και να ενταχθούν ομαλότερα στην αγορά εργασίας. Στόχος του Υπουργείου Παιδείας της Βουλγαρίας είναι η δημιουργία εκπαιδευτικού υλικού διαθέσιμου μέσω διαδικτύου από οποιοδήποτε σημείο («σχολείο στο σύννεφο»), όπως και η υποστήριξη μιας εθνικής πλατφόρμας για τηλεδιασκέψεις και σύγχρονες, αλλά και ασύγχρονες διδασκαλίες. Η πλατφόρμα θα επικαιροποιείται με ηλεκτρονικά εκπαιδευτικά εγχειρίδια, διαδραστικό εκπαιδευτικό υλικό και πολυμεσικές εφαρμογές. Οι ιθύνοντες του Εκπαιδευτικού Συστήματος της Βουλγαρίας πιστεύουν σθεναρά ότι η αναβάθμιση του επιπέδου της εκπαίδευσης στη Βουλγαρία περνάει μέσα από την ψηφιακή σύγκλιση, τις καινοτομικές παιδαγωγικές προσεγγίσεις (Blended Learning, Flipped Learning), τη διάδραση και τον καταιγισμό ερεθισμάτων. Στη Ρουμανία εδώ και 15 χρόνια ξεκίνησε η προσπάθεια εισαγωγής ΤΠΕ στην εκπαίδευση. Η προσπάθεια αυτή προέκυψε ως αδήριτη ανάγκη προσαρμογής στα κοινωνικοοικονομικά δεδομένα της εποχής και με στόχο την ποιοτική αναβάθμιση της 102
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
παρεχόμενης παιδείας. Ιδιαίτερη μέριμνα πάρθηκε προς την κατεύθυνση του εξοπλισμού των σχολείων με υπολογιστές, τη συστηματική τους χρήση, αλλά και την εκπαίδευση του προσωπικού (εκπαιδευτικών). Αποτιμώντας την έως τώρα πορεία, φαίνεται πως δεν έχουν επιτευχθεί οι αρχικοί στόχοι, καθώς σχολεία, εκπαιδευτικοί οργανισμοί αλλά και πανεπιστήμια δεν έχουν ενσωματώσει σε ικανοποιητικό βαθμό της νέες τεχνολογίες στα αναλυτικά τους προγράμματα. Κυριότερος λόγος φαίνεται πως είναι η δυστοκία που παρατηρείται στην αλλαγή της εκπαιδευτικής νοοτροπίας από τους εμπλεκόμενους στην εκπαιδευτική διαδικασία κυρίως από τους καθηγητές. Αυτή η δυστοκία έγινε αντιληπτή εγκαίρως οπότε αποφασίστηκε η εκπόνηση νέου εθνικού στρατηγικού σχεδιασμού στην κατεύθυνση της ενσωμάτωσης νέων τεχνολογιών στην εκπαίδευση, καθώς αναγνωρίζεται η σπουδαιότητα απόκτησης δεξιοτήτων από τους εκπαιδευόμενους για την εισαγωγή τους στην αγορά εργασίας. Τη σχολική χρονιά 2012-2013 εισήχθησαν μαθήματα πληροφορικής στα αναλυτικά προγράμματα όλων των βαθμίδων εκπαίδευσης στη Ρουμανία. Παράλληλα, ενισχύθηκαν δομές δια βίου μάθησης στο πλαίσιο ευρωπαϊκών προγραμμάτων σύμφωνα και με τις βασικές κατευθυντήριες γραμμές της κοινής ευρωπαϊκής πολιτικής στην παιδεία. Αυτή τη στιγμή οι προσπάθειες εστιάζονται στη ψηφιακή σύγκλιση καθώς και στη γεφύρωση του χάσματος μεταξύ προσδοκιών και πραγματικότητας. Τέλος, στην Πολωνία ήδη από τις πρώτες τρεις τάξεις της εξάχρονης Πρωτοβάθμιας Εκπαίδευσης οι μαθητές εισάγονται στις βασικές αρχές των τεχνολογιών πληροφορικής. Στα επόμενα τρία χρόνια συνεχίζεται το μάθημα της πληροφορικής σε ελαφρά δυσκολότερο επίπεδο. Στη δευτεροβάθμια Εκπαίδευση στην Πολωνία (Γυμνάσιο) οι μαθητές συνεχίζουν να διδάσκονται πληροφορική, αλλά δεν αποτελεί εξεταζόμενο μάθημα στις απολυτήριες εξετάσεις. Σε κάθε περίπτωση δίνεται πολύ μεγάλη σημασία στο μάθημα της Πληροφορικής, καθώς σχετίζεται με την καλλιέργεια δεξιοτήτων που αποτελεί προτεραιότητα στο Πολωνικό Εκπαιδευτικό σύστημα. Στην αντίστοιχη «λυκειακή» εκπαίδευση, οι μαθητές διδάσκονται πληροφορική σε όλες τις τρεις τάξεις σε κάθε τύπο σχολείου (επαγγελματικό, τεχνικό, γενικό), αλλά στις απολυτήριες εξετάσεις, εξετάζονται προαιρετικά στο αντίστοιχο μάθημα, εάν το έχουν επιλέξει ως μάθημα επιλογής. Ειδικά στα τεχνικά λύκεια, απόφοιτοι με ειδίκευση στην Πληροφορική εξετάζονται υποχρεωτικά στο αντίστοιχο μάθημα. Το πολωνικό Υπουργείο Παιδείας τέλος, ενθαρρύνει και ενισχύει δράσεις ενσωμάτωσης νέων τεχνολογιών στην εκπαίδευση, αλλά καθώς το Πολωνικό Υπουργείο Οικονομικών διαθέτει τα κονδύλια για τη χρηματοδότηση της Παιδείας στην τοπική αυτοδιοίκηση (αποκέντρωση), εν πολλοίς είναι απόφαση και των τοπικών κοινωνιών η ενίσχυση η μη των σχολείων με τεχνολογικό εξοπλισμό.
Βασικά στοιχεία έρευνας Η έρευνα διεξήχθη από τον Φεβρουάριο του 2016 μέχρι το Σεπτέμβριο του ιδίου έτους. Έγινε με ψηφιακό ερωτηματολόγιο μέσω της πλατφόρμας Google Docs. Συμμετείχαν 103
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
σχολεία από τις χώρες – εταίρους του Ευρωπαϊκού προγράμματος E-lios (E-learning Interactive Open School) και συγκεκριμένα από την Ελλάδα, Ιταλία, Λετονία, Πολωνία, Βουλγαρία, Ρουμανία και Τουρκία. Αρχικά έλαβαν μέρος τα σχολεία βασικοί εταίροι του Προγράμματος και στη συνέχεια σχολεία από όλες τις βαθμίδες από όλες τις συμμετέχουσες χώρες. Στο ερωτηματολόγιο απάντησαν εκπαιδευτικοί όλων των ηλικιών με νεότερους εκπαιδευτικούς που έχουν γεννηθεί το 1982 και γηραιότερους εκπαιδευτικούς γεννηθέντες το 1958. Υπήρξε σχεδόν ομοιόμορφη ηλικιακή κατανομή, με ελαφρύ προβάδισμα νεότερων εκπαιδευτικών (γεννηθέντες από 1980 και μετά). Στην πλειοψηφία απάντησαν γυναίκες εκπαιδευτικοί με ποσοστό 80%, (Σχήμα 2) γεγονός που αποδίδεται στη συμμετοχή εκπαιδευτικών Πρωτοβάθμιας Εκπαίδευσης όπου σε όλες τις χώρες κυριαρχεί το θηλυκό γένος.
Σχήμα 2: Κατανομή κατά φύλλο των συμμετεχόντων στην έρευνα εκπαιδευτικών
Το 63% όσων απάντησαν είναι κάτοχοι μεταπτυχιακού τίτλου ειδίκευσης, το 5% είνι κάτοχοι Διδακτορικού Διπλώματος και το υπόλοιπο ποσοστό απόφοιτοι Τριτοβάθμιας Εκπαίδευσης. Το 26% των συμμετεχόντων είναι φιλόλογοι, το 34% δάσκαλοι Πρωτοβάθμιας, το 14% εκπαιδευτικοί Πληροφορικής, το 23% καθηγητές Φυσικών Επιστημών και το υπόλοιπο ποσοστό διαφόρων άλλων ειδικοτήτων. Το σύνολο των συμμετεχόντων εκπαιδευτικών είχε επαγγελματική κατάρτιση και επιμόρφωση σε διάφορους τομείς με κυριότερους τις ΤΠΕ, τη συγγραφή και διαχείριση προγραμμάτων και τη Διδακτική-Παιδαγωγικά. Το 31% των συμμετεχόντων γνωρίζει περισσότερες από δυο ξένες γλώσσες, ενώ μόλις το 10% δε μιλάει καμία ξένη γλώσσα. Το υπόλοιπο ποσοστό γνωρίζει μια επιπλέον της μητρικής ξένη γλώσσα. Κυριότερα ευρήματα της έρευνας Σχετικά με το εάν οι εκπαιδευτικοί είναι κάτοχοι πιστοποίησης στις ΤΠΕ, περισσότεροι από το 60% δηλώνουν πιστοποιημένοι στις νέες τεχνολογίες και στην εισαγωγή αυτών των τεχνολογιών στην καθημερινή σχολική πρακτική. Τα ευρήματα μας φαίνονται στο παρακάτω σχήμα 3:
104
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
Σχήμα 3: Ποσοστά πιστοποιημένων στις ΤΠΕ εκπαιδευτικών στην Αν Ευρώπη.
Στις χώρες της Ανατολικής Ευρώπης όπου διεξήχθη η έρευνα φαίνεται ότι υπάρχουν δυσπρόσιτα σχολεία που χρήζουν ηλεκτρονικής εξ αποστάσεως υποστήριξη. Το ποσοστό των σχολείων αυτών ξεπερνάει το 20%, δηλαδή ουσιαστικά ένα στα πέντε σχολεία είναι δυσπρόσιτο. Στο παρακάτω γράφημα (Σχήμα 4) παρατηρούμε την αντίστοιχη καταγραφή:
Σχήμα 4: Ποσοστά δυσπρόσιτων σχολείων στην Ανατολική Ευρώπη
Από τις διατυπωμένες απαντήσεις φαίνεται ότι δεν υπάρχει ακριβής καταγεγραμμένος αριθμός μαθητών σε δυσπρόσιτα σχολεία στην Ανατολική Ευρώπη, ενώ από χώρα σε χώρα παρουσιάζονται μεγάλες διαφορές στον αριθμό των δυσπρόσιτων σχολείων. Σε κάποιες χώρες παρουσιάζεται εποχικότητα στον αριθμό των δυσπρόσιτων σχολείων λόγω ακραίων καιρικών συνθηκών. Στο 18% των καταγεγραμμένων απαντήσεων παρατηρούμε ότι ο αριθμός των μαθητών σε δυσπρόσιτα σχολεία υπερβαίνει τους 40.000, ενώ ποσοστό 20% περίπου δηλώνει ότι δεν υπάρχουν (ή δεν μπορούν να χαρακτηριστούν) δυσπρόσιτα σχολεία στις περιοχές τους. Το μεγαλύτερο ποσοστό ερωτηθέντων (περίπου 50%) δηλώνει ότι αντιστοιχούν περίπου 10.000 μαθητές σε δυσπρόσιτα σχολεία στην περιοχή-χώρα τους.
105
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
Στην ερώτηση αν όλα τα σχολεία της Ανατολικής Ευρώπης έχουν πρόσβαση στο διαδίκτυο, καταγράψαμε καθολική θετική ανταπόκριση, όπως φαίνεται και στο Σχήμα 5:
Σχήμα 5: Δυνατότητα πρόσβασης στο διαδίκτυο στα σχολεία της Ανατολικής Ευρώπης
Ωστόσο, στις καταγεγραμμένες απαντήσεις των ερωτηθέντων και στον σχολιασμό, καταγράψαμε δυσκολίες που έχουν να κάνουν με τεχνικά θέματα (χαμηλή ευρυζωνικότητα, ασθενές σήμα, υπερφόρτωση δικτύων, καθυστερήσεις στη μετάδοση δεδομένων κτλ.). Οι εκπαιδευτικοί κάνουν εκτεταμένη χρήση ΤΠΕ στην εκπαιδευτική διαδικασία, διαπίστωση που πιστοποιείται και με τις καταγεγραμμένες απαντήσεις του σχήματος 6:
Σχήμα 6: Συχνότητα χρήσης ΤΠΕ στην εκπαίδευση στα σχολεία της Ανατολικής Ευρώπης από τους εκπαιδευτικούς.
Παρατηρούμε ότι οι εκπαιδευτικοί σε ποσοστό 45% κάνουν καθημερινή χρήση των ΤΠΕ στην εκπαιδευτική και διδακτική διαδικασία, ενώ σε ποσοστό 90% περίπου χρησιμοποιούν τουλάχιστον 3 φορές την εβδομάδα ΤΠΕ στις τάξεις τους. Κατά δηλώσεις τους χρησιμοποιούν κυρίως το διαδίκτυο με τα μέσα που προσφέρει (Youtube, Google Docs, Wikispaces), ενώ δε λείπουν και εκπαιδευτικές εφαρμογές (Stellarium, SalsaJ, Phet) που μπορούν να εγκατασταθούν στους υπολογιστές και να 106
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
λειτουργήσουν εκτός σύνδεσης. Καταγράψαμε βέβαια και λιγότερο δημοφιλείς εφαρμογές με εξειδικευμένη χρήση (FileMaker, iMindMap). Στα προβλήματα που καταγράφονται από τη χρήση ΤΠΕ στην εκπαιδευτική διαδικασία, αναφέρουμε κυρίως προβλήματα συνδεσιμότητας, μη εγκατάστασης κατάλληλου λογισμικού, πεπαλαιωμένο δίκτυο, μη αναβαθμισμένοι υπολογιστές και έλλειψη εξοπλισμού στις τάξεις (μόνο ορισμένες τάξεις διαθέτουν εξοπλισμό). Στην ερώτηση για το εάν πιστεύετε ότι η εξ αποστάσεως εκπαίδευση θα βοηθήσει συγκεκριμένες ομάδες μαθητών, συντριπτική πλειοψηφία των ερωτηθέντων απάντησε πως ναι, αν και ένα ποσοστό (10%) πιστεύει ότι θα ωφελήσει επιλεκτικά συγκεκριμένες ομάδες μαθητών, όπως πρόσφυγες και μαθητές σε απομονωμένα δυσπρόσιτα σχολεία, ενώ δε θα ωφελήσει αστικές ή ημιαστικές μαθητικές ομάδες. Στο κρίσιμο ερώτημα προς εκπαιδευτικούς, εάν αυτοί οι ίδιοι θα παρέδιδαν διαδικτυακά εξ αποστάσεως μαθήματα, οι εκπαιδευτικοί διστάζουν να προχωρήσουν σε αυτή τη πρακτική και σε ποσοστό άνω του 60% δεν επιθυμούν να συμμετέχουν, όπως φαίνεται και στο σχήμα 7:
Σχήμα 7: θα παραδίδατε διαδικτυακά μαθήματα εξ αποστάσεως; Ερώτημα στους εκπαιδευτικούς των σχολείων της Ανατολικής Ευρώπης.
Αυτό αποτελεί μια δυσάρεστη διαπίστωση που αποκαλύπτει ότι οι εκπαιδευτικοί ακόμα διστάζουν να εκτεθούν σε ευρύ κοινό εκτός τάξης. Ωστόσο, ένα ποσοστό 36% δείχνει ότι επιθυμεί να αποτελέσει την κρίσιμη μάζα που θα στηρίξει μια τέτοια προσπάθεια ήδη στο ξεκίνημά της. Στο ερώτημα ποια ψηφιακά εκπαιδευτικά εργαλεία ή ποιες ψηφιακές εκπαιδευτικές δυνατότητες θα ήταν χρήσιμες ή ουσιώδεις για την εκπαιδευτική διαδικασία οι περισσότεροι εκπαιδευτικοί αναφέρθηκαν στην σπουδαιότητα του ψηφιακού γραμματισμού μέσα από διαδικτυακές πλατφόρμες, στη χρήση εποπτικών μέσων, βιντεοπροβολέα συνδεδεμένο με υπολογιστή και διαδραστικών πινάκων. Επίσης, αναφέρθηκε η σπουδαιότητα των εικονικών επισκέψεων σε ερευνητικά κέντρα (CERN) και μουσεία. Επίσης, αναφέρθηκαν στην εξ αποστάσεως εκπαίδευση ως καταλυτικής σημασίας ειδικά σε απομακρυσμένα σχολεία, αλλά και για τη δια βίου μάθηση των εκπαιδευτικών. Τέλος, η σημασία της απόκτησης ψηφιακών δεξιοτήτων 107
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
έλαβε νέες διαστάσεις, καθώς όχι μόνο διασφαλίζεται η ομαλή ενσωμάτωση ενός μελλοντικού εργαζομένου στην αγορά εργασίας και στις σύγχρονες τεχνολογικές κοινωνίες, αλλά ταυτόχρονα δίνονται νέες δυνατότητες στη μάθηση ξένων γλωσσών και πειραματισμού στις φυσικές επιστήμες. Τέλος, περισσότερο από το 50% των ερωτηθέντων υποστήριξε ότι έχει εμπειρία στη διαθεματική προσέγγιση εκπαιδευτικών – διδακτικών αντικειμένων, ειδικά στην κατηγορία των ξένων γλωσσών μέσω του CLIL (Content and Language Integrated Learning) και στον τομέα των Φυσικών Επιστημών, όπου σχεδόν σε όλα τα σχολεία της Ανατολικής Ευρώπης οι καθηγητές των Φυσικών Επιστημών καλούνται να διδάξουν ένα ευρύ φάσμα αντικειμένων (Φυσική, Χημεία, Βιολογία, Γεωγραφία, Γεωλογία, Αστρονομία, Μαθηματικά και Project). Σε αρκετές περιπτώσεις ενσωματώνονται και αρχές της Φιλοσοφίας των Επιστημών και διεπιστημονικές προσεγγίσεις σε συναφή διδακτικά θέματα. Συμπεράσματα Οι χώρες της Ανατολικής Ευρώπης, όπως φαίνεται και στο Σχήμα 1, κατέχουν τις τελευταίες θέσεις στην Ευρώπη των 28 σε ψηφιακή σύγκλιση στα εκπαιδευτικά τους συστήματα. Ωστόσο, έχει γίνει απόλυτα κατανοητό στις περισσότερες από αυτές τις χώρες ότι προκειμένου να καταπολεμήσουν την ανεργία και να ενταχθούν οι πολίτες τους στην αγορά εργασίας θα πρέπει να καλλιεργήσουν τις ψηφιακές δεξιότητες στα εκπαιδευτικά τους συστήματα. Πολλές χώρες εκπόνησαν εγκαίρως εκτενή προγράμματα εκσυγχρονισμού και επικαιροποίησης των εκπαιδευτικών τους συστημάτων. Αξιοσημείωτες είναι οι περιπτώσεις της Ιταλίας και της Ρουμανίας, όπου έχουν εκπονηθεί εκτενέστατα σχέδια ψηφιακής σύγκλισης στα εκπαιδευτικά τους συστήματα. Επίσης, είναι αξιοσημείωτο ότι τα περισσότερα προγράμματα αξιολογήθηκαν, αναμορφώθηκαν και αναπροσαρμόσθηκαν. Σε πολλές χώρες όπως στη Ρουμανία και στη Βουλγαρία παρατηρήθηκαν απτά θετικά αποτελέσματα στην αύξηση των ειδικών σε θέματα πληροφορικής και νέων τεχνολογιών. Οι εκπαιδευτικοί σε μεγάλο ποσοστό είναι πιστοποιημένοι στη χρήση ΤΠΕ στην εκπαίδευση, χρησιμοποιούν σε μεγάλο ποσοστό πάνω από τρεις φορές την εβδομάδα τις ψηφιακές δυνατότητες που τους παρέχονται και ενσωματώνουν ψηφιακά εργαλεία στη διδακτική πρακτική τους. Στο σύνολό τους τα σχολεία της Ανατολικής Ευρώπης είναι συνδεδεμένα στο διαδίκτυο, ωστόσο παρουσιάζονται ενίοτε τεχνικά προβλήματα στη ευρυζωνικότητα. Στο σύνολο των χωρών της Ανατολικής Ευρώπης υπάρχουν δυσπρόσιτα σχολεία που επιζητούν εξ αποστάσεως μαθήματα, ωστόσο οι εκπαιδευτικοί δεν είναι πρόθυμοι να παραδώσουν διαδικτυακά μαθήματα. Οι εκπαιδευτικοί αναζητούν ψηφιακά βοηθήματα στο διαδίκτυο και πιστεύουν στη συντριπτική τους πλειοψηφία ότι αυτά ενισχύουν τον γραμματισμό των μαθητών τους. Είναι καθολικά αποδεκτή η άποψη ότι μια από τις βασικότερες δεξιότητες που πρέπει να καλλιεργηθούν στα εκπαιδευτικά συστήματα είναι ο ψηφιακός γραμματισμός.
108
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
Aknowledgments: Το πρόγραμμα e-lios (e-learning interactive open school) είναι δράση που εντάσσεται στον άξονα: Collaboration for innovation and exchange of good practice in the field of school education του Ευρωπαϊκού Προγράμματος ERASMUS + KA2 με κωδικό: 2015-1-EL01-KA201-014029. Η έρευνα αυτή έχει χρηματοδοτηθεί από το συγκεκριμένο ευρωπαϊκό πρόγραμμα και επιβλέπεται από την καθηγήτρια του Παιδαγωγικού Τμήματος Δημοτικής Εκπαίδευσης του Πανεπιστημίου Πατρών κ. Ευγενία Κολέζα που είναι και η συντονίστρια του Προγράμματος. Αναφορές Arastaman, G. (2009). Lise Birinci Sınıf Öğrencilerinin Okula Bağlılık (School Engagement) Durumlarına ilişkin Öğrenci,Öğretmen ve Yöneticilerin Görüşleri. Pamukkale Üniversitesi Eğitim Fakültesi Dergisi, 26. Avrupa Komisyonu (2013). Reducing early school leaving: Key messages and policy support (http://ec.europa.eu/education/policy/strategic-framework/doc/esl-group-report_en.pdf , Access Date: 14.05.2016) European Commission (2012). Europe 2020 Target: Early Leavers From Education and Training (http://ec.europa.eu/europe2020/pdf/themes/29_early_school_leaving.pdf, Access Date: 14.05.2016) European Commission, DG CNECT, (2016) Digital Economy and Society Index 2016, Country Profile, Italy European Commission, DG EAC, (2015) Education and Training Monitor 2015 Italy (Luxembourg, Publications Office of the European Union) Legge 13 luglio 2015, n. 107 “Riforma del Sistema nazionale di istruzione e formazione e delega per il riordino delle disposizioni legislative vigenti”, GU n. 162 del 15-7-2015, Rome M.E.B. (2009). MEB 2010-2014 Stratejik Planı (www.sgb.meb.gov.tr/Str_yon_planlama_V2/MEBStratejikPlan.pdf, Access Date: 14.05.2016) M.E.B. (2011). Devamsızlık ve Okulu Terk Riski Durum Saptamasıve İhtiyaç Analizi(Draft) (http://ysop.meb.gov.tr/dosyalar/adey/ihtiyacanaliziraporu.pdf , Access Date: 14.05.2016) M.E.B., UNICEF (2013). Ortaöğretimde Sınıf Tekrarı, Okul Terk Sebepleri ve Örgün Eğitim Dışında Kalan Çocuklar Politika Önerileri Raporu. (http://www.meb.gov.tr/earged/unicef/S%C4%B1n%C4%B1f%20Tekrar%C4%B1,%20Okul%20Terki %20Politika%20Raporu.pdf , Access Date: 14.05.2016) Ministero dell’Istruzione dell’Università e della Ricerca (2015) Piano Nazionale Scuola Digitale Presidenza del Consiglio dei Ministri (2015) Strategia per la crescita digitale 2014-2020 Николова, М. (2014) Мотивация за учене и учене чрез извънкласни форми на ученици от ромски произход, in Интеркултурното образование като средство за намаляване на отпадането на ромските деца от училище, (Veliko Tarnovo, National conference)
109
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
A STEM Educational Scenario: “From Water Power to Hydrogen Fuel Cells” Chiotelis Ioannis, Theodoropoulou Maria Abstract STEM approach is a well-known pedagogical and teaching method especially to Natural Sciences teachers. This is because Science is based on the major steps of STEM approach. Primarily, a scientific question is being applied, or a science theory had to be tested. Then we were asked to test the theory or attempt to provide some answers to our scientific questions. We have then to perform an experiment using technology and engineering. Final, in order to process our findings, we must use mathematical approaches. We followed these major steps to compose an educational scenario about water electrolysis and how Hydrogen as an electrolysis product can be used as fuel. We mainly focused on experimentation (electrolysis apparatus) and manufacturing of a compact fuel cell that consumes hydrogen and products energy. We integrated this STEM approach under a historical frame regarding water as a power source since hundred years ago. Keywords: STEM, water, hydrogen, fuel cell, electrolysis, water distillation, renewable energy sources.
1. Introduction In recent years gradually, all educators are realizing that traditional educational methods are not any more attractive. Students are not any more willing to attend lectures and incubate knowledge according to an inelastic curriculum [1]. Especially, younger students in Primary Schools and even in Junior High Schools are regarding this way of teaching as old fashioned and many times as extremely boring [2]. In order to face this situation, teachers and educators proposed some alternatives in teaching. Since 1970’s the Nuffield project attempted to develop students’ skills introducing inquiry-based learning methods [3]. On the other hand, STS (Science-Technology-Society) projects aimed to integrate Society and Technology to Science [4]. Although, their totally innovative education approaches these attempts failed mainly because teachers and educators were not ready to apply such teaching methods, or because students were unable to act as young researchers due to many different reasons [5]. At the end of 80’s under the pressure of National Commission on Excellence in Education, USA proposed the “Project 2061”, a long scale (until year 2061) project that aimed to total reform education towards a more realistic, implemented and inquirybased direction strongly connected to society [6]. Many other countries (Canada, England, New Zealand, Australia) followed this global trend in education under the philosophy “Science for All”. Even more, just after year 2000 many countries all around the world and mainly EU members realized the need of bonding Science and Society, thus they proposed wide educational projects based on STEM philosophy under the axis of inquiry-based learning steps. “Beyond 2020” and 21st Science Century were some of the most pronounced projects including STEM activities [7]. In Greek educational system STEM projects are mainly introduced through educational programs (not obligatory), project courses (obligatory) and Creativity Groups (only for Experimental Schools). Although, recently all teachers are encouraged to apply such 110
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
activities in their everyday teaching practice introducing integrated projects within the course session. 1.1 STEM in Natural Sciences teaching Natural Sciences are strongly related to STEM philosophy mainly because of their experimentation. All different Natural Sciences subjects are based on experiments and observation followed by data process. STEM includes Science, Technology, Engineering and Mathematics. Science is in the core of Natural Sciences, while we need scientific rules, theories and laws to develop our scientific questions and form our answers respectively [8]. Continuously, Technology and engineering are necessary to develop our experiment and record experimental data [9]. Engineering while we have to construct an apparatus and technology because if we wish to record data, this can be done with accurate and reliable way through recording sensors. Of course, we must mention that our sensors must be well defined and precisely calibrated, but this is a part of engineering. Finally, mathematics will critically contribute to data process, while allNatural Sciences law were depicted after plotting recorded data and adjusting a fitting curve to this data plot. On the other hand, inquiry-based learning is also very well fitted to Natural Sciences teaching. Inquiry-based method is based on primarily setting a scientific question, then looking for primitive answers based on former knowledge [10]. Following inquirybased learning method is encouraging students to perform an experiment in order to collect themselves the evidences to support or revise their primitive knowledge. Finally, all participants are asked to present their findings after procession and support their scientific conclusions. It’s obvious that STEM and inquiry-based learning method are in great accordance, so they can be combined in an ideal way [11]. Actually, both approaches are mirroring a well known scientific technique of revealing natural sciences laws, firstly introduced by Galileo. Thus, if we wish to transform students into tinny researchers we have prior to teach them through STEM philosophy and under an inquiry-based learning method. 1.2 Renewable resources – Hydrogen as a fuel. Our teaching proposal entangles both renewable resources and Hydrogen fuel cells under a STEM approach. First of all, we introduce students to water power used hundred years ago as energy resource for pre-industrial development. We refer to water mills and how they provided the necessary energy for agricultural purposes as production of oil, flour and other products. We also refer to the use of water mills in production of gunpowder influencing thus the global history. Continuously we gradually connecting the pre-industrial times to modern times focusing on the very promising fuel cells based of course on Hydrogen as a fuel. This part is mainly the scientific part, while the technological and engineering part includes the experimentation where we use an electrolysis apparatus to present to students how can we cause decomposition of water into Oxygen and Hydrogen. This procedure is easy to be achieved and need just a battery of almost 9V of voltage. Students are asked to find out how electrolysis will start e.g. the appropriate voltage and the water-acid solution needed to perform electrolysis, as we need an 111
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
electroconductive solution. Students also are recording the portion of gases collected during electrolysis. Then we trigger students to find other ways of providing energy for electrolysis. One of the most effective and renewable resources is solar energy. We perform electrolysis by using solar energy and then the collected hydrogen is used to provide the necessary energy for rotating a motor. Clearly, we use solar energy to produce a fuel for future use. Technologically we tested and evolved a fuel cell for both activities, electrolysis of water to hydrogen and then use hydrogen as a fuel for energy production purposes. Finally, through mathematics we made all kind of procession of our recorded experimental data.
2. STEM Steps of the educational scenario First of all, we must mention that this educational scenario was applied in real teaching conditions during the course “project” entitled “From Water power to Fuel Cells”. You can find relative information to the following link: https://m.facebook.com/ApoToYdorStoYdrogono/ (retrieved 6/4/2018). Apart from this project an upgraded version of this project was applied in the international contest Odysseus II in year 2017, winning in the Regional Finalists in the Pioneers and Explorers category for Greece / Bulgaria / Cyprus the Prize of “the most socially relevant project”. Thus, our project has a strong connection to space technology and innovation. 2.1 Science In pure water at the negatively charged cathode, a reduction reaction takes place, with electrons (e−) from the cathode being given to hydrogen cations to form hydrogen gas. The half reaction, balanced with acid, is: Reduction at cathode: 2 H+(aq) + 2e− → H2(g) At the positively charged anode, an oxidation reaction occurs, generating oxygen gas and giving electrons to the anode to complete the circuit: Oxidation at anode: 2 H2O(l) → O2(g) + 4 H+(aq) + 4e− The same half reactions can also be balanced with base. Overall reaction: 2 H2O(l) → 2 H2(g) + O2(g) The number of hydrogen molecules produced is thus twice the number of oxygen molecules. Assuming equal temperature and pressure for both gases, the produced hydrogen gas has therefore twice the volume of the produced oxygen gas. The number of electrons pushed through the water is twice the number of generated hydrogen molecules and four times the number of generated oxygen molecules. We must mention that we performed our experiment by using acid H2SO4. Finally, experiments from the collaborative laboratory shows that this innovative fuel cell can adsorb water in vapor state from ambient air and perform decomposition, which is indeed very promising. 112
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
2.2 Engineering The main idea (scientific question) of our project is how to produce energy during a long space trip, for instance to Mars or further. First of all, we considered that from water electrolysis we can produce Hydrogen which is actually a very effective fuel. Thus, we constructed an electrolysis apparatus and performed an experiment of splitting water into Hydrogen and Oxygen (Figure 1).
Figure 1: The electrolysis apparatus
We used a battery for splitting water, but then the problem of energy consuming occurred. Thus, we proposed the alternative of using solar energy, by a photovoltaic solar panel to split water. We constructed the representative apparatus and recorded the water splitting to Hydrogen and Oxygen (Figure 2).
113
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education. Figure 2: Water splitting using solar energy
Then, the next step was to use Hydrogen to produce energy. The best way of achieving this is to use a fuel cell connected to a motor. We, indeed, constructed the relevant circuit, setting in function a motor and rotating a mounted propeller (Figure 3).
Figure 3: Using produced hydrogen as fuel for functioning a motor
Continuously, we considered how can we recycle water, or distilled contaminated water to use it in our fuel cell. Recycling of water is of high importance during a long space journey, while the water supplies cannot be unlimited. Thus, we constructed a distillation apparatus and performed a distillation collecting pure water using it then for hydrogen production through water splitting (Figure 4).
Figure 4: Distillation of contaminated water
114
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
Furthermore, observing the electrolysis experiment we wondered how electrolysis can be formed in space (zero gravity conditions), while the air bubbles cannot move towards a specific direction and collected on the upper part of a glass tube. 2.3 Technology and Mathematics Additionally, within the framework of preserving water we considered the possibility of collecting humidity of ambient air in a spacecraft. In order to overcome these problems, we contacted Professor M. Tsampas from the Dutch Institute for Fundamental Energy Research, we set our problematic and he proposed us a new type of fuel cell [12]. Furthermore, with his research team performed a series of measurements providing solutions about gas (hydrogen) collection in space and use of vapor water (ambient). In the following Figure 5 you can see the measurements performed by the FOM Institute DIFFER at the Dutch Institute for Fundamental Energy Research for us in collaboration with professor M. Tsampas.
Figure 5: Cyclic voltammetry curves on a hybrid fuel cell produced by the FOM Institute DIFFER
What we are now thinking of, is distillation of human excretions so we can also collect water. The main problem is that the boiling point is the same with the water, so we have to separate the other substances somehow. We are now testing different types of filters without having a successful result yet.
