色彩管理
Outline 人眼結構 色外貌 (Color Appearance) Visual Experiments Color Appearance Model 色彩管理系統(Color Management System) Cross Media Color Calibration ICC Profile Color Calibration Model Gamut Mapping
人眼結構
眼球接受外界 光線刺激,並適當地轉換成神經訊號電位 ,再送往更高層的側膝核與皮質區做進一步的處理
人眼結構
人類的眼球基本上是個三層膜、兩個房的構造,外部有六條 控制眼動的肌肉附著於上,並包附著厚厚的保護性脂肪層, 使得眼球能安全地在眼窩裡轉動。六條控制眼球運動的動眼 肌肉
人眼結構
Eye & Camera
ď §
非相關色與相關(Unrelated or Related)
Unrelated Colors and Related Colors
Related & Unrelated Colors
相關色(related colour):觀看時受到其他顏色影響的色彩 ,為相關色,在光照情況下所有的色彩均是。 非相關色(unrelated colour):觀看時不受任何其他顏色影 響的色彩,為相關色,必定為黑暗中單獨的自發光色。
Induction Viewing two colors at the same time influences both of their appearances. The following is an example of induction, a variation of simultaneous contrast. Instructions: In the top half of the diagram below are two identical dark gray patches on a like background. The bottom half of the diagram shows the same dark gray patches on different backgrounds. You will see that they appear different because of their surroundings.
亮度對比
Induction The same phenomenon occurs when colors are used. Note that identical yellow patches in the middle of different colors appear to take on the characteristics of their surroundings.
彩度對比
Color Contrast 並置或重疊兩種或更多色彩,會產生同時對比現象, 此現象由側向抑制(Lateral inhibition)所造成。 側向抑制(Lateral inhibition) 色光強度訊息經由神經脈衝傳向大腦,第二個受器的 活動抑制第一個受器的作用,一部份脈衝轉向水平方 向的神經細胞,對鄰近視網膜上的細胞產生負效果, 稱為「側向抑制」
色彩對比
不同排列時,呈現不同色貌
Borders and Framing Color ď ś Colors often appear brighter and more vibrant when they are bordered by frames. Black lines are commonly used to enhance colors in applications like stained glass. This tactic creates a certain effect, as shown below, and prevents color clashing. Notice that the drawing on the left colors appear significantly brighter and pure.
ď §
面積對比 How objects and colors appear is highly dependent on their context. The structural and spatial variables of a scene can influence appearance and perception. The following optical illusion demonstrates how we are sometimes fooled by our eyes. Instructions: The diagram below features two circles with different surroundings. Would you believe that the two circles are identical?
Twinkle, twinkle - The Blinking Effect Challenge yourself to try and count the dots in the diagram below. Despite a static image, your eyes will make it dynamic attempting to "fill-in" the white circle intersections with the black of the background. Quite an amazing effect! Instructions: Simply stare at the white circles and notice the intermittent blinking effect.
色相對比
亮度吸收現象使得黃底在具紅線時顯得偏暖,而在藍線時顯得偏冷
Contrast of Value In order to maximize color recogition and text legibility, the goal is to find the optimal combination for the colors used. By varying hue, saturation and value, we can ensure good visibility with "highly contrasting" colors. The following display is an example of how different backgrounds affects our ability to distinguish colors. Instructions: The text string below is repeated on a series of backgrounds with varying lightness. Which background is most favorable to the yellow text?
Memory Color
Delk and Fillenbaum (1965)
We tend to see the colors of familiar objects as we expect them to be.
