2. Maths - IJAMSS - Region of - O. E. Okereke - Nigeria

Page 1

International Journal of Applied Mathematics & Statistical Sciences (IJAMSS) ISSN 2319-3972 Vol. 2, Issue 2, May 2013, 17-26 © IASET

REGION OF COMPARISON FOR THE SECOND ORDER MOVING AVERAGE AND PURE DIAGONAL BILINEAR PROCESSES O. E. OKEREKE1 & I. S. IWUEZE2 1

Department of Mathematics and Statistics, Michael Okpara University of Agriculture, Umudike, Abia State, Nigeria 2

Department of Statistics, Federal University of Technology, Owerri, Imo State, Nigeria

ABSTRACT The covariance structure among other properties of the pure diagonal bilinear time series process of order two is derived and compared with that of the linear moving average process of order two. Also obtained are the extrema of the autocorrelation functions of the two processes for the purpose of distinguishing between the competing models. The well known similarities in the covariance structures of pure diagonal bilinear model of order two and moving average process of order two is found to exist for certain intervals of autocorrelation coefficients of the models. Comparison of the models must be done at this common intervals.

KEYWORDS: Covariance Structures, Pure Diagonal Bilinear Time Series Model, Linear Moving Average Process, Extrema of Autocorrelation Coeffiecints 2010 hematics Subject Classification: 62M10

1. INTRODUCTION Many non stationary time series have features which can not be appropriately explained by a linear model (Bibi and Oyet, 2002). This limitation of linear time series models led to the development of non linear time series models. A special class of non linear models that has gained acceptability of analysts is the bilinear model (Li (1992) and Subba Rao and Da Silva (1992)). Bilinear models are generally classified into subdiagonal, pure diagonal and superdiagonal bilinear models. Authors’ preference for the pure diagonal bilinear among the three types of bilinear models, has been attributed to its simple mathematical structure, existence and invertibility conditions. A stochastic process X t , t  T is called a pure diagonal bilinear time series process of order

p if

p

X t    i X t  i et  i  e t

(1.1)

i 1

where

 1 ,  2, ...,  p are real constants and et , et 1 , ..., et  p is a sequence of independent identically distributed

random variables with zero mean and constant variance

 1 2 . Following the results in Khadija et al (2007) and Liu (1990),

the model (1.1) is invertible if p

 i 1

2 i

 12  p 2

Again, it can be deduced from Oyet (2001) that the model (1.1) is stationary if

(1.2)


18

O. E. Okereke & I. S. Iwueze

p

 i 1

2 i

 12  1

(1.3)

Granger and Andersen, 1978, Subba Rao, 1981 and Akamanam, et al.( 1986) established that model (1.1) competes with the non zero mean moving average process of order Let Yt , t  Z be a a stochastic process. If

p due to their similar covariance structures.

 t , t  Z is

a white noise process with zero mean and constant

variance ( 2 ) , then Yt , t  T is called a non zero mean moving average process of order 2

2 (see Hamilton, 1994) if the

following equation is satisfied:

Yt   0  1  t 1   2  t 2   t Suppose

 1 and  2 represent

(1.4) the first and second order autocorrelation coefficients of model (1.4).

Then  1 attains a minimum and a maximum values of -0.71 and 0.71 respectively. On the other hand,

2

has a minimum

and a maximum value of -0.5 and 0.5 respectively (Okereke et al, 2012). Authors have proposed several methods of differentiating between the pure diagonal bilinear process and moving average process. One of these techniques has to do with the computation of the third order moment and cumulant (Martins, 1999, Iwueze and Chikezie, 2006). A major pitfall of this approach is that it is usually difficult to compute and interprete third moments and cumulants. In view of this fact, Palma and zevallos(2001), Omekara(2010) and Iwueze and Ohakwe (2011) used the covariance structure of the squares of the time series data to distinguish between the competing models. Suffice it to say that the aforementioned methods do not spell out when it is necessary to consider a test for linearity of a given time series. Moreover, they are all time consuming in the sense that they require more computations are required than covariance analysis. To overcome these problems, Ohakwe and Iwueze(2009) used a new method that depends on the extrema of the autocorrelation coefficients to distinguish between PDB(1) and MA(1). In this study, the autocorrelation coefficients of PDB(2) and MA(2) are examined with a view to differentiating between the competing models under covariance analysis.