3. Inquiry based learning model 3.1 Provoke curiosity-former knowledge-experimentation During this project we followed the steps of inquiry-based learning methodology. First of all, we set the main scientific question: “How can we produce and store energy during long space journeys?� Then we started thinking of possible answers. We referred water mills used in past to produce agricultural products such as flour, olive oil etc. Then the main idea was focused on hydrogen as fuel and fuel cells. We proposed to students water electrolysis, that we can split water to Hydrogen and Oxygen. We used the Hoffman electrolysis apparatus with two glass collecting tubes calibrated for precise measurements, providing accurate results that are quantifiable. The apparatus was operated on a 9-V battery. At the bottom of the glass tubes platinum electrodes are mounted. At the top of the glass collecting tubes, built-in thistle tube and stopcocks were adjusted for easy no-mess filling (Figure 1). In the middle filling glass tube, we 115
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
add distilled water and then we dilute 50-100 ml of H2SO4. Just after the connection of the 9V battery we start detecting bubbles gathered on the top of the two glass collecting tubes. We observe twice as much gas collected in one tube in comparison to the other tube. 3.2 New knowledge gained through inquiry-based learning We propose an alternative energy source and storage. Dwindling petroleum reserves and major ecological problems (greenhouse effect, climate changes etc.), immerse renewable energy sources as highly desirable. Solar energy can cover our global energy needs, but storage of solar energy is essential. Fuel cells and especially PEC hydrogen production can potentially become a major energy provider. Towards this direction we want to orient students, teachers, parents and thus whole society and show them that green energy can be as efficient as energy produced by hydrocarbons. All interests, but also the whole society must learn that environmentally friendly energy produced by hydrogen is apart from feasible easy to be produced and can potentially provide energy efficiency. Also, the simplicity of the aforementioned devices further enforces the trend towards a change. Additionally, adsorption of ambient humidity is often crucial and desirable (e.g. at houses, museums etc.) and even impressive if simultaneously can also provide energy from water splitting and hydrogen storing. We can thus understand that fuel cells can crucially assist towards a better life quality in modern cities and societies.
4. Conclusions First of all, we recorded the water decomposition (splitting) Voltage around 7-8 Volts. The respective current intensity is around 5-6 Amperes. The duration of electrolysis is almost 40 minutes. By connecting a 9V battery, electrolysis started immediately. We used platinum electrodes and we added at the distilled water sulfuric acid (H2SO4) 25% w/w. We had to make some tests to find the proper acid concentration. At the beginning of electrolysis, we filled the Hoffman apparatus with dilute (25% w/w) acid – water solution until the solution reaches the level of 16 ml on the gas collecting glass tube. After a short period (almost 20 minutes) of water splitting we observed at one collecting glass tube that the solution level was at 36 ml, while on the other tube it was at 26 ml. In the first tube hydrogen was collected, while on the other tube (26 ml) oxygen was collected. We detected our primary assumption of the gases collected by turning the built-in thistle tube and stopcocks. We filled test tubes with the gases. We did this by putting a test tube full of water upside down in a trough of water and connecting a rubber tube to the syringe. Gas was propelled into the tube and tested in the usual way: for hydrogen using a lighted splint, and for oxygen using a glowing splint. Secondly, following the same experimental philosophy, we used solar energy to perform decomposition of water. We used a fuel cell in the electrolysis mode getting energy from a 0.75 Watt connected solar cell (photovoltaic). We determined the minimum voltage for water decomposition around 4-5 Volts, enough to cause water splitting decomposing water into Hydrogen and Oxygen. Hydrogen and Oxygen were collected into two plastic plug pins. Accordingly, the fuel cell was disconnected from the solar cell and connected to a motor with a mounted propeller. In the Fuel Cell mode electricity was generated from hydrogen and a motor propeller was motorized for a 116
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
couple of minutes. Although, the main problem of gas collection in zero gravity conditions remains. Professor M. Tsampas from the Dutch Institute for Fundamental Energy Research proposed us a new innovative polymeric electrolyte membrane (PEM) photoelectrochemical (PEC) fuel cell. These PEM-PEC fuel cells have some remarkable advantages: a unidimensional ordered nanotube architecture that offers a wide specific surface and an excellent electrical channel for charge transfer that facilitates the separation of the photogenerated electron hole pairs (Image 6). Moreover, the one dimensional (1D) and highly ordered nanotube architecture offers an excellent electrical channel for vectoral charge transfer, resulting in a significant improvement of the photoelectrochemical performance. Finally, the innovative elements of the cell lie in the reactor and photoelectrode design, and this design can be further increase solar spectrum absorption. Acknowledgements: This research paper was funded by the European Program ERASMUS+ KA2 code: 2015-1-EL01-KA201-014029, titled: E-Learning Interactive Open School.
5. References 1. Boaler, J. (2002). Experiencing school mathematics: Traditional and reform approaches to teaching and their impact on student learning. Routledge. 2. Hake, R. R. (1998). Interactive-Engagement vs. Traditional Methods: A SixThousand-Student Survey of Mechanics Test Data for Introductory Physics Courses. 3. Waring, M. (1980). Social pressures and curriculum innovation: A study of the Nuffield Foundation Science Teaching Project. 4. Solomon, J., & Aikenhead, G. (1994). STS Education: International Perspectives on Reform. Ways of Knowing Science Series. Teachers College Press, 1234 Amsterdam Ave., New York, NY 10027 (clothbound: ISBN-08077-3366-0; paperback: ISBN-0-8077-3365-2). 5. Zeidler, D. L., Sadler, T. D., Simmons, M. L., & Howes, E. V. (2005). Beyond STS: A research‐based framework for socioscientific issues education. Science education, 89(3), 357-377. 6. Johnson, J. R. (1989). Technology: Report of the Project 2061 Phase I Technology Panel. AAAS Books, Dept. 2061, PO Box 753, Waldorf, MD 20604 (for price, contact AAAS offices; quantity prices available). 7. Knopf, B., Chen, Y. H. H., De Cian, E., Förster, H., Kanudia, A., Karkatsouli, I., & Van Vuuren, D. P. (2013). Beyond 2020—Strategies and costs for transforming the European energy system. Climate Change Economics, 4(supp01), 1340001. 8. Chen, X. (2009). Students Who Study Science, Technology, Engineering, and Mathematics (STEM) in Postsecondary Education. Stats in Brief. NCES 2009161. National Center for Education Statistics. 9. Sornette, D. (2006). Critical phenomena in natural sciences: chaos, fractals, selforganization and disorder: concepts and tools. Springer Science & Business Media. 10. National Research Council. (2000). Inquiry and the national science education standards: A guide for teaching and learning. National Academies Press. 117
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
11. National Research Council. (1996). National science education standards. National Academies Press. 12. Stoll, T., Zafeiropoulos, G., & Tsampas, M. N. (2016). Solar fuel production in a novel polymeric electrolyte membrane photoelectrochemical (PEM-PEC) cell with a web of titania nanotube arrays as photoanode and gaseous reactants. International Journal of Hydrogen Energy, 41(40), 17807-17817.
118
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
A model educational scenario for the on-line educational platform e-lios: Holocaust in e-lios Plattform. Ένα πρότυπο εκπαιδευτικό σενάριο για την ηλεκτρονική εκπαιδευτική πλατφόρμα e-lios:Το Ολοκαύτωμα στην πλατφόρμα e-lios. Plota Despoina, despoinaplota@gmail.com
Chiotelis Ioannis, johnchiotelis@yahoo.gr
Περίληψη Η πλατφόρμα E-lios είναι μια νέα εκπαιδευτική πλατφόρμα που παρέχει στους εκπαιδευτικούς και τους διδάσκοντες τη δυνατότητα να δημιουργήσουν τα δικά τους εκπαιδευτικά σενάρια. Η καινοτομία του είναι ότι παρέχει ένα δομημένο πλαίσιο όπου ένας εκπαιδευτικός μπορεί να ακολουθήσει κατάλληλα βήματα ενός οδηγού πλοήγησης και να δημιουργήσει ένα εκπαιδευτικό σενάριο. Αυτά τα βήματα παρουσιάζονται ως πεδία που πρέπει να συμπληρωθούν από τον συγγραφέα ενώ στο τέλος εμφανίζονται ως ένα ολοκληρωμένο αποτέλεσμα σε μορφή έτοιμου προς διδασκαλία. Εκτός από αυτή τη δομημένη μορφή, η πλατφόρμα e-lios εισάγει δύο κύριες καινοτόμες πτυχές. Πρώτον, παρέχει το πεδίο: «ιστορίες ζωής φοιτητών» όπου οι μαθητές μπορούν να ανεβάσουν τις δικές τους ιστορίες και δεύτερον, μέσα στην ίδια φιλοσοφία, η πλατφόρμα e-lios εισάγει την καρτέλα «δεξιότητες ζωής» κυρίως για δασκάλους αλλά και ενήλικες που επιθυμούν να μοιραστούν τις εμπειρίες της ζωής τους. Αυτές οι δύο πτυχές της πλατφόρμας e-lios εισάγουν ευθέως προσωπικές εμπειρίες στη διαδικασία εκμάθησης, αναπτύσσοντας έτσι σενάρια βασισμένα στη μετασχηματιστική μάθηση. Στο πλαίσιο αυτό προτείνουμε ένα σενάριο με τίτλο: "Διδασκαλία του Ολοκαυτώματος. Μάθηση για το Άουσβιτς μέσω της τέχνης ". Αυτό το εκπαιδευτικό σενάριο πλησιάζει σε ένα μεγάλο ιστορικό γεγονός μέσω μεμονωμένων εμπειριών, που εκφράζονται από την τέχνη. Λέξεις/έννοιες κλειδιά: πλατφόρμα e-lios, εκπαιδευτικό σενάριο, Ολοκαύτωμα, Τέχνη, Μετασχηματίζουσα Μάθηση Abstract E-lios platform is a new educational platform that provides to teachers and educators the ability to create their own educational scenarios. Its innovation is that provides a structured framework where a teacher can follow guidance steps and built an educational scenario. These steps are presented as fields to be completed by the writer while at the end it appears as an integrated outcome in ready to teach form. Apart from this structured form, e-lios platform introduces two main innovative aspects. First, provides the field: “students life stories” where students can upload their own stories 119
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
and secondly, within the same philosophy, e-lios platform introduces the “life skills” tab mainly for teachers, but also for adults wishing to share their life experiences. These two aspects of the e-lios platform are straightly introducing personal experiences into learning procedure, developing thus scenarios based on transformative learning. Within this framework we are proposing a scenario titled: “Teaching the Holocaust. Learning about Auschwitz through art”. This educational scenario is approaching a major historical event through individual experiences, expressed by art. Keywords: E-lios platform, educational scenario, Holocaust, Art, transformative learning Introduction Theory of Transformative Learning progresses gradually in recent years. According to the Kalaouzidis (2015), theoretical approach of Transformative Learning becomes even more attractive recently, while it describes in deep the reasons why adults are participating in learning processes on one hand and on the other hand, because it poses key elements in learning procedure, rational dialogue and critical thinking. Professor Kokkos as President of the Scientific Union for Adult education, (a) taking under serious considerations the objectives of the theory of Transformative Learning, (b) based on the theoretical approaches of transformative education of Paulo Freire, Jack Mezirow and Robert Kegan and (c) aiming at the facilitation of this process, developed a demanding training methodology in the field of adult education, the socalled "Transformative Learning through sensory experience". This specific methodology relays on the systematic observation of works of art as a trigger for development of thoughtful dialogue and more specifically in the “treatment” of works of art about the teaching subject, utilizing as pounce on more in-depth issues envisaged for expressing feelings, develop imagination and critical thinking (Kokkos, 2011) This approach is being adopted by most trainers in educational practice and already have made great steps towards this direction under the assistance of the Scientific Association for Adult Education, which organized on May 2010 a two-day Conference on the implementation of this method called "Transformative learning through sensory experience". On the other hand, recently, educational platforms seem to become very useful for everyday teaching practice. Many teachers are choosing to use ICT during their lessons, either partly, either holistically. Teachers often choose one of the freely provided platforms and mainly are uploading their prior composed educational material. What we inspired many years ago was a utilitarian platform for everyday use. This platform will provide step by step guidelines to help an educator to compose its scenario and secondly to extract this material into a reader-friendly form. This guided sequence of steps helps teachers and educators to follow a structured learning model. Especially for our platform (the e-lios platform) we are proposing the inquiry based educational model. We encourage educators to set a major scientific question or a teaching goal. Then we ask students to present their own opinions based on knowledge or experience. Within this step students can introduce their life stories. On the third step, we present to students extra educational material to trigger and provoke their curiosity. Under this framework we can present for instance our life skills. Especially, in the proposed scenario we are presenting art work from people being prisoned in Auschwitz. On the next step, we ask students to conduct their investigation based on the provided material and of course their preliminary knowledge and life stories. Finally, students are encouraged to present their findings and defend their conclusions. These are the major steps of the inquiry-based learning model, but we 120
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
adjusted some steps properly so they can include information and data related to transformative learning. The innovative aspects of our platform is mainly the incorporation of life stories and life skills into an educational scenario which is based on the inquiry model. The e-lios platform provides the framework within an educator can combine all these parameters. Also, we wish teachers to use the educational material of the platform and thus we made efforts towards simplifying the digital environment. Uploading both educational scenarios, material, and videos related to life skills an educator can easily pass from one task to another without changing a webpage. Furthermore, communication between these tasks is ensured. We are now developing the form for mobile devices, so an educator will be soon able to perform its lesson from a tablet or a smartphone. Finally, the selected scenario is really triggering and provocative while it combines a humanitarian disaster of a war with a sensory experience of the people survived from the concentration camps of the second World War. Students through a structured scenario are approaching these dark pages of History. The e-lios platform The e-lios (e-learning interactive open school) platform is a platform inspired by teachers for teachers. The idea came out as a crucial need to invent a platform that is utilitarian in the way that teachers mean. Very easy to access, not time consuming (while one teaching hour is less than 45 minutes), is joining different educational tasks and mainly responses to contemporary demands. Teachers, from their experience knew that often digital means are time consuming (internet connection is slow) moreover if you should wait for many pages to open. Thus, proposing some changes and gathering many different educational means into one single webpage they faced one of the recorded problems. On the other hand, we need portable educational material, so we insisted on mobile devices thus our platform supports mobile knowledge. We must mention that the e-lios platform is funded by an ERASMUS+ KA2 project with 10 partners from all over Europe, under the supervision of University of Patras. Structure of e-lios platform
121
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
At the main page of the e-lios platform http://www.thebackstage.eu/elios/ (beta version) we can see most of the utilities of the webpage (Figure 1). At the middle upper part, we can access all supported topics (Math, History, Physics, Biology, Geography, English, Art, Philosophy, Informatic, Chemistry). Of course, we provide the ability to
Figure 1: The main page of the e-lios platform
add more topics and adjust to your preferences. On the middle lower part, we can see the four major tasks: Students Life Stories, Life Skills, E-learning from teachers to students and mainly the Design area lesson which is the structured guide for composing an inquiry-based scenario. Another innovative point is that we adjusted the steps of inquiry-based learning model, which is mainly targeted to natural sciences teaching, to other forms of lesson e.g. art, philosophy etc. In this lower part, we can see the links to transformative learning “Student Life Stories” and “Life Skills”. Finally, on the right part we can register as a teacher or as a student, rate a lesson and view all recent uploaded material. Designing a lesson In order to design and upload a lesson we have first of all to register in the webpage or login if you have already registered. After registering, choose “Design Area Lesson” and you will have the choice of “create a new lesson”. If selected a new lesson design, then you will be transferred into the structured guide lesson creator (Figure 2). In this main page, we must add the Title of the lesson or educational scenario. Then we have to choose the subject from a variety of different subjects as mentioned before. School level is also an option, while we can choose from primary to upper secondary education, thinking of expanding even to higher education (universities). Also, there is a possibility of uploading a representative image of our lesson and mention the duration of the lesson. Then, we should compose an introduction that is visible to students as it’s mentioned in this webpage. The introduction composer field provides all abilities of 122
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
formatting a text, such as changing to bold or italics, aligning the text or adding photos and links to external files.
Figure 5: Main page of the lesson design area
Following, we must identify the desired results, also visible from students and import the important ideas related to our scenario. These important ideas are of major importance to students because all teaching subjects are related to important intellectual achievements of human kind. Students must be aware of these major ideas that somehow contribute to international progress in the fields of Science, Art, Culture, Humanism etc. Teachers will have in these fields also the ability to format their texts (Figure 3): Following these tasks teachers are calling to fill the “Questions – Overarching” task and the Misconceptions field which are only visible from teachers. In the same philosophy, the fields “Knowledge” and “Skills procedural” are also only visible from teachers, so educators can think of the theoretical basis and axes upon which the educational scenario is based. Next, we ask from the scenario creators to fill the “Tasks” field where an educator composes the core tasks that students are called to fulfil to gain knowledge. In order to assist students to their inquiry we provide them with the ability to upload videos in several different file forms and also upload or compose “External Resources” in the relevant field. Finally, we propose the “Final Assessment” task, where students are asked to answer to several questions detecting the depth of knowledge gained. Of course, we are strongly concerned about the rate of collaboration between students and as we already mentioned, about transformative learning. In the “External Resources” field we can set links to the “Students Life Stories” and to the “Life Skills” tabs, within the same webpage-platform.
123
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
Figure 6: Lesson design area.
Teaching the Holocaust: Learning about Auschwitz through art. A scenario designed in the e-lios platform. We can now present an example of an educational scenario uploaded in the platform. Initially, we choose the title: Teaching the Holocaust: Learning about Auschwitz through art. We selected as subject: Art and duration 5 hours and target group: lower secondary education. For the rest steps of the scenario we have: Introduction This educational scenario aims to approach the Holocaust through art. You will collect many information and learn significant knowledge about this dark side of the second World War by studying art. According to Edgar Degas: "Art is not what you see, but what you do for others to see." Thus, we will attempt to raise the “aesthetic” instinct of the attenders. "Aesthetic" is mainly raised by "feeling", the recruiting experience through the senses, while the aesthetic experience can stimulate the development of cognitive function and allow the mind to process new knowledge”. At the same time, it facilitates the matching of feelings and impressions. "(Gardner, Eisner, Perkins κ.ά.). "Aesthetic experience" is defined as the systematic investigation of works of art contributing to the revelation of pre-existing knowledge, embracing emotions and critical reflection. The exploitation of works of art, whose content is related to the teaching subject, and their utilization as pounce on more in-depth issues envisaged aims such as the expression of feelings and development of imagination under critical thinking. Art contributes to the development of creativity and criticism expanding the imagination (Dewey, 1980), offers multiple possibilities for interpretation and cultivates multiple types of intelligence (Gardner, Harvard School of Education). Furthermore, it familiarizes with the unconventional way of thinking (Freire, Frankfurt School). According to these statements we strongly believe that silence and deep thought can decisively reveal war crimes, and deep thought can be raised by art study.
124
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
Identify desired result In this field, we mention the educational goals that we wish to achieve: ➢ To reach out to the students the topic of Holocaust, holistically, through art works. ➢ To understand the negative effects of war on people's lives. ➢ To become familiar in General with the theme of the Holocaust, and in particular with Auschwitz. ➢ To understand the living conditions of the Jews in the concentration camps of Auschwitz. ➢ To understand the feelings and thoughts of people who lived in concentration camps of Auschwitz. ➢ To understand how the prisoners tried to survive at this extermination camp. ➢ To understand how a man can create, fall in love and hope even in difficult situations. ➢ To understand that even after terrible events, begins a new life again. Important ideas Peace and War, Humanity, Values of Life, Humanitarian Values, Acceptance of Difference, Nationalism, Fascism, Consequences of War. Questions – Overarching (visible only to teachers) The learning process that uses as a means of critical thinking and rational dialogue and seeks the revision of old and established perceptions and assumptions in order to achieve more inclusive, open and better reasoned understanding of human experience. The concept of critical reflection includes: Premium and systematic way of thinking, Challenging assumptions that someone has committed under the influence of socialization and considers them to be given, but often not in harmony with the authentic needs of the individual. Proposed training techniques-methods: Organized discussion. Group working, Art editing (use of art). Analysis of art works according to the model of Perkins. Misconceptions (visible only to teachers) Historical misconceptions about the second world war enemies, ideological misconceptions, lack of historical knowledge, recallists of totalitarian regimes. Art is only for artists, art is not connected to everyday and art works are not inspired by social and historical conditions. Knowledge (visible only to teachers) • Holocaust: the systematic persecution and extermination of the Jews of Europe by Nazi Germany and its collaborators, is the most extreme example of antisemitism. • Anti-Semitism: refers to bias or hatred against Jews. • Racism: Is the notion that people are not equal but segregated into junior and senior by criteria such as skin color, nationality and religion. • Auschwitz: concentration camps • Humanity: is courtesy of conduct that stems from feelings of solidarity and compassion towards fellow man • Intolerance: no one hates anyone who does not have the same ideas with him. Skills procedural (visible only to teachers) 125
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
Team-group working, collaborative skills, dialog skills, willingness to learn, ability to search, find, discuss, support opinion and present. Creativeness, imagination, basic skills in art works understanding. Emotional expressions, positive thinking and feeling. Ready to reconsider our opinions. Tasks (visible to students) First stage: determining the need for critical investigation on the subject. Detection of ideas of students about life at Auschwitz. (What was Auschwitz, what happened in Auschwitz, human Inhumanity to man, human responsibility, Creativity, inspiration) Second stage: (duration 40 min) Expression of the views of students. What are you thinking when you hear the words "Holocaust, Antisemitism, Racism, Auschwitz, humanity, Intolerance? Third stage: the media and the critical questions that will be accessed. After discussion, the teacher and students agree on the media which will reach. Identify the critical questions, which will be discussed by the media. Of course, we must mention that no special art expertise is necessary for the teacher. The proposed media are: • What is the reality that prevailed at Auschwitz from the part of Jews detainees? • What is the reality that prevailed at Auschwitz from the part of Jews who managed to escape arrest; • What are the creative ways of expression for people who have experienced pain and anxiety conditions; And the proposed questions are: ➢ Up to what point can reach the human brutality? (inhumane acts) ➢ Why our life is always full of contradictions? ➢ Can man create even in harsh conditions and pain and anguish? Fourth stage: (10 minutes). Various artworks are selected as triggers of processing queries (each artwork can be associated with one or more critical questions) We can use any kind of artwork: Architecture, Sculpture, Visual Arts (painting, drawing), Literature, Poetry, Music, Theater, Opera, Dance, Cinematography, Photography, Comics. Proposed artworks (This media are proposed to be uploaded at “Video” or “External Resources” field). 1. The Ballad Of Mauthausen, Song Of Songs Lyrics: Iakovos Kambanelis, Music: Mikis Theodorakis https://youtu.be/K9oXXboppqk 2. Ella Liebermann-Shiber (1927-1998). Kaffeeholen!!! (Bring coffee!!!), Pencil on paper, 28 x 22cm 3. Halina Olomucki (1919-..). Portraits of Women Warsaw, Pencil on paper, 20.3 x 13.4 cm. Fifth stage: Art treatment referred to paintings (duration 90 minutes) o 1st phase: Time for observation. o 2nd phase: Broad and adventurous observation. o 3rd phase: Detailed and in-depth observation. o 4th phase: Review process. 5a Stage: Four phases of the D.Perkins technique. 1st artwork Kaffeeholen!!! (Bring coffee!!!), Ella Liebermann-Shiber (1927-1998) (Pencil on paper, 28 x 22cm) 2nd artwork Portraits of Women Warsaw, Halina Olomucki (1919-..) 126
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
(Pencil on paper, 20.3 x 13.4 cm.) At this point we describe the artworks just like seeing them. 1st phase: giving time for observation At this stage we ask students to observe the images and to respond spontaneously and express their first impressions of the art works without even try to interpret them. • Let your eyes to delve into works. What do you see? • What's the matter? • What triggers your curiosity? • What makes you wonder? • What happens to the images? • Is a person or an event? • What they have in the works of art? What is missing from these? 2nd phase: Broad and adventurous observation At this stage, we ask students to observe more closely the tables. • What might be happening here? • What makes you impression? Describe the colors, space, etc. • What feelings causing you this artwork? • Where is the main element of the picture located? • How much space from the paper/canvas is not included? • How are the pencil or brush strokes? Are they nervous? 3rd phase: Detailed and in-depth observation At this stage, we are trying to track down the central message of the table. • What else do you see in the artwork that impresses you? • Can you find possible answers to questions based on the information you have so far? • What can be the message of the project? • What do you think was the artist's motivation for creating art? • Was he/she prominent witness? • The "creation" was a mean to escape from reality? • He wanted to express his feelings? • Does the process of creating art served as a way of remedying the situation or an act of disobedience? 4th phase: process Overview At this stage, we ask students to reflect on, in all the comments and findings setted out in the previous stage. We ask them to try to associate the interpretations and conclusions related to the artwork with the critical questions which had been raised at an earlier stage of the method. Stage 5b: correlation of ideas that emerged on the stage 5α with the critical questions Students collecting their findings and coming up with conclusions related to artworks, understand the pain and the devastating side effects of wars. Questions: (a) What are you seeing? (b) What happens to the images? (c) what is the subject? (d) Is a person or an event? (e) What is missing from these paintings? Where is the main element of the picture? Where is Located? How much space from the paper/canvas is not included? Are they socked and confused? Art treatment referred to music: Song of Solomon: Students are asked to listen carefully to the song. Then they are prompted to locate the post of lyricist and especially where is evident the meaning of love, of pain but also of humanity. To relate all the features of the song to the critical questions and to express their concerns and thoughts caused. 127
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
Sixth Stage: (duration 45 minutes) Reassessment of initial assumptions and their enrichment Critic Self-reflection. Students write the same small task that prepared in the 2nd Stage. (If they had worked in groups on the 2nd Stage, now we need to work on the same teams). Synthesis and drawn conclusions. Final Assessment (visible to students) Does this educational scenario assist the enrichment of your knowledge about Holocaust? In which way? Maybe it can give you a deeper, more personal, more intimate aspect of the Holocaust; Is it private or intimate? Does it elevate your humanitarian sensitivity on a higher level? Approaching the Holocaust through art we manage: to enrich the students ' knowledge, to make students consider into a broader field and thematically concern to society and particularly the young people. Conclusions Approaching the Holocaust through art we manage to enrich the students' knowledge, to make them consider into a broader field and raise concern to society matters particularly from young people. Transformative Learning has as central element the critical thinking and rational discourse. The aim of this process is the realization of distorted and problematic assumptions and reform them into clear structures, open to change. Especially, Mezirow, J. (2009:132) states that: "The two main components of Transformative learning is firstly the critic contemplation or meditation, this critic-up in beliefs-the critical assessment of sources, nature and consequences of mental habits-and secondly, voluntary and full participation in a dialectic dialogue in order to anchor the best possible opinion». The concepts contemplation and critic rational dialogue are interactive and cooperating components of Transformative Learning process. Somehow the one process contains the other (Lintzeris, 2007). Critical reflection within the framework of the dialogue is the main instrument for the achievement of human communication. This is exactly what we also concluded from our project. Aknowledgments: Project e-lios (e-learning interactive open school) is an action-part of the axis: Collaboration for innovation and exchange of good practice in the field of school education of the European Program ERASMUS+ KA2 with code: 2015-1-EL01KA201-014029. This research has been funded by the specific European program and supervised by Professor Eugenia Koleza of the Department of Primary Education, University of Patras, who is also the Coordinator of the program. References • Dewey, J. (1980). Art as Experience. USA: The Penguin Group (1934). • Mezirow, J. (2009). Μια επισκόπηση της Μετασχηματίζουσας μάθησης. Στο K. Illeris (επιμ.) Σύγχρονες Θεωρίες Μάθησης. 16 Θεωρίες μάθησης… με τα λόγια των δημιουργών τους. Αθήνα: Μεταίχμιο • Perkins, D. (1994). The Intelligent Eye: Learning to Think by Looking at Art. Los Angeles: J. Paul Getty Museum • Κόκκος, Α. και συνεργάτες, (2011). Εκπαίδευση μέσα από τις Τέχνες. Εκδόσεις Μεταίχμιο • Κόκκος, Α., (2011). Σύγχρονες Προσεγγίσεις της Εκπαίδευσης Ενηλίκων: Οδηγός Μελέτης για τη Θ.Ε. ΕΚΕ52. Πάτρα,:Ελληνικό Ανοικτό Πανεπιστήμιο. • Κόκκος, Α., Η Εφαρμογή της μεθόδου «Μετασχηματίζουσα μάθηση μέσα από την αισθητική εμπειρία. (https://apothesis.eap.gr/handle/repo/31192)
128
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education. • • •
Κουλαουζίδης, Γ. (2015). Αισθητική εμπειρία και μετασχηματισμός ή προσπαθώντας να συνδέσουμε μια εκπαιδευτική μεθοδολογία με τις θεωρητικές προσεγγίσεις της μετασχηματιστικής εκπαίδευσης. Εκπαίδευση Ενηλίκων, τεύχος 35, σελ.4-15. Λιντζέρης, Π. (2007). Η σημασία του κριτικού στοχασμού και του ορθολογικού διαλόγου στη θεωρία του Jack Mezirow για τη Μετασχηματίζουσα Μάθηση. Έκδοση της Επιστημονικής Ένωσης Εκπαίδευσης Ενηλίκων. Μέγα, Γ. (2011). Η Τέχνη στο Σχολικό Σύστημα ως Στοχαστική Διεργασία. Στο: Α. Κόκκος και συνεργάτες. Εκπαίδευση μέσα από τις τέχνες. (σελ. 21-67), εκδ Μεταίχμιο. Αθήνα.
129
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
Ανάγκες εξ αποστάσεως εκπαίδευσης στα σχολεία της Ανατολικής Ευρώπης Χιωτέλης Ιωάννης, johnchiotelis@yahoo.gr Δημακόπουλος Γεώργιος, geodimako@gmail.com Περίληψη Στην παρούσα εργασία παρουσιάζεται έρευνα που έχει υλοποιηθεί σε χώρες της Ανατολικής Ευρώπης σχετικά με τις ανάγκες εξ αποστάσεως εκπαίδευσης και διείσδυσης της ψηφιακής τεχνολογίας στην εκπαίδευση. Μέσα από το δίκτυο δέκα συνεργαζόμενων σχολείων e-lios (e-learning interactive open school) ανιχνεύσαμε το βαθμό διείσδυσης νέων τεχνολογιών στην καθημερινή εκπαιδευτική πρακτική, το επίπεδο επιμόρφωσης των εκπαιδευτικών, τον αριθμό δυσπρόσιτων και απομακρυσμένων σχολείων ανά χώρα με ανάγκες εξ αποστάσεως μαθημάτων και τις δυνατότητες προσβασιμότητας στο διαδίκτυο. Αναζητήσαμε τις στρατηγικές που έχει αναλάβει κάθε χώρα ώστε να ενσωματώσει στην εκπαιδευτική διαδικασία τις νέες τεχνολογίες και να καλλιεργήσει κατ’ αυτό τον τρόπο τις ψηφιακές δεξιότητες των μαθητών και των εκπαιδευτικών. Στον ίδιο άξονα στρέψαμε την προσοχή μας στους εκπαιδευτικούς των συνεργαζόμενων σχολείων εντοπίζοντας τις δυσκολίες που συναντούν στην ενσωμάτωση τεχνολογικών εφαρμογών στην καθημερινή διδακτική τους πρακτική, αλλά και στην πρόθεσή τους για δημιουργία σύγχρονου και ασύγχρονου, διαδραστικού εκπαιδευτικού υλικού. ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Ανατολική Ευρώπη, ψηφιακή σύγκλιση, εξ αποστάσεως εκπαίδευση, ψηφιακή διείσδυση στην εκπαίδευση. Εισαγωγή Μελετώντας τις χώρες της ανατολικής Ευρώπης που συμμετέχουν στο πρόγραμμα elios συνειδητοποιούμε τους διαφορετικούς τρόπους με τους οποίους αντιμετωπίζουν την πρόκληση της ψηφιακής σύγκλισης. Η Ιταλία μια σύγχρονη ευρωπαϊκή χώρα αντιμετώπισε το 2012 την πρόκληση της ψηφιακής σύγκλισης. Η κυβέρνηση της Ιταλίας ενέταξε την ψηφιακή σύγκλιση στην εκπαίδευση στο πρόγραμμα «Ψηφιακή Ατζέντα για την Ευρώπη 2020», εντάσσοντας στο πλαίσιο του προγράμματός της την οικονομική ανάπτυξη, τη μείωση της ανεργίας και την αύξηση του βιοτικού επιπέδου μέσω της απόκτησης καινοτομικών ψηφιακών δεξιοτήτων (Legge 2015). Γίνεται αντιληπτό ότι η Ιταλία συνδυάζει την οικονομική ανάπτυξη και ευημερία με την εισαγωγή νέων τεχνολογιών στην εκπαίδευση. Το 2012 η Ιταλία κατατασσόταν στην 25η θέση από τα 28 μέλη της Ευρωπαϊκής ένωσης σε υποδομές διαδικτύου, ΤΠΕ, έρευνας και καινοτομίας στην εκπαίδευση (Η Ελλάδα 130
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
κατείχε την 26η) (European Commission, 2016). Η ιταλική κυβέρνηση εκπόνησε ένα φιλόδοξο σχέδιο ψηφιακής σύγκλισης με την ονομασία «Το Άριστο Σχολείο» (“The Good School”) (Ministero dell’Istruzione dell’Università e della Ricerca, 2015) (Presidenza del Consiglio dei Ministri 2015) ενισχύοντας τεχνολογικές δομές στα σχολεία όλων των βαθμίδων. Παράλληλα, εκπονήθηκε σχέδιο ευρείας επιμόρφωσης εκπαιδευτικών για την απόκτηση ψηφιακών δεξιοτήτων, ενώ ταυτόχρονα δημιουργήθηκαν υποστηρικτές ψηφιακές πλατφόρμες, εικονικά εκπαιδευτικά περιβάλλοντα και διατέθηκε αριθμός ηλεκτρονικών συσκευών στα σχολεία.