ď §
Opponent After-images ď ś The nature of our visual system allows us to sometimes see "after-images" which appear once the original stimuli are removed. In the following demonstration, you will see that the colors in after-images are usually the opposite (complementary) colors of the original. ď ś Instructions: Stare at the black spot in the center of the four colored squares for about 30 seconds. Then scroll down and move your gaze to the black spot in the uniform white area. Note the colors of the afterimages relative to the colors of the original stimuli. Did they appear different? ď §
殘像(after image) 殘像:又稱後像 殘像為回應特定視覺刺激的補償作用,眼睛為了形成白光 光譜而製造失蹤的波長。色彩並置時大腦會將先看到的色 彩之補色的殘像加諸於後看的色彩,若影像為色彩如中灰 時,則無法看到殘像。 陽性殘像:注視色塊一段時間,轉移至白背景上,瞬時會 看到和原影像色彩相同得影像。 陰性殘像:陽性殘像出現後很快會消失,隨即變成一個原 狀淡色彩不同之影像。
Chromatic Adaptation Have you ever entered a movie theater on a sunny afternoon? The room probably appeared completely dark but as your visual system adjusted to the reduced level of light you were able to see better after a few moments. This "adaptation mechanism" allows our eyes to recover from an over sensitivity to a particular stimuli. "Chromatic adaptation" occurs when our eyes adjust to certain color stimuli. Follow the instructions below and see how the visual system responds to a color overload.
Instructions: Fixate upon the black spot in between the uniform cyan and yellow areas for about 30 seconds. Then scroll down and shift your gaze to the black spot in the 2nd image. Note that the image of the seaplane appears approximately uniform after this adaptation.
Human Retina L:M:Sď €32:16:1
C
Y
C
Y
G
B
G
B
M
G
M
G
R
G
R
G
C
Y
C
Y
G
B
G
B
M
G
M
G
R
G
R
G
Digital Camera Sensor
A representation of the retinal photoreceptor mosaic artificially colored to represent the relative proportions of L (red), M (green), and S (blue) cones in human retina. Modeled after Williams et al.(1991). ď §
Printer dot
Chromatic Adaptation Large-independent sensitivity regulation of the (three) mechanisms of color vision
ď §
Adaptation Light Adaptation Decrease in visual sensitivity with increases in luminance. (Automatic exposure control) Dark Adaptation Increase in visual sensitivity with decreased in luminance. (Automatic exposure control) Chromatic Adaptation Independent sensitivity regulation of the mechanisms of color vision. (Automatic color balance)
Color Terminology Color Brightness (absolute): how much light. Lightness (relative): brightness relative to white. Hue (absolute): red, yellow, green, blue, purple, etc. Achromatic: without hue. Colorfulness: (absolute): how much hue. Colorfulness increases with illumination level. Chroma (relative): Colorfulness relative to the brightness of a white object similarly illuminated. Chroma is not applicable for object surfaces that are not uniformly illuminated. Chroma is approximately constant with illumination level. Saturation (relative): Colorfulness relative to its own brightness. Saturation is used for isolated color stimuli (unrelated color) and for describing the color of an object surface which is not uniformly illuminated.
Color Terminology Helpful ways of thinking about these terms: Brightness Brightness of white Colorfulness Chroma Brightness of white Colorfulness Saturation Brightness Lightness
Chroma Lightness Colorfulness Brightness of white Brightness of white Brightness Colorfulness Brightness
Saturation
Corresponding colors are two color stimuli that appear the same color under two difference viewing conditions
L1M1S1 First viewing condition
Correspondin g color
X1Y1Z1
3X3 matrix
X2Y2Z2
ď §
Chromatic Adaptation model
LaMaSa
3X3 matrix
L2M2S2 Second viewing condition
Adapted or normalized viewing condition
Chromatic Adaptation model
Von Kries Model, 1902 La K L L M a KM M Sa K L S The effect of chromatic adaptation is to adjust the gain of each photoreceptor system independently and proportionally.
KL
1 LW
1 KM MW 1 KL SW
Photoreceptor responses to reference white
Von Kries Predictions
ď §
Color Appearance Phenomena Hunt Effect (1952) Colorfulness increases with luminance 改變照度照射彩色物時,隨著照度的增加會感到彩度增加。
Stevens Effect (1963) Contrast increases with luminance 改變照度照射多種彩色物時,在高照度下會感到明亮的灰色更白,暗灰 色更黑。
Helson-Judd Effect (1938) Hue of nonselective samples 用彩色光照射灰階色表時,在明亮的灰色處可感受到照明光的色調,在 暗的灰色處會感受照明光的補色色調。
Bartleson-Breneman Equations (1968) Image contrast changes with surround (幻燈片v.s.照片) Discounting-the-Illuminant (Fairchild, 1992)
Color Appearance Models ď ś Color appearance models extend basic colorimetry to the prediction of appearance attributes under widely varying viewing conditions.