2. PURE DIAGONAL BILINEAR PROCESS OF ORDER TWO When p  2 is substituted in model(1.1), we obtain a pure diagonal bilinear time series model of order two given as

X t  1 X t 1et 1   2 X t 2 et  2  et

(2.1)

where et , t  T is a sequence of independent identically distributed random variables with mean 0 and constant variance

 12   . It can be shown that the first order moment of (2.1) is :

E ( X t )  (1  2 ) 1 The second order moments of (2.1) are easily obtained to be

(2.2)


Region of Comparison for the Second Order Moving Average and Pure Diagonal Bilinear Processes

 1 2 (1  21 2  21 2  2 2 2 ) ,k  0  2 2 1  1   2   4 2 2  2   2 21  21  21  2  51 2   1 3 3 2 4 E ( X t X t k )    21  2  21 2   2  2  , k  1  2 2 2 2 1       1 2 2 2   2 ( 2  3   2 2 ) , k  2 1 2 2  2 1  2 2 (1 2  21 2  2 2 ), k  3

19

(2.3)

Using the fact that

R(k )  Cov( X t X t k )  E(X t X t k )   x

2

(2.4)

and

k 

R(k ) R ( 0)

(2.5)

we obtain

 2 2 (1  1 2   2 2  1 4  21 2  2 2  213  2  21 2 3   2 4 ) ,k  0  2 2 1     1 2   2 ( 2   4   2  2  3  )  1 1 2 1 2 R(k )   2 1 , k  1 2 2 1      1 2 2  2  2 (1 2   2 ), k  2 0, k  3

(2.6)

And

1, k  0   1   2   2 1 2 k    1   2   2 1 2  0, k  3 where

1  1 1

and

1 2  1 4  1 2  2 2  31 2 , k  1 4 2 2 3 3 4  1  21  2  21  2  21  2   2 (1  2   2 )(1  1   2 ) 2

2

2

 1  21  2  21  2  21  2   2 4

2

2

3

3

4

(2.7)

, k  2

 2   2 1 .

It then follows from (2.6) that the second order moment of X t exists if

1 2   2 2  1 . To recover the errors

from the observed values of X t and also to make proper forecast using (2.1), the model has to be invertible. Using (1.2), the model in (2.1) is invertible if

1 2   2 2  0.25

(2.8)


20

O. E. Okereke & I. S. Iwueze

Figure 1 shows the stationarity and invertibility region for the PDB (2) process

Figure 1: The Stationarity and Invertibility Regions of the PDB (2) Process

3. MINIMUM AND MAXIMUM VALUES OF  1 AND  2 FOR PURE DIAGONAL BILINEAR ROCESS OF ORDER TWO We can observe from Figure 1 that the set of values satisfying the invertibility condition (2.1) also satisfy its stationarity condition. Consequently, the first order and second order autocorrelation coefficients of PDB(2) are computed based on 7822 values of

1 and  2

for which the invertibility condition,

1 2   2 2  0.25 is satisfied. For want of

space, 580 of this set of the computations are shown in Table 1. Table 1:  1 and  2 for Selected S/N o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1

and

2

in the Stationarity and Invertibilty Regions of PDB (2)

1

2

1

2

S/ No

1

2

1

2

S/No

1

2

1

2

-0.49 -0.49 -0.49 -0.49 -0.49 -0.49 -0.49 -0.49 -0.49 -0.49 -0.49 -0.49 -0.49 -0.49 -0.49 -0.49 -0.49 -0.49 -0.49

0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0 0 -0.01 -0.02 -0.03 -0.04 -0.05 -0.06 -0.07 -0.08 -0.09

0.04 0.05 0.06 0.07 0.08 0.1 0.11 0.12 0.14 0.14 0.15 0.16 0.17 0.18 0.2 0.21 0.22 0.23 0.24

-0.02 -0.02 -0.02 -0.02 -0.01 -0.01 -0.01 -0.01 0 0 0 0.01 0.01 0.01 0.02 0.02 0.02 0.03 0.03

35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53

-0.48 -0.48 -0.48 -0.48 -0.48 -0.48 -0.48 -0.48 -0.48 -0.48 -0.48 -0.48 -0.47 -0.47 -0.47 -0.47 0.26 0.25 0.24