Σχήμα 3: Κατάταξη των 28 μελών κρατών της ΕΕ σε δομές ψηφιακής σύγκλισης και ανάπτυξης. Η εξ αποστάσεως εκπαίδευση απομακρυσμένων και δυσπρόσιτων σχολείων υποστηρίχθηκε από δυο κύρια προγράμματα: Το “Lepida project” που υποστηρίζει 60 δυσπρόσιτα-απομακρυσμένα σχολεία στην περιοχή Reggio Emilia και το πρόγραμμα “Smart Inclusion 2.0” για μακροχρόνια νοσηλευόμενα σε νοσοκομεία παιδιά. Στη γειτονική Τουρκία σχεδόν όλα τα Λύκεια έχουν διαδραστικούς πίνακες τουλάχιστον σε μια αίθουσα, ενώ όλα σχεδόν τα Λύκεια διαθέτουν εργαστήριο Ηλεκτρονικών Υπολογιστών. Ωστόσο στην Τουρκία τα προβλήματα στη χρήση ΤΠΕ στην εκπαίδευση προκύπτουν από την ελλιπή επιμόρφωση των εκπαιδευτικών στους τρόπους ενσωμάτωσης ΤΠΕ στην καθημερινή διδακτική πρακτική. Κατά καιρούς διοργανώνονται εκπαιδευτικά σεμινάρια στη χρήση τεχνολογικών εφαρμογών στην εκπαίδευση, αλλά αποδεικνύονται μη εφαρμόσιμα και ρεαλιστικά. Παράλληλα, στην Τουρκία λόγω του μεγάλου αριθμού εγκατάλειψης του σχολείου (Komisyonu 2013), έχουν οργανωθεί «ανοιχτά σχολεία» (open schools) για ενηλίκους με διαδικτυακά και εξ αποστάσεως μαθήματα αναρτημένα σε ψηφιακές πλατφόρμες. Η ασύγχρονη εκπαίδευση στις μαθησιακές αυτές ομάδες είναι σημαντική, καθώς προσφέρει τη δυνατότητα καταμερισμού χρόνου ανάλογα με τις ιδιαίτερες προσωπικές ανάγκες του καθενός. Τέλος, σημαντικές μετακινήσεις πληθυσμών στην ενδοχώρα της Τουρκίας, 131
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
αλλά και αξιοσημείωτες δημογραφικές μεταβολές (προφίλ γονέων-παιδιών, χάσμα γενεών κ.α.) (M.E.B., UNICEF, 2009, 2011, 2013) επιβάλλουν την εισαγωγή ψηφιακών εφαρμογών στην τουρκική εκπαίδευση ειδικά προς την κατεύθυνση της ανοικτής και εξ αποστάσεως εκπαίδευσης (Arastaman, 2009). Στη Βουλγαρία η εισαγωγή ηλεκτρονικού εκπαιδευτικού υλικού στα σχολεία, όπως εκπαιδευτικές πλατφόρμες, ανοιχτές πηγές δεδομένων και ηλεκτρονικές τάξεις, είναι προτεραιότητα του Υπουργείου Παιδείας της Βουλγαρίας. Το 2005 καταρτίστικε το στρατηγικό πλάνο εισαγωγής των ΤΠΕ στην εκπαίδευση με σκοπό να δημιουργηθεί σταδιακά ένα νέο περιβάλλον ψηφιακής μάθησης που θα επιτάχυνε την εκπαιδευτική διαδικασία και να συνεβαλλε στην ψηφιακή σύγκλιση. Σύμφωνα με το στρατηγικό πλάνο για τη ψηφιακή σύγκλιση, μεγάλος αριθμός σχολείων εξοπλίστηκε με ηλεκτρονικούς υπολογιστές, δωρεάν πρόσβαση στο διαδίκτυο και τα σχολικά εγχειρίδια διατίθονταν πλεόν και σε ηλεκτρονική μορφή. Ακολουθώντας το πλάνο οι εκπαιδευτικοί έπρεπε να εκπονήσουν μαθήματα σύμφωνα με τη νέα φιλοσοφία εκπαίδευσης, ενσωματώνοντας ΤΠΕ στην εκπαιδευτική διαδικασία. Το Υπουργείο Παιδείας της Βουλγαρίας, δημιούργησε εκπαιδευτικές πύλες με ηλεκτρονικό εκπαιδευτικό υλικό για όλα τα διδασκόμενα αντικείμενα, ενώ παράλληλα υποστήριξε πλατφόρμες εξ αποστάσεως εκπαίδευσης (Николова, 2014). Τέλος, οι εκπαιδευτικοί απόκτησαν πιστοποίηση στη χρήση εξειδικευμένων λογισμικών με εκπαιδευτικό προσανατολισμό. Ωστόσο, το 2014 εισήχθη ένα επικαιροποιημένο πρόγραμμα για την αποτελεσματικότερη εισαγωγή των ΤΠΕ στην Εκπαίδευση και την Έρευνα (20142020). Το πρόγραμμα ξεκίνησε το 2015 με κύριο στόχο την πλήρη, απρόσκοπτη και ανεμπόδιστη πρόσβαση στη γνώση και στην εκπαίδευση για όλους, ανεξάρτητα του τόπου διαμονής, το οικονομικού ή κοινωνικού επιπέδου. Φιλοδοξία του προγράμματος είναι η παροχή κινήτρων στους μαθητές ώστε να ενισχύσουν τις ψηφιακές τους δεξιότητες και να ενταχθούν ομαλότερα στην αγορά εργασίας. Στόχος του Υπουργείου Παιδείας της Βουλγαρίας είναι η δημιουργία εκπαιδευτικού υλικού διαθέσιμου μέσω διαδικτύου από οποιοδήποτε σημείο («σχολείο στο σύννεφο»), όπως και η υποστήριξη μιας εθνικής πλατφόρμας για τηλεδιασκέψεις και σύγχρονες, αλλά και ασύγχρονες διδασκαλίες. Η πλατφόρμα θα επικαιροποιείται με ηλεκτρονικά εκπαιδευτικά εγχειρίδια, διαδραστικό εκπαιδευτικό υλικό και πολυμεσικές εφαρμογές. Οι ιθύνοντες του Εκπαιδευτικού Συστήματος της Βουλγαρίας πιστεύουν σθεναρά ότι η αναβάθμιση του επιπέδου της εκπαίδευσης στη Βουλγαρία περνάει μέσα από την ψηφιακή σύγκλιση, τις καινοτομικές παιδαγωγικές προσεγγίσεις (Blended Learning, Flipped Learning), τη διάδραση και τον καταιγισμό ερεθισμάτων. Στη Ρουμανία εδώ και 15 χρόνια ξεκίνησε η προσπάθεια εισαγωγής ΤΠΕ στην εκπαίδευση. Η προσπάθεια αυτή προέκυψε ως αδήριτη ανάγκη προσαρμογής στα κοινωνικοοικονομικά δεδομένα της εποχής και με στόχο την ποιοτική αναβάθμιση της παρεχόμενης παιδείας. Ιδιαίτερη μέριμνα πάρθηκε προς την κατεύθυνση του 132
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
εξοπλισμού των σχολείων με υπολογιστές, τη συστηματική τους χρήση, αλλά και την εκπαίδευση του προσωπικού (εκπαιδευτικών). Αποτιμώντας την έως τώρα πορεία, φαίνεται πως δεν έχουν επιτευχθεί οι αρχικοί στόχοι, καθώς σχολεία, εκπαιδευτικοί οργανισμοί αλλά και πανεπιστήμια δεν έχουν ενσωματώσει σε ικανοποιητικό βαθμό της νέες τεχνολογίες στα αναλυτικά τους προγράμματα. Κυριότερος λόγος φαίνεται πως είναι η δυστοκία που παρατηρείται στην αλλαγή της εκπαιδευτικής νοοτροπίας από τους εμπλεκόμενους στην εκπαιδευτική διαδικασία κυρίως από τους καθηγητές. Αυτή η δυστοκία έγινε αντιληπτή εγκαίρως οπότε αποφασίστηκε η εκπόνηση νέου εθνικού στρατηγικού σχεδιασμού στην κατεύθυνση της ενσωμάτωσης νέων τεχνολογιών στην εκπαίδευση, καθώς αναγνωρίζεται η σπουδαιότητα απόκτησης δεξιοτήτων από τους εκπαιδευόμενους για την εισαγωγή τους στην αγορά εργασίας. Τη σχολική χρονιά 2012-2013 εισήχθησαν μαθήματα πληροφορικής στα αναλυτικά προγράμματα όλων των βαθμίδων εκπαίδευσης στη Ρουμανία. Παράλληλα, ενισχύθηκαν δομές δια βίου μάθησης στο πλαίσιο ευρωπαϊκών προγραμμάτων σύμφωνα και με τις βασικές κατευθυντήριες γραμμές της κοινής ευρωπαϊκής πολιτικής στην παιδεία. Αυτή τη στιγμή οι προσπάθειες εστιάζονται στη ψηφιακή σύγκλιση καθώς και στη γεφύρωση του χάσματος μεταξύ προσδοκιών και πραγματικότητας. Τέλος, στην Πολωνία ήδη από τις πρώτες τρεις τάξεις της εξάχρονης Πρωτοβάθμιας Εκπαίδευσης οι μαθητές εισάγονται στις βασικές αρχές των τεχνολογιών πληροφορικής. Στα επόμενα τρία χρόνια συνεχίζεται το μάθημα της πληροφορικής σε ελαφρά δυσκολότερο επίπεδο. Στη δευτεροβάθμια Εκπαίδευση στην Πολωνία (Γυμνάσιο) οι μαθητές συνεχίζουν να διδάσκονται πληροφορική, αλλά δεν αποτελεί εξεταζόμενο μάθημα στις απολυτήριες εξετάσεις. Σε κάθε περίπτωση δίνεται πολύ μεγάλη σημασία στο μάθημα της Πληροφορικής, καθώς σχετίζεται με την καλλιέργεια δεξιοτήτων που αποτελεί προτεραιότητα στο Πολωνικό Εκπαιδευτικό σύστημα. Στην αντίστοιχη «λυκειακή» εκπαίδευση, οι μαθητές διδάσκονται πληροφορική σε όλες τις τρεις τάξεις σε κάθε τύπο σχολείου (επαγγελματικό, τεχνικό, γενικό), αλλά στις απολυτήριες εξετάσεις, εξετάζονται προαιρετικά στο αντίστοιχο μάθημα, εάν το έχουν επιλέξει ως μάθημα επιλογής. Ειδικά στα τεχνικά λύκεια, απόφοιτοι με ειδίκευση στην Πληροφορική εξετάζονται υποχρεωτικά στο αντίστοιχο μάθημα. Το πολωνικό Υπουργείο Παιδείας τέλος, ενθαρρύνει και ενισχύει δράσεις ενσωμάτωσης νέων τεχνολογιών στην εκπαίδευση, αλλά καθώς το Πολωνικό Υπουργείο Οικονομικών διαθέτει τα κονδύλια για τη χρηματοδότηση της Παιδείας στην τοπική αυτοδιοίκηση (αποκέντρωση), εν πολλοίς είναι απόφαση και των τοπικών κοινωνιών η ενίσχυση η μη των σχολείων με τεχνολογικό εξοπλισμό.
Βασικά στοιχεία έρευνας Η έρευνα διεξήχθη από τον Φεβρουάριο του 2016 μέχρι το Σεπτέμβριο του ιδίου έτους. Έγινε με ψηφιακό ερωτηματολόγιο μέσω της πλατφόρμας Google Docs. Συμμετείχαν σχολεία από τις χώρες – εταίρους του Ευρωπαϊκού προγράμματος E-lios (E-learning 133
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
Interactive Open School) και συγκεκριμένα από την Ελλάδα, Ιταλία, Λετονία, Πολωνία, Βουλγαρία, Ρουμανία και Τουρκία. Αρχικά έλαβαν μέρος τα σχολεία βασικοί εταίροι του Προγράμματος και στη συνέχεια σχολεία από όλες τις βαθμίδες από όλες τις συμμετέχουσες χώρες. Στο ερωτηματολόγιο απάντησαν εκπαιδευτικοί όλων των ηλικιών με νεότερους εκπαιδευτικούς που έχουν γεννηθεί το 1982 και γηραιότερους εκπαιδευτικούς γεννηθέντες το 1958. Υπήρξε σχεδόν ομοιόμορφη ηλικιακή κατανομή, με ελαφρύ προβάδισμα νεότερων εκπαιδευτικών (γεννηθέντες από 1980 και μετά). Στην πλειοψηφία απάντησαν γυναίκες εκπαιδευτικοί με ποσοστό 80%, (Σχήμα 2) γεγονός που αποδίδεται στη συμμετοχή εκπαιδευτικών Πρωτοβάθμιας Εκπαίδευσης όπου σε όλες τις χώρες κυριαρχεί το θηλυκό γένος.
Σχήμα 4: Κατανομή κατά φύλλο των συμμετεχόντων στην έρευνα εκπαιδευτικών Το 63% όσων απάντησαν είναι κάτοχοι μεταπτυχιακού τίτλου ειδίκευσης, το 5% είνι κάτοχοι Διδακτορικού Διπλώματος και το υπόλοιπο ποσοστό απόφοιτοι Τριτοβάθμιας Εκπαίδευσης. Το 26% των συμμετεχόντων είναι φιλόλογοι, το 34% δάσκαλοι Πρωτοβάθμιας, το 14% εκπαιδευτικοί Πληροφορικής, το 23% καθηγητές Φυσικών Επιστημών και το υπόλοιπο ποσοστό διαφόρων άλλων ειδικοτήτων. Το σύνολο των συμμετεχόντων εκπαιδευτικών είχε επαγγελματική κατάρτιση και επιμόρφωση σε διάφορους τομείς με κυριότερους τις ΤΠΕ, τη συγγραφή και διαχείριση προγραμμάτων και τη Διδακτική-Παιδαγωγικά. Το 31% των συμμετεχόντων γνωρίζει περισσότερες από δυο ξένες γλώσσες, ενώ μόλις το 10% δε μιλάει καμία ξένη γλώσσα. Το υπόλοιπο ποσοστό γνωρίζει μια επιπλέον της μητρικής ξένη γλώσσα. Κυριότερα ευρήματα της έρευνας Σχετικά με το εάν οι εκπαιδευτικοί είναι κάτοχοι πιστοποίησης στις ΤΠΕ, περισσότεροι από το 60% δηλώνουν πιστοποιημένοι στις νέες τεχνολογίες και στην εισαγωγή αυτών των τεχνολογιών στην καθημερινή σχολική πρακτική. Τα ευρήματα μας φαίνονται στο παρακάτω σχήμα 3:
134
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
Σχήμα 3: Ποσοστά πιστοποιημένων στις ΤΠΕ εκπαιδευτικών στην Αν Ευρώπη. Στις χώρες της Ανατολικής Ευρώπης όπου διεξήχθη η έρευνα φαίνεται ότι υπάρχουν δυσπρόσιτα σχολεία που χρήζουν ηλεκτρονικής εξ αποστάσεως υποστήριξη. Το ποσοστό των σχολείων αυτών ξεπερνάει το 20%, δηλαδή ουσιαστικά ένα στα πέντε σχολεία είναι δυσπρόσιτο. Στο παρακάτω γράφημα (Σχήμα 4) παρατηρούμε την αντίστοιχη καταγραφή:
Σχήμα 4: Ποσοστά δυσπρόσιτων σχολείων στην Ανατολική Ευρώπη Από τις διατυπωμένες απαντήσεις φαίνεται ότι δεν υπάρχει ακριβής καταγεγραμμένος αριθμός μαθητών σε δυσπρόσιτα σχολεία στην Ανατολική Ευρώπη, ενώ από χώρα σε χώρα παρουσιάζονται μεγάλες διαφορές στον αριθμό των δυσπρόσιτων σχολείων. Σε κάποιες χώρες παρουσιάζεται εποχικότητα στον αριθμό των δυσπρόσιτων σχολείων λόγω ακραίων καιρικών συνθηκών. Στο 18% των καταγεγραμμένων απαντήσεων παρατηρούμε ότι ο αριθμός των μαθητών σε δυσπρόσιτα σχολεία υπερβαίνει τους 40.000, ενώ ποσοστό 20% περίπου δηλώνει ότι δεν υπάρχουν (ή δεν μπορούν να χαρακτηριστούν) δυσπρόσιτα σχολεία στις περιοχές τους. Το μεγαλύτερο ποσοστό ερωτηθέντων (περίπου 50%) δηλώνει ότι αντιστοιχούν περίπου 10.000 μαθητές σε δυσπρόσιτα σχολεία στην περιοχή-χώρα τους.
135
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
Στην ερώτηση αν όλα τα σχολεία της Ανατολικής Ευρώπης έχουν πρόσβαση στο διαδίκτυο, καταγράψαμε καθολική θετική ανταπόκριση, όπως φαίνεται και στο Σχήμα 5:
Σχήμα 5: Δυνατότητα πρόσβασης στο διαδίκτυο στα σχολεία της Ανατολικής Ευρώπης Ωστόσο, στις καταγεγραμμένες απαντήσεις των ερωτηθέντων και στον σχολιασμό, καταγράψαμε δυσκολίες που έχουν να κάνουν με τεχνικά θέματα (χαμηλή ευρυζωνικότητα, ασθενές σήμα, υπερφόρτωση δικτύων, καθυστερήσεις στη μετάδοση δεδομένων κτλ.). Οι εκπαιδευτικοί κάνουν εκτεταμένη χρήση ΤΠΕ στην εκπαιδευτική διαδικασία, διαπίστωση που πιστοποιείται και με τις καταγεγραμμένες απαντήσεις του σχήματος 6:
Σχήμα 6: Συχνότητα χρήσης ΤΠΕ στην εκπαίδευση στα σχολεία της Ανατολικής Ευρώπης από τους εκπαιδευτικούς. Παρατηρούμε ότι οι εκπαιδευτικοί σε ποσοστό 45% κάνουν καθημερινή χρήση των ΤΠΕ στην εκπαιδευτική και διδακτική διαδικασία, ενώ σε ποσοστό 90% περίπου χρησιμοποιούν τουλάχιστον 3 φορές την εβδομάδα ΤΠΕ στις τάξεις τους. Κατά δηλώσεις τους χρησιμοποιούν κυρίως το διαδίκτυο με τα μέσα που προσφέρει (Youtube, Google Docs, Wikispaces), ενώ δε λείπουν και εκπαιδευτικές εφαρμογές (Stellarium, SalsaJ, Phet) που μπορούν να εγκατασταθούν στους υπολογιστές και να 136
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
λειτουργήσουν εκτός σύνδεσης. Καταγράψαμε βέβαια και λιγότερο δημοφιλείς εφαρμογές με εξειδικευμένη χρήση (FileMaker, iMindMap). Στα προβλήματα που καταγράφονται από τη χρήση ΤΠΕ στην εκπαιδευτική διαδικασία, αναφέρουμε κυρίως προβλήματα συνδεσιμότητας, μη εγκατάστασης κατάλληλου λογισμικού, πεπαλαιωμένο δίκτυο, μη αναβαθμισμένοι υπολογιστές και έλλειψη εξοπλισμού στις τάξεις (μόνο ορισμένες τάξεις διαθέτουν εξοπλισμό). Στην ερώτηση για το εάν πιστεύετε ότι η εξ αποστάσεως εκπαίδευση θα βοηθήσει συγκεκριμένες ομάδες μαθητών, συντριπτική πλειοψηφία των ερωτηθέντων απάντησε πως ναι, αν και ένα ποσοστό (10%) πιστεύει ότι θα ωφελήσει επιλεκτικά συγκεκριμένες ομάδες μαθητών, όπως πρόσφυγες και μαθητές σε απομονωμένα δυσπρόσιτα σχολεία, ενώ δε θα ωφελήσει αστικές ή ημιαστικές μαθητικές ομάδες. Στο κρίσιμο ερώτημα προς εκπαιδευτικούς, εάν αυτοί οι ίδιοι θα παρέδιδαν διαδικτυακά εξ αποστάσεως μαθήματα, οι εκπαιδευτικοί διστάζουν να προχωρήσουν σε αυτή τη πρακτική και σε ποσοστό άνω του 60% δεν επιθυμούν να συμμετέχουν, όπως φαίνεται και στο σχήμα 7:
Σχήμα 7: θα παραδίδατε διαδικτυακά μαθήματα εξ αποστάσεως; Ερώτημα στους εκπαιδευτικούς των σχολείων της Ανατολικής Ευρώπης. Αυτό αποτελεί μια δυσάρεστη διαπίστωση που αποκαλύπτει ότι οι εκπαιδευτικοί ακόμα διστάζουν να εκτεθούν σε ευρύ κοινό εκτός τάξης. Ωστόσο, ένα ποσοστό 36% δείχνει ότι επιθυμεί να αποτελέσει την κρίσιμη μάζα που θα στηρίξει μια τέτοια προσπάθεια ήδη στο ξεκίνημά της. Στο ερώτημα ποια ψηφιακά εκπαιδευτικά εργαλεία ή ποιες ψηφιακές εκπαιδευτικές δυνατότητες θα ήταν χρήσιμες ή ουσιώδεις για την εκπαιδευτική διαδικασία οι περισσότεροι εκπαιδευτικοί αναφέρθηκαν στην σπουδαιότητα του ψηφιακού γραμματισμού μέσα από διαδικτυακές πλατφόρμες, στη χρήση εποπτικών μέσων, βιντεοπροβολέα συνδεδεμένο με υπολογιστή και διαδραστικών πινάκων. Επίσης, αναφέρθηκε η σπουδαιότητα των εικονικών επισκέψεων σε ερευνητικά κέντρα (CERN) και μουσεία. Επίσης, αναφέρθηκαν στην εξ αποστάσεως εκπαίδευση ως καταλυτικής σημασίας ειδικά σε απομακρυσμένα σχολεία, αλλά και για τη δια βίου 137
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
μάθηση των εκπαιδευτικών. Τέλος, η σημασία της απόκτησης ψηφιακών δεξιοτήτων έλαβε νέες διαστάσεις, καθώς όχι μόνο διασφαλίζεται η ομαλή ενσωμάτωση ενός μελλοντικού εργαζομένου στην αγορά εργασίας και στις σύγχρονες τεχνολογικές κοινωνίες, αλλά ταυτόχρονα δίνονται νέες δυνατότητες στη μάθηση ξένων γλωσσών και πειραματισμού στις φυσικές επιστήμες. Τέλος, περισσότερο από το 50% των ερωτηθέντων υποστήριξε ότι έχει εμπειρία στη διαθεματική προσέγγιση εκπαιδευτικών – διδακτικών αντικειμένων, ειδικά στην κατηγορία των ξένων γλωσσών μέσω του CLIL (Content and Language Integrated Learning) και στον τομέα των Φυσικών Επιστημών, όπου σχεδόν σε όλα τα σχολεία της Ανατολικής Ευρώπης οι καθηγητές των Φυσικών Επιστημών καλούνται να διδάξουν ένα ευρύ φάσμα αντικειμένων (Φυσική, Χημεία, Βιολογία, Γεωγραφία, Γεωλογία, Αστρονομία, Μαθηματικά και project). Σε αρκετές περιπτώσεις ενσωματώνονται και αρχές της Φιλοσοφίας των Επιστημών και διεπιστημονικές προσεγγίσεις σε συναφή διδακτικά θέματα. Συμπεράσματα Οι χώρες της Ανατολικής Ευρώπης, όπως φαίνεται και στο Σχήμα 1, κατέχουν τις τελευταίες θέσεις στην Ευρώπη των 28 σε ψηφιακή σύγκλιση στα εκπαιδευτικά τους συστήματα. Ωστόσο, έχει γίνει απόλυτα κατανοητό στις περισσότερες από αυτές τις χώρες ότι προκειμένου να καταπολεμήσουν την ανεργία και να ενταχθούν οι πολίτες τους στην αγορά εργασίας θα πρέπει να καλλιεργήσουν τις ψηφιακές δεξιότητες στα εκπαιδευτικά τους συστήματα. Πολλές χώρες εκπόνησαν εγκαίρως εκτενή προγράμματα εκσυγχρονισμού και επικαιροποίησης των εκπαιδευτικών τους συστημάτων. Αξιοσημείωτες είναι οι περιπτώσεις της Ιταλίας και της Ρουμανίας, όπου έχουν εκπονηθεί εκτενέστατα σχέδια ψηφιακής σύγκλισης στα εκπαιδευτικά τους συστήματα. Επίσης, είναι αξιοσημείωτο ότι τα περισσότερα προγράμματα αξιολογήθηκαν, αναμορφώθηκαν και αναπροσαρμόσθηκαν. Σε πολλές χώρες όπως στη Ρουμανία και στη Βουλγαρία παρατηρήθηκαν απτά θετικά αποτελέσματα στην αύξηση των ειδικών σε θέματα πληροφορικής και νέων τεχνολογιών. Οι εκπαιδευτικοί σε μεγάλο ποσοστό είναι πιστοποιημένοι στη χρήση ΤΠΕ στην εκπαίδευση, χρησιμοποιούν σε μεγάλο ποσοστό πάνω από τρεις φορές την εβδομάδα τις ψηφιακές δυνατότητες που τους παρέχονται και ενσωματώνουν ψηφιακά εργαλεία στη διδακτική πρακτική τους. Στο σύνολό τους τα σχολεία της Ανατολικής Ευρώπης είναι συνδεδεμένα στο διαδίκτυο, ωστόσο παρουσιάζονται ενίοτε τεχνικά προβλήματα στη ευρυζωνικότητα. Στο σύνολο των χωρών της Ανατολικής Ευρώπης υπάρχουν δυσπρόσιτα σχολεία που επιζητούν εξ αποστάσεως μαθήματα, ωστόσο οι εκπαιδευτικοί δεν είναι πρόθυμοι να παραδώσουν διαδικτυακά μαθήματα. Οι εκπαιδευτικοί αναζητούν ψηφιακά βοηθήματα στο διαδίκτυο και πιστεύουν στη συντριπτική τους πλειοψηφία ότι αυτά ενισχύουν τον γραμματισμό των μαθητών τους. Είναι καθολικά αποδεκτή η άποψη ότι μια από τις βασικότερες δεξιότητες που πρέπει να καλλιεργηθούν στα εκπαιδευτικά συστήματα είναι ο ψηφιακός γραμματισμός. 138
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
Aknowledgments: Το πρόγραμμα e-lios (e-learning interactive open school) είναι δράση που εντάσσεται στον άξονα: Collaboration for innovation and exchange of good practice in the field of school education του Ευρωπαϊκού Προγράμματος ERASMUS + KA2 με κωδικό: 2015-1-EL01-KA201-014029. Η έρευνα αυτή έχει χρηματοδοτηθεί από το συγκεκριμένο ευρωπαϊκό πρόγραμμα και επιβλέπεται από την καθηγήτρια του Παιδαγωγικού Τμήματος Δημοτικής Εκπαίδευσης του Πανεπιστημίου Πατρών κ. Ευγενία Κολέζα που είναι και η συντονίστρια του Προγράμματος. Αναφορές Arastaman, G. (2009). Lise Birinci Sınıf Öğrencilerinin Okula Bağlılık (School Engagement) Durumlarına ilişkin Öğrenci,Öğretmen ve Yöneticilerin Görüşleri. Pamukkale Üniversitesi Eğitim Fakültesi Dergisi, 26. Avrupa Komisyonu (2013). Reducing early school leaving: Key messages and policy support (http://ec.europa.eu/education/policy/strategic-framework/doc/esl-groupreport_en.pdf , Access Date: 14.05.2016) European Commission (2012). Europe 2020 Target: Early Leavers From Education and Training (http://ec.europa.eu/europe2020/pdf/themes/29_early_school_leaving.pdf, Access Date: 14.05.2016) European Commission, DG CNECT, (2016) Digital Economy and Society Index 2016, Country Profile, Italy European Commission, DG EAC, (2015) Education and Training Monitor 2015 Italy (Luxembourg, Publications Office of the European Union) Legge 13 luglio 2015, n. 107 “Riforma del Sistema nazionale di istruzione e formazione e delega per il riordino delle disposizioni legislative vigenti”, GU n. 162 del 15-7-2015, Rome M.E.B. (2009). MEB 2010-2014 Stratejik Planı (www.sgb.meb.gov.tr/Str_yon_planlama_V2/MEBStratejikPlan.pdf, Access Date: 14.05.2016) M.E.B. (2011). Devamsızlık ve Okulu Terk Riski Durum Saptamasıve İhtiyaç Analizi(Draft) (http://ysop.meb.gov.tr/dosyalar/adey/ihtiyacanaliziraporu.pdf , Access Date: 14.05.2016) M.E.B., UNICEF (2013). Ortaöğretimde Sınıf Tekrarı, Okul Terk Sebepleri ve Örgün Eğitim Dışında Kalan Çocuklar Politika Önerileri Raporu. (http://www.meb.gov.tr/earged/unicef/S%C4%B1n%C4%B1f%20Tekrar%C4%B1,%20Okul %20Terki%20Politika%20Raporu.pdf , Access Date: 14.05.2016) Ministero dell’Istruzione dell’Università e della Ricerca (2015) Piano Nazionale Scuola Digitale Presidenza del Consiglio dei Ministri (2015) Strategia per la crescita digitale 2014-2020 Николова, М. (2014) Мотивация за учене и учене чрез извънкласни форми на ученици от ромски произход, in Интеркултурното образование като средство за намаляване на отпадането на ромските деца от училище, (Veliko Tarnovo, National conference)
139
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
ONLINE EDUCATIONAL WORKING GROUPS. WHAT CAN STUDENTS’ "FACEBOOK" REVEAL? CHIOTELIS IOANNIS johnchiotelis@yahoo.gr THEODOROPOULOU MARIA mariatheodoropoulou@ymail.com ABSTRACT Social media are now affecting all sectors of modern societies. We tried to investigate how critically these networks are affecting education and furthermore which is the relevant number of an effective online group of students. We know that within a classroom a group of 4-5 students is the most effective for a well performing project. But which is the relevant number of students working online, from their homes? How many students can simultaneously collaborate online on the same project? In order to find the answer we focused on students’ social media. The main objects of our investigation were "Facebook" type networks of students aged 14 to 18 years old. We inquired on the number of friends, number of active connections and “network density”. We found that for networks counting 200-1000 members there is a linear dependence of the “network density” to the number of members. For smaller networks the relevant “network density” seems to increase asymptotically, mainly because members know each other very well, while for larger networks, the consistency is very low. We focused on networks counting 300600 student members finding that the ideal size of a functional and strongly interactive online working group is about 20 members. KEYWORDS: Social Networks, Sociocultural Method, Education, Internet, Pedagogy, Online Research, Network Density, Communication. INTRODUCTION Social networks have gathered interest over the last few years (Christakis & Fowler, 2009), (Marsden, 1987), (McPherson et. al. 2006), (Kristensen & Bjerkedal 2007), (Dodds et.al. 2003) play an important role in all aspects of our lives. Health issues e.g. how quickly a virus is spreading (Rothenberg et. al. 1998), (Helleringer & Kohler 2007), (Potterat et. al. 2002), economic issues, such as the capitals stream (Kelly & Gráda 2000), (Salganik et. al. 2006), (Watts & Strogatz 1998), the preparation and organization of election campaigns and election procedures (Huckfeldt & Sprague 1995), (Huckfeldt 1984), (Zuckerman 2005), (Nickerson 2008), even in interpersonal relationships and the love life of people (http://qz.com/140357/what-your-facebook-friends-list-reveals-about-your-love-life/#140357/whatyour-facebook-friends-list-reveals-about-your-love-life/) (McEwan 2012), (Boomsma et. al. 2005). However, especially in education the influence of social networks is high. Many researchers have investigated the strong relationship between social networks and education (Calvó-Armengol et. al. 2009), (Yuen & Yuen 2008), (Chuang & Ku 2010), (Goodman2010), (Doering et. al. 2009), (Ozkan & McKenzie 2008). L. Vygotsky, Doise, Mugny, and E. Wenger introduced a new pedagogical approach, called sociocultural (Cowie et. al. 2000), (Smaldino et. Al. 2008), (Newby et. al. 2006), (Armstrong 2004), (Artigue et. al. 2006), (Avouris et. al. 2003), (Scardamalia & Bereiter 1994), (Johnson & Johnson
140
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education. 1994), (Palloff & Pratt 1999), (Turkle 1996), (Dagdilelis 2006), (Wenger 1998) relying on social networks and their impact on education. We tried to investigate how "thick" are these networks, focusing on networks of students aged between 14 and 18 years old. Our research is mainly students’ "Facebook", a social network with great penetration at these specific ages. We looked at the number of truly active friends, i.e. how "thick" are Facebook type networks. Inquiring the actual number of active interfaces on a network could reach the size of a correspondingly effective workgroup of students. We know that in a class the maximum number for an effective and productive collaboration is 5 students (Driver et. al. 1996), (Springer et. al. 1999), (French & Kottke 2013), (Herrmann 2013). However, in an online group of students this number may vary. We are looking for the number of students who can work together in a social network efficiently. Technology provides the means, so that more than five students to interact directly, to exchange opinions, to discuss and search. On the basis of the predominant number of friends in the proposed social networks of students, we can assume the corresponding number of students in online project teams. EXPERIMENTAL SECTION Research Field We focused our study on the social networks of students, studying their friends’ grid at Facebook(https://www.facebook.com/?stype=lo&jlou=Affu0G3gZc9dEBNP_ve8V3yyhh7nN2Iw7nuY nYOYZZdEnkOTDpATsO5QBBYraZ6toh5ThrGroTilD6HBdIDM0zXv&smuh=35099&lh=Ac8lfeG VbhAgDC5-). For processing information that arises from these networks, we used the TouchGraph (http://www.touchgraph.com/facebook) application that provides the ability to create and to analyze the nexus friends on Facebook. In addition, TouchGraph offers us significant information about the number of friends and about intra-network connections between all friends. You can see a TouchGraph worksheet in Figure 1. We asked our online students to create their corresponding personal grids using TouchGraph. Accordingly, we asked them to record the number of friends and to aggregate the number of reciprocal links. Summing all the internal links of a lattice we can disclose important information about the density of the network (Hanneman & Riddle 2005), (Wasserman & Faust 1994), (Carrington et. al. 2005), (Wasserman & Galaskiewicz 1994). We recorded the number of connections between all friends and compared them with the number of members of the network (network size). We tried to find a relationship in a form of power-law between the number of network members and network density. Network Characteristics We have focused our research on a certain type of networks. We are totaly interested in school networks built gradually and solely by students (Barabási & Bert-László, 2002), (Wu & Tsai, 2006). We chose urban schools with average number of pupils among 150-200. We focused mainly on social networks and not onto professional networks. Professional networks such as those created through LinkedIn (http://www.linkedin.com/uas/logout?session_full_logout=&csrfToken=ajax%3A6629634475227999452&trk=nav_account_sub_nav_signout) is not as coherent (dense) as those composed by students. As shown in Figure 2, there are very few reciprocal links in a professional network in comparison to a private network. Important requirement for our research are social networks of students to have developed gradually (and not in a short time), so they are "mature and tested» Thus they can representatively reflect the relations between students from the same school in an urban or semirural area. For comparison purposes we collected data from three different schools by extending the survey to students aged 14 to 19 years in various regions. As the TouchGraph application enables us to aggregate all the connections between members of a network, we collected and processed relevant data. We asked all owners of networks to aggregate numbers of interconnections and to communicate the results to us. In addition, all pupils-owners of networks sent us the overall list of friends and the number of connections per friend. Thus we were able to uncover the extent of active and dynamic interfaces within a social network. Knowledge of active interfaces is of high interest, while it specifies the really active participants in a network (Barthelemy et.