CIE TC1-34 Definition: To be considered a color appearance model, a model must account for at least chromatic adaptation and have correlated of at least lightness, chroma and hue.
ď §
CIELAB as an Example CIELAB does: Model chromatic adaptation Model response compression Include correlates for lightness, chroma and hue Include useful color difference measure CIELAB doesn’t Predict luminance dependent effects Predict background surround effects Have an accurate adaptation transform
CIELAB Equations L* 116[ f (Y / Yn )] 16 a * 500[ f ( X / X n ) f (Y / Yn )] b* 200[ f (Y / Yn ) f ( Z / Z n )] 1 3
where f ( X / X n ) ( X / X n ) for X / X n 0.008856 1 3
f (Y / Yn ) (Y / Yn ) for Y / Yn 0.008856 1 3
f ( Z / Z n ) ( Z / Z n ) for Z / Z n 0.008856 and
f ( X / X n ) 7.7867( X / X n ) 16 / 116 for X / X n 0.008856 f (Y / Yn ) 7.7867(Y / Yn ) 16 / 116 for Y / Yn 0.008856 f ( Z / Z n ) 7.7867( Z / Z n ) 16 / 116 for Z / Z n 0.008856 1 * C ab (a * 2 b* 2 ) 2
hab arctan( b* / a * ) L* 2 C * 2 H * 2 12 E [( ) ( ) ( ) ] K L SL K C SC K H SH * 94
sRGB
sRGB規格(1) 為電腦或網路為中心的多媒體領域所制定的 一種假想的RGB色彩空間 1996年,最先是由HP和Microsoft共同提倡, 其後, IEC將其制定成標準化 在標準觀測環境下,定義出標準影像的顯示 器特性 色彩變換處理的負擔輕,可以作到彩色影像 機器之間的直接連接
sRGB
sRGB標準觀察環境 sRGB標準觀察環境 背景 (background)
顯示器輝度程度的20% D65 (x=0.3127, y=0.3290), 16 cd/m2
環境 (surround)
周圍輝度的20% D50 (x=0.3457, y=0.3585), 4.1 cd/m2
近側範圍 (proximal field)
顯示器輝度程度的20% D65 (x=0.3127, y=0.3290), 16 cd/m2
周圍照度程度
64 lux
周圍白色點
D50 (x=0.3457,y=0.3585)
炫光 (viewing glare)
0.2 cd/m2
sRGB
觀察環境的設計 Color Element
Proximal Field
Surround
Background
Adapting Field
sRGB
sRGB規格顯示器特性
sRGB標準影像顯示器特性 顯示器輝度程度
80 cd/m2
顯示器白色點
D65 (x=0.3127,y=0.3290)
顯示器RGB色度點
s-=2.2
Radiance
顯示器階調特性
ITU-R BT.709-3
Digital counts
sRGB sRGB構造
Structure of the sRGB Profile
ď §
Math for sRGB to PCS Conversion
ď §
Bradford Chromatic Adaptation Math X Y Z dest
Rdw 0.9870 0.1471 0.1600 Rsw 0.4323 0.5184 0.0493 0 0.0085 0.0400 0.9685 0
Inverse of Lam and Rigg matrix (“Bradford” matrix)
0 Gdw Gsw 0
0 0.8961 0.2664 0.1614 X 0 0.7502 1.7135 0.0367 Y Bdw 0.0368 0.0685 1.0296 Z source Bsw Lam and Rigg
(Bradford University) Cone response matrix
0.2664 0.1614 X Rdw 0.8961 Gdw 0.7502 1.7135 Y 0 . 0367 Bdw 0.0368 0.0685 1.0296 Z dest
white
0.2664 0.1614 X Rsw 0.8961 Gsw 0.7502 1.7135 0.0367 Y Bsw 0.0368 0.0685 1.0296 Z source
white
Conversion of XYZD65 to XYZD50 Using the Bradford Transform
X Y Z D50
M BFD
rD 50 1 rD 65 0 0
0 g D 50 g D 65 0
0 0 bD 50 bD 65
M BFD
X Y Z D65
rD50, gD50, bD50 = cone response of D50 white (MBFD x XYZD50) rD65, gD65, bD65 = cone response of D65 white (MBFD x XYZD65)