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 -0.16 -0.15 -0.14 -0.13 0.04 0.04 0.03

0.12 0.11 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0 0.30 0.29 0.28 0.27 0.26 0.25 0.24

-0.01 -0.01 -0.01 -0.01 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.03 -0.03 0.06 0.05 0.05 0.04 0.04 0.04 0.03

69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87

0.07 0.06 0.05 0.04 0.03 0.02 0.00 -0.01 -0.02 -0.03 -0.04 0.32 0.31 0.31 0.30 0.29 0.28 0.27 0.26

-0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.03 -0.03 -0.03 -0.03 -0.03 0.07 0.06 0.06 0.06 0.05 0.05 0.05 0.04

0.07 0.06 0.05 0.04 0.03 0.02 0.00 -0.01 -0.02 -0.03 -0.04 0.32 0.31 0.31 0.30 0.29 0.28 0.27 0.26

-0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.03 -0.03 -0.03 -0.03 -0.03 0.07 0.06 0.06 0.06 0.05 0.05 0.05 0.04


21

Region of Comparison for the Second Order Moving Average and Pure Diagonal Bilinear Processes

Table 1 – Contd., S/N o 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150

1

2

1

2

S/ No

1

2

1

2

S/No

1

2

1

2

-0.48 -0.48 -0.48 -0.48 -0.48 -0.48 -0.48 -0.48 -0.48 -0.48 -0.48 -0.48 -0.48 -0.48 -0.48 -0.46 -0.46 -0.46 -0.46 -0.46 -0.46 -0.46 -0.46 -0.46 -0.46 -0.46 -0.46 -0.46 -0.46 -0.46 -0.46 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45

-0.13 -0.12 -0.11 -0.1 -0.09 -0.08 -0.07 -0.06 -0.05 -0.04 -0.03 -0.02 -0.01 0 0.01 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 -0.21 -0.20 -0.19 -0.18 -0.17 -0.16 -0.15 -0.14 -0.13 -0.12 -0.11 -0.09 -0.08 -0.07 -0.06 -0.05 -0.04 -0.03 -0.02 -0.01 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

0.28 0.27 0.26 0.24 0.23 0.22 0.21 0.2 0.19 0.18 0.17 0.16 0.15 0.14 0.13 0.09 0.08 0.07 0.06 0.05 0.04 0.02 0.01 0.00 -0.01 -0.02 -0.03 -0.04 -0.05 -0.06 -0.07 0.34 0.33 0.32 0.31 0.30 0.29 0.28 0.27 0.26 0.25 0.24 0.22 0.21 0.20 0.19 0.18 0.17 0.16 0.15 0.14 0.13 0.12 0.11 0.10 0.09 0.08 0.07 0.05 0.04 0.03 0.02

0.04 0.04 0.04 0.03 0.03 0.03 0.02 0.02 0.02 0.01 0.01 0.01 0 0 0 -0.01 -0.01 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 0.08 0.07 0.07 0.07 0.06 0.06 0.05 0.05 0.05 0.04 0.04 0.03 0.03 0.02 0.02 0.02 0.01 0.01 0.01 0.00 0.00 -0.00 -0.01 -0.01 -0.01 -0.01 -0.02 -0.02 -0.02 -0.02 -0.02

54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197

0.23 0.22 0.21 0.20 0.19 0.18 0.17 0.16 0.15 0.14 0.12 0.11 0.10 0.09 0.08 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.44 -0.44 -0.44 -0.44 -0.44 -0.44 -0.44 -0.44 -0.44 -0.44 -0.44 -0.44 -0.44 -0.44 -0.44 -0.44 -0.44 -0.44 -0.44 -0.44 -0.44 -0.44 -0.44 -0.44 -0.44 -0.44 -0.44 -0.44 -0.44 -0.44 -0.44 -0.44 -0.44 -0.44 -0.44 -0.44

0.03 0.03 0.02 0.02 0.02 0.01 0.01 0.01 0.00 0.00 -0.00 -0.01 -0.01 -0.01 -0.01 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.20 0.21 -0.23 -0.22 -0.21 -0.20 -0.19 -0.18 -0.17 -0.16 -0.15 -0.14 -0.13 -0.12 -0.11 -0.10 -0.09 -0.08 -0.07 -0.06 -0.05 -0.04 -0.03 -0.02 -0.01 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12