141
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education. al. 2003), (Laughlin & Sejnowski, 2003), (Wagner & Leydesdorff, 2005), (Powell, et. al. 2005). We need to know this number, in order to organize the equivalent size of the web-working groups of students that will work effectively on a research project. RESULTS AND DISCUSSION Table 1 shows all the data collected. We can see the number of friends, number of links that actually exist (active) in each grid, the theoretically predicted maximum connections value, the percentage and the average number of connections per friend. The theoretically predicted maximum connections are calculated from the following statistics formula: đ?‘› đ?‘›! ( )= đ?‘˜ đ?‘˜! (đ?‘› − đ?‘˜)! where n is the number of friends (provided by Facebook), while k is the minimum number of friends connected, here k=2. The number of actual connections is calculated by summing all the connections, friend to friend (provided by TouchGraph). Network density (French & Kottke 2013), (Freeman 2004), (Easley & Kleinberg 2010), (Scott, 2000)is determined by dividing the number of actual connections to the theoretically predicted connections. đ?‘›đ?‘’đ?‘Ąđ?‘¤đ?‘œđ?‘&#x;đ?‘˜ đ?‘‘đ?‘’đ?‘›đ?‘ đ?‘–đ?‘Ąđ?‘Ś =
đ?‘Žđ?‘?đ?‘Ąđ?‘˘đ?‘Žđ?‘™ đ?‘?đ?‘œđ?‘›đ?‘›đ?‘’đ?‘?đ?‘Ąđ?‘–đ?‘œđ?‘›đ?‘ đ?‘Ąâ„Žđ?‘’đ?‘œđ?‘&#x;đ?‘’đ?‘Ąđ?‘–đ?‘?đ?‘Žđ?‘™đ?‘™đ?‘Ś đ?‘?đ?‘&#x;đ?‘’đ?‘‘đ?‘–đ?‘?đ?‘Ąđ?‘’đ?‘‘ đ?‘?đ?‘œđ?‘›đ?‘›đ?‘’đ?‘?đ?‘Ąđ?‘–đ?‘œđ?‘›đ?‘
This factor mightily concerns us, as it provides us with information about how dense is a network, essentially reflecting the interactions within the range. A highly interactive network provides rapid dissemination of information, thus allowing students to exchange their data rapidly. Additionally, the average number of friends is obtained by dividing the actual number of connections to the total number of friends: đ?‘Žđ?‘?đ?‘Ąđ?‘˘đ?‘Žđ?‘™ đ?‘›đ?‘˘đ?‘šđ?‘?đ?‘’đ?‘&#x; đ?‘œđ?‘“ đ?‘?đ?‘œđ?‘›đ?‘›đ?‘’đ?‘?đ?‘Ąđ?‘–đ?‘œđ?‘›đ?‘ đ?‘Ąđ?‘œđ?‘Ąđ?‘Žđ?‘™ đ?‘›đ?‘˘đ?‘šđ?‘?đ?‘’đ?‘&#x; đ?‘œđ?‘“ đ?‘“đ?‘&#x;đ?‘–đ?‘’đ?‘›đ?‘‘đ?‘ This factor indicates the average functional connections per network member. Due to the large number of network members is often difficult to capture all intra-network connections and the analysis thereof. We are overcoming this specific difficulty with the assistance of the average number of connections per member. This factor is not representative of the actual amount of connections per member, as a very popular member may exceed this number, while a less popular hardly can gain only few connections. Thus, we tried to identify the "true" popularity. To achieve this we have focused on the number of closer friends of each network member (top friends). This factor can be derived from TouchGraph, as shown in Figure 3. We limited our search to the top 100 friends for each social network owner and we calculated the average number of top connections per member. We excluded members with extremely high connectivity and members with very low, i.e. until one single friend. In the last column of table 1 we can see the popularity factor for the networks that we studied. Our main goal is to simulate the schools as online social networks, and to "identify" the size of a functional social network as the size of a corresponding school. In Figure 4, the density of networks in relation to the number of members is shown. We can clearly see the almost linear dependence of network density to the network's size (number of members). We limited our study within networks consisting of 200 to 1000 members about, i.e. medium-sized networks. Such networks can precisely simulate schools consisting of 200 up to 1000 pupils and draw important conclusions about data exchange rates (speed). Simulating linearly these points we depict the following equation: y=-0.0003x+0.4535 with extremely satisfactory simulation value (approach) R² = 0.98017. Network density is denoted by y the, while x the number of friends. This equation represents the linear dependency between the network đ?‘Žđ?‘Łđ?‘’đ?‘&#x;đ?‘Žđ?‘”đ?‘’ đ?‘›đ?‘˘đ?‘šđ?‘?đ?‘’đ?‘&#x; đ?‘œđ?‘“ đ?‘“đ?‘&#x;đ?‘–đ?‘’đ?‘›đ?‘‘đ?‘ =
142
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education. density and the number of members of the network for medium-sized networks. As the member’s number increases, the density decreases, revealing that if we want to achieve an operating school network we must exclusively rely on a respectively sized digital network. Additionally, we analyzed a few smaller networks (above 200 members), as well as larger ones (over 1000 members). In Figure 5 we present the corresponding data that are satisfactorily simulated by a sigmoid curve. We observe an asymptotic behavior for very small networks and a quick rundown for larger ones. These comments are rather expected as well. Small networks appear to be denser and all friends know each other quite well, while on the other hand, huge networks are characterized by loose connectivity and look more like professional networks. Above 1500 network members network connectivity seems to “collapse”, while single (one by one) connections dominated over multiconnectivity. Finally, the best fit to our experimental data turned to be a sigmoid curve, which equation given below: y=-1E-09x3+3E-06x2-0.002x+0.7837 (Simulation Value: R²=0.95336), by y we denote the density of the network and by x the number of friends. We can see a third power dependence law between the network density and number of friends. In addition, it seems that popularity is related to the density of the network. In Figure 6 we can see this association. TouchGraph application provides us with the necessary information about the popularity of the network members. We can confirm what we really expect: for high-density networks a common friend can be found for every 3-6 members, while for low-density networks a common friend can be found for every 25-30 members. This can be illustrated by the following math equation resulting from the simulation of the respective data: y=2,0113x-1,003 with simulation value (precision value): R² = 0.9986. We denote by y the network density, while x is the popularity factor that shows "how often" a mutual friend is being spotted or derived in a network. According to our information, we believe that networks with an average of 300-600 members are ideal for the exchange of information, because of their interconnections, their densities and internal interfaces. Finally, we searched all networks with a different number of members. We looked for the most common number of connections. We assume that statistically, members with large number of connections are scarce, while the majority of the members of a network are characterized by a medium number of connections. Each member of a network is developing a series of ties with other members. But which is the most common number of network connections throughout all networks we have studied? We recorded all the correlations, searching for the most common number of connections. Figure 7 shows the corresponding recordings revealing that the size of most effective and possible links to a network is from five to twenty members. Knowing that a research project within a classroom can ideally be conducted by a group of maximum five students, we expanded our findings into their respective groups on the net. Usually, a team at an online social network can be as big as we wish, but an optimal online workgroup for school research projects seem to be subject to some limitations. We assume that about twenty pupils is the ceiling of a well-functioning online research group. CONCLUSIONS Initially, we concluded that for medium-sized networks (200-1000 members) we have a linear dependence between the network density and the number of its constituent members. Secondly, for small networks under 200 members the network density seems to increases asymptotically, mainly because the members of a small network know each other very well, so they develop many online connections and build thus dynamic "relations". For larger networks, (over 1200 members) consistency is very low, and it seems that in approximately 1500 members the network "collapses", with almost zero network density. Furthermore, taking under consideration that according to Dunbar number (Lachance, 2011), (Dunbar, 1997) we are hardly able to know and communicate with more than 200 people, it is obvious that such big networks are very loose. Obviously, it is easier to find a mutual friend in networks with high density, than in networks with low density. Searching for mutual friends in a dense network, we can easily find one between 5-10 network members. On contrast, searching for mutual friends in a loose network we can hardly find one just among 25-30 members of the respective network. As regards school networks, the optimal number of members per
143
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education. network we believe that it’s around 300-600, from which we concluded to the optimal number of about 20 students per online research project. The required number of 300-600 members is critical in order to have the proper "tank" for “feeding” constructively the online working groups. The average number of 20 students per online "beehive" is crucial information for us, so that we can build our future school online working groups in "the cloud" and moreover to create potentially productive groups. Finally, school social networks are definitely denser than the professional ones, thus we chose to focus on them in order to tailor our findings directly to schools. The closer to the ages of the students we are the more realistic our conclusions are. ACKNOWLEDGEMENTS We would like to thank all the students for their contribution to our work. They formed the graphs of their personal networks and estimated all their personal connections. Finally, this research was held under the funding of ERASMUS+ KA2 program (code number: 2015-1EL01-KA201-014029) and within the framework of Collaboration for innovation and exchange of good practice in the field of school education. REFERENCES 1
. Christakis, N. A., & Fowler, J. H. (2009). Connected: The surprising power of our social networks and how they shape our lives. Little, Brown. 2 . Marsden, P. V. (1987). Core discussion networks of Americans. American sociological review, 122131. 3. McPherson, M., Smith-Lovin, L., & Brashears, M. E. (2006). Social isolation in America: Changes in core discussion networks over two decades. American sociological review, 71(3), 353-375. 4. Kristensen, P., & Bjerkedal, T. (2007). Explaining the relation between birth order and intelligence. Science, 316(5832), 1717-1717. 5 . Dodds, P. S., Muhamad, R., & Watts, D. J. (2003). An experimental study of search in global social networks. science, 301(5634), 827-829. 6. Rothenberg, R. B., Sterk, C., Toomey, K. E., Potterat, J. J., Johnson, D., Schrader, M., & Hatch, S. (1998). Using social network and ethnographic tools to evaluate syphilis transmission. Sexually transmitted diseases, 25(3), 154-160. 7. Helleringer, S., & Kohler, H. P. (2007). Sexual network structure and the spread of HIV in Africa: evidence from Likoma Island, Malawi. Aids, 21(17), 2323-2332. 8. Potterat, J. J., Muth, S. Q., Rothenberg, R. B., Zimmerman-Rogers, H., Green, D. L., Taylor, J. E., ... & White, H. A. (2002). Sexual network structure as an indicator of epidemic phase. Sexually transmitted infections, 78(suppl 1), i152-i158. 9. Kelly, M., & Gráda, C. Ó. (2000). Market Contagion: Evidence from the Panics of 1854 and 1857. American Economic Review, 1110-1124. 10. Salganik, M. J., Dodds, P. S., & Watts, D. J. (2006). Experimental study of inequality and unpredictability in an artificial cultural market. Science, 311(5762), 854-856. 11. Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’networks. Nature, 393(6684), 440-442. 1 2. Huckfeldt, R. R., & Sprague, J. (1995). Citizens, politics and social communication: Information and influence in an election campaign. Cambridge University Press. 13. Huckfeldt, R. R. (1984). Political loyalties and social class ties: The mechanisms of contextual influence. American Journal of Political Science, 399-417. 14. Zuckerman, A. S. (2005). The social logic of politics: Personal networks as contexts for political behavior. Temple University Press. 15. Nickerson, D. W. (2008). Is voting contagious? Evidence from two field experiments. American Political Science Review, 102(01), 49-57. 16.http://qz.com/140357/what-your-facebook-friends-list-reveals-about-your-love-life/#140357/whatyour-facebook-friends-list-reveals-about-your-love-life/ 17. McEwan, I. (2012). Enduring love. Random House.
144
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education. 1
8. Boomsma, D. I., Willemsen, G., Dolan, C. V., Hawkley, L. C., & Cacioppo, J. T. (2005). Genetic and environmental contributions to loneliness in adults: The Netherlands twin register study. Behavior Genetics, 35(6), 745-752. 1 9. Calvó-Armengol, A., Patacchini, E., & Zenou, Y. (2009). Peer effects and social networks in education. The Review of Economic Studies, 76(4), 1239-1267. 2 0. Yuen, S.C.Y. & Yuen, P. (2008).Social Networks in Education. In C. Bonk et al. (Eds.), Proceedings of World Conference on E-Learning in Corporate, Government, Healthcare, and Higher Education2008 (pp. 1408-1412). Chesapeake, VA: AACE. Retrieved April 14, 2017 from http://www.editlib.org/p/29829. 2 1. Chuang, H. Y., & Ku, H. Y. (2010, March). Users’ attitudes and perceptions toward online social networking tools. In Proceedings of Society for Information Technology & Teacher Education International Conference (pp. 1396-1399). 2 2. Goodman, A. (2010, October). Student and Faculty uses of Social Networking to Advance Learning in a Higher Education Classroom. In Proceedings: World Conference on E-Learning in Corporate, Government, Healthcare, and Higher Education, Orlando, FL, USA (998-1007). Chesapeake, VA: Association for the Advancement of Computing in Education. 2 3. Doering, A., Miller, C., Scharber, C., & Veletsianos, G. (2009, October). Designing with and for Technological Pedagogical Content Knowledge: The Evolution of GeoThentic. In E-Learn: World Conference on E-Learning in Corporate, Government, Healthcare, and Higher Education (Vol. 2009, No. 1, pp. 221-228). Association for the Advancement of Computing in Education (AACE).. 24. Ozkan, B., & McKenzie, B. (2008). Social networking tools for teacher education. TECHNOLOGY AND TEACHER EDUCATION ANNUAL, 19(5), 2772. 25. Helen Cowie et als. Editors. (2000) Social Interaction in Learning and Instruction. Pergamon – Earli. 26. Smaldino, S. E., Lowther, D. L., & Russell, J. D. (2008). Instructional technology and media for learning. 2 7. Newby, T., Stepich, D., Lehman, J., & Russell, J. (2006). Educational technology for teaching New Jersey: Pearson Merrill Prentice Hall. 2 8. Armstrong, A. M. (Ed.). (2004). Instructional design in the real world: A view from the trenches. IGI Global. 2 9. Artigue, M., Haspékian, M., Cazes, C., Bottino, R. M., Cerulli, M., Kynigos, C., & Mariotti, M. A. (2006). Methodological tools for comparison of learning theories in technology enhanced learning in mathematics. 3 0. Avouris, N., Dimitracopoulou, A., & Komis, V. (2003). On analysis of collaborative problem solving: An object-oriented approach. Computers in Human Behavior, 19(2), 147-167. 31. Scardamalia, M., & Bereiter, C. (1994). Computer support for knowledge-building communities. The journal of the learning sciences, 3(3), 265-283. 32. Johnson, D. W., & Johnson, R. T. (1994). Learning together and alone. Cooperative, competitive, and individualistic learning. Allyn and Bacon, 160 Gould Street, Needham Heights, MA 02194. 33. Palloff, R. M., & Pratt, K. (1999). Building learning communities in cyberspace (Vol. 12). San Francisco: Jossey-Bass. 34. Turkle, S. (1996). Virtuality and its discontents searching for community in cyberspace. 35. Vassilios Dagdilelis, (2006) “Critical eLiteracy and Online communities: some considerations”, Conference eLit 36. Wenger, E. (1998). Communities of practice: Learning, meaning, and identity. Cambridge University Press. 37. Driver, R., Leach, J., & Millar, R. (1996). Young people's images of science. McGraw-Hill Education (UK). 38. Springer, L., Stanne, M. E., & Donovan, S. S. (1999). Effects of small-group learning on undergraduates in science, mathematics, engineering, and technology: A meta-analysis. Review of educational research, 69(1), 21-51. 39. French, K. A., & Kottke, J. L. (2013). Teamwork satisfaction: Exploring the multilevel interaction of teamwork interest and group extraversion. Active Learning in Higher Education, 14(3), 189-200. 40. Herrmann, K. J. (2013). The impact of cooperative learning on student engagement: Results from an intervention. Active Learning in Higher Education, 14(3), 175-187. 41.https://www.facebook.com/?stype=lo&jlou=Affu0G3gZc9dEBNP_ve8V3yyhh7nN2Iw7nuYnYOY ZZdEnkOTDpATsO5QBBYraZ6toh5ThrGroTilD6HBdIDM0zXv&smuh=35099&lh=Ac8lfeGVbh AgDC54 2. http://www.touchgraph.com/facebook 4 3. Hanneman, R. A., & Riddle, M. (2005). Introduction to social network methods.
145
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education. 4
4. Wasserman, S., & Faust, K. (1994). Social network analysis: Methods and applications (Vol. 8). Cambridge University Press. 4 5. Carrington, P. J., Scott, J., & Wasserman, S. (Eds.). (2005). Models and methods in social network analysis (Vol. 28). Cambridge University Press. 4 6. Wasserman, S., & Galaskiewicz, J. (Eds.). (1994). Advances in social network analysis: Research in the social and behavioral sciences (Vol. 171). Sage Publications. 47. Barabási, A. 1. bert-László. Linked: the New Science of Networks. Cambridge (MA), 2002. 280 p. ISBN 0-7382-0667-9. 48. Wu, Y. T., & Tsai, C. C. (2006). University Students' Internet Attitudes and Internet Self-Efficacy: AStudy at Three Universities in Taiwan. Cyberpsychology & behavior, 9(4), 441-450. 49.http://www.linkedin.com/uas/logout?session_full_logout=&csrfToken=ajax%3A6629634475227999452&trk=nav_account_sub_nav_signout 50. Barthelemy, M., Gondran, B., & Guichard, E. (2003). Spatial structure of the internet traffic. Physica A: statistical mechanics and its applications, 319, 633-642. 5 1. Laughlin, S. B., & Sejnowski, T. J. (2003). Communication in neuronal networks. Science, 301(5641), 1870-1874. 5 2. Wagner, C. S., & Leydesdorff, L. (2005). Mapping the network of global science: comparing international co-authorships from 1990 to 2000. International journal of Technology and Globalisation, 1(2), 185-208. 5 3. Powell, W. W., White, D. R., Koput, K. W., & Owen-Smith, J. (2005). Network dynamics and field evolution: The growth of interorganizational collaboration in the life sciences 1. American journal of sociology, 110(4), 1132-1205. 5 4. Freeman, L. (2004). The development of social network analysis. A Study in the Sociology of Science. 55. Easley, D., & Kleinberg, J. (2010). Networks, crowds, and markets: Reasoning about a highly connected world. Cambridge University Press. 5 6. Scott, J. (2000). Social Network Analysis: A Handbook. 2nd edn SAGE Publications. 5 7. Lachance, J. (2011). New Biological Books Evolution How Many Friends Does One Person Need? Dunbar's Number and Other Evolutionary Quirks. By Robin Dunbar. Cambridge (Massachusetts): Harvard University Press. $27.95. vi+ 302 p.; index. ISBN: 978‐0‐674‐05716‐6. 2011. The Quarterly Review of Biology, 86(2). 5 8. Dunbar, K. (1997). How scientists think: On-line creativity and conceptual change in science. Creative thought: An investigation of conceptual structures and processes, 4.
146
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
Figure 5: Student’s Facebook grid, as it’s depicted from TouchGraph. The network is characterized by different colored areas that reveal different meeting resources (friendship development period). In the lower left side all friends were presented and the number of reciprocal interconnections is referred.
Figure 6: Comparison between two different networks of the same person. The left network represents a professional network, while the network on the right shows a private network. We can see that the private network is by far denser than the professional one. The number of mutual friends is greater in a social network and reflects the real social life. On the other hand a professional network with few common friends resembles the professional status.
Network owner
Number Of Friends
Actual (Real) Connections
Theoretically predicted connections
Network density
Average
Popularity Factor
1st
435
30925
94395
0.33
71
6,1
2nd
914
90340
417241
0.22
99
9,2 147
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
3rd
1347
68933
906531
0.08
51
26,4
4th
229
10020
26106
0.38
43,8
5,2
5th
665
66541
220780
0.30
100
6,6
6th
685
17533
234270
0.07
25,6
26,8
7th
773
124713
298378
0.42
161
4,8
8th
82
2218
3321
0.67
27
3,0
9th
331
38942
54615
0.71
118
2,8
10th
188
6103
17578
0.34
32,5
5,8
11th
96
2332
4560
0.51
24,3
4,0
Table 1: Number of friends, number of actual connections, theoretically predicted connections, network density, average number and popularity factor per friend.
Figure 7: Two separate nodes with the relevant connections within each network. In both two images we used the grid of the first owner of the network. We can see that the average number of connections per node is around six. For clarity we present only the top 100 friends on the grid in these graphs.
148
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education. 0,45 0,4
Network Density
0,35 0,3 0,25 0,2 0,15 0,1 0,05 0 0
200
400
600
800
1000
1200
1400
1600
1400
1600
Number of "friends"
Figure 8: The network’s Density, relative to the number of “friends”.
0,9 0,8
Network Density
0,7 0,6 0,5 0,4 0,3 0,2 0,1 0 0
200
400
600
800
1000
1200
Number of "friends"
Figure 9: Network density in comparison with the number of members of a network (friends). We can see the asymptotic behavior for small networks and the rapid decline in large networks.
149
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education. 0,8 0,7
Network Density
0,6 0,5 0,4 0,3 0,2 0,1 0 0
5
10
15
20
25
30
Popularity
Figure 10: Network density in relation to the popularity factor, i.e. the number of closer friends per member of the network.
60
Number of network members
50 40 30 20 10
1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106 113 120 127 134 141 148 155 162 169 176
0 -10
Number of connections
Figure 11: Number of connections per member in a network. We can see that the optimal range of online connections is 5-20 links.
150
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
Οι αναπηδήσεις μιας ελαστικής μπάλας. Πλήθος και χρονική διάρκεια αναπηδήσεων. Χιωτέλης Ιωάννης, johnchiotelis@yahoo.gr, Λύρη Αναστασία, natasaliri@yahoo.gr Περίληψη Στην παρούσα εργασία μελετήσαμε την κίνηση μιας ελαστικής σφαίρας που αφήνεται νε πέσει ελεύθερα από κάποιο ύψος και στη συνέχεια αναπηδά μέχρι να ηρεμήσει. Η θεωρητική αντιμετώπιση του συγκεκριμένου προβλήματος είναι πολύπλοκη και προϋποθέτει σειρά παραδοχών. Εκτελέσαμε το πείραμα καταγράφοντας την κίνηση με βίντεο και στη συνέχεια αναλύσαμε με τη βοήθεια tracker της εφαρμογής Video Physics, την κίνηση του σώματος. Χρησιμοποιήσαμε μπαλάκι επιτραπέζιας αντισφαίρισης (πινγκ-πονγκ) και προσπαθήσαμε να προσδιορίσουμε τις τιμές των αρχικών συνθηκών στη θεωρητική προσέγγιση του προβλήματος. Το πείραμα επαναλήφθηκε αρκετές φορές καταγράφοντας κάθε φορά τα δεδομένα προς επεξεργασία. Η επεξεργασία έγινε με τις εφαρμογές Graphical και Graphical Analysis 3.8.4. Προσεγγίσαμε ικανοποιητικά τη θεωρητική περιγραφή της κίνησης, ωστόσο δε λάβαμε υπόψη παραμέτρους όπως η αντίσταση του αέρα. Η μελέτη συνεχίζεται. Λέξεις-Κλειδιά: Αναπηδήσεις σφαιρικού σώματος, tracker, Video Physics, Graphical, Graphical Analysis 3.8.4. Εισαγωγή Αν μια ελαστική σφαίρα, όπως ένα μπαλάκι του πινγκ πονγκ αφεθεί από ορισμένο ύψος να πέσει στη οριζόντια επιφάνεια ενός δαπέδου, θα υποστεί διαδοχικές αναπηδήσεις μέχρι να ηρεμήσει και να ακινητοποιηθεί. Η χρονική διάρκεια της ολικής κίνησης, το ύψος κάθε επιμέρους αναπήδησης, ο αριθμός των αναπηδήσεων, αλλά και η οριζόντια απομάκρυνση από το σημείο ρίψης έχουν απασχολήσει τους επιστήμονες στην μελέτη της συγκεκριμένης κίνησης (Cross 2000), (Cross 1999). Η απώλεια ενέργειας κατά την κρούση στην επιφάνεια (Cross 1999), αλλά και η στιγμιαία ολίσθηση της σφαίρας κατά την επαφή (Cross 2005) είναι καθοριστικοί παράμετροι στη μελέτη της κίνησης. Πολλοί συγγραφείς επεκτείνουν τη μελέτη σε περιπτώσεις περιστρεφόμενης σφαίρας που προσκρούει πλάγια σε επιφάνεια (Cross 2007), ή ακόμα και πρόσκρουσης σε επιφάνεια με δυνατότητα εφαπτομενικής κίνησης (Cross 2010). Η μελέτη των συγκεκριμένων κρούσεων έχει σημαντικές εφαρμογές σε φυσικά συστήματα, όπως μελέτη της συμπεριφοράς ιδανικών αερίων, αλληλεπίδρασης ύλης ακτινοβολίας, αλληλεπίδραση σωματιδίων, αλλά και σε μηχανικά συστήματα όπως σε λιπαντικά (Cross 2012). Η πλήρης θεωρητική μελέτη της κίνησης ενός σώματος που αναπηδά 151
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
είναι εξαιρετικά σύνθετη και οδηγεί σε χαοτική συμπεριφορά (Tufillaro & Albano, 1986), (Everson, 1986), (Kowalik, et. al. 1988). Ωστόσο είναι σημαντική για πλήθος εφαρμογών, ακόμα και σε κβαντικό επίπεδο (Gea-Banacloche, 1999). Εμείς στην παρούσα εργασία αποτυπώσαμε με βίντεο την κίνηση του σώματος, καταγράψαμε με tracker τις διαδοχικές θέσεις του σώματος και εφαρμόζοντας μια σειρά από μαθηματικούς τύπους προσπαθήσαμε να προσεγγίσουμε και να περιγράψουμε θεωρητικά την κίνηση της σφαίρας μας. Καταγραφή πειραματικών δεδομένων-Επεξεργασία Αρχικά προσδιορίσαμε ένα σταθερό σημείο από το οποίο θα αφήναμε το σώμα (μπαλάκι επιτραπέζιας αντισφαίρισης) να πέσει, κάνοντας ελεύθερη πτώση. Μετρήσαμε με μετροταινία το ύψος από το οποίο αφήσαμε το σώμα και το βρήκαμε ίσο με 1,2 m, όπως φαίνεται στην Εικόνα 1. Είναι σημαντική η επιλογή σταθερού σημείου και η επανάληψη των μετρήσεων από το ίδιο ακριβώς σημείο, για λόγους βαθμονόμησης, καθώς και εισαγωγής αρχικών δεδομένων στο λογισμικό Video Physics. Με την εισαγωγή αυτών των αρχικών δεδομένων θέσης και χρόνου, το λογισμικό (tracker) θα μπορέσει να υπολογίσει και τα υπόλοιπα φυσικά μεγέθη.
152
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
Εικόνα 12: Εισαγωγή αρχικών δεδομένων στο Video Physics Στη συνέχεια τοποθετήσαμε το ipad (εναλλακτικά είχαμε και iphone) με εγκατεστημένο το λογισμικό Video Physics σε σταθερό σημείο προσαρμοσμένο σε τρίποδο, ώστε να μπορεί να καταγράψει το video της κίνησης ανεπηρέαστο και με σταθερή βάση αναφοράς. Αυτή η διαδικασία είναι σημαντική στην ανίχνευση του αντικειμένου που πέφτει από τον tracker. Επίσης, εάν δεν είναι σε σταθερό σημείο το ipad δε θα καταγράφαμε ακριβώς τις διαδοχικές θέσεις (διαδοχικά σημεία) εισάγοντας έτσι σφάλματα στο πείραμα. Επίσης, επαναλάβαμε τις πτώσεις αρκετές φορές, ώστε να έχουμε επαναληψιμότητα στις μετρήσεις μας. Με τη βοήθεια του λογισμικού Video Physics καταγράφουμε το βίντεο της κίνησης του αντικειμένου και των διαδοχικών αναπηδήσεων. Στη συνέχεια «πληροφορούμε» τον tracker για το αντικείμενο (σφαιρίδιο επιτραπέζιας αντισφαίρισης) που πρέπει να «ακολουθήσει» καταγράφοντας τις διαδοχικές του 153
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
θέσεις για συγκεκριμένα διαδοχικά χρονικά διαστήματα (φωτογραφικά καρέ). Το λογισμικό δίνει τη δυνατότητα χειροκίνητης καταγραφής των διαδοχικών θέσεων του αντικειμένου σε περίπτωση που ο tracker «χάνει» το ίχνος. Η απώλεια του ίχνους του αντικειμένου είναι ακόμα ένας λόγος για τον οποίο πρέπει η ποιότητα του βίντεο να είναι άριστη, ωστόσο αυτό δεν είναι πάντα εφικτό καθώς οι λήψεις γίνονται ενίοτε και σε εξωτερικούς χώρους. Μια καταγραφή των διαδοχικών θέσεων ενός από τα πειράματα που εκτελέσαμε φαίνεται στην Εικόνα 2.
Εικόνα 13: Καταγραφή της τροχιάς (διαδοχικές θέσεις) ενός αντικειμένου (μπαλάκι επιτραπέζιας αντισφαίρισης) που πέφτει, με τη βοήθεια του tracker στο λογισμικό Video Physics Στην Εικόνα 1 φαίνονται επίσης η δυνατότητα προσδιορισμού των αξόνων X και Υ, με επιλογή περιστροφής τους και η βαθμονόμηση με καθορισμό των αρχικών μεγεθών. Εδώ ορίζουμε το ύψος (1,2 m), όπως φαίνεται στο ένθετο. Το δαχτυλίδι που φαίνεται στην Εικόνα 2 χρησιμοποιείται για να σηματοδοτήσουμε το αντικείμενο μελέτης, εδώ το σώμα που εκτελεί τις αναπηδήσεις. Με αυξομείωση του δακτυλίου πετυχαίνουμε να ορίσουμε ακριβώς το σώμα που μας ενδιαφέρει να μελετήσουμε. Στη συνέχεια το λογισμικό δημιουργεί τις γραφικές παραστάσεις: τροχιάς (Χ-Υ), θέσης – χρόνου (Χ-t) και (Υ- t) και ταχύτητας – χρόνου (u-t) για τη μετατόπιση στον 154
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
άξονα Χ και στον άξονα Υ. Ενδεικτική γραφική παράσταση φαίνεται στην Εικόνα 3.
Εικόνα 14:Γραφική παράσταση θέσης – χρόνου (Υ- t), όπως προέκυψε από το λογισμικό Video Physics για πτώση και αναπηδήσεις μπάλας επιτραπέζιας αντισφαίρισης. Επεξεργαζόμαστε τα δεδομένα μας με τη χρήση των λογισμικών Graphical ή Graphical Analysis (διατίθενται δωρεάν στο διαδίκτυο) και με το Excel. Με τα προγράμματα αυτά προσομοιώνουμε τις μετρήσεις, ώστε να εξάγουμε τις καμπύλες μετρήσεων και τις αντίστοιχες εξισώσεις που τις περιγράφουν. Ενδεικτική προσομοίωση των μετρήσεων φαίνεται στην Εικόνα 4.