1.0479 0.0229 0.0502 X X 0.0296 0.9904 0.0171 Y Y Z D50 0.0092 0.0151 0.7519 Z D65
Summary of sRGB to PCS Conversion Details
ď §
Fairchild’s Chromatic Adaptation Model 對參考觀看條件:D65,Hunt-Pointer-Estevez轉換為: L1 0.4002 0.7076 0.0808 X 1 X1 M 0.2263 1.1653 0.0457 Y M Y 1 1 1 0.0 0.9182 Z1 S1 0.0 Z1
下一步驟是應用修正後的von Kries transform: L1 ' a L 0 M ' 0 a M 1 0 S1 ' 0 where aL PL Ln
0 L1 0 M1 aS S1
L1 A M 1 S1
1 Yn1 / 3 lE PL 1 Yn1 / 3 1 / lE lE
3( Ln / LE ) , Ln / LE M n / M E Sn / S E
and, a M and aS are similarly defined.
Fairchild’s Chromatic Adaptation Model In applying the model for predicting the corresponding colors the (X1, Y1, Z1) tristimulus values of the first viewing condition are transformed to the (L’, M’, S’) of the reference viewing condition, which is then transformed to the (X2, Y2, Z2) of the second viewing condition by inverse matricies.
X2 X1 L2 ' L1 ' M ' A M Y and M ' A M Y 1 2 2 1 2 1 Z 2 Z1 S 2 ' S1 ' Therefore, X2 X1 Y M 1 A 1 A M Y 2 1 2 1 Z 2 Z1
Hunt Model, 1994 A comprehensive model capable of handing a wide range of viewing conditions. Color reproduction history. •Input •Absolute XYZ •Surround relative luminance •Discounting •Scotopic luminance •Output •Bright, lightness, colorfulness, chroma, saturation, hue •Advantages •Comprehensive, all appearance attributes •Disadvantages •Complex, not invertible
a f n ( FL F ) D 1 w a f n ( FL F ) D 1 w ) D 1 a f n ( FL F w
RLAB (Fairchild, 1996) A simple model combining an accurate adaptation transform with CIELAB. Color reproduction applications •Input •Absolute XYZ •Surround relative luminance •Discounting •Scotopic luminance •Output •Lightness, chroma, saturation, hue
La ( pL D (1 pL ))(
M a ( pM D (1 pM ))(
M ) Mn
S Sa ( pS D (1 pS ))( ) Sn
•Advantages •Simple, Accurate, easy inverted, sufficient for image? •Disadvantages •Only relative appearance attributes
L ) Ln
CIECAM97s CIE color appearance model adopted by TC1-34 in 1997. Best of other models. Response to industry. •Input •Absolute XYZ (stimulus, adapting stimulus) •Surround and background relative luminance •Discounting •Scotopic luminance •Output •Brightness, lightness, colorfulness, chroma, saturation, hue •Advantages •Combination of available knowledge, all appearance attributes, international “standard” •Disadvantages •More complex than necessary, tricky inversion
Results
ď §
Color Management Systems
ď §
跨媒体色彩處理技術
跨媒體色彩修正 ‧觀色環境 不同光源 不同亮度
工業技術研究院光電工業研究所 Industrial Technology Research Institute Opto-Electronics & Systems Laboratories
