INNOVATIVE MATERIALS 5 2020
Flax fibre composites in F1 McLaren and the Swiss company Bcomp are developing F1’s first natural fibre composite racing seat. The composite material is based on two fibre strengthened composites, developed by Bcomp, with salient properties in terms of temperature resistance, strength, weight, vibration damping and safety. The latter because of the crack behaviour of flax fibre composites. As opposed to carbon fibres, this natural fibre composite has a ductile fracture behaviour with blunt edges, thus improving safety without sharp carbon fibre shattering and toxic carbon fibre dust. And last but not least: using natural fibres instead of carbon, the CO2 footprint can be drastically reduced. Since the introduction of the FIA Formula 1 World Championship in 1950, motorsport has seen teams constantly pushing the boundaries of technology, making it the birthplace of innovation. For instance, in 1981, the McLaren Formula 1 team was the first to apply the aerospace fighter plane practice of using carbon fiber to replace aluminum in creating the chassis. The McLaren MP4/1 was met by skepticism in the paddock that season, but carbon fiber was quickly adopted by all of the F1 teams.
26 | INNOVATIVE MATERIALS 5 2020
Now McLaren is thinking of a new material innovation. The reaceteam wants to start replacing carbon fiber in some parts of its F1 cars with a new organic composite developed by Swiss natural fiber supplier Bcomp Ltd. Carbon fiber accounts for 70 percent of an F1 car by weight, but Bcomp’s renewable natural fiber material is lighter still. It also has the advantages of being cheaper, stronger, and more vibration dampening, which are all appreciated benefits. Furthermore, using Bcomp’s natural flax
fibers in place of conventional carbon fiber is expected to result in a 75 percent lower CO2 footprint for the specific part; a racing seat in this case.
CO2-neutral
Flax is primarily used in the production of linen. It is grown without competing directly with food crops. Flax is a CO2-neutral raw material and its fibres are biodegradable. At the end of the bio composite material can be ground down into a new base material or thermally