Κατακόρυφη μετατόπιση (m)
1,4 1,2 1 0,8 0,6 0,4 0,2 0 -0,2
0
1
2
3
4
5
Χρόνος (s)
Εικόνα 15: Προσομοίωση πειραματικών μετρήσεων θέσης – χρόνου (Υ- t) για πτώση αντικειμένου (μπάλα επιτραπέζιας αντισφαίρισης) Μαθηματικό μοντέλο Από τις πειραματικές μετρήσεις θα επιχειρήσουμε να υπολογίσουμε την απομάκρυνση του σώματος (μπαλάκι πινγκ πονγκ) από το σημείο ρίψης. Για να μπορέσουμε να προσδιορίσουμε θεωρητικά την απόσταση ακολουθούμε την παρακάτω μαθηματική 155
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
μεθοδολογία. Ας υποθέσουμε ότι η (𝛼𝑛 )𝑛∈ℕ είναι μια ακολουθία πραγματικών αριθμών. Με βάση αυτήν κατασκευάζουμε μια νέα ακολουθία ως εξής: 𝑠1 = 𝑎1 𝑠2 = 𝑎1 + 𝑎2 𝑠3 = 𝑎1 + 𝑎2 + 𝑎3
……………………………… 𝑛
𝑠𝑛 = 𝑎1 + 𝑎2 +. . . +𝑎𝑛 = ∑ 𝑎𝑘 𝑘=1
Το αντίστοιχο άπειρο άθροισμα: +∞
∑ 𝑎𝑛 𝑛=1
Ονομάζεται σειρά με όρους 𝑎𝑛 ενώ η (𝑆𝑛 )𝑛∈ℕ καλείται ακολουθία μερικών αθροισμάτων της σειράς. Ειδικά, μια σειρά της μορφής 𝑎 + 𝑎𝑟 + 𝑎𝑟 2 + 𝑎𝑟 3 + ⋯ + 𝑎𝑟 𝑛−1 + ⋯
(1)
ονομάζεται γεωμετρική σειρά. Ο λόγος κάθε όρου προς τον προηγούμενο είναι r. Ο λόγος r μπορεί να είναι πραγματικός αριθμός με r ≠ 0. Το άθροισμα των n πρώτων όρων της (1) είναι: 𝑆𝑛 = 𝑎 + 𝑎𝑟 + 𝑎𝑟 2 + 𝑎𝑟 3 + ⋯ + 𝑎𝑟 𝑛−1
(2)
Πολλαπλασιάζοντας και τα δυο μέλη της (2) με r, παίρνουμε 𝑟𝑆𝑛 = 𝑎𝑟 + 𝑎𝑟 2 + 𝑎𝑟 3 + ⋯ + 𝑎𝑟 𝑛−1 + 𝑎𝑟 𝑛
(3)
Όταν αφαιρέσουμε την (3) από την (2), όλοι σχεδόν οι όροι στο δεξιό μέλος αλληλοεξουδετερώνονται και: 𝑆𝑛 − 𝑟𝑆𝑛 = 𝑎 − 𝑎𝑟 𝑛 (1 − 𝑟)𝑆𝑛 = 𝑎(1 − 𝑟 𝑛 )
Αν 𝑟 ≠ 1 τότε: 𝑆𝑛 =
𝑎(1− 𝑟 𝑛 ) (1−𝑟)
(4)
Στο δεξιό μέρος της (4), το n εμφανίζεται μόνο στην έκφραση 𝑟 𝑛 . Αν |𝑟| < 1 τότε ο όρος 𝑟 𝑛 πλησιάζει το 0, καθώς το 𝑛 → ∞. Συνεπώς: 156
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education. 𝑎(1− 𝑟 𝑛 ) 𝑛→∞ (1−𝑟)
lim 𝑆𝑛 = lim
𝑛→∞
=
𝑎 (1−𝑟)
αν |𝑟| < 1
Αν θυμηθούμε ότι 𝑟 0 = 1, όταν 𝑟 ≠ 1, μπορούμε να γράψουμε: ∞ 2
3
𝑎 + 𝑎𝑟 + 𝑎𝑟 + 𝑎𝑟 + ⋯ + 𝑎𝑟
𝑛−1
+ ⋯ = 𝛼 ∑ 𝑟 𝑛−1 = 𝑛=1
𝑎 (1 − 𝑟)
αν 0 < r < 1. Τελικά καταλήγουμε στο συμπέρασμα ότι αν |𝑟| < 1 η γεωμετρική σειρά 𝑎 + 𝑎𝑟 + 𝑎 𝑎𝑟 2 + 𝑎𝑟 3 + ⋯ + 𝑎𝑟 𝑛−1 + ⋯ συγκλίνει στο (1−𝑟). Στην περίπτωσή μας της μπάλας που αναπηδά κατακόρυφα έχουμε τα ακόλουθα: Η μπάλα αφήνεται να πέσει από ύψος 𝛼 μέτρων πάνω σε μια επίπεδη επιφάνεια. Κάθε φορά που η μπάλα προσκρούει στην επιφάνεια αφού πέσει από ύψος ℎ, αναπηδά κατά μια απόσταση 𝑟ℎ, 0 < 𝑟 < 1.
Το ολικό διάστημα που θα διανύσει η μπάλα μπορεί να δοθεί από τη σειρά: 𝑆 = 𝑎 + 2𝑎𝑟 + 2𝑎𝑟 2 + 2𝑎𝑟 3 + ⋯
Όλοι οι όροι εκτός από τον πρώτο σχηματίζουν μια γεωμετρική σειρά με άθροισμα 2𝑎𝑟 . (1−𝑟) Άρα το διάστημα είναι: 2𝑎𝑟
1+𝑟
𝑆 = 𝑎 + (1−𝑟) = 𝛼 1−𝑟
(5)
157
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
Επεξεργασία Από την Εικόνα 1, όπου φαίνονται τα πειραματικά μας δεδομένα, μπορούμε να καταγράψουμε τις αντίστοιχες τιμές θέσης (άξονας y) μιας σφαίρας επιτραπέζιας αντισφαίρισης (πινγκ πονγκ) που αναπηδά κατακόρυφα, σε συνάρτηση με το χρόνο. Αυτή η πληροφορία είναι εξαιρετικά σημαντική, καθώς αποτελεί το πραγματικό, ρεαλιστικό πειραματικό δεδομένο μας, το οποίο θα συγκρίνουμε με την αντίστοιχη μαθηματική προσέγγιση. Ουσιαστικά έχουμε δημιουργήσει ένα μαθηματικό μοντέλο που παρέχει πληροφορίες σχετικά με την υπό μελέτη κίνηση και θέλουμε να το επαληθεύσουμε (επιβεβαιώσουμε ή βελτιώσουμε) στηριζόμενοι στις πειραματικές μετρήσεις ενός πραγματικού γεγονότος. Στον παρακάτω Πίνακα 1 φαίνονται οι μέγιστες τιμές θέσης της σφαίρας μετά από κάθε αναπήδηση και οι αντίστοιχοι χρόνοι. Επίσης, φαίνεται ο λόγος δυο διαδοχικών μεγίστων και ο μέσος όρος των λόγων αυτών. Μέγιστες θέσεις 1,2090 0,7450 0,5218 0,3925 0,3032
Χρονικές στιγμές 1,133 2,002 2,735 3,335 3,835
Λόγος μεγίστων 0,62 0,7 0,75 0,77
Μέσος όρος
0,71
Πίνακας 2: Μέγιστες τιμές θέσης της σφαίρας μετά από κάθε αναπήδηση και οι αντίστοιχοι χρόνοι. Επίσης, αναγράφονται οι λόγοι δυο διαδοχικών μεγίστων και ο μέσος όρος των λόγων αυτών. Γνωρίζοντας ότι η σφαίρα έχει αφεθεί από ύψος 1,2 m και ο λόγος μεταξύ δυο διαδοχικών μεγίστων είναι 0,71, έχουμε από την σχέση (5) για 𝑎 = 1,2 και 𝑟 = 0,71 𝑆=𝑎+
2𝑎𝑟 1+𝑟 1 + 0,71 =𝛼 = 1,2 = 7,08 𝑚 (1 − 𝑟) 1−𝑟 1 − 0,71
Άρα το συνολικό διάστημα που θα διανύσει η σφαίρα κατά τις αναπηδήσεις της είναι: 𝑆 = 7,08 𝑚
Η τιμή αυτή είναι σύμφωνη με τις πειραματικές μας μετρήσεις. Ήδη από τη γραφική παράσταση της Εικόνας 3 φαίνεται ότι το σώμα έχει διανύσει απόσταση 4 μέτρων, χωρίς να έχει ακινητοποιηθεί. Στις πειραματικές μετρήσεις μας καταλήγουμε σε αποστάσεις της τάξεως των 6-7 μέτρων. Ωστόσο, παρουσιάζει ιδιαίτερο ενδιαφέρον η γνώση των χρονικών στιγμών που η σφαίρα φτάνει στο εκάστοτε μέγιστο. Αυτή η πληροφορία είναι σημαντική, καθώς θα μπορέσουμε να υπολογίσουμε θεωρητικά τον ολικό χρόνο της κίνησης της μπάλας και να το συγκρίνουμε με τα αντίστοιχα πειραματικά μας δεδομένα. Για το λόγο αυτό επιλέγουμε τις κορυφές (μέγιστες θέσεις) κατά τις αναπηδήσεις της σφαίρας και προσεγγίζουμε γραφικά τη σχέση μεταξύ μεγίστων θέσεων και αντιστοίχων χρόνων.
158
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
Στην παρακάτω Εικόνα 5 φαίνεται η γραφική προσέγγιση με πολυώνυμο δευτέρου βαθμού.
Εικόνα 5: Γραφική προσέγγιση με πολυώνυμο δευτέρου βαθμού των μεγίστων θέσεων για τους αντιστοίχων χρόνων. Από τη γραφική προσέγγιση (προσομοίωση) προκύπτει η ακόλουθη σχέση μεταξύ των μεγίστων θέσεων αναπήδησης y και των αντίστοιχων χρονικών στιγμών t. 2
y=0,0932t -0,7909t+1,9774
(6)
Μπορούμε να εξάγουμε την εξίσωση δευτέρου βαθμού που περιγράφει την καμπύλη προσομοίωσης. Γνωρίζοντας τουλάχιστον τρία σημεία (𝑡1 , ℎ1 ), (𝑡2 , ℎ2 ) και (𝑡3 , ℎ3 ) όπου ℎ1, ℎ2 , ℎ3 τρεις διαδοχικές μέγιστες θέσεις αναπήδησης και με τη βοήθεια της μεθόδου των ελαχίστων τετραγώνων, για την παραπάνω καμπύλη, έχουμε τον ακόλουθο επαυξημένο πίνακα του συστήματος: 2 𝑣0 2 𝑣0 ( ) 0 𝑣0 𝑔 𝑔 2 2𝑔 𝑡𝑚𝑎𝑥1 𝑡𝑚𝑎𝑥1 0 ℎ1 2 𝑟𝑣 2 𝑣 (1+ 𝑟) 𝑣0 (1+√𝑟) 2 [𝑡𝑚𝑎𝑥2 𝑡𝑚𝑎𝑥2 0 ℎ2 ]= [ 0 √ ] 0 2𝑔0 𝑔 𝑔 2 ℎ 𝑡𝑚𝑎𝑥3 𝑡𝑚𝑎𝑥3 0 3 2 𝑟 2 𝑣02 𝑣0 (√𝑟+𝑟) 𝑣0 (√𝑟+𝑟) 0 2𝑔 ] [[ 𝑔 ] 𝑔 Από την μαθηματική επίλυση της προηγούμενης ορίζουσας καταλήγουμε στην ακόλουθη σχέση: 159
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education. 𝑔 1−√𝑟 √
2
𝑦 = 2 [1+ 𝑟] 𝑡 2 − 2𝑣0
1−√𝑟
2
2
(1+√𝑟)
2
𝑣
𝑡 + 𝑔 (1+0 𝑟) √
(7)
Με g η επιτάχυνση της βαρύτητας, v0 η αρχική ταχύτητα του σώματος και r ο λόγος δυο διαδοχικών υψών. Βάσει του τύπου αυτού μπορούμε να γνωρίζουμε τις χρονικές στιγμές που η σφαίρα φτάνει σε μέγιστη κατακόρυφη απόσταση. Τις μέγιστες κατακόρυφες αποστάσεις μπορούμε να γνωρίζουμε από την γεωμετρική πρόοδο (Εξίσωση (1)). Βεβαίως, μπορούμε να γνωρίζουμε και τα κατακόρυφα μέγιστα, αν είναι γνωστές οι αντίστοιχες χρονικές στιγμές. Συμπεράσματα Από τη σύγκριση των όρων στην εξίσωση (6) και στην εξίσωση (7) προκύπτουν τα ακόλουθα: Για τον μαθηματικό μας μοντέλο δεχτήκαμε τιμή r του λόγου δυο διαδοχικών υψών ίση με 1/2. Από τις πειραματικές μας μετρήσεις προκύπτει 0,57. Η καλή συμφωνία των δυο τιμών οφείλεται στο γεγονός ότι το μπαλάκι που αναπηδά είναι εξαιρετικά ελαστικό. Για την τιμή της αρχικής ταχύτητας έχουμε θεωρητική τιμή v0=4,85 m/s και η πειραματική μας τιμή προκύπτει v0=4,67 m/s, σφάλμα μικρότερο από 4%. Η πειραματική τιμή της επιτάχυνσης της βαρύτητας είναι g=10,36 m/s2, ενώ η θεωρητική τιμή είναι g=9,81 m/s2, σφάλμα περίπου 5%. Από το μαθηματικό μας μοντέλο προκύπτει ότι ο ολικός χρόνος δίνεται από τη σχέση: 𝑡𝑓𝑖𝑛𝑎𝑙 =
2𝑣0 𝑔(1 − √𝑟)
Έχοντας προσδιορίσει το r=0,58, θα έχουμε √𝑟 = 0,76, οπότε η θεωρητική τιμή του ολικού χρόνου θα είναι: 𝑡𝑓𝑖𝑛𝑎𝑙 = 5,95 𝑠. Από τις πειραματικές μας μετρήσεις καταλήγουμε σε τιμή ολικού χρόνου ίση με 𝑡𝑓𝑖𝑛𝑎𝑙 = 6,2 𝑠. Το σφάλμα είναι λίγο μεγαλύτερο από 4%. Όλα αυτά τα δεδομένα αποκαλύπτουν μια εξαιρετική συμφωνία του θεωρητικού μας μοντέλου με τις πειραματικές μετρήσεις. Ουσιαστικά καταφέρουμε να δημιουργήσουμε μια σειρά από εξισώσεις που αποκαλύπτουν πολλά από τα χαρακτηριστικά της κίνησης μιας μπάλας που αναπηδά (όπως ο ολικός χρόνος κίνησης, η μέγιστη απομάκρυνση, ο λόγος διαδοχικών υψών αναπήδησης) και να επαληθεύσουμε τις θεωρητικές αυτές εξισώσεις με πραγματικά πειραματικά δεδομένα, από μετρήσεις στο πλαίσιο του μαθήματος της ερευνητικής εργασίας. Acknowledgments: Η παρούσα έρευνα έχει χρηματοδοτηθεί από το ευρωπαϊκό πρόγραμμα e-lios (e-learning interactive open school) που είναι δράση που εντάσσεται στον άξονα: Collaboration for innovation and exchange of good practice in the field of school education του Ευρωπαϊκού Προγράμματος ERASMUS + KA2 με κωδικό: 2015-1-EL01-KA201-014029 και επιβλέπεται από την καθηγήτρια του Παιδαγωγικού Τμήματος Δημοτικής Εκπαίδευσης του Πανεπιστημίου Πατρών κ. Ευγενία Κολέζα που είναι και η συντονίστρια του Προγράμματος.
160
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
Παρουσίαση των βιβλιογραφικών αναφορών
Cross, R. (1999). Impact of a ball with a bat or racket. American Journal of Physics, 67(8), 692-702. Cross, R. (1999). The bounce of a ball. American Journal of Physics, 67(3), 222-227. Cross, R. (2000). The coefficient of restitution for collisions of happy balls, unhappy balls, and tennis balls. American Journal of Physics, 68(11), 1025-1031. Cross, R. (2005). Bounce of a spinning ball near normal incidence. American Journal of physics, 73(10), 914-920. Cross, R. (2010). Impact of a ball on a surface with tangential compliance. American Journal of Physics, 78(7), 716-720. Cross, R. (2012). Rolling motion of a ball spinning about a near-vertical axis. The Physics Teacher, 50(1), 25-27. Cross, R., & Nathan, A. M. (2007). Experimental study of the gear effect in ball collisions. American Journal of Physics, 75(7), 658-664. Everson, R. M. (1986). Chaotic dynamics of a bouncing ball. Physica D: Nonlinear Phenomena, 19(3), 355-383. Gea-Banacloche, J. (1999). A quantum bouncing ball. American Journal of Physics, 67(9), 776-782. Kowalik, Z. J., Franaszek, M., & Pierański, P. (1988). Self-reanimating chaos in the bouncing-ball system. Physical Review A, 37(10), 4016. Tufillaro, N. B., & Albano, A. M. (1986). Chaotic dynamics of a bouncing ball. American Journal of Physics, 54(10), 939-944.
161
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
Ψηφιακές Δυνατότητες στην Εκπαίδευση: Διείσδυση της Εκπαιδευτικής Τεχνολογίας στα Σχολεία της Ανατολικής Ευρώπης Χιωτέλης Ιωάννης, Δημακόπουλος Γεώργιος, Θεοδωροπούλου Μαρία johnchiotelis@yahoo.gr, geodimako@gmail.com, mariatheodoropoulou@ymail.com ΠΕΡΙΛΗΨΗ Η εκπαιδευτική τεχνολογία προσφέρει νέες, σημαντικές δυνατότητες στην καθημερινή εκπαιδευτική διαδικασία. Μέσα από το δίκτυο δέκα συνεργαζόμενων σχολείων e-lios (e-learning interactive open school) είχαμε τη δυνατότητα να γνωρίσουμε το βαθμό διείσδυσης της νέας τεχνολογίας σε χώρες της Ανατολικής Ευρώπης. Κυρίως ανιχνεύσαμε το βαθμό διείσδυσης νέων τεχνολογιών στην καθημερινή εκπαιδευτική πρακτική, το επίπεδο επιμόρφωσης των εκπαιδευτικών, τον αριθμό δυσπρόσιτων και απομακρυσμένων σχολείων ανά χώρα με ανάγκες εξ αποστάσεως μαθημάτων και τις δυνατότητες προσβασιμότητας στο διαδίκτυο. Παράλληλα, εξετάσαμε τις πρωτοβουλίες και τις δράσεις που έχουν αναληφθεί σε κεντρικό επίπεδο ανά χώρα ώστε να επιτευχθεί η ψηφιακή σύγκλιση. Αναζητήσαμε τις στρατηγικές που έχει αναλάβει κάθε χώρα ώστε να ενσωματώσει στην εκπαιδευτική διαδικασία τις νέες τεχνολογίες και να καλλιεργήσει κατ’ αυτό τον τρόπο τις ψηφιακές δεξιότητες των μαθητών και των εκπαιδευτικών. Στον ίδιο άξονα στρέψαμε την προσοχή μας στους εκπαιδευτικούς των συνεργαζόμενων σχολείων εντοπίζοντας τις δυσκολίες που συναντούν στην ενσωμάτωση τεχνολογικών εφαρμογών στην καθημερινή διδακτική τους πρακτική, αλλά και στην πρόθεσή τους για δημιουργία σύγχρονου και ασύγχρονου, διαδραστικού εκπαιδευτικού υλικού. ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Εκπαιδευτικά συστήματα, Ανατολική Ευρώπη, ΤΠΕ στην εκπαίδευση, ψηφιακή σύγκληση, εξ αποστάσεως εκπαίδευση, ψηφιακή διείσδυση στην εκπαίδευση.
ΕΙΣΑΓΩΓΗ Μελετώντας τις χώρες της ανατολικής Ευρώπης που συμμετέχουν στο πρόγραμμα e-lios συνειδητοποιούμε τους διαφορετικούς τρόπους με τους οποίους αντιμετωπίζουν την πρόκληση της ψηφιακής σύγκλισης. Η Ιταλία μια σύγχρονη ευρωπαϊκή χώρα (που μπορεί να θεωρηθεί χώρα της κεντρικής Ευρώπης) αντιμετώπισε το 2012 την πρόκληση της ψηφιακής σύγκλισης. Η κυβέρνηση της Ιταλίας ενέταξε την ψηφιακή σύγκλιση στην εκπαίδευση στο πρόγραμμα «Ψηφιακή Ατζέντα για την Ευρώπη 2020», εντάσσοντας στο πλαίσιο του προγράμματός της την οικονομική ανάπτυξη, τη μείωση της ανεργίας και την αύξηση του βιοτικού επιπέδου μέσω της απόκτησης καινοτομικών ψηφιακών δεξιοτήτων (Legge 2015). Γίνεται αντιληπτό ότι η Ιταλία συνδυάζει την οικονομική ανάπτυξη και ευημερία με την εισαγωγή νέων τεχνολογιών στην εκπαίδευση. Το 2012 η Ιταλία κατατασσόταν στην 25η θέση από τα 28 μέλη της Ευρωπαϊκής ένωσης σε υποδομές διαδικτύου, ΤΠΕ, έρευνας και καινοτομίας στην εκπαίδευση (Η Ελλάδα κατείχε την 26η) (European Commission, 2016). Η ιταλική κυβέρνηση 162
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
εκπόνησε ένα φιλόδοξο σχέδιο ψηφιακής σύγκλισης με την ονομασία «Το Άριστο Σχολείο» (“The Good School”) ενισχύοντας τεχνολογικές δομές στα σχολεία όλων των βαθμίδων. Παράλληλα, εκπονήθηκε σχέδιο ευρείας επιμόρφωσης εκπαιδευτικών για την απόκτηση ψηφιακών δεξιοτήτων, ενώ ταυτόχρονα δημιουργήθηκαν υποστηρικτές ψηφιακές πλατφόρμες, εικονικά εκπαιδευτικά περιβάλλοντα και διατέθηκε αριθμός ηλεκτρονικών συσκευών στα σχολεία. Η εξ αποστάσεως εκπαίδευση απομακρυσμένων και δυσπρόσιτων σχολείων υποστηρίχθηκε από δυο κύρια προγράμματα: Το “Lepida project” που υποστηρίζει 60 δυσπρόσιτα-απομακρυσμένα σχολεία στην περιοχή Reggio Emilia και το πρόγραμμα “Smart Inclusion 2.0” για μακροχρόνια νοσηλευόμενα σε νοσοκομεία παιδιά. Στη γειτονική Τουρκία σχεδόν όλα τα Λύκεια έχουν διαδραστικούς πίνακες τουλάχιστον σε μια αίθουσα, ενώ όλα σχεδόν τα Λύκεια διαθέτουν εργαστήριο Ηλεκτρονικών Υπολογιστών. Ωστόσο στην Τουρκία τα προβλήματα στη χρήση ΤΠΕ στην εκπαίδευση προκύπτουν από την ελλιπή επιμόρφωση των εκπαιδευτικών στους τρόπους ενσωμάτωσης ΤΠΕ στην καθημερινή διδακτική πρακτική. Κατά καιρούς διοργανώνονται εκπαιδευτικά σεμινάρια στη χρήση τεχνολογικών εφαρμογών στην εκπαίδευση, αλλά αποδεικνύονται μη εφαρμόσιμα και ρεαλιστικά. Παράλληλα, στην Τουρκία λόγω του μεγάλου αριθμού εγκατάλειψης του σχολείου, έχουν οργανωθεί «ανοιχτά σχολεία» (open schools) για ενηλίκους με διαδικτυακά και εξ αποστάσεως μαθήματα αναρτημένα σε ψηφιακές πλατφόρμες. Η ασύγχρονη εκπαίδευση στις μαθησιακές αυτές ομάδες είναι σημαντική, καθώς προσφέρει τη δυνατότητα καταμερισμού χρόνου ανάλογα με τις ιδιαίτερες προσωπικές ανάγκες του καθενός. Τέλος, σημαντικές μετακινήσεις πληθυσμών στην ενδοχώρα της Τουρκίας, αλλά και αξιοσημείωτες δημογραφικές μεταβολές (προφίλ γονέων-παιδιών, χάσμα γενεών κ.α.) επιβάλλουν την εισαγωγή ψηφιακών εφαρμογών στην τουρκική εκπαίδευση ειδικά προς την κατεύθυνση της ανοικτής και εξ αποστάσεως εκπαίδευσης (Arastaman, 2009). Στη Βουλγαρία η εισαγωγή ηλεκτρονικού εκπαιδευτικού υλικού στα σχολεία, όπως εκπαιδευτικές πλατφόρμες, ανοιχτές πηγές δεδομένων και ηλεκτρονικές τάξεις, είναι προτεραιότητα του Υπουργείου Παιδείας της Βουλγαρίας. Το 2005 καταρτίστικε το στρατηγικό πλάνο εισαγωγής των ΤΠΕ στην εκπαίδευση με σκοπό να δημιουργηθεί σταδιακά ένα νέο περιβάλλον ψηφιακής μάθησης που θα επιτάχυνε την εκπαιδευτική διαδικασία και να συνεβαλλε στην ψηφιακή σύγκλιση. Σύμφωνα με το στρατηγικό πλάνο για τη ψηφιακή σύγκλιση, μεγάλος αριθμός σχολείων εξοπλίστηκε με ηλεκτρονικούς υπολογιστές, δωρεάν πρόσβαση στο διαδίκτυο και τα σχολικά εγχειρίδια διατίθονταν πλεόν και σε ηλεκτρονική μορφή. Ακολουθώντας το πλάνο οι εκπαιδευτικοί έπρεπε να εκπονήσουν μαθήματα σύμφωνα με τη νέα φιλοσοφία εκπαίδευσης, ενσωματώνοντας ΤΠΕ στην εκπαιδευτική διαδικασία. Το Υπουργείο Παιδείας της Βουλγαρίας, δημιούργησε εκπαιδευτικές πύλες με ηλεκτρονικό εκπαιδευτικό υλικό για όλα τα διδασκόμενα αντικείμενα, ενώ παράλληλα υποστήριξε πλατφόρμες εξ αποστάσεως εκπαίδευσης. Τέλος, οι εκπαιδευτικοί απόκτησαν πιστοποίηση στη χρήση εξειδικευμένων λογισμικών με εκπαιδευτικό προσανατολισμό. Ωστόσο, το 2014 εισήχθη ένα επικαιροποιημένο πρόγραμμα για την αποτελεσματικότερη εισαγωγή των ΤΠΕ στην Εκπαίδευση και την Έρευνα (20142020). Το πρόγραμμα ξεκίνησε το 2015 με κύριο στόχο την πλήρη, απρόσκοπτη και ανεμπόδιστη πρόσβαση στη γνώση και στην εκπαίδευση για όλους, ανεξάρτητα του τόπου διαμονής, το οικονομικού ή κοινωνικού επιπέδου. Φιλοδοξία του προγράμματος είναι η παροχή κινήτρων στους μαθητές ώστε να ενισχύσουν τις ψηφιακές τους δεξιότητες και να ενταχθούν ομαλότερα στην αγορά εργασίας. Στόχος του Υπουργείου Παιδείας της Βουλγαρίας είναι η δημιουργία εκπαιδευτικού υλικού διαθέσιμου μέσω 163
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
διδακτύου από οποιοδηποτε σημείο («σχολείο στο σύννεφο»), όπως και η υποστήριξη μιας εθνικής παλτφόρμας για τηλεδιασκέψεις και σύγχρονες, αλλά και ασύγχρονες διδασκαλίες. Η πλατφόρμα θα επικαιροποιείται με ηλεκτρονικά εκπαιδευτικά εγχειρίδια, διαδραστικό εκπαιδευτικό υλικό και πολυμεσικές εφαρμογές. Οι ιθύνοντες του Εκπαιδευτικού Συστήματος της Βουλγαρίας πιστεύουν σθεναρά ότι η αναβάθμιση του επιπέδου της εκπαίδευσης στη Βουλγαρία περνάει μέσα από την ψηφιακή σύγκλιση, τις καινοτομικές παιδαγωγικές προσεγγίσεις (Blended Learning, Flipped Learning), τη διάδραση και τον καταιγισμό ερεθισμάτων. Στη Ρουμανία εδώ και 15 χρόνια ξεκίνησε η προσπάθεια εισαγωγής ΤΠΕ στην εκπαίδευση. Η προσπάθεια αυτή προέκυψε ως αδήριτη ανάγκη προσαρμογής στα κοινωνικοοικονομικά δεδομένα της εποχής και με στόχο την ποιοτική αναβάθμιση της παρεχόμενης παιδείας. Ιδιαίτερη μέριμνα πάρθηκε προς την κατεύθυνση του εξοπλισμού των σχολείων με υπολογιστές, τη συστηματική τους χρήση, αλλά και την εκπαίδευση του προσωπικού (εκπαιδευτικών). Αποτιμώντας την έως τώρα πορεία, φαίνεται πως δεν έχουν επιτευχθεί οι αρχικοί στόχοι, καθώς σχολεία, εκπαιδευτικοί οργανισμοί αλλά και πανεπιστήμια δεν έχουν ενσωματώσει σε ικανοποιητικό βαθμό της νέες τεχνολογίες στα αναλυτικά τους προγράμματα. Κυριότερος λόγος φαίνεται πως είναι η δυστοκία που παρατηρείται στην αλλαγή της εκπαιδευτικής νοοτροπίας από τους εμπλεκόμενους στην εκπαιδευτική διαδικασία κυρίως από τους καθηγητές. Αυτή η δυστοκία έγινε αντιληπτή εγκαίρως οπότε αποφασίστηκε η εκπόνηση νέου εθνικού στρατηγικού σχεδιασμού στην κατεύθυνση της ενσωμάτωσης νέων τεχνολογιών στην εκπαίδευση, καθώς αναγνωρίζεται η σπουδαιότητα απόκτησης δεξιοτήτων από τους εκπαιδευόμενους για την εισαγωγή τους στην αγορά εργασίας. Τη σχολική χρονιά 2012-2013 εισήχθησαν μαθήματα πληροφορικής στα αναλυτικά προγράμματα όλων των βαθμίδων εκπαίδευσης στη Ρουμανία. Παράλληλα, ενισχύθηκαν δομές δια βίου μάθησης στο πλαίσιο ευρωπαϊκών προγραμμάτων σύμφωνα και με τις βασικές κατευθυντήριες γραμμές της κοινής ευρωπαϊκής πολιτικής στην παιδεία. Αυτή τη στιγμή οι προσπάθειες εστιάζονται στη ψηφιακή σύγκλιση καθώς και στη γεφύρωση του χάσματος μεταξύ προσδοκιών και πραγματικότητας. Τέλος, στην Πολωνία ήδη από τις πρώτες τρεις τάξεις της εξάχρονης Πρωτοβάθμιας Εκπαίδευσης οι μαθητές εισάγονται στις βασικές αρχές των τεχνολογιών πληροφορικής. Στα επόμενα τρία χρόνια συνεχίζεται το μάθημα της πληροφορικής σε ελαφρά δυσκολότερο επίπεδο. Στη δευτεροβάθμια Εκπαίδευση στην Πολωνία (Γυμνάσιο) οι μαθητές συνεχίζουν να διδάσκονται πληροφορική, αλλά δεν αποτελεί εξεταζόμενο μάθημα στις απολυτήριες εξετάσεις. Σε κάθε περίπτωση δίνεται πολύ μεγάλη σημασία στο μάθημα της Πληροφορικής, καθώς σχετίζεται με την καλλιέργεια δεξιοτήτων που αποτελεί προτεραιότητα στο Πολωνικό Εκπαιδευτικό σύστημα. Στην αντίστοιχη «λυκειακή» εκπαίδευση, οι μαθητές διδάσκονται πληροφορική σε όλες τις τρεις τάξεις σε κάθε τύπο σχολείου (επαγγελματικό, τεχνικό, γενικό), αλλά στις απολυτήριες εξετάσεις, εξετάζονται προαιρετικά στο αντίστοιχο μάθημα, εάν το έχουν επιλέξει ως μάθημα επιλογής. Ειδικά στα τεχνικά λύκεια, απόφοιτοι με ειδίκευση στην Πληροφορική εξετάζονται υποχρεωτικά στο αντίστοιχο μάθημα. Το πολωνικό Υπουργείο Παιδείας τέλος, ενθαρρύνει και ενισχύει δράσεις ενσωμάτωσης νέων τεχνολογιών στην εκπαίδευση, αλλά καθώς το Πολωνικό Υπουργείο Οικονομικών διαθέτει τα κονδύλια για τη χρηματοδότηση της Παιδείας στην τοπική αυτοδιοίκηση (αποκέντρωση), εν πολλοίς είναι απόφαση και των τοπικών κοινωνιών η ενίσχυση η μη των σχολείων με τεχνολογικό εξοπλισμό.
164
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
ΙΤΑΛΙΚΗ ΨΗΦΙΑΚΗ ΑΤΖΕΝΤΑ Η Ιταλία έχει συνειδητοποιήσει την ανάγκη ψηφιακής σύγκλισης. Η ενίσχυση δομών συνδεσιμότητας διαδικτύου, ηλεκτρονικής διακυβέρνησης, απόκτησης ψηφιακών δεξιοτήτων, χρήσης ΤΠΕ στην ιταλική εκπαίδευση, έρευνα και καινοτομία είναι βασική προτεραιότητα των ιταλικών αρχών (European Commission, 2015). Η Ιταλία κατατάσσεται 25ή στα 28 μέλη της Ε.Ε. (Σχήμα 1) σε δομές ψηφιακής σύγκλισης και επιδιώκει την ανάκαμψή της.
Σχήμα 16: Κατάταξη των 28 μελών κρατών της ΕΕ σε δομές ψηφιακής σύγκλισης και ανάπτυξης.