跨媒體色彩修正 spectral radiance of sources and illuminants 250
Halogen Xenon
relative radiance
A 200
Xen.-flash ill.D65 ill. A
150 D65
ill. C
100 C 50 0 300
400
500
600 nm
700
800 工業技術研究院光電工業研究所 Industrial Technology Research Institute Opto-Electronics & Systems Laboratories
跨媒體色彩修正 1 0.8
0.6
0.4 0.2
0
0
1
1
0.8
0.8
0.6
0.6
0.4
0.4
0.2
0.2
0
0.2
0.4
0.6
IT8.7/2 130個色塊 在A光源下之x, y分佈
0.4
0.6
0.8
IT8.7/2 130個色塊 在D65光源下之x, y分佈
CIE1931色度座標圖
0
0.2
0.8
0
0
0.2
0.4
0.6
0.8
IT8.7/2 130個色塊 在D50光源下之x, y分佈
IT8.7/2標準色稿在不同光源下的色度值表現
工業技術研究院光電工業研究所 Industrial Technology Research Institute Opto-Electronics & Systems Laboratories
跨媒體色彩修正 ‧光源適應性色彩修正 光源 A (鹵素燈)
R,G,B
色差≧20 影像
未校正影像 色彩偏差大
PC
Visual Match 數位相機 經光源適應性 色校後色彩 偏差小
光源特性 轉換模式
光源 B (螢光燈)
色差≦8.0 光源適應性 R,G,B 色校程式
X,Y,Z
色度空 間轉換
CRT or Printer R',G',B'
Color Difference
PC
工業技術研究院光電工業研究所 Industrial Technology Research Institute Opto-Electronics & Systems Laboratories
跨媒體色彩修正 ‧跨媒體對色
彩色輸入設備
Scanner
彩色輸出設備
Laser Printer
Video camera
DSC
CRT
彩色輸出設備
Injet Printer
PTV
工業技術研究院光電工業研究所 Industrial Technology Research Institute Opto-Electronics & Systems Laboratories
跨媒體色彩修正 彩色複製方式 • 頻譜複製 (Spectral Colour Reproduction) – 反射率相同 ‧ 優點 : 在不同光源下仍可對色 ‧ 缺點 : 成本及困難度高
• 色度值複製 (Colorimetric Colour Reproduciton) – 色度值相同 ‧限制 :彩色輸出設備之色域限制 ‧缺點 :在某一光源下可對色,其它則否
•
色知覺複製 (Appearance Colour Reproduciton) – 色知覺模型的準確度
色度空間 色差公式: E*ab (L*)2 (a*)2 (b*)2
×
× Observer
均勻色度空間 CIELAB
CIExyY
sRGB
Surface
Source
Color Reproduction
LCH=L’C’H’
XYZ
Target
X’Y’Z’
Reproduction
Color Reproduction
• Colorimetric Color Reproduction – Equality of tristimulus values (X, Y, Z)
E()
X
R()
E()R() X K E ( ) R ( ) x ( ) d Y K E ( ) R ( ) y ( ) d 120
50
Z K E ( ) R ( ) z ( ) d 15
Color Reproduction
造成色彩不一致的原因 彩色輸出入設備的色彩元素之定義及響應不同 彩色輸出入設備的色調及色域不同 色彩產生方式不同 加成性色彩(Additive Color)重現 減法性色彩(Subtractive Color)重現
不同媒體的對色 紙張 (亮面,物面,...,底色) 反射,穿透稿,發光物...
彩色輸出入設備的穩定性 人類色視覺作用 同色異譜現像 (metamerism)
Color Reproduction Colour constancy: reminder
The spectra reaching the eye have different SPDs but the perceived surface colour is the same
工業技術研究院光電工業研究所 Industrial Technology Research Institute Opto-Electronics & Systems Laboratories
Color Reproduction
•Metamerism • We define a pair of objects having different spectral reflectance curves but the same color coordinates for one set of conditions as metameric objects, or a metameric pair.
Color Reproduction
‧同色異譜(Metamerism)
Reflectances of four objects that look alike
Objects with these spectral reflectance curves would match in color for the CIE 1931 standard observer when viewed under illuminant C.