0.23 0.22 0.21 0.20 0.19 0.18 0.17 0.16 0.15 0.14 0.12 0.11 0.10 0.09 0.08 0.01 0.00 -0.01 -0.02 -0.03 -0.04 -0.05 -0.06 -0.07 -0.08 -0.09 0.35 0.34 0.33 0.32 0.31 0.30 0.30 0.29 0.28 0.27 0.26 0.25 0.24 0.23 0.22 0.21 0.20 0.19 0.18 0.17 0.16 0.15 0.14 0.13 0.12 0.11 0.10 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0.00

0.03 0.03 0.02 0.02 0.02 0.01 0.01 0.01 0.00 0.00 -0.00 -0.01 -0.01 -0.01 -0.01 -0.02 -0.02 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 0.09 0.08 0.08 0.07 0.07 0.07 0.06 0.06 0.05 0.05 0.05 0.04 0.04 0.03 0.03 0.03 0.02 0.02 0.02 0.01 0.01 0.01 0.00 0.00 -0.00 -0.01 -0.01 -0.01 -0.01 -0.01 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02

88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244

0.25 0.24 0.23 0.22 0.21 0.20 -0.46 -0.46 -0.46 -0.46 -0.46 -0.46 -0.46 -0.46 -0.46 -0.44 -0.44 -0.44 -0.44 -0.44 -0.44 -0.44 -0.44 -0.44 -0.44 -0.44 -0.43 -0.43 -0.43 -0.43 -0.43 -0.43 -0.43 -0.43 -0.43 -0.43 -0.43 -0.43 -0.43 -0.43 -0.43 -0.43 -0.43 -0.43 -0.43 -0.43 -0.43 -0.43 -0.43 -0.43 -0.43 -0.43 -0.43 -0.43 -0.43 -0.43 -0.43 -0.43 -0.43 -0.43 -0.43 -0.43

0.04 0.03 0.03 0.03 0.02 0.02 -0.05 -0.04 -0.03 -0.02 -0.01 0.00 0.01 0.02 0.03 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.20 0.21 0.22 0.23 -0.25 -0.24 -0.23 -0.22 -0.21 -0.20 -0.19 -0.18 -0.17 -0.16 -0.15 -0.14 -0.13 -0.12 -0.11 -0.10 -0.09 -0.08 -0.07 -0.06 -0.05 -0.04 -0.03 -0.02 -0.01 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

0.25 0.24 0.23 0.22 0.21 0.20 0.19 0.18 0.16 0.15 0.14 0.13 0.12 0.11 0.10 -0.01 -0.02 -0.03 -0.04 -0.05 -0.06 -0.07 -0.08 -0.09 -0.10 -0.11 0.36 0.35 0.34 0.33 0.32 0.32 0.31 0.30 0.29 0.28 0.27 0.26 0.25 0.24 0.24 0.23 0.22 0.21 0.20 0.19 0.18 0.17 0.15 0.14 0.13 0.12 0.11 0.10 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02

0.04 0.03 0.03 0.03 0.02 0.02 0.02 0.01 0.01 0.01 0.00 0.00 -0.00 -0.01 -0.01 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 0.09 0.09 0.09 0.08 0.08 0.07 0.07 0.07 0.06 0.06 0.05 0.05 0.05 0.04 0.04 0.03 0.03 0.03 0.02 0.02 0.02 0.01 0.01 0.01 0.00 0.00 -0.00 -0.01 -0.01 -0.01 -0.01 -0.01 -0.02 -0.02 -0.02 -0.02


22

O. E. Okereke & I. S. Iwueze

Table 1 – Contd., S/N o 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 389 390 391 392 393 394 395 396 397 398 399 400 401 402