Προς την κατεύθυνση της ποιοτικής αναβάθμισης του ιταλικού εκπαιδευτικού συστήματος εκπονήθηκε το σχέδιο με τίτλο «Το Άριστο Σχολείο» (“The Good School”), ενώ κύρια κατεύθυνση του πλάνου αυτού είναι η ενίσχυση των ψηφιακών δυνατοτήτων του νέου σχολείου. Το σημαντικότερο βεβαίως στοιχείο αυτής της διαδικασίας είναι ότι το «Το Άριστο Σχολείο» έχει ενταχθεί στο ευρύτερο σχέδιο της Ιταλικής Ψηφιακής Ατζέντας (Italian Digital Agenda) μια ολιστική προσπάθεια τεχνολογικού εκσυγχρονισμού της ιταλικής κυβέρνησης που εκπονήθηκε το Μάρτιο του 2015 από το Υπουργείο Οικονομικής Ανάπτυξης. Αυτή η διασύνδεση καταδεικνύει τη σημασία της αναβάθμισης και εξέλιξης της Παιδείας για την οικονομική ανάπτυξη και ευημερία των κοινωνιών. Η Ιταλική Ψηφιακή Ατζέντα (Italian Digital Agenda) περιλαμβάνει ένα ολοκληρωμένο πλαίσιο δράσεων από την ενίσχυση της προσβασιμότητας μέχρι τον εκσυγχρονισμό των δικτύων. Έχοντας τεθεί υπό τον έλεγχο του AgID (Agency of Digital Italy), ουσιαστικά συντονίζει την ηλεκτρονική διακυβέρνηση του ιταλικού κράτους. Ο συντονισμός γίνεται μέσα από μια πλατφόρμα δράσεων (Digital Competancy Platform) και έχει ως στόχο την ανάπτυξη βασικών ψηφιακών ικανοτήτων-δεξιοτήτων, την ηλεκτρονική διακυβέρνηση, την ενίσχυση μεγάλων και μικρομεσαίων επιχειρήσεων (κοινωνία της Πληροφορίας), την ανάδειξη καλών και καινοτομικών ψηφιακών πρακτικών και βέβαια την ψηφιακή αναβάθμιση της εκπαίδευσης.
165
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
«ΤΟ ΆΡΙΣΤΟ ΣΧΟΛΕΙΟ» - “THE GOOD SCHOOL”. ΙΤΑΛΙΚΟΣ ΝΟΜΟΣ 107 Ο ιταλικός νόμος 107 που ψηφίστηκε στις 15 Ιουλίου 2015 είχε ως φιλοδοξία τον εκσυγχρονισμό του ιταλικού σχολείου, προς την κατεύθυνση ενίσχυσης των δεξιοτήτων των μαθητών ώστε να εντάσσονται ομαλά στην αγορά εργασίας (Ministero dell’Istruzione dell’Università e della Ricerca, 2015). Παρείχε ευελιξία στις σχολικές μονάδες όσον αφορά τη σύνταξη αναλυτικών προγραμμάτων, αλλά ταυτόχρονα ανέθετε περισσότερες αρμοδιότητες στους μαθητές και στους καθηγητές. Οι βασικοί άξονες του νόμου 107 είναι: • Σύνδεση μισθού με την απόδοση και την αξιολόγηση. • Προσλήψεις καθηγητών, με έμφαση σε νέους με αυξημένα προσόντα. • Αυτονομία σχολικής μονάδας. • Σύνταξη νέων επικαιροποιημένων αναλυτικών προγραμμάτων. • Ενίσχυση των ψηφιακών δεξιοτήτων. • Ενίσχυση της πολυγλωσσίας. • Αρχική επαγγελματική κατάρτιση για μαθητές. Στο πλαίσιο αυτών των αρχών κάθε χρόνο οι καλύτεροι εκπαιδευτικοί ανά σχολείο λαμβάνουν επιπλέον χρηματικό έπαθλο (bonus) για την απόδοσή τους. Το ιταλικό κράτος προχώρησε στην πρόσληψη 100.000 νέων εκπαιδευτικών με αυξημένα τυπικά προσόντα. Οι Διευθυντές των σχολείων έχουν μεγαλύτερη αυτονομία στη διαχείριση οικονομικών πόρων και προσωπικού, αλλά υφίστανται εξωτερική αξιολόγηση κάθε τρία χρόνια. Τα αναλυτικά προγράμματα εμπλουτίστηκαν με αντικείμενα όπως: μουσική, τέχνη, οικονομικά, πολιτική οικονομία – νομοθεσία και αθλητισμός. Η εισαγωγή των αντικειμένων αυτών εξαρτήθηκε από την ανάγκη ενίσχυσης συγκεκριμένων δεξιοτήτων των μαθητών σύμφωνα και με τα σύγχρονα δεδομένα της αγοράς εργασίας. Αναβαθμίστηκαν τα δίκτυα ευρυζωνικότητας, ενώ υποστηρίχθηκε σημαντικά γνώση ξένων γλωσσών και η πολυγλωσσία μέσα από σύγχρονες τεχνικές όπως το CLIL. Τέλος, εισήχθη μια μοναδική καινοτομία, καθώς είναι πλέον υποχρεωτική η αρχική επαγγελματική κατάρτιση των μαθητών της τελευταίας τάξης του γενικού και επαγγελματικού λυκείου. Οι μαθητές των γενικών λυκείων στην τελευταία τάξη του Λυκείου εργάζονται για τουλάχιστον 200 ώρες σε εταιρίες, βιομηχανίες, οργανισμούς, ιδρύματα κτλ, ενώ οι αντίστοιχοι μαθητές των επαγγελματικών λυκείων εργάζονται για τουλάχιστον 400 ώρες. ΤΟ ΙΤΑΛΙΚΟ ΕΘΝΙΚΟ ΣΧΕΔΙΟ ΓΙΑ ΤΟ ΨΗΦΙΑΚΟ ΣΧΟΛΕΙΟ Ο ιταλικός νόμος 107 (παρ. 56-62) ορίζει τους βασικούς άξονες του ψηφιακού σχολείου, με σκοπό να καταστήσει την ψηφιακή τεχνολογία, εκπαιδευτικό εργαλείο για την απόκτηση δεξιοτήτων (Presidenza del Consiglio dei Ministri 2015). Συγκεκριμένα επιδιώκει: • Να αναπτύξει τις ψηφιακές δεξιότητες των μαθητών. • Να ενισχύσει τα εκπαιδευτικά εργαλεία και τα εργαστήρια. • Να ενσωματώσει τις τεχνολογικές δυνατότητες με σκοπό την υποστήριξη της διακυβέρνησης, τη διάχυση της γνώσης και τη διαφάνεια. • Να επιμορφώσει τους εκπαιδευτικούς στην κατεύθυνση της ψηφιακής καινοτομίας και κουλτούρας. 166
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
•
Να εκπαιδεύσει τη διοίκηση με σκοπό να ενσωματώσουν τεχνολογικές δυνατότητες στη διοίκηση (ψηφιακή διακυβέρνηση). Προς την υλοποίηση των παραπάνω κατευθυντήριων αξόνων ενθαρρύνθηκαν δράσεις σε δυο κατευθύνσεις. Αρχικά όσον αφορά τους εκπαιδευτικούς και τη διοίκηση των σχολείων, οργανώθηκαν βιωματικά εργαστήρια και επιμορφωτικές δράσεις σε συνεργασία με Πανεπιστήμια, Εκπαιδευτικά Ιδρύματα Τριτοβάθμιας Εκπαίδευσης, Εμπορικά και Τεχνικά Επιμελητήρια, βιομηχανίες και εταιρίες. Οι συνεργασίες αυτές εντάχθηκαν και στην ευρύτερη φιλοσοφία της συνεργασίας Σχολείων – Αγοράς Εργασίας – Έρευνας που αποκαλούμε «ανοιχτό σχολείο» (open school). Από την άλλη πλευρά ενισχύονται παράλληλα οι δεξιότητες των μαθητών μέσα από τη στενή συνεργασία σχολείων και Πανεπιστημίων, Ιδρυμάτων, Ινστιτούτων, κρατικών και μη κρατικών, κυβερνητικών και μη κυβερνητικών οργανώσεων. Αυτή η συνεργασία υλοποιείται κυρίως μέσω της μαθητείας των τελειόφοιτων μαθητών σε επαγγελματικούς χώρους. ΟΙ ΒΑΣΙΚΟΙ ΑΞΟΝΕΣ ΤΟΥ ΣΧΕΔΙΟΥ Οι βασικοί άξονες του ιταλικού σχεδίου για τη ψηφιακή σύγκλιση είναι: • Πρόσβαση: οπτική ίνα σε όλα τα σχολεία της Ιταλίας. • Ψηφιακές τάξεις – κινητά εργαστήρια – εναλλακτικές τεχνικές μάθησης. • Ψηφιακή διασύνδεση σχολείων με ερευνητικά κέντρα, μουσεία κτλ. • Νέα σχολικά κτήρια με καινοτομικό σχεδιασμό. • Ψηφιακό πορτφόλιο για κάθε μαθητή. • Ψηφιακή διακυβέρνηση των σχολικών μονάδων. Για τους μαθητές έχουν προταθεί και εφαρμόζονται οι ακόλουθοι άξονες δράσης: • Ενιαίο πλαίσιο καλλιέργειας ψηφιακών δεξιοτήτων. • Καινοτόμες προσεγγίσεις μάθησης με ενσωμάτωση ψηφιακών εργαλείων. • Προγραμματισμός (ως μάθημα) ήδη από την Πρωτοβάθμια Εκπαίδευση. • Διαρκής επικαιροποίηση των αναλυτικών προγραμμάτων σύμφωνα με τις νεότερες τεχνολογικές εξελίξεις. • Εισαγωγή στο ηλεκτρονικό εμπόριο (π.χ. μέσω της μαθητείας). • Διαθέσιμο ψηφιακό εκπαιδευτικό περιεχόμενο και υλικό (κινητή μάθηση) Για τους εκπαιδευτικούς προτείνεται και έχει θεσμοθετηθεί η διαρκής ενδοϋπηρεσιακή και ενδοσχολική επιμόρφωση, ενώ σταδιακά εμπλουτίζονται αντίστοιχες εκπαιδευτικές πλατφόρμες. Τέλος, σύμφωνα και με τις απαιτήσεις για αξιολόγηση ανά τριετία, προσφέρονται αντίστοιχα τριετή επιμορφωτικά προγράμματα. Οι περισσότερες από τις προαναφερόμενες δράσεις θα αξιολογηθούν για πρώτη φορά το Δεκέμβριο του 2016 με την ελπίδα και προσδοκία μιας ψηφιακής μεταρρύθμισης στην ιταλική εκπαίδευση. ΨΗΦΙΑΚΗ ΕΚΠΑΙΔΕΥΣΗ ΣΤΗΝ ΤΟΥΡΚΙΑ Στην γειτονική Τουρκία το Υπουργείο Παιδείας έκρινε σημαντική την ενίσχυση της ψηφιακής εκπαίδευσης κυρίως γιατί θα αντιμετώπιζε υπαρκτά προβλήματα της τουρκικής κοινωνίας. Η τουρκική κοινωνία αντιμετωπίζει το πρόβλημα της εγκατάλειψης του σχολείου. Ενδεικτικά αναφέρουμε ότι το 37% των μαθητών 18 χρονών εγκαταλείπει το σχολείο, ενώ το 25% των 17χρονων μαθητών επίσης. Τα 167
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
ποσοστά βαίνουν μειούμενα μέχρι την ηλικία των 14 ετών όπου μόλις το 4% εγκαταλείπει το σχολείο (16 ετών: 19% εγκατάλειψη και 15 ετών: 14%) (Avrupa Komisyonu, 2013). Βάσει αυτών των δεδομένων το τουρκικό Υπουργείο Παιδείας υποστηρίζει ένθερμα δομές εξ αποστάσεως εκπαίδευσης, πλατφόρμες με ψηφιακό υλικό, δια βίου μάθηση και κινητή εκπαίδευση. Το στρατηγικό πλάνο στην Τουρκία καταρτίστηκε το 2015 και έχει ορίζοντα τετραετίας μέχρι το 2019. Στο τουρκικό εκπαιδευτικό σύστημα η πληροφορική εντάσσεται στα σχολικά προγράμματα κυρίως στη Δευτεροβάθμια Εκπαίδευση και στην Ανώτερη – Τριτοβάθμια Εκπαίδευση, ενώ δεν είναι διαδεδομένη στην πρωτοβάθμια. Στα σχολεία υπάρχει τεχνολογικός εξοπλισμός με αρκετά καλά εξοπλισμένα εργαστήρια ηλεκτρονικών υπολογιστών και αίθουσες με διαδραστικούς πίνακες. Ωστόσο, υπάρχει δυστοκία στη χρήση τους λόγω κυρίως ελλιπούς επιμόρφωσης των εκπαιδευτικών στη χρήση νέων τεχνολογιών. Τα τελευταία χρόνια και στο πλαίσιο του στρατηγικού σχεδιασμού για τη ψηφιακή εκπαίδευση οργανώνονται επιμορφωτικά προγράμματα για τους εκπαιδευτικούς με σκοπό να καταρτιστούν στην ενσωμάτωση νέων τεχνολογιών στην καθημερινή εκπαιδευτική τους πρακτική. Η ενσωμάτωση και οι συγκεκριμένες επιμορφωτικές διαδικασίες είναι χρονοβόρες με κίνδυνο να καταστεί παρωχημένος ο τεχνολογικός εξοπλισμός των σχολείων. Ωστόσο, επιτακτική ανάγκη σύμφωνα με το τουρκικό Υπουργείο Παιδείας είναι η ανάπτυξη ιστοσελίδων εξ αποστάσεως εκπαίδευσης για κοινωνικούς λόγους. Σύμφωνα με αυτά, κύριες ομάδες-στόχοι του τουρκικού σχεδίου για την εξ αποστάσεως εκπαίδευση είναι οι μαθητές που εγκαταλείπουν το σχολείο, μαθητές ή κυρίως μαθήτριες που επιλέγουν να παντρευτούν πριν την ολοκλήρωση του σχολείου και άτομα χαμηλού οικονομικού επιπέδου που αναγκάζονται να δουλέψουν (European Commission, 2012). Τα τελευταία χρόνια έχει προκύψει το θέμα της μετανάστευσης, όπου πρόσφυγες από το Ιράκ και τη Συρία, εντάσσονται σε σχολικές τάξεις στο μέσον της σχολικής χρονιάς και αναζητούν την πρωθύστερη γνώση προς κάλυψη κενών (M.E.B., UNICEF, 2013). Επίσης, η γεωγραφική μορφολογία της Τουρκίας είναι ακόμα ένας λόγος ενίσχυσης δομών εξ αποστάσεως κινητής μάθησης, καθώς υπάρχει μεγάλος αριθμός απομονωμένων και δυσπρόσιτων σχολείων. Στο ίδιο πλαίσιο μπορούμε να εντάξουμε και μαθητές με κινητικά προβλήματα ή φυσικές δυσκολίες. Τέλος, δε πρέπει να παραγνωρίζουμε τις περιπτώσεις χορήγησης ευκαιριών σε εργαζόμενους που θέλουν να ενισχύσουν το βιογραφικό τους ή να βελτιώσουν τις επαγγελματικές τους γνώσεις. Σταδιακά γίνεται αντιληπτό από τους τούρκους εκπαιδευτικούς ότι η τεχνολογία προσφέρει σημαντικές δυνατότητες και ευκαιρίες στον τομέα της δια βίου μάθησης (που αποτελεί ζητούμενο στην Τουρκία-γι’ αυτό και παρατηρούμε μεγάλη συμμετοχή στα ευρωπαϊκά προγράμματα ERASMUS+). Επίσης, οι διαδραστικές πλατφόρμες εκπαίδευσης παρέχουν εργαλεία για φιλικότερη προσέγγιση γνώσης ή για εναλλακτική διδασκαλία. Το ίδιο βέβαια ισχύει και για την Τριτοβάθμια Εκπαίδευση στην Τουρκία όπου η τεχνολογία μπορεί να αναβαθμίσει την ποιότητα της παρεχόμενης γνώσης (M.E.B., 2009).. Μεγάλο βάρος επίσης έχει δοθεί στην εξωστρέφεια των σχολείων μέσω των ευρωπαϊκών προγραμμάτων ERASMUS+, καθώς φαίνεται ότι είναι χρυσή ευκαιρία για την ανταλλαγή καλών πρακτικών, το διεθνισμό και την αναβάθμιση του τουρκικού εκπαιδευτικού συστήματος (M.E.B., 2011). Τα προγράμματα αυτά εισήγαγαν και συνεχίζουν να εισάγουν νέες εκπαιδευτικές τεχνικές, όπως της ερευνητικής διδασκαλίας (project based learning), της επίβλεψης (mentoring), της συνεργατικής διδασκαλίας (peer education) και της χρήσης κοινωνικών δικτύων στην εκπαίδευση (social media for education). Τα πρώτα αποτελέσματα του στρατηγικού 168
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
σχεδίου της ψηφιακής σύγκλισης στο τουρκικό εκπαιδευτικό σύστημα αναμένονται το 2019. Η ΒΟΥΛΓΑΡΙΑ ΣΤΗ ΨΗΦΙΑΚΗ ΕΠΟΧΗ. ΤΟ ΣΧΕΔΙΟ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΤΩΝ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ (2014-2020) Στη Βουλγαρία έχει γίνει αποδεκτό ότι οι σύγχρονες κοινωνίες καθίστανται ταχύτατα τεχνολογικές. Αυτό σημαίνει ότι η πρόσβαση στην πληροφορία και στις ηλεκτρονικές υπηρεσίες πρέπει να είναι αδιάκοπη. Νέες δυνατότητες εμφανίστηκαν όπως η αποθήκευση δεδομένων στο διαδίκτυο (“school on cloud”). Οι εκπαιδευτικοί, οι μαθητές και οι γονείς θα πρέπει λοιπόν να έχουν αδιάκοπη πρόσβαση στις ηλεκτρονικές πληροφορίες. Στο πλαίσιο αυτό το στρατηγικό πλάνο για την ψηφιακή σύγκλιση στη Βουλγαρία έχει τις ακόλουθες προτεραιότητες: • Να εγείρει το ενδιαφέρον των μαθητών στις ΤΠΕ. • Να παράσχει στους μαθητές πρόσβαση σε υψηλού επιπέδου πηγές. • Να προωθήσει τη δημιουργία ψηφιακού εκπαιδευτικού υλικού. • Να προωθήσει τη διάδραση και την κριτική σκέψη. • Να ενισχύσει τις τεχνολογικές δεξιότητες των μαθητών. • Να εισάγει ένα εκσυγχρονισμένο μοντέλο εκπαιδευτικής διοίκησης. Οι προτεραιότητες αυτές θα επιτευχθούν με τις ακόλουθες δράσεις: • Εθνικό αποθετήριο στο «σύννεφο». • Εθνική πλατφόρμα με εκπαιδευτικό, διαδραστικό υλικό. • Ψηφιακά βιβλία, σχολικά εγχειρίδια και ασύγχρονες διαλέξεις. • Ψηφιακοί διαγωνισμοί σε διαδικτυακές, εκπαιδευτικές πύλες. • Εικονικές περιηγήσεις σε ιστορικά μνημεία της Βουλγαρίας. • Επιμόρφωση και πιστοποίηση εκπαιδευτικών στις ΤΠΕ. • Εθνικός διαγωνισμός για την προμήθεια έξυπνων φορητών συσκευών. • Ανάπτυξη κατάλληλων εκπαιδευτικών λογισμικών. • Πύλη διασύνδεσης σχολείων – πανεπιστημίων – αγοράς εργασίας. • Διαδραστικά, εξ αποστάσεως εργαστήρια. • Προσβασιμότητα και ευρυζωνικότητα σε κάθε χώρο εκπαίδευσης. Τα κυριότερα προβλήματα ωστόσο εμφανίζονται στη χρηματοδότηση αυτών των προτεραιοτήτων (Николова, 2014). Τα βουλγάρικα σχολεία προσπαθούν να χρηματοδοτηθούν και από άλλες πηγές πλην της κρατικής χρηματοδότησης, όπως από ευρωπαϊκά προγράμματα. ΡΟΥΜΑΝΙΑ: ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ Η Ρουμανία ήδη πριν την ένταξή της στην Ευρωπαϊκή Ένωση επένδυε στην εισαγωγή τεχνολογίας στην εκπαίδευση. Το 2001 η ρουμανική κυβέρνηση εισήγαγε το πρόγραμμα SEI (Sistem Educational Informatizat) με σκοπό την εισαγωγή νέων τεχνολογιών στην εκπαίδευση. Το σχέδιο αυτό περιελάμβανε μεγάλο αριθμό δράσεων από τον εξοπλισμό των σχολείων με υπολογιστές και την επιμόρφωση εκπαιδευτικών, μέχρι τη δημιουργία λογισμικού με μαθητοκεντρικό περιεχόμενο. Το πρόγραμμα αξιολογήθηκε το 2004 και το 2008 παρουσιάζοντας αξιόλογη πρόοδο σε όλα τα επίπεδα της παρεχόμενης εκπαίδευσης. Ανάμεσα στα θετικά αποτελέσματα του προγράμματος περιλαμβάνονται: Η αύξηση του αριθμού των εκπαιδευτικών που έκαναν χρήση νέων τεχνολογιών στην εκπαίδευση, η προθυμία των μαθητών να 169
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
συμμετάσχουν σε αντίστοιχα μαθήματα, η ελάττωση του αριθμού μαθητών ανά υπολογιστή, ενώ το σημαντικότερο αποτέλεσμα είναι η μείωση του χάσματος μεταξύ αστικών και περιφερειακών σχολείων και η παροχή ίσων ευκαιριών σε όλους τους μαθητές. Η ρουμανική πολιτική εισαγωγής νέων τεχνολογιών στην εκπαίδευση προέκυψε ως ανάγκη της ρουμανικής κοινωνίας για οικονομική ανάπτυξη και ευημερία. Ήταν βαθιά πεποίθηση ότι η έξοδος των νέων στην ευρωπαϊκή αγορά εργασίας μπορεί να γίνει μόνο με τα κατάλληλα εφόδια που σχετίζονται με την απόκτηση τεχνολογικών δεξιοτήτων. Ως αναπτυσσόμενη οικονομία η Ρουμανία όφειλε ταχύτατα να προσαρμοστεί στο νέο διεθνές περιβάλλον που αναδεικνύονταν. Η κοινωνία της γνώσης ήταν πρωταρχικό ζητούμενο, ενώ έγινε άμεσα αντιληπτή η ανάγκη δια βίου μάθησης και επιμόρφωσης. Από το 1998 καταρτίστηκε στη Ρουμανία πρόγραμμα εκσυγχρονισμού της εκπαίδευσης που κατέληξε στην ολοκληρωμένη πρόταση SEI μερικά χρόνια αργότερα. Η καινοτομία και ο εκσυγχρονισμός του ρουμανικού εκπαιδευτικού συστήματος ενισχύθηκε και από ένα δεύτερο σχέδιο με τίτλο RoEduNet (Romanian Educational Network) που στόχευε κυρίως στον τεχνολογικό εξοπλισμό των σχολικών μονάδων, των Πανεπιστημίων και των ερευνητικών κέντρων. Στη Δευτεροβάθμια Εκπαίδευση στη Ρουμανία έχει εισαχθεί ο προγραμματισμός, ενώ έχει ενθαρρυνθεί η συμμετοχή μαθητών σε διεθνείς διαγωνισμούς πληροφορικής και έχουν επιτευχθεί σημαντικές επιτυχίες σε διεθνές επίπεδο. Η προσπάθεια που ξεκίνησε τη δεκαετία του ’90 στη Ρουμανία απέδωσε, καθώς το εξειδικευμένο προσωπικό σε πληροφορική αυξήθηκε από 190 άτομα στη δεκαετία του ’90 σε 100.000 άτομα σήμερα. Οι βασικοί αγωγοί πληροφορικής στη Ρουμανία είναι: Η πλατφόρμα portal.edu.ro, ιστοσελίδα επικοινωνίας εκπαιδευτικών-μαθητών, το AeL (Advanced eLearning) η καρδιά του προγράμματος SEI με δυνατότητες εξ αποστάσεως διδασκαλίας, το ADLIC (Admiterea in Liceu) πρόγραμμα που εισήχθη το 2001 και αποτελεί μορφή ψηφιακού φροντιστηρίου-αποθετηρίου θεμάτων. Επίσης, το πρόγραμμα EvalMan (Evaluarea Manualelor-Evaluating Textbooks) που ξεκίνησε τη λειτουργία του το 2002 και έχει ως σκοπό την αξιολόγηση σχολικών εγχειριδίων. Στη Ρουμανία ήδη 15.500 εκπαιδευτικοί χρησιμοποιούν το AeL, ενώ προτάσεις για τη βελτίωσή του έχουν ήδη ληφθεί υπόψη. Οι πλατφόρμες είναι σε διαρκή αναβάθμιση, βάσει και των προτάσεων των εκπαιδευτικών, ενώ υπάρχουν και ψηφιακές δυνατότητες που δεν τυγχάνουν σημαντικής αποδοχής λόγω κυρίως της δυσλειτουργικότητάς τους. Οι κύριοι λόγοι μη αποδοχής της τεχνολογίας είναι ο φόβος αντικατάστασης του δασκάλου από τον υπολογιστή και ο φόβος του «νέου». Με σκοπό την αντιμετώπιση αυτών των επιφυλάξεων το Ρουμάνικο Υπουργείο Παιδείας ενίσχυσε σημαντικά τις επιμορφωτικές δράσεις, ενώ υπήρξαν και σημαντικές οικονομικές απολαβές για καθηγητές που ενσωμάτωσαν νέες τεχνολογίες στα μαθήματά τους. ΨΗΦΙΑΚΗ ΕΠΟΧΗ ΣΤΗΝ ΠΟΛΩΝΙΚΗ ΕΚΠΑΙΔΕΥΣΗ Στην Πολωνία η πληροφορική και οι βασικές της αρχές διδάσκονται για πρώτη φορά στην Πρωτοβάθμια Εκπαίδευση. Ωστόσο, στην Πρωτοβάθμια μόνο βασικές αρχές χρήσης υπολογιστών και πληροφορικής προσεγγίζονται χωρίς να γίνεται εκτενής αναφορά σε συνθετότερες διαδικασίες. Στη συνέχεια, στη Δευτεροβάθμια Εκπαίδευση εισάγονται τα μαθήματα των Υπολογιστών και της Τεχνολογίας. Παράλληλα, στο μάθημα της ερευνητικής εργασίας που είναι υποχρεωτικό οι μαθητές καλούνται να 170
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
ενσωματώσουν γνώσεις νέων τεχνολογιών στην εκπόνηση της εργασίας. Στη λυκειακή εκπαίδευση είτε οι μαθητές επιλέξουν τον τύπο του Γενικού Λυκείου, είτε το Επαγγελματικό λύκειο καλούνται να διαγωνιστούν σε μαθήματα πληροφορικής. Στο Γενικό Λύκειο υπάρχει κατεύθυνση-προσανατολισμός πληροφορικής και οι μαθητές εξετάζονται σε δέσμη μαθημάτων του αντίστοιχου προσανατολισμού. Επίσης, στα επαγγελματικά Λύκεια υπάρχει κλάδος πληροφορικής, όπου οι μαθητές εξειδικεύονται στις νέες τεχνολογίες. Η κυβέρνηση δεν έχει εκπονήσει συγκεκριμένο σχέδιο για την ψηφιακή σύγκλιση της πολωνικής εκπαίδευσης, αλλά οι σχετικές δράσεις ενσωματώνονται στα αντίστοιχα αναλυτικά προγράμματα. Βέβαια, ισχύει και εδώ εκτενής εκπαιδευτική αποκέντρωση με αποτέλεσμα πολλές πρωτοβουλίες προς την κατεύθυνση των ψηφιακών δεξιοτήτων να αναλαμβάνονται από την τοπική αυτοδιοίκηση. στα μαθήματά τους. ΣΥΜΠΕΡΑΣΜΑΤΑ Οι χώρες της Ανατολικής Ευρώπης, όπως φαίνεται και στο Σχήμα 1, κατέχουν τις τελευταίες θέσεις στην Ευρώπη των 28 σε ψηφιακή σύγκλιση στα εκπαιδευτικά τους συστήματα. Ωστόσο, έχει γίνει απόλυτα κατανοητό στις περισσότερες από αυτές τις χώρες ότι προκειμένου να καταπολεμήσουν την ανεργία και να ενταχθούν οι πολίτες τους στην αγορά εργασίας θα πρέπει να καλλιεργήσουν τις ψηφιακές δεξιότητες στα εκπαιδευτικά τους συστήματα. Πολλές χώρες εκπόνησαν εγκαίρως εκτενή προγράμματα εκσυγχρονισμού και επικαιροποίησης των εκπαιδευτικών τους συστημάτων. Αξιοσημείωτες είναι οι περιπτώσεις της Ιταλίας και της Ρουμανίας, όπου έχουν εκπονηθεί εκτενέστατα σχέδια ψηφιακής σύγκλισης στα εκπαιδευτικά τους συστήματα. Επίσης, είναι αξιοσημείωτο ότι τα περισσότερα προγράμματα αξιολογήθηκαν, αναμορφώθηκαν και αναπροσαρμόσθηκαν. Σε πολλές χώρες όπως στη Ρουμανία και στη Βουλγαρία παρατηρήθηκαν απτά θετικά αποτελέσματα στην αύξηση των ειδικών σε θέματα πληροφορικής και νέων τεχνολογιών. Είναι καθολικά αποδεκτή η άποψη ότι μια από τις βασικότερες δεξιότητες που πρέπει να καλλιεργηθούν στα εκπαιδευτικά συστήματα είναι ο ψηφιακός γραμματισμός. Επίσης, γίνεται αντιληπτό ότι όπου εφαρμόστηκαν εκτενή προγράμματα τα αποτελέσματα ήταν μετρήσιμα και αξιολογήσιμα. Οι διαδικασίες αξιολόγησης παράλληλα συνέβαλλαν στην επιτυχία των αρχικών στοχεύσεων. Από την άλλη μεριά φαίνεται ο σημαντικός ρόλος της διαρκούς επιμόρφωσης των εκπαιδευτικών και της δια βίου μάθησης. Επενδύσεις σε εξοπλισμό και λογισμικά θα είναι «κενό γράμμα» αν δε συνδυαστούν με πραγματική και συνεχή εφαρμογή στην καθημερινή διδακτική πρακτική. Τέλος, φαίνεται ότι η αποκέντρωση στα εκπαιδευτικά συστήματα δε συμβάλλει στην κοινή στρατηγική προς την κατεύθυνση της ψηφιακής σύγκλισης στην εκπαίδευση. Συμπερασματικά απαιτείτε στρατηγικό σχέδιο, σχεδιασμός, συνεχής αξιολόγηση, ανατροφοδότηση και επικαιροποίηση με στοχοπροσήλωση. Acknowledgments: Η παρούσα έρευνα έχει χρηματοδοτηθεί από το ευρωπαϊκό πρόγραμμα e-lios (e-learning interactive open school) που είναι δράση που εντάσσεται στον άξονα: Collaboration for innovation and exchange of good practice in the field of school education του Ευρωπαϊκού Προγράμματος ERASMUS + KA2 με κωδικό: 2015-1-EL01-KA201-014029 και επιβλέπεται από την καθηγήτρια του Παιδαγωγικού 171
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
Τμήματος Δημοτικής Εκπαίδευσης του Πανεπιστημίου Πατρών κ. Ευγενία Κολέζα που είναι και η συντονίστρια του Προγράμματος. ΑΝΑΦΟΡΕΣ Arastaman, G. (2009). Lise Birinci Sınıf Öğrencilerinin Okula Bağlılık (School Engagement) Durumlarına ilişkin Öğrenci,Öğretmen ve Yöneticilerin Görüşleri. Pamukkale Üniversitesi Eğitim Fakültesi Dergisi, 26. Avrupa Komisyonu (2013). Reducing early school leaving: Key messages and policy support (http://ec.europa.eu/education/policy/strategic-framework/doc/esl-groupreport_en.pdf , Access Date: 14.05.2016) European Commission (2012). Europe 2020 Target: Early Leavers From Education and Training (http://ec.europa.eu/europe2020/pdf/themes/29_early_school_leaving.pdf, Access Date: 14.05.2016) European Commission, DG CNECT, (2016) Digital Economy and Society Index 2016, Country Profile, Italy European Commission, DG EAC, (2015) Education and Training Monitor 2015 Italy (Luxembourg, Publications Office of the European Union) Legge 13 luglio 2015, n. 107 “Riforma del Sistema nazionale di istruzione e formazione e delega per il riordino delle disposizioni legislative vigenti”, GU n. 162 del 15-7-2015, Rome M.E.B. (2009). MEB 2010-2014 Stratejik Planı (www.sgb.meb.gov.tr/Str_yon_planlama_V2/MEBStratejikPlan.pdf, Access Date: 14.05.2016) M.E.B. (2011). Devamsızlık ve Okulu Terk Riski Durum Saptamasıve İhtiyaç Analizi(Draft) (http://ysop.meb.gov.tr/dosyalar/adey/ihtiyacanaliziraporu.pdf , Access Date: 14.05.2016) M.E.B., UNICEF (2013). Ortaöğretimde Sınıf Tekrarı, Okul Terk Sebepleri ve Örgün Eğitim Dışında Kalan Çocuklar Politika Önerileri Raporu. (http://www.meb.gov.tr/earged/unicef/S%C4%B1n%C4%B1f%20Tekrar%C4%B1,%20Okul %20Terki%20Politika%20Raporu.pdf , Access Date: 14.05.2016) Ministero dell’Istruzione dell’Università e della Ricerca (2015) Piano Nazionale Scuola Digitale Presidenza del Consiglio dei Ministri (2015) Strategia per la crescita digitale 2014-2020 Николова, М. (2014) Мотивация за учене и учене чрез извънкласни форми на ученици от ромски произход, in Интеркултурното образование като средство за намаляване на отпадането на ромските деца от училище, (Veliko Tarnovo, National conference) http://csaf.provincia.udine.it/data/servizi/teledidattica/Default.aspx, 06/01/2016 http://elearning.unisi.it/moodle/, 06/01/2016 http://gazzettadireggio.gelocal.it/reggio/cronaca/2011/05/04/news/la-teledidattica-persalvare-le-piccole-scuole-di-montagna-1.231319, 06/01/2016 http://geodimako6.wix.com/erasmusplus 07/07/2016 http://www.agid.gov.it/agenda-digitale/competenze-digitali, 06/01/2016 http://www.cooperationlab.it/index.php?option=com_content&view=article&id=206:sm art-inclusion-20&catid=25&Itemid=59, 06/01/2016 http://www.dimt.it/2015/07/27/le-competenze-digitali-entrano-nei-programmi-scolasticiministeriali-da-definire-il-ruolo-di-agid-e-del-docente-coordinatore/, 06/01/2016 http://www.firenzepost.it/2013/09/10/scuola-sistema-di-teledidattica-a-pisa-per-alunniin-ospedale/, 06/01/2016 http://www.istruzione.it/scuola_digitale/index.shtml, 06/01/2016 http://www.tecnicadellascuola.it/item/1014665-la-teledidattica-approda-al-meyer-difirenze.html?t=storico, 06/01/2016 https://ec.europa.eu/digital-single-market/scoreboard/italy#4-integration-of-digitaltechnology, 06/01/2016 172
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
Πλήρης επίλυση του προβλήματος της αναπηδώσας μπάλας Χιωτέλης Ιωάννης, Λύρη Αναστασία, Θεοδωροπούλου Μαρία johnchiotelis@yahoo.gr, natasaliri@yahoo.gr, mariatheodoropoulou@gmail.com ΠΕΡΙΛΗΨΗ Στην παρούσα εργασία μελετήσαμε την κίνηση μιας ελαστικής σφαίρας που αφήνεται να πέσει ελεύθερα από κάποιο ύψος και στη συνέχεια αναπηδά μέχρι να ηρεμήσει. Επιλύσαμε θεωρητικά το συγκεκριμένο πρόβλημα και στη συνέχεια εκτελέσαμε το πείραμα καταγράφοντας την κίνηση με βίντεο. Η κίνηση της σφαίρας αναλύεται με τη βοήθεια του tracker της εφαρμογής Video Physics. Χρησιμοποιήσαμε μπαλάκι επιτραπέζιας αντισφαίρισης (πινγκ-πονγκ) και προσπαθήσαμε να προσδιορίσουμε τις τιμές των αρχικών συνθηκών στη θεωρητική προσέγγιση του προβλήματος. Στόχος μας ήταν να προσδιορίσουμε τις άγνωστες παραμέτρους της θεωρητικής επίλυσης του προβλήματος από τα πειραματικά δεδομένα. Το πείραμα επαναλήφθηκε αρκετές φορές καταγράφοντας κάθε φορά τα δεδομένα. Η επεξεργασία των δεδομένων έγινε με τις εφαρμογές Graphical και Graphical Analysis 3.8.4.
ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Αναπηδήσεις σφαιρικού σώματος, tracker, Video Physics, Graphical, Graphical Analysis 3.8.4.
ΕΙΣΑΓΩΓΗ Αν μια ελαστική σφαίρα, όπως ένα μπαλάκι του πινγκ πονγκ αφεθεί από ορισμένο ύψος να πέσει στη οριζόντια επιφάνεια ενός δαπέδου, θα υποστεί διαδοχικές αναπηδήσεις μέχρι να ηρεμήσει και να ακινητοποιηθεί. Η χρονική διάρκεια της ολικής κίνησης, το ύψος κάθε επιμέρους αναπήδησης, ο αριθμός των αναπηδήσεων, αλλά και η οριζόντια απομάκρυνση από το σημείο ρίψης έχουν απασχολήσει τους επιστήμονες στην μελέτη της συγκεκριμένης κίνησης (Cross 2000), (Cross 1999). Η απώλεια ενέργειας κατά την κρούση στην επιφάνεια (Cross 1999), αλλά και η στιγμιαία ολίσθηση της σφαίρας κατά την επαφή (Cross 2005) είναι καθοριστικοί παράμετροι στη μελέτη της κίνησης. Πολλοί συγγραφείς επεκτείνουν τη μελέτη σε περιπτώσεις περιστρεφόμενης σφαίρας που προσκρούει πλάγια σε επιφάνεια (Cross & Nathan 2007), ή ακόμα και πρόσκρουσης σε επιφάνεια με δυνατότητα εφαπτομενικής κίνησης (Cross 2010). Η μελέτη των συγκεκριμένων κρούσεων έχει σημαντικές εφαρμογές σε φυσικά συστήματα, όπως μελέτη της συμπεριφοράς ιδανικών αερίων, αλληλεπίδρασης ύλης ακτινοβολίας, αλληλεπίδραση σωματιδίων, αλλά και σε μηχανικά συστήματα όπως σε λιπαντικά (Cross 2012). Η πλήρης θεωρητική μελέτη της κίνησης ενός σώματος που αναπηδά είναι εξαιρετικά σύνθετη και οδηγεί σε χαοτική συμπεριφορά (Tufillaro & Albano, 1986), (Everson, 1986), (Kowalik, et. al. 1988). Ωστόσο είναι σημαντική για πλήθος εφαρμογών, ακόμα και σε κβαντικό επίπεδο (Gea-Banacloche, 1999). Εμείς στην παρούσα εργασία αποτυπώσαμε με βίντεο την κίνηση του σώματος, καταγράψαμε με tracker τις διαδοχικές θέσεις του σώματος και εφαρμόζοντας μια σειρά από μαθηματικούς τύπους προσπαθήσαμε να προσεγγίσουμε και να περιγράψουμε θεωρητικά την κίνηση της σφαίρας μας. 173
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
ΜΑΘΗΜΑΤΙΚΟ ΜΟΝΤΕΛΟ Από τις πειραματικές μετρήσεις θα επιχειρήσουμε να υπολογίσουμε την απομάκρυνση του σώματος (μπαλάκι πινγκ πονγκ) από το σημείο ρίψης. Για να μπορέσουμε να προσδιορίσουμε θεωρητικά την απόσταση ακολουθούμε την παρακάτω μαθηματική μεθοδολογία. Ας υποθέσουμε ότι η (𝛼𝑛 )𝑛∈ℕ είναι μια ακολουθία πραγματικών αριθμών. Με βάση αυτήν κατασκευάζουμε μια νέα ακολουθία ως εξής: 𝑠1 = 𝑎1 𝑠2 = 𝑎1 + 𝑎2 𝑠3 = 𝑎1 + 𝑎2 + 𝑎3
……………………………… 𝑛
𝑠𝑛 = 𝑎1 + 𝑎2 +. . . +𝑎𝑛 = ∑ 𝑎𝑘 𝑘=1
Το αντίστοιχο άπειρο άθροισμα: +∞
∑ 𝑎𝑛 𝑛=1
Ονομάζεται σειρά με όρους 𝑎𝑛 ενώ η (𝑆𝑛 )𝑛∈ℕ καλείται ακολουθία μερικών αθροισμάτων της σειράς. Ειδικά, μια σειρά της μορφής: 𝑎 + 𝑎𝑟 + 𝑎𝑟 2 + 𝑎𝑟 3 + ⋯ + 𝑎𝑟 𝑛−1 + ⋯
(1)
ονομάζεται γεωμετρική σειρά. Ο λόγος κάθε όρου προς τον προηγούμενο είναι r. Ο λόγος r μπορεί να είναι πραγματικός αριθμός με r ≠ 0. Το άθροισμα των n πρώτων όρων της (1) είναι: 𝑆𝑛 = 𝑎 + 𝑎𝑟 + 𝑎𝑟 2 + 𝑎𝑟 3 + ⋯ + 𝑎𝑟 𝑛−1 (2) Πολλαπλασιάζοντας και τα δυο μέλη της (2) με r, παίρνουμε: 𝑟𝑆𝑛 = 𝑎𝑟 + 𝑎𝑟 2 + 𝑎𝑟 3 + ⋯ + 𝑎𝑟 𝑛−1 + 𝑎𝑟 𝑛
(3)
Όταν αφαιρέσουμε την (3) από την (2), όλοι σχεδόν οι όροι στο δεξιό μέλος αλληλοεξουδετερώνονται και: 𝑆𝑛 − 𝑟𝑆𝑛 = 𝑎 − 𝑎𝑟 𝑛 ⇔
𝛼𝜈 𝑟≠1
(1 − 𝑟)𝑆𝑛 = 𝑎(1 − 𝑟 𝑛 ) ⇔
𝑆𝑛 =
𝑎(1− 𝑟 𝑛 ) (1−𝑟)
(4)
Στο δεξιό μέρος της (4), το n εμφανίζεται μόνο στην έκφραση 𝑟 𝑛 . Αν |𝑟| < 1 τότε ο όρος 𝑟 𝑛 πλησιάζει το 0, καθώς το 𝑛 → ∞. Συνεπώς: 174
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education. 𝑎(1− 𝑟 𝑛 ) 𝑛→∞ (1−𝑟)
lim 𝑆𝑛 = lim
𝑛→∞
=
𝑎 (1−𝑟)
αν |𝑟| < 1
Αν θυμηθούμε ότι 𝑟 0 = 1, όταν 𝑟 ≠ 1, μπορούμε να γράψουμε: 𝑛−1 𝑎 + 𝑎𝑟 + 𝑎𝑟 2 + 𝑎𝑟 3 + ⋯ + 𝑎𝑟 𝑛−1 + ⋯ = 𝛼 ∑∞ = 𝑛=1 𝑟
𝑎 (1−𝑟)
αν 0 < r < 1.
Τελικά καταλήγουμε στο συμπέρασμα ότι αν |𝑟| < 1 η γεωμετρική σειρά 𝑎 + 𝑎𝑟 + 𝑎 𝑎𝑟 + 𝑎𝑟 3 + ⋯ + 𝑎𝑟 𝑛−1 + ⋯ συγκλίνει στο (1−𝑟). 2
Στην περίπτωσή μας της μπάλας που αναπηδά κατακόρυφα έχουμε τα ακόλουθα: Η μπάλα αφήνεται να πέσει από ύψος 𝛼 μέτρων πάνω σε μια επίπεδη επιφάνεια. Κάθε φορά που η μπάλα προσκρούει στην επιφάνεια αφού πέσει από ύψος ℎ, αναπηδά κατά μια απόσταση 𝑟ℎ, 0 < 𝑟 < 1.
Το ολικό διάστημα που θα διανύσει η μπάλα μπορεί να δοθεί από τη σειρά: 𝑆 = 𝑎 + 2𝑎𝑟 + 2𝑎𝑟 2 + 2𝑎𝑟 3 + ⋯
Όλοι οι όροι εκτός από τον πρώτο σχηματίζουν μια γεωμετρική σειρά με άθροισμα Άρα το διάστημα είναι:
2𝑎𝑟 . (1−𝑟)
2𝑎𝑟
1+𝑟
𝑆 = 𝑎 + (1−𝑟) = 𝛼 1−𝑟
(5)
ΜΑΘΗΜΑΤΙΚΗ ΕΠΙΛΥΣΗ ΤΟΥ ΦΥΣΙΚΟΥ ΠΡΟΒΛΗΜΑΤΟΣ Οι κύριες διαφορικές εξισώσεις της Φυσική που περιγράφουν την κίνηση της αναπηδώσας σφαίρας μέσα στο βαρυτικό πεδίο δίνονται από τους παρακάτω τύπους: 𝑣=
𝑑ℎ 𝑑𝑡
(6α)
−𝑔 =
𝑑𝑣 𝑑𝑡
(6β)
Η εξίσωση (6α) αναφέρεται στην ταχύτητα που αποκτάει η σφαίρα καθώς πέφτει από ύψος h (ρυθμός μεταβολής μετατόπισης), ενώ ο δεύτερος τύπος αναφέρεται στην επιτάχυνση που αποκτάει το σώμα καθώς κινείται στο βαρυτικό πεδίο της Γης. Η επιτάχυνση (ρυθμός μεταβολής της ταχύτητας) δεν μπορεί να είναι άλλος από την 175
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
επιτάχυνση της βαρύτητας που συμβολίζεται με g. Το αρνητικό πρόσημο είναι αποτέλεσμα σύμβασης. Από την επίλυση (ολοκλήρωση) της διαφορικής εξίσωσης (6β) προκύπτει: 𝑑𝑣 = −𝑔𝑑𝑡 𝑣(𝑡) = ∫ 𝑑𝑣 = − ∫ 𝑔𝑑𝑡 → 𝑣(𝑡 − 𝑡𝑠 ) = 𝑣𝑠 − 𝑔 ∙ (𝑡 − 𝑡𝑠 ) (7)
Και από την επίλυση της διαφορικής εξίσωσης (6α) έχουμε: 𝑑ℎ = 𝑣(𝑡)𝑑𝑡 ℎ(𝑡) = ∫ 𝑑ℎ = ∫ 𝑣(𝑡)𝑑𝑡 = ∫(𝑣𝑠 − 𝑔𝑡)𝑑𝑡 → ℎ(𝑡 − 𝑡𝑠 ) = ℎ𝑠 + 𝑣𝑠 ∙ (𝑡 − 𝑡𝑠 ) −
𝑔(𝑡−𝑡𝑠 )2 2
(8)
Οι εξισώσεις (7) και (8) δίνουν την ταχύτητα και τη θέση της αναπηδώσας σφαίρας κάθε χρονική στιγμή. Οι τιμές vs και hs είναι σταθερές που προέκυψαν από την ολοκλήρωση των διαφορικών εξισώσεων. Ας μελετήσουμε όμως μια πλήρη αναπήδηση της σφαίρας (Σχήμα 1). Στο Σχήμα 1 φαίνονται όλα τα χαρακτηριστικά της κίνησης, οι χρονικές στιγμές, τα χρονικά διαστήματα, τα ύψη, οι μετατοπίσεις και οι ταχύτητες. Δεχόμαστε ότι μια πλήρη αναπήδηση γίνεται ανάμεσα στις χρονικές στιγμές tn-1 και tn. Κατά τις προσκρούσεις της ελαστικής σφαίρας στο έδαφος τις χρονικές στιγμές tn-1 και tn έχουμε απώλεια κινητικής ενέργειας που οδηγεί στην αντίστοιχη προοδευτική μείωση του ύψους αναπήδησης. Μεταξύ των χρονικών στιγμών tn-1 και tn η σφαίρα φτάνει στο μέγιστο ύψος της αποκτώντας στιγμιαία μηδενική ταχύτητα. Το μέγιστο ύψος συμβολίζεται με hn και σχετίζεται με το μέγιστο ύψος της προηγούμενης αναπήδησης ή της επόμενης αναπήδησης με τον λόγο r=hn/hn-1 (0<r<1). Στο ξεκίνημα και στο τέλος κάθε αναπήδησης δεχόμαστε ότι η ταχύτητα της αναπηδώσας σφαίρας είναι vn, όπως φαίνεται και στο Σχήμα 1.
Σχήμα 17: Η πρώτη αναπήδηση
Το αναπηδών σώμα προσεγγίζει το μέγιστο ύψος τη χρονική στιγμή tmax=(tn-1+tn)/2, αλλά παράλληλα μπορούμε να υπολογίσουμε τη χρονική στιγμή που το σώμα φτάνει στο μέγιστο ύψος του για κάθε αναπήδησης (tmax,n) θέτοντας στην εξίσωση (7) τιμή ταχύτητας ίση με μηδέν. Δηλαδή: 176
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
𝑡𝑛 − 𝑡𝑛−1 𝑡𝑛 − 𝑡𝑛−1 𝑣(𝑡𝑚𝑎𝑥,𝑛 − 𝑡𝑛−1 ) = 𝑣 ( ) = 𝑣𝑛 − 𝑔 ∙ ( )=0 2 2 → 𝑡𝑛 − 𝑡𝑛−1 −
2𝑣𝑛 𝑔
(9)
Αντίστοιχα το μέγιστο ύψος σε κάθε αναπήδηση θα είναι από εξίσωση (8) και (9): 𝑡𝑛 − 𝑡𝑛−1 𝑣𝑛 𝑣𝑛 𝑔 𝑣𝑛 2 ℎ𝑛 = ℎ(𝑡𝑚𝑎𝑥,𝑛 − 𝑡𝑛−1 ) = ℎ ( ) = ℎ ( ) = 𝑣𝑛 ∙ ( ) − ∙ ( ) 2 𝑔 𝑔 2 𝑔 → ℎ𝑛 =
𝑣𝑛2 2𝑔
(10)
Σύμφωνα με τις εξισώσεις (9) και (10) γνωρίζουμε τόσο τη διάρκεια κάθε αναπήδησης, όσο και το αντίστοιχο μέγιστο ύψος. Για να μπορέσουμε όμως να συγκρίνουμε τη θεωρητική μας προσέγγιση με τις πειραματικές μετρήσεις θέλουμε εκφράσεις των χρονικών διαστημάτων και των μεγίστων υψών συναρτήσει των αρχικών συνθηκών. Για να το πετύχουμε αυτό θα προσπαθήσουμε να εκφράσουμε όλα τα μεγέθη συναρτήσει λόγων (αναλογιών). Έτσι για τις ταχύτητες θα έχουμε το λόγο vn/vn-1 και για τα μέγιστα ύψη το λόγο r=hn/hn-1. Μπορούμε να εκφράσουμε το λόγο των ταχυτήτων συναρτήσει του r επίσης. Έτσι έχουμε: 𝑣𝑛2 2𝑔
=𝑟∙
2 𝑣𝑛−1 2𝑔
𝑣𝑛 𝑣𝑛−1
⇔
= √𝑟
(11)
Με τη βοήθεια της εξίσωσης (11) μπορούμε να «φτάσουμε» στις αρχικές συνθήκες, δηλαδή στην αρχική ταχύτητα v0: 2
3
𝑛
𝑣𝑛 = √𝑟 𝑣𝑛−1 = (√𝑟) 𝑣𝑛−2 = (√𝑟) 𝑣𝑛−3 = ⋯ = (√𝑟) 𝑣𝑜 → 𝑣𝑛 = 𝑣𝑜 𝑟 𝑛⁄2
(12)
Η εξίσωση (12) είναι σημαντική, καθώς μπορεί να αναδιατυπώσει τις εξισώσεις (9) και (10) εκφράζοντάς τες συναρτήσει των αρχικών συνθηκών και συγκεκριμένα της αρχικής ταχύτητας v0: 𝑡𝑛 − 𝑡𝑛−1 =
2𝑣𝑜 𝑟 𝑛⁄2 𝑔
(13)
και
ℎ𝑛 =
𝑟 𝑛 𝑣𝑜2 2𝑔
(14)
Από την εξίσωση (13) μπορούμε να εξάγουμε τα διαδοχικά χρονικά διαστήματα των αναπηδήσεων της σφαίρας. Έτσι θα έχουμε τα ακόλουθα αθροίσματα που οδηγούν σε γεωμετρική σειρά: 𝑡𝑛 = (𝑡1 − 𝑡𝑜 ) + (𝑡2 − 𝑡1 ) + (𝑡3 − 𝑡2 ) + ⋯ + (𝑡𝑛−1 − 𝑡𝑛−2 ) + (𝑡𝑛 − 𝑡𝑛−1 ) 𝑡𝑛 =
2√𝑟𝑣𝑜 2𝑟𝑣𝑜 2𝑟 3⁄2 𝑣𝑜 2𝑟 2 𝑣𝑜 2𝑟 (𝑛−1)⁄2 𝑣𝑜 2𝑟 𝑛⁄2 𝑣𝑜 + + + + ⋯+ + 𝑔 𝑔 𝑔 𝑔 𝑔 𝑔
→ 𝑡𝑛 =
2𝑣𝑜 𝑔
∙ ∑𝑛𝑘=1 𝑟 𝑘⁄2
(15)
Το άθροισμα της γεωμετρικής σειράς της εξίσωσης (15) οδηγεί τελικά (για 0<r<1) στον ολικό χρόνο κίνησης της σφαίρας μέχρι να ηρεμήσει: 177
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
𝑡𝑓𝑖𝑛𝑎𝑙 = lim ( 𝑛→∞
2𝑣𝑜 𝑔
∙ ∑𝑛𝑘=1 𝑟 𝑘⁄2 ) =
2𝑣𝑜 𝑔∙(1−√𝑟)
(16)
Το χρονικό διάστημα που προκύπτει από την εξίσωση (16) είναι σε πολύ καλή συμφωνία με τα πειραματικά μας δεδομένα όπως θα παρουσιάσουμε και στα συμπεράσματα. ΚΑΤΑΓΡΑΦΗ ΠΕΙΡΑΜΑΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ Αρχικά προσδιορίσαμε ένα σταθερό σημείο από το οποίο θα αφήναμε το σώμα (μπαλάκι επιτραπέζιας αντισφαίρισης) να πέσει, κάνοντας ελεύθερη πτώση. Μετρήσαμε με μετροταινία το ύψος από το οποίο αφήσαμε το σώμα και το βρήκαμε ίσο με 1,2 m, όπως φαίνεται στην Εικόνα 2. Είναι σημαντική η επιλογή σταθερού σημείου και η επανάληψη των μετρήσεων από το ίδιο ακριβώς σημείο, για λόγους βαθμονόμησης, καθώς και εισαγωγής αρχικών δεδομένων στο λογισμικό Video Physics. Με την εισαγωγή αυτών των αρχικών δεδομένων θέσης και χρόνου, το λογισμικό (tracker) θα μπορέσει να υπολογίσει και τα υπόλοιπα φυσικά μεγέθη.
Εικόνα 2: Εισαγωγή αρχικών δεδομένων στο Video Physics Στη συνέχεια τοποθετήσαμε το ipad (εναλλακτικά είχαμε και iphone) με
εγκατεστημένο το λογισμικό Video Physics σε σταθερό σημείο προσαρμοσμένο σε τρίποδο, ώστε να μπορεί να καταγράψει το video της κίνησης ανεπηρέαστο και με σταθερή βάση αναφοράς. Αυτή η διαδικασία είναι σημαντική στην ανίχνευση του αντικειμένου που πέφτει από τον tracker. Επίσης, εάν δεν είναι σε σταθερό σημείο το ipad δε θα καταγράφαμε ακριβώς τις διαδοχικές θέσεις (διαδοχικά σημεία) εισάγοντας έτσι σφάλματα στο πείραμα. Επίσης, επαναλάβαμε τις πτώσεις αρκετές φορές, ώστε να έχουμε επαναληψιμότητα στις μετρήσεις μας. Με τη βοήθεια του λογισμικού Video Physics καταγράφουμε το βίντεο της κίνησης του αντικειμένου και των διαδοχικών αναπηδήσεων. Στη συνέχεια «πληροφορούμε» τον tracker για το αντικείμενο (σφαιρίδιο επιτραπέζιας αντισφαίρισης) που πρέπει να 178
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
«ακολουθήσει» καταγράφοντας τις διαδοχικές του θέσεις για συγκεκριμένα διαδοχικά χρονικά διαστήματα (φωτογραφικά καρέ). Το λογισμικό δίνει τη δυνατότητα χειροκίνητης καταγραφής των διαδοχικών θέσεων του αντικειμένου σε περίπτωση που ο tracker «χάνει» το ίχνος. Η απώλεια του ίχνους του αντικειμένου είναι ακόμα ένας λόγος για τον οποίο πρέπει η ποιότητα του βίντεο να είναι άριστη, ωστόσο αυτό δεν είναι πάντα εφικτό καθώς οι λήψεις γίνονται ενίοτε και σε εξωτερικούς χώρους. Μια καταγραφή των διαδοχικών θέσεων ενός από τα πειράματα που εκτελέσαμε φαίνεται στην Εικόνα 3. Στην Εικόνα 2 φαίνονται επίσης η δυνατότητα προσδιορισμού των αξόνων X και Υ, με επιλογή περιστροφής τους και η βαθμονόμηση με καθορισμό των αρχικών μεγεθών. Εδώ ορίζουμε το ύψος (1,2 m), όπως φαίνεται στο ένθετο. Το δαχτυλίδι που φαίνεται στην Εικόνα 2 χρησιμοποιείται για να σηματοδοτήσουμε το αντικείμενο μελέτης, εδώ το σώμα που εκτελεί τις αναπηδήσεις. Με αυξομείωση του δακτυλίου πετυχαίνουμε να ορίσουμε ακριβώς το σώμα που μας ενδιαφέρει να μελετήσουμε.
Εικόνα 3: Καταγραφή της τροχιάς (διαδοχικές θέσεις) ενός αντικειμένου (μπαλάκι επιτραπέζιας αντισφαίρισης) που πέφτει, με τη βοήθεια του tracker στο λογισμικό Video Physics Στη συνέχεια το λογισμικό δημιουργεί τις γραφικές παραστάσεις: τροχιάς (Χ-Υ), θέσης – χρόνου (Χ-t) και (Υ- t) και ταχύτητας – χρόνου (u-t) για τη μετατόπιση στον άξονα Χ και
στον άξονα Υ. Ενδεικτική γραφική παράσταση φαίνεται στην Εικόνα 4.
179
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
Εικόνα 4:Γραφική παράσταση θέσης – χρόνου (Υ- t), όπως προέκυψε από το λογισμικό Video Physics για πτώση και αναπηδήσεις μπάλας επιτραπέζιας αντισφαίρισης.
Κατακόρυφη μετατόπιση (m)
Επεξεργαζόμαστε τα δεδομένα μας με τη χρήση των λογισμικών Graphical ή Graphical Analysis (διατίθενται δωρεάν στο διαδίκτυο) και με το Excel. Με τα προγράμματα αυτά προσομοιώνουμε τις μετρήσεις, ώστε να εξάγουμε τις καμπύλες μετρήσεων και τις αντίστοιχες εξισώσεις που τις περιγράφουν. Ενδεικτική προσομοίωση των μετρήσεων φαίνεται στην Εικόνα 5. 1,4 1,2 1 0,8 0,6 0,4 0,2 0 -0,2 0
1
2 3 Χρόνος (s)
4
5
Εικόνα 5: Προσομοίωση πειραματικών μετρήσεων θέσης – χρόνου (Υ- t) για πτώση αντικειμένου (μπάλα επιτραπέζιας αντισφαίρισης)
ΕΠΕΞΕΡΓΑΣΙΑ Από την Εικόνα 2, όπου φαίνονται τα πειραματικά μας δεδομένα, μπορούμε να καταγράψουμε τις αντίστοιχες τιμές θέσης (άξονας y) μιας σφαίρας επιτραπέζιας αντισφαίρισης (πινγκ πονγκ) που αναπηδά κατακόρυφα, σε συνάρτηση με το χρόνο. Αυτή η πληροφορία είναι εξαιρετικά σημαντική, καθώς αποτελεί το πραγματικό, ρεαλιστικό πειραματικό δεδομένο μας, το οποίο θα συγκρίνουμε με την αντίστοιχη μαθηματική προσέγγιση. Ουσιαστικά έχουμε δημιουργήσει ένα μαθηματικό μοντέλο που παρέχει πληροφορίες σχετικά με την υπό μελέτη κίνηση και θέλουμε να το επαληθεύσουμε (επιβεβαιώσουμε ή βελτιώσουμε) στηριζόμενοι στις πειραματικές μετρήσεις ενός πραγματικού γεγονότος. Στον παρακάτω Πίνακα 1 φαίνονται οι μέγιστες τιμές θέσης της σφαίρας μετά από κάθε αναπήδηση και οι αντίστοιχοι χρόνοι. Επίσης, φαίνεται ο λόγος δυο διαδοχικών μεγίστων και ο μέσος όρος των λόγων αυτών. 180
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
Μέγιστες θέσεις Χρονικές στιγμές Λόγος μεγίστων Μέσος όρος 1,2090 1,133 0,7450 2,002 0,62 0,5218 2,735 0,7 0,71 0,3925 3,335 0,75 0,3032 3,835 0,77 Πίνακας 3: Μέγιστες τιμές θέσης της σφαίρας μετά από κάθε αναπήδηση και οι αντίστοιχοι χρόνοι. Επίσης, αναγράφονται οι λόγοι δυο διαδοχικών μεγίστων και ο μέσος όρος των λόγων αυτών.
Γνωρίζοντας ότι η σφαίρα έχει αφεθεί από ύψος 1,2 m και ο λόγος μεταξύ δυο διαδοχικών μεγίστων είναι 0,71, έχουμε από την σχέση (5) για 𝑎 = 1,2 και 𝑟 = 0,71 𝑆=𝑎+
2𝑎𝑟 1+𝑟 1 + 0,71 =𝛼 = 1,2 = 7,08 𝑚 (1 − 𝑟) 1−𝑟 1 − 0,71
Άρα το συνολικό διάστημα που θα διανύσει η σφαίρα κατά τις αναπηδήσεις της είναι: 𝑆 = 7,08 𝑚 Η τιμή αυτή είναι σύμφωνη με τις πειραματικές μας μετρήσεις. Ήδη από τη γραφική παράσταση της Εικόνας 4 φαίνεται ότι το σώμα έχει διανύσει απόσταση 4 μέτρων, χωρίς να έχει ακινητοποιηθεί. Στις πειραματικές μετρήσεις μας καταλήγουμε σε αποστάσεις της τάξεως των 6-7 μέτρων. Ωστόσο, παρουσιάζει ιδιαίτερο ενδιαφέρον η γνώση των χρονικών στιγμών που η σφαίρα φτάνει στο εκάστοτε μέγιστο. Αυτή η πληροφορία είναι σημαντική, καθώς θα μπορέσουμε να υπολογίσουμε θεωρητικά τον ολικό χρόνο της κίνησης της μπάλας και να το συγκρίνουμε με τα αντίστοιχα πειραματικά μας δεδομένα. Για το λόγο αυτό επιλέγουμε τις κορυφές (μέγιστες θέσεις) κατά τις αναπηδήσεις της σφαίρας και προσεγγίζουμε γραφικά τη σχέση μεταξύ μεγίστων θέσεων και αντιστοίχων χρόνων. Στην παρακάτω Εικόνα 5 φαίνεται η γραφική προσέγγιση με πολυώνυμο δευτέρου βαθμού.