Color Reproduction
ď §
Color Reproduction
Color Reproduction in Each Medium CRT(RGB)
Photography (CMY)
Printing (CMYK)
Scanner(RGB)
New Medium(?)
Digital Camera(RGB) ď §
Color Reproduction
Color Reproduction in Cross Medium CRT(RGB)
Printing (CMYK)
Photography (CMY)
Scanner(RGB)
New Medium(?) Digital Camera(RGB)
ď §
Color Reproduction
Device Independent Color CRT(RGB)
Printing (CMYK)
Photography (CMY) XYZ Scanner(RGB)
New Medium(?) Digital Camera(RGB)
ď §
Color Reproduction
Problems in Color Reproduction • Device Calibration – Adjust a device to the standard condition
• Colorimetric Characterization – Characterize color response
• Gamut Mapping – Compensate a different between target & destination
Color Reproduction
Problems in Color Reproduction • Chromatic Adaptation – Reference White, Environmental condition
• Color Transformation – Calculate color signal from one to the other
Color Reproduction
Colorimetric Color Reproduction • Colorimetric Color Reproduction = Matching of colorimetric values(XYZ) E*ab
Category
10 Business Color 5 Pictorial Color 2 0
Photometer, Colorimeter
Generic workflow for copy-stand photography
ď §
Generic workflow for scanning hardcopy
ď §
Generic workflow for scanning color negatives
ď §
Generic workflow for video imaging systems
ď §
Generic workflow for digital photography
ď §
Brief of ICC Profile Spec. Describes the International Color Consortium profile format The intent of this format is to provide a cross-platform device profile format FOGRA, German graphic arts research institute, 1993 ColorSyncTM 1.0
Flowchart of ICC Color Management Input Device Device Colorimetric Characterization Input device profile
Color Appearance Model
Profile Connectio n Space Output device profile
Color Appearance Model Color Gamut Mapping Device Colorimetric Characterization
ď §
Output Device
Color Management Systems架構
Application Graphics Library Profiles Profiles
Imaging Library
Color Management Framework Interface Default CMM (ColorSync/ICM)
3rd Party CMM
3rd Party CMM
CMM: Color management module
Profile Element Structure Three levels of information Required data: translate color information Optional data: be used for enhanced color transformation Private data: allow CMM developers to add proprietary value to their profile Element tag table A tagged signature (4 byte hexadecimal number) The beginning address offset Size of data for each individual tagged element
Device Profile 內容
描述性資訊(date, time, version, ...) 共同參數 data color space PCS color space rendering intent media (illuminant white point) viewing condition ... 預先設定好的設備模型參數
Profile Map 128 bytes
Profile Header
Sig
Tagged Element Data
ď §
4 bytes
Tag Count
Tag Table
Offset
Size
12 bytes for each tag
various size
Header Description
Byte Offset Content
Encoded As …
0-3
Profile size
uInt32Number
4-7
CMM Type
8-11
Profile version number
12-15
Profile/Device class
16-19
Color space of data (如標準的輸入空間)
20-23
PCS (如標準的輸出空間)
24-35
Date and time
36-39
‘acsp’profile file signature (register to ICC)
40-43
Primary platform target for the profile
44-47
Options for the CMM
48-51
Device manufacturer
52-55
Device model
56-63
Device attributes
64-67
Rendering Intent
68-79
XYZ value of the illuminant of the PCS
80-83
creator
84-127
reserved for future expansion
dateTimeNumber
XYZNumber
Profile/Device Class Signature Device Class Input Device profile Display profile Output profile Profile Class Device Link profile Color Space profile Abstract profile Named Color profile
Device Class
Signature
Input Device profile
‘scnr’
Display Device profile
‘mntr’
Output Device profile
‘prtr’
Device Class
Signature
DeviceLink profile
‘link’
ColorSpaceConversion
‘spac’
profile Abstract profile
‘abst’
Named Color profile
‘nmcl’
Color Space Signature
Color Space
Signature
XYZData
‘XYZ’
labData
‘Lab’
luvData
‘Luv’
YCrCbData
‘YCbr’
YxyData
‘Yxy’
rgbData
‘RGB’
grayData
‘GRAY’
hsvData
‘HSV’
hlsData
‘HLS’
cmykData
‘CMYK’
cmyData
‘CMY’
2colorData
2CLR’
…
…
15colorData
‘FCLR’
Profile Connection Space Signature
Profile Connection Color Signature Space XYZData
‘XYZ’
labData
‘Lab’
*如果profile是裝置連結特性檔, 那麼這個標誌會取自於color space signatures表格
Tag Table Definition The tag table acts a table of contents for the tags and tag element data in the profile. The tags within the table are not required to be in any particular order. Each tag signature must be unique.