1

2

1

2

S/ No

1

2

1

2

S/No

1

2

1

2

-0.43 -0.43 -0.43 -0.43 -0.43 -0.43 -0.43 -0.43 -0.43 -0.43 -0.43 -0.43 -0.43 -0.43 -0.43 -0.42 -0.42 -0.42 -0.42 -0.42 -0.42 -0.42 -0.42 -0.42 -0.42 -0.42 -0.42 -0.42 -0.42 -0.42 -0.42 -0.42 -0.42 -0.42 -0.42 -0.42 -0.42 -0.42 -0.42 -0.42 -0.42 -0.42 -0.42 -0.42 -0.42 -0.42 -0.42 -0.42 -0.40 -0.40 -0.40 -0.40 -0.40 -0.40 -0.40 -0.40 -0.40 -0.40 -0.40 -0.40 -0.40 -0.40

0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.20 0.21 0.22 0.23 0.24 0.25 -0.27 -0.26 -0.25 -0.24 -0.23 -0.22 -0.21 -0.20 -0.19 -0.18 -0.17 -0.16 -0.15 -0.14 -0.13 -0.12 -0.11 -0.10 -0.09 -0.08 -0.07 -0.06 -0.05 -0.04 -0.03 -0.02 -0.01 0.00 0.01 0.02 0.03 0.04 0.05 -0.12 -0.11 -0.10 -0.09 -0.08 -0.07 -0.06 -0.05 -0.04 -0.03 -0.02 -0.01 0.00 0.01

0.01 -0.00 -0.01 -0.02 -0.03 -0.04 -0.05 -0.06 -0.07 -0.08 -0.09 -0.10 -0.11 -0.12 -0.13 0.36 0.36 0.35 0.34 0.34 0.33 0.32 0.31 0.30 0.29 0.29 0.28 0.27 0.26 0.25 0.24 0.23 0.22 0.21 0.20 0.19 0.18 0.17 0.16 0.15 0.14 0.13 0.12 0.11 0.10 0.09 0.08 0.07 0.23 0.22 0.21 0.20 0.19 0.18 0.17 0.16 0.15 0.14 0.13 0.12 0.11 0.10

-0.02 -0.02 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 0.10 0.10 0.09 0.09 0.09 0.08 0.08 0.07 0.07 0.07 0.06 0.06 0.05 0.05 0.05 0.04 0.04 0.03 0.03 0.03 0.02 0.02 0.02 0.01 0.01 0.01 0.00 0.00 -0.00 -0.01 -0.01 -0.01 -0.01 0.04 0.04 0.03 0.03 0.03 0.02 0.02 0.02 0.01 0.01 0.01 0.00 0.00 -0.00

293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 439 440 441 442 443 444 445 446 447 448 449 450 451 452

-0.42 -0.42 -0.42 -0.42 -0.42 -0.42 -0.42 -0.42 -0.42 -0.42 -0.42 -0.42 -0.42 -0.42 -0.42 -0.42 -0.42 -0.42 -0.42 -0.42 -0.42 -0.42 -0.41 -0.41 -0.41 -0.41 -0.41 -0.41 -0.41 -0.41 -0.41 -0.41 -0.41 -0.41 -0.41 -0.41 -0.41 -0.41 -0.41 -0.41 -0.41 -0.41 -0.41 -0.41 -0.41 -0.41 -0.41 -0.41 -0.39 -0.39 -0.39 -0.39 -0.39 -0.39 -0.39 -0.39 -0.39 -0.39 -0.39 -0.39 -0.39 -0.39

0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.20 0.21 0.22 0.23 0.24 0.25 0.26 0.27 -0.28 -0.27 -0.26 -0.25 -0.24 -0.23 -0.22 -0.21 -0.20 -0.19 -0.18 -0.17 -0.16 -0.15 -0.14 -0.13 -0.12 -0.11 -0.10 -0.09 -0.08 -0.07 -0.06 -0.05 -0.04 -0.03 -0.23 -0.22 -0.21 -0.20 -0.19 -0.18 -0.17 -0.16 -0.15 -0.14 -0.13 -0.12 -0.11 -0.10

0.06 0.05 0.04 0.03 0.02 0.01 -0.00 -0.01 -0.02 -0.03 -0.04 -0.05 -0.06 -0.07 -0.08 -0.09 -0.10 -0.11 -0.12 -0.13 -0.14 -0.15 0.36 0.36 0.35 0.34 0.34 0.33 0.32 0.31 0.31 0.30 0.29 0.28 0.27 0.26 0.25 0.24 0.23 0.23 0.22 0.21 0.20 0.19 0.18 0.17 0.16 0.15 0.32 0.31 0.30 0.29 0.29 0.28 0.27 0.26 0.25 0.24 0.23 0.22 0.22 0.21