Εικόνα 6: Γραφική προσέγγιση με πολυώνυμο δευτέρου βαθμού των μεγίστων θέσεων για τους αντιστοίχων χρόνων. 181
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
Από τη γραφική προσέγγιση (προσομοίωση) προκύπτει η ακόλουθη σχέση μεταξύ των μεγίστων θέσεων αναπήδησης y και των αντίστοιχων χρονικών στιγμών t. (17)
𝑦 = 0,0932𝑡 2 − 0,7909𝑡 + 1,9774
Μπορούμε να εξάγουμε την εξίσωση δευτέρου βαθμού που περιγράφει την καμπύλη προσομοίωσης. Γνωρίζοντας τουλάχιστον τρία σημεία (𝑡1 , ℎ1 ), (𝑡2 , ℎ2 ) και (𝑡3 , ℎ3 ) όπου ℎ1, ℎ2 , ℎ3 τρεις διαδοχικές μέγιστες θέσεις αναπήδησης και με τη βοήθεια της μεθόδου των ελαχίστων τετραγώνων, για την παραπάνω καμπύλη, έχουμε τον ακόλουθο επαυξημένο πίνακα του συστήματος: 2
𝑣
2 𝑡𝑚𝑎𝑥1 2 [𝑡𝑚𝑎𝑥2 2 𝑡𝑚𝑎𝑥3
𝑣0 𝑔
0
𝑣02 2𝑔
𝑣0 (1+√𝑟) 𝑔
0
𝑟𝑣02 2𝑔
0
𝑟 2 𝑣02 2𝑔 ]
( 𝑔0 )
𝑡𝑚𝑎𝑥1 𝑡𝑚𝑎𝑥2 𝑡𝑚𝑎𝑥3
0 ℎ1 2 𝑣 (1+ 𝑟) 0 ℎ2 ]= [ 0 √ ] 𝑔 0 ℎ3 2 𝑣0 (√𝑟+𝑟) [ ] [ 𝑔
𝑣0 (√𝑟+𝑟) 𝑔
Από την μαθηματική επίλυση της προηγούμενης ορίζουσας καταλήγουμε στην ακόλουθη σχέση: 𝑔 1−√𝑟 √
2
𝑦= [ ] 𝑡 2 − 2𝑣0 2 1+ 𝑟
1−√𝑟 2
(1+√𝑟)
2 𝑣0 2 ) 𝑔 1+√𝑟
𝑡+ (
(18)
Με g η επιτάχυνση της βαρύτητας, v0 η αρχική ταχύτητα του σώματος και r ο λόγος δυο διαδοχικών υψών. Βάσει του τύπου αυτού μπορούμε να γνωρίζουμε τις χρονικές στιγμές που η σφαίρα φτάνει σε μέγιστη κατακόρυφη απόσταση. Τις μέγιστες κατακόρυφες αποστάσεις μπορούμε να γνωρίζουμε από την γεωμετρική πρόοδο (Εξίσωση (1)). Βεβαίως, μπορούμε να γνωρίζουμε και τα κατακόρυφα μέγιστα, αν είναι γνωστές οι αντίστοιχες χρονικές στιγμές. ΣΥΜΠΕΡΑΣΜΑΤΑ Από τη σύγκριση των όρων στην εξίσωση (17) και στην εξίσωση (18) προκύπτουν τα ακόλουθα: Για τον μαθηματικό μας μοντέλο δεχτήκαμε τιμή r του λόγου δυο διαδοχικών υψών ίση με 1/2. Από τις πειραματικές μας μετρήσεις προκύπτει 0,57. Η καλή συμφωνία των δυο τιμών οφείλεται στο γεγονός ότι το μπαλάκι που αναπηδά είναι εξαιρετικά ελαστικό. Για την τιμή της αρχικής ταχύτητας έχουμε θεωρητική τιμή v0=4,85 m/s και η πειραματική μας τιμή προκύπτει v0=4,67 m/s, σφάλμα μικρότερο από 4%. Η πειραματική τιμή της επιτάχυνσης της βαρύτητας είναι g=10,36 m/s2, ενώ η θεωρητική τιμή είναι g=9,81 m/s2, σφάλμα περίπου 5%. Από το μαθηματικό μας μοντέλο προκύπτει ότι ο ολικός χρόνος δίνεται από τη σχέση: 𝑡𝑓𝑖𝑛𝑎𝑙 =
2𝑣0 𝑔(1−√𝑟)
(19)
Έχοντας προσδιορίσει το r=0,58, θα έχουμε √𝑟 = 0,76, οπότε η θεωρητική τιμή του ολικού χρόνου θα είναι: 𝑡𝑓𝑖𝑛𝑎𝑙 = 5,95 𝑠. Από τις πειραματικές μας μετρήσεις καταλήγουμε σε τιμή ολικού χρόνου ίση με 𝑡𝑓𝑖𝑛𝑎𝑙 = 6,2 𝑠. Το σφάλμα είναι λίγο μεγαλύτερο από 4%. Όλα αυτά τα δεδομένα αποκαλύπτουν μια εξαιρετική συμφωνία του θεωρητικού μας μοντέλου με τις πειραματικές μετρήσεις. Ουσιαστικά 182
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
καταφέρουμε να δημιουργήσουμε μια σειρά από εξισώσεις που αποκαλύπτουν πολλά από τα χαρακτηριστικά της κίνησης μιας μπάλας που αναπηδά (όπως ο ολικός χρόνος κίνησης, η μέγιστη απομάκρυνση, ο λόγος διαδοχικών υψών αναπήδησης) και να επαληθεύσουμε τις θεωρητικές αυτές εξισώσεις με πραγματικά πειραματικά δεδομένα, από μετρήσεις στο πλαίσιο του μαθήματος της ερευνητικής εργασίας. Acknowledgments: Η παρούσα έρευνα έχει χρηματοδοτηθεί από το ευρωπαϊκό πρόγραμμα e-lios (e-learning interactive open school) που είναι δράση που εντάσσεται στον άξονα: Collaboration for innovation and exchange of good practice in the field of school education του Ευρωπαϊκού Προγράμματος ERASMUS + KA2 με κωδικό: 2015-1-EL01-KA201-014029 και επιβλέπεται από την καθηγήτρια του Παιδαγωγικού Τμήματος Δημοτικής Εκπαίδευσης του Πανεπιστημίου Πατρών κ. Ευγενία Κολέζα που είναι και η συντονίστρια του Προγράμματος. ΑΝΑΦΟΡΕΣ Cross, R. (1999). Impact of a ball with a bat or racket. American Journal of Physics, 67(8), 692702. Cross, R. (1999). The bounce of a ball. American Journal of Physics, 67(3), 222-227. Cross, R. (2000). The coefficient of restitution for collisions of happy balls, unhappy balls, and tennis balls. American Journal of Physics, 68(11), 1025-1031. Cross, R. (2005). Bounce of a spinning ball near normal incidence. American journal of physics, 73(10), 914-920. Cross, R. (2010). Impact of a ball on a surface with tangential compliance. American Journal of Physics, 78(7), 716-720. Cross, R. (2012). Rolling motion of a ball spinning about a near-vertical axis. The Physics Teacher, 50(1), 25-27. Cross, R., & Nathan, A. M. (2007). Experimental study of the gear effect in ball collisions. American Journal of Physics, 75(7), 658-664. Everson, R. M. (1986). Chaotic dynamics of a bouncing ball. Physica D: Nonlinear Phenomena, 19(3), 355-383. Gea-Banacloche, J. (1999). A quantum bouncing ball. American Journal of Physics, 67(9), 776782. Kowalik, Z. J., Franaszek, M., & Pierański, P. (1988). Self-reanimating chaos in the bouncingball system. Physical Review A, 37(10), 4016. Tufillaro, N. B., & Albano, A. M. (1986). Chaotic dynamics of a bouncing ball. American Journal of Physics, 54(10), 939-944.
183
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
PROPOSALS FOR GOOD PRACTICES
Theoretical part Density is a major property of materials. We can count density d if we know the mass m and volume V of a body from the equation:
(1)
d = m/V
Experimental part Instruments, apparatus and materials: 1. 2. 3.
Number of solid bodies (various shapes), Volumetric Cylinder Libra
Experimental procedure: A. Measurement of mass. To measure mass, we need a Libra (scale). The Libra in the laboratory is a two discs Libra in which the mass of the body is compared to the fixed masses. 1. We place on the disc of the scale the essay No. 1 (solid body), of which we want to measure the mass. 2. On the other disc, we lay different weights until the scales balance. 3. We record the value in table 1. 4. Repeat the procedure with the specimens Î?Îż 2, 3 and 4.
Image.1: Essays of various shapes
Image 2: Libra Two Disk Table 1
Essay
1
2
3
4
Mass (gr) 184
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
Î&#x2019;. Volume measurement. The volume of shapes can be measured by the volume of liquid (water) they displace when they are immersed in it. 1. Fill the ½ a volumetric cylinder of 100 or 200 Ml. 2. Note the exact value of the volume of liquid VA. 3. Add one by one the bodies carefully to be completely immersed in the liquid. Note the new volume value VB. The volume of the essay is equal to the difference. 4. Fill in table 3. Table 2 VA (cm3)
VB(cm3)
V(cm3)
Essay 1 Essay 2 Essay 3 Essay 4 C. Density calculation Using the measurements from tables 1 and 2 calculate the density and specific weight of the bodies. Fill in table 3. What material are the essays made of? Table 3 will help you. Table 3 Density d (gr/cm3) Essay 1 Essay 2 Essay 3 Essay 4 Table 4 Material
Density gr/cm3
Aluminum Steel Brass Copper Lead Zinc Tin Nickel Plexiglas Iron
2,6 7,7 8,4 8,9 11,34 7,14 7,28 8,9 1,2 7,86
185
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
Theoretical part How could the movement of a racing car be described? How fast does the ball that kicked a footballer move? Answers to such questions gives the Kinematics Which describes the movements of the bodies. The orbit of a moving body is the sum of the successive positions from which the body passes. If the trajectory is straight, then the movement is characterized as Inline, while if it is curved as Curvilinear.
Body Displacement on axis: We define as Shift Dx of the body on the straight line the difference x2 - x1.
Pict. 1: Displacement is vector.
Duration: The difference Î&#x201D;t of the temporal passage of a body from two positions is called Duration of its movement between these positions:
Î&#x201D;t = t2 - t1
(1)
The concept of speed in inline smooth motion Defined as the quotient of the shift to the corresponding time duration.
â&#x192;&#x2014;đ??&#x160; =
â&#x192;&#x2014; đ?&#x153;&#x;đ?&#x2019;&#x2122;
(2)
đ?&#x153;&#x;đ?&#x2019;&#x2022;
The speed definition equation shows that the AEX offset is:
Î&#x201D;x = Ď&#x2026; Î&#x201D;t
or
x=Ď&#x2026;t
(3)
This relationship is called Animation equation. In addition to the algebraic study with the motion equation, the inline smooth movement can be studied and graphically by means of the diagram of the position in relation to the time t. The slope of the straight at the diagram gives the speed in the straight motion.
186
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
Experimental part Instruments, apparatus and materials: 1.
Timer 2. Tape measure 3. Air tube orbit
Experimental procedure: A. Linear Smooth motion study 1. 2. 3. 4.
Fig. 2: Graph x =F (t)
Set the air tube orbit in function. Next to main part of the air tube you can see a tape so that you know the position of the â&#x20AC;&#x153;trainâ&#x20AC;? every time. With the help of a timer, determine the times when our train is passing through specific positions. Record the values of places and time points in Table 1.
Fig. 4: Linear Smooth Motion study layout
Table 1 Change of position Î&#x201D;x Time (cm) Î&#x201D;t (s)
Average Speed Ď&#x2026; (cm/s)
t2 =
Î&#x201D;x1=x2-x1=
Î&#x201D;t1=t2-t1=
Ď&#x2026;1=
x3=
t3 =
Î&#x201D;x2=x3-x2=
Î&#x201D;t2=t3-t2=
Ď&#x2026;2=
x4=
t4 =
Î&#x201D;x3=x4-x3=
Î&#x201D;t3=t4-t3=
Ď&#x2026;3=
x5=
t5 =
Î&#x201D;x4=x5-x4=
Î&#x201D;t4=t5-t4=
Ď&#x2026;4=
Ě&#x2026;= đ?&#x153;&#x;đ??&#x152;
đ?&#x153;&#x;đ??Ě&#x2026; =
Position x (cm)
Time t (s)
x1=
t1 =
x2=
Average value
Ě&#x2026;= đ?&#x153;&#x;đ??&#x160;
5. Design the shift â&#x20AC;&#x201C; time graph. What do you notice about the slope? Speed is fixed or altered;
187
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
Theoretical part Simple pendulum When a move is repeated at equal intervals it is called periodic. In the event that a periodic movement becomes reciprocated around a position of equilibrium then it is called oscillation. The simple pendulum consists of a small-sized heavy body, usually a pellet, that hangs with a thin thread from a fixed point and can move freely around it, making oscillations on a vertical plane. If the pellet is removed at a small angle θ (fig. 1a) from its equilibrium position, it is left free and ignored frictions and resistances, then due to its weight and the tension of the yarn will make free oscillation between points B and BÎ&#x201E; that are equal Distance from A (Fig. 1b).
(a) (b) Pict. 1 (a): Simple Pendulum, b Simple pendulum oscillation around position A. The pendulum makes a oscillation, if the pellet moves from the B to the BÎ&#x201E; and back to B. The time of an oscillation is the period T of the pendulum. The distance from the dependency point to the center of the pellet is the length l of the pendulum. Considering that such a pendulum makes oscillations of a very small deflection angle θ (θ < 5Îż), the period Τ Îżf the pendulum is given by the relationship:
đ?&#x203A;ľ = 2đ?&#x153;&#x2039;â&#x2C6;&#x161;
l đ?&#x2018;&#x201D;
Where: Ď&#x20AC;= 3.14 and g= Acceleration of gravity 188
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
Experimental part Instruments, apparatus and materials: 1. 2. 3. 4. 5. 6. 7. 8.
Timer Ruler Iron Hook Iron Base Iron rod String Beads (pellets) Magnet
Experimental procedure: A. Effect of length in the pendulum period 1. Use the ruler and measure the length of the Figure 7 Experimental Apparatus thread at 1 m. 2. Remove the pellet from the balance position and measure the time of five oscillations. The time measurement starts from the moment you leave it. You say "zero" and you Count "one", "two" etc. when the pellet goes again from the point where you leave it in the "ten” stop the timer. Repeat two or three times. Change the length of the string reducing it each time by 10 cm and fill the following Table 1 Table 1
l (m)
10T (s)
T (s)
1 2 3
B. Effect of mass in the pendulum period 1. Keeping the length of the yarn fixed (l =1 m) mount 3 different weights. 2. For each weight, measure the time of 10 oscillations and fill in Table 2. Table 2
m (g)
10T (s)
T (s)
1 2 3
C. Effect of acceleration of gravity in the pendulum period 1. Mount the iron ball into the yarn. Place the magnet directly below the balance position of the pendulum For length l = 1 m divert it by small angle, measure the time of 10 oscillations and calculate the period Τ of the pendulum. Repeat this procedure for 3 different string lengths and fill the Table 3. Table 3
Without Magnet 10 Τ (s) T (s) l (cm)
With Magnet 10 T(s) T(s) l (cm)
189
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
Theoretical part The various materials can be separated in elastics and plastics. When a certain force acts on a body, the body is deformed. If it takes its original form as soon as the power ceases, we call the body elastic. For example, a steel spring is a resilient body. In contrast, a spring of copper wire or a clay is a plastic body, because it deforms permanently even with the effect of small force. An elastic body will suffer permanent deformation, when the force that distorts it surpasses the body's elasticity limit. It breaks when it crosses its fracture limit. The Hooke’s Law or the law of elasticity says that elongation x of a spring in its elasticity regime is proportional to the power of the F that causes it:
F=k∙x
(1)
Where k The constant of the ratio. We call it the constant k, as “spring constant”, while its value characterizes the stifness of the spring and depends on the geometric characteristics of the spring (length, thickness etc.). It has a unit of measurement 1 N/m. The law of elastic deformation is based on the measurement of a force with the help of the dynamometer. When we hang a body by a steel spring, the elongation depends on the weight of that body. Twice the weight causes twice as much elongation. So, hanging different bodies of known weights and noting the corresponding deformations we can grade the spring and build a dynamometer!
Experimental part
Pict. 1: Dynamometer
Instruments, apparatus and materials: 1. 2. 3. 4. 5. 6. 7.
Ruler Iron Hook Iron Base Iron rod Masses of 50 gr Body of unknown mass 2 Springs
190
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
Experimental procedure: 1. Assemble the experimental device of FIG. 2. 2. Hang on the hook on one of the springs. The hook serves as an indicator on the edge of the spring. 3. Set the ruler in such a way that the zero mark is on the same line as the hook. 4. At the end of the spring, hang a weight. Note the value of the elongation x of the spring. 5. Repeat the procedure 4 more times by adding same weight each time, recording the elongation x the spring and the force exerted F=B (weight Pict. 2: Experimental apparatus of pellets). Remember that the weight B of a body is calculated from the relationship: B =mg, where g=acceleration of gravity. For your calculations use g = 10 m/s2. 6. Fill in table 1. Table 1 Spring Î&#x2019;
Spring A
B (N)
x (cm)
B (N)
x (cm)
1. Follow steps 2 through 6 for the second spring. 2. To design the graph F â&#x20AC;&#x201C; x for spring A. 3. On the same axes, do the graph for the B spring. 4. What format do the graphs have? The Law of Hooke; Articulate him. 5. Hang from the spring a body of unknown weight and record elongation x of the spring.
x (cm)
13. From the graphs you have done can you calculate the weight of the unknown body? 191
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
Force synthesis and Force analysis Î&#x2018;. Composition and Force analysis Theoretical part On a body acting two or more forces at the same time, at the same point, there is a force that can replace these forces and bring about the same result. This power is called Resultant (often denoted by ÎŁF) and the forces it replaces are called Components.
Experimental part Instruments, apparatus and materials: 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.
Two stands Rod 3 links 2 rings 2 Pulleys Masses 50 gr String Protractor Tagged white sheet Paper
Experimental procedure: 1. You will find already assembled the experimental device of Fig. 1. On each base one rod on the top of each one there is a link. A third rod with the two rings bearing hooks are mounted and fastened horizontally. Two rings are hanged from the hooks and a string is passed from both rings. 2. We hang on both string ends equal weights of 1.5 N (150 g). Is the system balancing? Figure 8 Experimental apparatus 1 explain why.
192
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
3. Add carefully only to the right end one more dumbbell of 0.5 N (50 g). Explain what you are noticing. 4. Hold with your hand the left end so that the system is balanced and hung from the middle of the string five weights of 0.5 N (5x50g) (Fig. 2). Let the system go. Does the system balances? explain why. 5. Hang the sign with the white sheet of paper Figure 9: Experimental apparatus 2 and draw on the paper the directions of the forces F1F2 And F3 Dragging lines along the string. 6. Hang up the sign and count the angle F with the protractor. How many squadrons are there? What do you infer about the directions of the forces F1 And F2; 7. Use the appropriate scale e.g. 1 cm corresponding to 0.5 N and design on a millimeter paper the vectors of the forces F1 F2 And F3. 8. Make the parallelogram of the forces F1 And F2. Bring the diagonal of the rectangle, which is the vector F. Compare it by measure and direction with the power F3. What do you see? 9. Measure the value of the Resultant force F.
Hint: Synthesis of forces forming angle 90Îż Suppose at one point the acting two forces
F2
F1 And
Îż
Forming Angle 90 (Fig. 3). We ask for the direction and the value of the Resultant force. Constructing the parallelogram of forces the hypotenuse indicates the value of the resultant force. If we apply the Pythagorean theorem, we find its price:
đ?&#x203A;´đ??š = â&#x2C6;&#x161;đ??š12 + đ??š22
Fig. 3: Synthesis of forces forming angle 90Îż
The angle I Determined by the relationship:
193
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
Theoretical part When we exert Force on a solid body through which an axis passes, usually the body revolves around that axis. The ability of a force to rotate a body around an axis is described quantitatively by the physical size that we call Torque. The value of torque Μ of a force referred to the axis of rotation is defined as the product of the value of force F and the vertical distance d of the Force from the pivot axis:
M=F×d Torque Unit in Si is 1 N m. A solid body or a lever balances when the sum of the Μ1 of the moment as to the pivot axis to the left is equal to the sum of the Μ2 of the moment to the right:
Μ1=Μ2
or
F1 d 1 = F2 d 2
If the torques are not equal, the lever is directed at the direction of the bigest torque.
Experimental part instruments, apparatus and materials: 1. 2. 3. 4. 5. 6. 7. 8.
Rod mounted on a base Rod 2 simple Links Aluminum lever Hangers Masses 50 gr and 100 gr String Ruler
Experimental procedure: A. Force torque as to an axis rotation 1.
2.
Fig. 7: Experimental layout
You will see an assembled stator and at the top of the rod fastened a simple ligament. From the edge of the ligament an aluminum lever hanged. Place at both ends of the lever similar hangers. What do you notice? 194
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
3. 4. 5.
Transfer a hanger from the edge to the middle of the lever. What do you notice? Justify your answer. Hang ta dumbbell 0.5 N (50 g) on a hanger. Measure the rider's distance from the axis of rotation and write it down. Calculate torque M1 of the weight as to the axis of rotation (pivot axis).
B. Lever balance 1.
Hung on the left rider of the weight lever F1= 0.5 N (50 g) and on the right weights of total weight F2= 1 N (100 g). Move the hanger appropriately so that the lever balances horizontally.
1.
Measure with the ruler the distances d1 and d2 of the Forces F1 and F2 from the pivot axis and calculate their torque M1 and M2 Respectively.
1.
examined whether the torques M1 and M2 are equal or otherwise if their numerical sum is zero: MOl= F1 d1- F2 d2 = 0.
1.
Fill in the Table 1. 1. Repeat procedures 1, 2, 3 and 4 once again hanging on the left hander a weight of F1= 1.5 N (150 g) and on the right hanger a weight of F2= 2 N (200 g). Note the results in Table 1. 2. Repeat for third time procedures 1, 2, 3, and 4 hanging on the left hanger a weight of F1= 0.5 N (50 g) and on the right one a random link. Calculate the weight of the link. What are you now using this experimental device for? 3. The above procedures verify the lever balance Torque and force balance (moment theorem); Articulate them in your own words.
Table 1 F1(Ν)
d1(cm)
F2(Ν)
d2(cm)
Μ1(N cm) Μ2(N cm)
Μολ
195
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
Theoretical part When a power F It acts on a surface A then the ratio:
đ??š
đ?&#x2018;&#x192;=đ??´ it is called pressure on the surface A. Pressureâ&#x20AC;&#x2122;s unit (SI) is 1 N/m2 and is called Pascal (1pascal = 1Pa =1 N/m2). Other pressure units are 1 Bar = 105 Pa = 1 atm. The pressure due to the weight of a liquid is called Hydrostatic. The hydrostatic pressure P at a certain point in the liquid (if you ignore the atmospheric) is proportional to: the depth from the surface of the liquid h, the liquid density p and the acceleration of gravity g. The above conclusions are expressed in the language of mathematics by the relationship:
P=p¡g¡h (Law of Hydrostatic pressure) Where: p Hydrostatic pressure in N/m2, p the density of liquid in Kg/m, g the acceleration of gravity in m/s2 and h the depth from the surface of the liquid to m. It is worth noting that hydrostatic pressure, depends Not on the shape of the container or the volume of the liquid. We feel the same pressure when we take a dip and our head is sunk by one meter either in a small seawater pool or in the middle of the sea.
Fig. 1: Measurement of Hydrostatic pressure 196
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
(a) the membrane is located outside the liquid (b) The membrane is in the liquid
Experimental part Instruments, materials: 1. 2. 3. 4. 5.
apparatus
and
Manometric capsule with Manometer Volumetric Cylinder Ruler Water Concentrate Saline solution
Experimental procedure: 1. Fill the glass basin with water until the ž. Plunge the Manometric capsule into the water and adjust the height of the device so that the center of the membrane of the Fig. 2: Experimental apparatus manometric capsule is 2 cm under the surface of the water. 2. Observe the indication of gauge and fill it in Table 1. 3. Continue, repeating procedures 5 and 6 for depths 4 cm, 6 cm, 8 cm, 10 cm etc. Fill in Table 1. What do you notice from these measures? How does hydrostatic pressure change in relation to the depth from the surface of the liquid? 4. Fill with a saline solution the plastic basin. Plunged into the saltwater the manometric capsule in 8 cm depth. Observe the indication of gauge. Fill in the respective table 2 field Comparing the values of hydrostatic pressure in water and saltwater, for the same depth. What do you see?
Table 1 Depth h (cm) Pressure
2
4
6
8
10
12
14
16
18
20
P (cm H2O) Depth h (cm) Pressure
P (cm H2O) Table 2 1 Liquid Water
2 Depth h (cm) 8
Saltwater
8
3 Pressure p (cmH2O)
5. Fill the communicating containers with water. What do you notice? Give an explanation. 197
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
Theoretical part Have you ever wondered what forces keeps your body on the surface of the sea when you swim? Which force keeps ships on the surface of the sea, lake or rivers when they travel? It's the same force that prevents you from sinking a balloon into the water. Each liquid exerts strength on the bodies that sink into it. This power is called Buoyancy. It is easier to lift a stone when it is immersed in the water than when it is outside. You form the impression that the weight of the stone decreases when you immerse it in the water. If you hang it from a dynamometer, the indication of the dynamometer when the stone is in the water is less than the indication when the stone is in the air (Fig. 1). The weight of the stone, i.e. the gravitational force that the earth exerts on the stone, is the same either the stone is in the water or it is in the air.
Fig. 1: The buoyancy has a vertical direction and is once upward. Why does the dynamometer show a smaller indication when the stone is hung in the water? The water exerts on the stone a force that we called buoyancy: A. The indication of dynamometer, Wφ, is equal to the measure of force the dynamometer exerts on the stone. The stone is balanced. So, when it is in the air, it applies: Wφ=W, While immersed in water: W'φ+A=W, i.e W'φ=W-Α, so Α=W – Wφ΄ 1. Buoyancy does not depend on the shape and weight of the body being immersed. 2. If a body is Entire Immersed in the liquid, buoyancy is independent of the depth at which it is located. 3. The liquid with the highest density exerts greater buoyancy. • Buoyancy increases when the volume of fluid that is displaced by the body is increased, which we plunge into it. Archimedes gathered all the above observations and formulated a proposal known as Archimedes ' principle: 198
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
Fluids exert Force in every body that sinks into them. This force is called buoyancy, it is perpendicular, and its value equals the weight of the fluid being displaced by the body.
Α= Wdisplaced liquid A=ρliquid ·g·Vdisplaced liquid (Archimedes Law) Where A is the Buoyancy exerted on a body immersed in liquid with density ρ and
Vdisplaced the volume of liquid being displaced.
Experimental part instruments, apparatus and materials: 1. 2. 3. 4.
Dynamometer Calibrated Beaker Teflon Roller Water
Experimental procedure: 1. We hang from the 2 N dynamometer The cylinder, let it balance and denote the indication of the dynamometer which equals the weight of the roller. So:
Fdyn(air) = Wcylinder =…….Ν
Fig. 4: Experimental apparatus
2. Fill the beaker up to the Mark 200 ml with water. We sink the cylinder Until the second mark (Lowering the dynamometer) and note the indication.
F΄dyn(liquid) =.......Ν 3. Compare the two dynamometer indications. Can you explain the difference you observe? To what force can we attribute the difference between the indications of the dynamometer? 4. In step 2, we fill the beaker until the 200 ml and we sunk the cylinder until the second mark. The water level on the beaker went up. Note the volume of water when we sank the cylinder until the second mark. This volume is the Vdisplaced liquid.
Vdisplaced liquid =……..ml 5. Considering that the water density is ρLiquid= 1 gr/cm3 and the g = 10 m/s2 Calculate from the relationship (2) buoyancy A Applied to the cylinder. Compare this value to the one that you calculated in step 2. What do you notice? 6. Why do we float more easily to the sea than to a lake or pool (with "sweet" water)? You can answer the above question if you know that saltwater (seawater) has a higher density than pure water (lake water). 199
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
A. Thermal expansion Theoretical part Almost all materials solids, liquids and gases, when their temperature increases (heated), expands, i.e. their volume increases, while when their temperature is reduced (cooled), they contract. This phenomenon is called Thermal expansion and the opposite of the phenomenon, Contraction. However, all bodies do not expand or contract in the same way. The lid, which is usually made of iron or aluminum, is more contracted than the glass vase so it stucks in the spout of the jar when it is Fig. 1 Cubic Thermal expansion placed in the refrigerator where it is cooled. Of all the bodies the solids expand less, the fluids more and the end gases expand more than all the physical bodies.
Experimental part Instruments, apparatus and materials: 1. 2. 3. 4. 5. 6. 7. 8. 9.
Linear expansion Device Thermal expansion Device by volume Stove-tripod-mesh Water Volumetric flask with long neck Conical flask Balloon Candle Glass Basin
Experimental procedure: 1. In the volume expansion device, try to pass the ball through the ring. After heating the ball with the stove (Do not touch the flame in the metal), try to pass it through the ring. Write down your comments. 2. Fill the volumetric flask Until I marked it with water. If there is no mark, note the water level with a marker. Place it on the grid and turn on the stove. 3. Let it pass for a few minutes. What happens to the water level? Write down your comments.
200
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
4. Place a balloon in the conical flask. Fill the glass basin with hot water (There is a kettle) and place the conical flask inside. What happens to the balloon after a while?
B. Boiling Theoretical part Boiling is the fast degassing by producing steam bubbles throughout the mass of the liquid. It starts at a certain temperature, temperature or boiling point, which is typical for each liquid. Thus, for water the boiling temperature is 100οC At atmospheric pressure 1 Atm. The boiling temperature is a characteristic size of each body. But it depends on the atmospheric pressure exerted on the liquid. In general, increased pressure increases the boiling point, while the opposite occurs when the pressure decreases.
Experimental part Instruments, apparatus and materials 1. Spherical flask 250 ml 2. Stove-tripod-mesh 3. Thermometer 4. Wooden Clothespin 5. Water 6. Salt Experimental procedure: 1. In the spherical flask put 100 Ml Water. Fastened the thermometer in the bottle in such a way that the tip of the mercury touches the surface of the water. Position the flask on the grid. 2. Note the initial water temperature on Table 1. Light the stove by adjusting the flame low (mild heating). Each 30 s (0.5 min) Indicate the thermometer in Table 1. 3. When the water boils what do you observe? 4. Let the water boil two more minutes and note its temperature in table 1. Then turn off the stove. Time t (min) Temperature Θο C
0
0,5
1
1,5
2
2,5
3
3,5
4
Time t (min) Temperature Θο C
4,5
5
5.5
6
6,5
7
7,5
8
8,5
Time t (min) Temperature Θο C
9
9,5
10
10,5
11
11,5
12
12,5
13
201
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
THE E-LIOS PLATFORM USAGE INSTRUCTIONS
www.elioserasmusplus.eu web platform OpenCom has implemented the platform according to the specifications indicated by the project promoter; functionality and features of the platform were detailed and integrated during the project meetings in Greece and Latvia. The meetings in Italy and Poland were instead an opportunity to present the progress of the development of the platform ("alpha" and "beta" versions) and perform function test activities for both students and teachers. The platform is online, accessible to students, teachers and users in general by accessing the domain www.elioserasmusplus.eu Home page From the homepage, the user can access all the features of the E-lios platform. Like all pages of the site / platform at the top (header) we find the logo that refers to the homepage and the menu. The menu links to the project presentation and to the info pages (main features for all users, for students and for teachers). On the same pages are linked the images of a slideshow that follows the header section; it is the first section of the central contents. The right-hand column of the page presents instead a first box for the user's login (both student and teacher); next there are the links for the registration pages and multiple widgets that we will see later in detail. Finally, at the end of the page (footer) we have a widget for free search within all the contents of the site, then the institutional logos and links to the promoter and the platform developer. 202
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
In the central part of the contents, after the slideshow the user finds the section with the images / links that refer to the lesson page by subject.
Then follows a section with 4 buttons that lead to the pages: • students life stories • life skills • teachers life stories • teaching ideas and 2 buttons that lead to the pages explaining the features: • e-learning - from teacher to students • design area lesson
the last 2 buttons of the central part of the contents of the homepage lead to the pages of the FAQs (frequently asked questions) for students and teachers.
203
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
Subject Page
From the homepage the user can select the subject of his interest and access the "Subject Page". This page lists the lessons of the selected subject, with the possibility to filter by school level (primary school, lower secondary school, upper secondary school). For each lesson, it is shown: • title • image or frame of the video • short description • creation date • author • subject • school level • number of votes and average vote (from 0 to 5) • number and link to comments
204
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
Lesson Page From the list of lessons in the "Subject Page" the user can select the one of his interest; in this way accesses the specific "Lesson Page". This page lists the lessons of the selected subject, with the possibility to filter by school level (primary school, lower secondary school, upper secondary school). For each lesson different contents are shown depending on the type of user. Visible to all registered and unregistered users: • title • description • creation date • author • subject • school level • link to the version in the ligue where the lesson is available • duration of the lesson • introduction • video • number of votes and average vote (from 0 to 5) • comments • links to add to your favorite lessons Visible only to registered users (students and teachers): • identify desired result • important ideas • tasks • external resources • final assessment Visible only to teachers: • link to upload a translation • questions - overarching • misconceptions • Knowledge • procedural skills 205
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
Functionality for all users All users, even those not registered, can consult the various contents on the platform. They have full access to: • lessons • students life stories • life skills • teacher life stories • teacher ideas Unregistered users have some limited functionalities: they can not comment on lessons or other content, can not rate the content and actively participate in rating formation. Lessons see only the main and introductory contents. They can not upload Life Stories, Life Skills or Lessons. Functionality for users registered as students Users registered as students, in addition to being able to consult the pages visible to unregistered users, can leave a comment, vote for a lesson (or other content), mark it among their favorite lessons. Lessons see all the main contents and specific fields for students. They can upload a Student Life Story. Functionality for registered users as teachers Registered users as teachers, as well as all access and functionality for unregistered and registered students, can upload Life Stories, Life Skills and Lessons. They can also collaborate with other teachers with suggestions and supplementary contributions (through comments / messages) and upload the translation in their own language.
206
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
Design Area Lessons Page The teacher has access to the Design Area Lessons Page from where the following operations can be performed: • create a new lesson • modify a lesson previously created • upload translations of a lesson • assign a lesson to specific students (e-learning functionality)
207
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
Create/Edit Lesson Page
The page for creating and editing a lesson presents all the fields that the teacher can fill in, in order to create a lesson as complete as possible. The list of fields corresponds to the one previously indicated for the "Lesson Page". In the final part the teacher can set two options. The first option is "collaborate": selected will allow other teachers to contribute to the lesson by uploading the translation in their mother tongue. In this case teachers are suggested to upload their lessons in English (as well as in their mother tongue), facilitating the translation work for other users. The second option is "For selected Students": if selected, the teacher can assign the lesson to specific students (indicating the email). These will show the lesson assigned in the list on the "my lessons" page.
208
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
Other sections The lessons certainly represent the central point of the platform, but ever since the first meeting of the project has emerged more and more the potential of the platform as a tool for sharing not only specific lessons, but also good practices, methodologies, teaching experiences and more. Some of these contents can be created by students, creating active involvement, while teachers can find interesting ideas or implement their lessons with contributions from other colleagues. The sections implemented: • • • •
were
then
Teaching Ideas Teacher Life Stories Life Skills Student Life Stories
Each section presents a first page with a list of available contents. Here they are presented with: title, author, creation date, rating, image and short text. By clicking on the title you can access the detail page of the content (skill, life story or teaching idea). Registered users can leave a comment and assign a rating from 1 to 5 stars.
209
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
210
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
Right column widget The contents of the right hand column of the platform pages change depending on the context. At the first access to the site, the login widget is presented to the user, who is not currently registered. If the user wants to register, find the widget with the links to the registration page for teacher and user.
Once the user has registered and activated his / her account (via a link sent by email from the platform automatically), he / she can insert Username and Password and access all the features available for his / her account type.
211
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
Other widgets: • Recent contents: link to the latest content uploaded by users • Best ratings contents: link to content with best ratings • Stories, Skills, Ideas: links to the contents of the other sections available in addition to the lessons
212
E-Learning Interactive Open School ERASMUS+ KA2, 2015-1-EL01-KA201-014029 Collaboration for innovation and exchange of good practice in the field of school education.
Technical specifications The platform has been developed with web programming languages (php, javascript, html) using Mysql database, on Linux servers. In order to comply with the specification of using open source solutions, as well as having a flexible platform that can be easily implemented in the future, even by different subjects, the cms (content management system) Wordpress was used as a "development basis", implementing the specific features through various plugins and code developed, customized and integrated by our team of programmers. Through the administration of the cms it is possible to access all the functionalities and in particular to the management of: • users (students and teachers) • static content (information pages, etc.) • dynamic contents (lessons, life stories, etc.) • comments • faq • contained translations The platform was implemented in English and translated with the collaboration of partners in the languages of the countries involved in the project.
MANY THANKS TO ALL PARTNERS...
213