Tag Dependency – 2001 Draft Spec Table 20 – Profile type/profile tag and defined rendering intents Profile Class AToB0Tag
AToB1Tag
AToB2Tag
Input
Device to PCS: Colorimetric Device to PCS: Colorimetric Device to PCS: Colorimetric Device to PCS: Colorimetric Undefined Undefined
Device to PCS: Saturation Device to PCS: Saturation Device to PCS: Saturation Device to PCS: Saturation Undefined Undefined
Undefined
Undefined
Display
Output
ColorSpace
Abstract DeviceLink Named Color
Device to PCS: Perceptual Device to PCS: Perceptual Device to PCS: Perceptual ColorSpace to PCS PCS to PCS Device1 to Device 2 Undefined
TRC/ matrix Colorimetric
BToA0Tag
BToA1Tag
BToA2Tag
Undefined Undefined
PCS to Device: Perceptual PCS to Device: Perceptual PCS to Device: Perceptual PCS to Device: Perceptual Undefined Undefined
PCS to Device: Colorimetric PCS to Device: Colorimetric PCS to Device: Colorimetric PCS to Device: Colorimetric Undefined Undefined
PCS to Device: Saturation PCS to Device: Saturation PCS to Device: Saturation PCS to Device: Saturation Undefined Undefined
Undefined
Undefined
Undefined
Undefined
Colorimetric
Undefined
Undefined
Draft Spec ICC/5WD.1:2001-10-23
Input Profile Scanner and digital camera
Three-Component MatrixBased ProfileDescriptionTag RedColorantTag GreenColorantTag BlueColorantTag RedTRCTag GreenTRCTag BlueTRCTag MediaWhitePointTag CopyrightTag
N-Component LUT-Based ProfileDescriptionTag AToB0Tag mediaWhitePointTag copyrightTag
Display Profile Monitor Tag Name profileDescriptionTag redColorantTag greenColorantTag blueColorantTag redTRCTag greenTRCTag blueTRCTag mediaWhitePointTag copyrightTag
General Description 存放描述 ICC Profile 的字串 紅色螢光體的相對 XYZ 值 綠色螢光體的相對 XYZ 值 藍色螢光體的相對 XYZ 值 存放紅色 1D LUT* 存放綠色 1D LUT* 存放藍色 1D LUT* 存放裝置媒體的參考白點 XYZ 值 存放 ICC Profile 版權聲明
*(1D LUT 的資料個數若為 0 表示曲線是斜率為 1 的直線,資料個數為 1 表所存放的是曲線的 gamma 值)
Display Profile (Continued)
正向模型:
R
R' 1D LUT
G
G' 1D LUT
B
a01 a02 a a 11 12 a21 a22
a03 R' X a13 G ' Y a23 B' Z
B' 1D LUT
Step 1
反向模型:
Step 2
R
R'
a01 a02 a a 11 12 a21 a22
a03 a13 a23
1
X R' Y G ' Z B '
1D
LUT-1
G
G' 1D LUT -1
B
B' 1D LUT
Step 1
-1
Step 2
Output Profile Printers and film recorders