-0.01 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.02 0.11 0.10 0.10 0.10 0.09 0.09 0.08 0.08 0.08 0.07 0.07 0.06 0.06 0.05 0.05 0.05 0.04 0.04 0.03 0.03 0.03 0.02 0.02 0.02 0.01 0.01 0.09 0.08 0.08 0.08 0.07 0.07 0.06 0.06 0.05 0.05 0.05 0.04 0.04 0.03

341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 489 490 491 492 493 494 495 496 497 498 499 500 501 502

-0.41 -0.41 -0.41 -0.41 -0.41 -0.41 -0.41 -0.41 -0.41 -0.41 -0.41 -0.41 -0.41 -0.41 -0.41 -0.41 -0.41 -0.41 -0.41 -0.41 -0.41 -0.41 -0.41 -0.41 -0.41 -0.41 -0.41 -0.41 -0.41 -0.41 -0.41 -0.40 -0.40 -0.40 -0.40 -0.40 -0.40 -0.40 -0.40 -0.40 -0.40 -0.40 -0.40 -0.40 -0.40 -0.40 -0.40 -0.40 -0.39 -0.39 -0.39 -0.39 -0.39 -0.38 -0.38 -0.38 -0.38 -0.38 -0.38 -0.38 -0.38 -0.38

-0.02 -0.01 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.20 0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 -0.29 -0.28 -0.27 -0.26 -0.25 -0.24 -0.23 -0.22 -0.21 -0.20 -0.19 -0.18 -0.17 -0.16 -0.15 -0.14 -0.13 0.27 0.28 0.29 0.30 0.31 -0.32 -0.31 -0.30 -0.29 -0.28 -0.27 -0.26 -0.25 -0.24

0.14 0.13 0.12 0.11 0.10 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 -0.00 -0.01 -0.02 -0.03 -0.04 -0.05 -0.06 -0.07 -0.08 -0.09 -0.10 -0.11 -0.12 -0.13 -0.14 -0.14 -0.15 0.36 0.36 0.35 0.34 0.34 0.33 0.32 0.32 0.31 0.30 0.29 0.28 0.27 0.27 0.26 0.25 0.24 -0.14 -0.15 -0.16 -0.17 -0.18 0.37 0.36 0.36 0.35 0.34 0.34 0.33 0.32 0.32

0.01 0.00 0.00 -0.00 -0.01 -0.01 -0.01 -0.01 -0.01 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.02 -0.02 -0.02 -0.02 0.11 0.11 0.10 0.10 0.10 0.09 0.09 0.08 0.08 0.08 0.07 0.07 0.06 0.06 0.05 0.05 0.05 -0.02 -0.02 -0.02 -0.02 -0.01 0.12 0.12 0.12 0.11 0.11 0.10 0.10 0.10 0.09


23

Region of Comparison for the Second Order Moving Average and Pure Diagonal Bilinear Processes

Table 1 – Contd., S/N o 403 404 405 406 407 408 419 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 539 540 541 542 543 544 545 546 547 548 549 550 551 552

1

2

1

2

S/ No

1

2

1

2

S/No

1

2

1

2

-0.40 -0.40 -0.40 -0.40 -0.40 -0.40 -0.40 -0.40 -0.40 -0.40 -0.40 -0.40 -0.40 -0.40 -0.40 -0.40 -0.40 -0.40 -0.40 -0.40 -0.40 -0.40 -0.40 -0.40 -0.40 -0.40 -0.40 -0.40 -0.39 -0.39 -0.39 -0.39 -0.39 -0.39 -0.39 -0.39 -0.38 -0.38 -0.38 -0.38 -0.38 -0.38 -0.38 -0.38 -0.38 -0.38 -0.38 -0.38 -0.38 -0.38

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.20 0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29 -0.31 -0.30 -0.29 -0.28 -0.27 -0.26 -0.25 -0.24 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.20 0.21 0.22 0.23 0.24 0.25 0.26

0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0.00 -0.01 -0.02 -0.03 -0.04 -0.04 -0.05 -0.06 -0.07 -0.08 -0.09 -0.10 -0.11 -0.12 -0.13 -0.14 -0.14 -0.15 -0.16 0.37 0.36 0.36 0.35 0.34 0.34 0.33 0.32 -0.02 -0.03 -0.04 -0.05 -0.06 -0.07 -0.07 -0.08 -0.09 -0.10 -0.11 -0.12 -0.13 -0.13

-0.01 -0.01 -0.01 -0.01 -0.01 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 0.12 0.12 0.11 0.11 0.10 0.10 0.10 0.09 -0.02 -0.02 -0.02 -0.02 -0.02 -0.03 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02

453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 553 554 555 556 557 558 559 560 561 562 563 564 565 566

-0.39 -0.39 -0.39 -0.39 -0.39 -0.39 -0.39 -0.39 -0.39 -0.39 -0.39 -0.39 -0.39 -0.39 -0.39 -0.39 -0.39 -0.39 -0.39 -0.39 -0.39 -0.39 -0.39 -0.39 -0.39 -0.39 -0.39 -0.39 -0.39 -0.39 -0.39 -0.39 -0.39 -0.39 -0.39 -0.39 -0.38 -0.38 -0.38 -0.38 -0.38 -0.38 -0.37 -0.37 -0.37 -0.37 -0.37 -0.37 -0.37 -0.37

-0.09 -0.08 -0.07 -0.06 -0.05 -0.04 -0.03 -0.02 -0.01 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.20 0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.30 0.31 0.32 -0.33 -0.32 -0.31 -0.30 -0.29 -0.28 -0.27 -0.26

0.20 0.19 0.18 0.17 0.16 0.15 0.14 0.13 0.12 0.11 0.10 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0.00 -0.01 -0.02 -0.03 -0.04 -0.05 -0.06 -0.06 -0.07 -0.08 -0.09 -0.10 -0.11 -0.12 -0.13 -0.13 -0.14 -0.15 -0.16 -0.17 -0.17 -0.18 0.37 0.36 0.35 0.35 0.34 0.34 0.33 0.32

0.03 0.03 0.02 0.02 0.02 0.01 0.01 0.01 0.00 0.00 -0.00 -0.01 -0.01 -0.01 -0.01 -0.01 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.01 -0.01 -0.01 0.13 0.12 0.12 0.12 0.11 0.11 0.11 0.10

503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 567 568 569 570 571 572 573 574 575 576 577 578 579 580

-0.38 -0.38 -0.38 -0.38 -0.38 -0.38 -0.38 -0.38 -0.38 -0.38 -0.38 -0.38 -0.38 -0.38 -0.38 -0.38 -0.38 -0.38 -0.38 -0.38 -0.38 -0.38 -0.38 -0.38 -0.38 -0.38 -0.38 -0.38 -0.38 -0.38 -0.38 -0.38 -0.38 -0.38 -0.38 -0.38 -0.37 -0.37 -0.37 -0.37 -0.37 -0.37 -0.37 -0.37 -0.37 -0.37 -0.37 -0.37 -0.37 -0.37

-0.23 -0.22 -0.21 -0.20 -0.19 -0.18 -0.17 -0.16 -0.15 -0.14 -0.13 -0.12 -0.11 -0.10 -0.09 -0.08 -0.07 -0.06 -0.05 -0.04 -0.03 -0.02 -0.01 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 -0.25 -0.24 -0.23 -0.22 -0.21 -0.20 -0.19 -0.18 -0.17 -0.16 -0.15 -0.14 -0.13 -0.12

0.31 0.30 0.29 0.29 0.28 0.27 0.26 0.25 0.25 0.24 0.23 0.22 0.21 0.20 0.19 0.18 0.17 0.16 0.15 0.14 0.13 0.13 0.12 0.11 0.10 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 -0.00 -0.01 0.32 0.31 0.30 0.30 0.29 0.28 0.27 0.26 0.26 0.25 0.24 0.23 0.22 0.21

0.09 0.08 0.08 0.08 0.07 0.07 0.06 0.06 0.05 0.05 0.05 0.04 0.04 0.03 0.03 0.03 0.02 0.02 0.02 0.01 0.01 0.01 0.00 0.00 -0.00 -0.01 -0.01 -0.01 -0.01 -0.01 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 0.10 0.09 0.09 0.08 0.08 0.08 0.07 0.07 0.06 0.06 0.05 0.05 0.05 0.04