Tag Name ProfileDescriptionTag AToB0Tag BToA0Tag gamutTag AToB1Tag BToA1Tag AToB2Tag BToA2Tag mediaWhitePointTag copyrightTag
General Description 存放描述 ICC Profile 的字串 Device to PCS: 8 or 16 bit data: intent of 0* PCS to Device: 8 or 16 bit data: intent of 0* Out of Gamut: 8 or 16 bit data Device to PCS: 8 or 16 bit data: intent of 1* PCS to Device: 8 or 16 bit data: intent of 1* Device to PCS: 8 or 16 bit data: intent of 2* PCS to Device: 8 or 16 bit data: intent of 2* 存放裝置媒體的參考白點 XYZ 值 存放 ICC Profile 版權聲明
*Rendering Intent: perceptual=0; relative colorimetric=1; saturation=2; absolute colormetric=3
ICC Profile使用範例 – Photoshop 6.0
來源空間 目的空間 轉換選項 引擎 演色方式
Gamut Mapping
ď §
色域對應( Gamut Mapping)
當 “ 輸入 " 設備(如掃瞄器、數位相機、 sRGB影像)的色域對應到 “ 輸出 " 設備 (如印表機、 LCD)的色域時,若輸入設 備色域大於輸出設備色域,輸出設備便無 法真實的表現出輸入設備的顏色。色域對 應便是要找出一個最佳化的顏色替代方式, 在色域小的空間以一虛擬的顏色來表示色 域外的顏色。
色域對應( Gamut Mapping)
L 輸入色域
輸出色域
無法表示之顏色 C
印表機色域對應
由於紙張、墨水的限制,列 表機的色域遠小於 CRT顯示 器的色域。 列表機無法真實的列印出 NTSC RGB、sRGB的顏色。 進行列表機色彩校正時,必 須做色域對應。
印表機
sRGB影像
色域處理原則
影像輸入
RGB訊號
LCh訊號 一般模式 色域處理 進階模式 色域壓縮演算
L’C’h’訊號
R’G’B’訊號
圖像列印
實驗流程 (執行部分)
R0G0B0D65
RGBD65
XYZD65
XYZD50
LChD50
(Image input) -TRC
M 3*3
M’ 3*3
GCA UCR (GCR)
(Printer output) CMYK
Gamut Compression
Color-LUT
CMY
X’Y’Z’D50
L’C’h’D50
(GCA: Gamut Compression Algorithm)
Clipping Compression
L* Output C* L*
C* Input C* C* ď §
Linear Compression
L* Output C* L*
C* Input C* C* ď §
Non-linear Compression
L* Output C* L*
C* Input C* C* ď §
Minimum vector L*
C* ď §
Centroid vector
L*
L*=50
C* ď §
階調壓縮方式
Clipping
Knee Compression
Linear Compression
進階色域對映模式 利用影像“色相-頻率" 分布資 訊 RY
R
sum hue
Y
G
C
B
M
測試用色票(12 hues x 9 chromas) R
MR
Y
RY
G
YG
C
GC
B
CB
M
BM
實驗1:色域壓縮結果 (12hue.bmp) 操作模式
Original
Clipping
General Mode (Knee)
Advanced Mode (Knee)
Linear Compression
圖片
圖片
12 hues x 9 chromas = 108 color patches
色差評估
色域壓縮前
色域壓縮後
(108 patches)
E94=4.0
• General Model
E94=4.1
• Advanced Model
C H ) ( ) 10.045C 1 0.015C 2
E 94
(L)
2
(
2
測試電子影像
圖片
名稱
6_fruits.bmp
bride.bmp
wool.bmp
性質
CG image
Natural image
Natural image
特徵
高彩度色, 色分布廣
女性人像, 低彩度膚色
高彩度色, 均勻色相
實驗2:色域壓縮結果 (6_fruits.bmp)
操作模式
圖片
Original
General Mode
Advanced Mode
實驗3:色域壓縮結果 (bride.bmp)
操作模式
圖片
Original
General Mode
Advanced Mode
實驗4:色域壓縮結果 (wool.bmp)
操作模式
圖片
Original
General Mode
Advanced Mode