From

the

complete

table

containing

7822

values,

it

was

found

that

 0.21  1  0.37 and

 0.03   2  0.17 for model (2.1). CONCLUSIONS We have considered a method of differentiating between pure diagonal bilinear model of order two and moving average of order two based on the properties of their autocorrelation functions. Using the second derivative test and tabular method, the minimum and maximum values of the autocorrelation coefficients of the two models are obtained as follows:


24

O. E. Okereke & I. S. Iwueze

 0.71  1  0.71 and  0.50   2  0.50 for MA(2) process. and

 0.21  1  0.37 and  0.03   2  0.17 PDB(2) process. Hence, the two models are only comparable when  0.21 

1  0.37 and  0.03   2  0.17 as shown in

Figure 2.

Figure 2: Determination of Region for Comparing MA (2) And PBD (2)

REFERENCES 1.

Akamanam,S.I, Bhaskara Rao, M. and Subramanyam, K. (1986). On the ergodicity of bilinear time series model. Journal of Time Series Analysis, Vol. 7, No. 3, pp 157-163.

2.

Bibi, A. and Oyet, A. J. (2002). A note on the properties of some time varying bilinear models. Statistics and probability letters, vol 58, pp 399-411.

3.

Granger, C. W. J. and Andersen, A. (1978). An introduction to bilinear time series models, Vanderhoeck and Ruprecht, Gottingen.

4.

Halmilton, J. D. (1994). Time Series Analysis, Princeton University Press, Princeton, New Jersey.

5.

Iwueze, I. S. and Chekezie, D. C (2006). A simple bilinear representation of the multiplicative seasonal ARIMA (0, d, 0)x(1, D, 1)s model. Global Journal of Mathematical Sciences., Vol. 5, No. 5, pp 25-34.

6.

Iwueze, I. S. and Ohakwe, J. (2009). Penalties for misclassification of first order bilinear and linear moving average

time

series

processes,

InterStat

Journal

of

Statistics,

N3,

June

2009

(http://interstatjournals.net/Year/2009/articles/0906003.pdf). 7.

Iwueze, I. S. and Ohakwe, J. (2011). Covariance Analysis of the squares of purely diagonal bilinear time series models. Braz. J. of Probab. Stat., Vol. 25, No. 1, pp 90-98.


Region of Comparison for the Second Order Moving Average and Pure Diagonal Bilinear Processes

8.

25

Khadija, M. and Mostafa, H. and Youseef, B. (2007). Parameter estimation for pure diagonal bilinear time series: An algorithm for maximum likelihood procedure. Interstat Journal of Statistics, ISSN d0000056 online, http://interstat.statjournals.net.

9.

Li, W. K. (1992). On the asymptotic standard errors of residual autocorrelations in non linear time series modeling. Biometrica, Vol. 79, No. 2, pp 435-437.

10. Liu, J. (1990). A note on the causality and invertibility of a general bilinear time series models. Adv. Appl. Prob., Vol. 22, pp 247-250. 11. Martins, C. M. (1999). A note on the third-order moment structure of a bilinear non-independent shocks. Portugaliae Mathematica, Vol. 56, pp 115-125 12. Okereke, O. E, Iwueze, I. S. and Ohakwe, J. Extrema for autocorrelation coefficients of moving average processes. To appear in Far East Journal of Theoritical Statistics. 13. Omekara, C. O. (2010). Detecting non-linearity using squares of time series data. Asian Journal of Mathematics and Statistics, Vol. 3, No. 4, pp 296-302. 14. Oyet, A. J. (2001).

Nonlinear time series modeling: Order identification and wavelet filtering.

Interstat.statjournals.net/Year/2001/articles/0104004.pdf. 15. Palma, W. and Zevallos, M. (2004). Analysis of the correlation structure of square time series. Journal of Time series Analysis, Vol. 25, No. 4, pp 529-550. 16. Subba Rao, T. S. (1981). On the theory of bilinear time series models. J. Roy. Statist. Soc. Ser B, pp 244-255. 17. Subba Rao, T. S. and Da Silva, M, E. A. (1992). Identification of bilinear time series models. Statistica Sinica, Vol. 2, pp 465-478.



Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.