Species composition-phytosociology of xerophytic plant communities S Peru - Montesinos et al. 2015

Page 1

Phytocoenologia Vol. 45 (2015), Issue 3, 203–250 Published online August 2015

Research Paper

Species composition and phytosociology of xerophytic plant communities after extreme rainfall in South Peru Daniel B. Montesinos-Tubée, Karle V. Sýkora, Víctor Quipuscoa-Silvestre & Antoine M. Cleef Abstract: We present a phytosociological overview of the arid and semi-arid montane vegetation of the province of Arequipa in southern Peru. The xerophytic vegetation was studied after extreme rainfall had promoted exceptionally lush vegetation and a high aboveground floristic diversity. We used TWINSPAN for classification and Detrended Correspondence Analysis for gradient analysis of our relevés. PC-ORD was used to show the hierarchical similarity structure of the syntaxa, and to compare them with related communities in Peru and surrounding countries from literature. We present a synoptic table, and describe the physiognomy, floristic composition, ecology and spatial distribution of the plant communities. In total, we recorded 187 plant species, including 50 endemics, in 196 phytosociological relevés distributed over 2030 km² at an elevation between 2020 and 3260 m a.s.l. The relevés were assigned to three alliances in the class Opuntietea sphaericae. The vegetation consists mainly of native species of trees, shrubs, grasses, succulents, annual herbs, and ferns. The most diverse families were Asteraceae, Cactaceae, Solanaceae, Malvaceae, Boraginaceae, Fabaceae, Poaceae, Amaranthaceae and Pteridaceae. Within the class Opuntietea sphaericae, three alliances have been distinguished of which two are new. The Ambrosio artemisioidis-Weberbauerocerion weberbaueri comprising six associations was recorded on barren hillsides between 2000 and 2900 m a.s.l. in the Arequipa city boundary zones. The Corryocaction brevistyli defines xerophytic scrub between 2700 and 3200 m a.s.l. in semi-dry regions bordering the puna grasslands. It contains the Balbisio weberbaueri-Ambrosietum artemisioidis and the Aloysio spathulatae-Corryocactetum brevistyli, all in need of further investigation as they lack diagnostic species. A unit clearly distinguished by Weberbauerocereus rauhii and Neoraimondia arequipensis is here described as a new alliance, Neoraimondio arequipensis-Weberbauerocerion rauhii. It grows in inter-Andean valleys in dry regions (1100– 2200 m a.s.l.), with abundant cacti accompanied by few xerophytes. Keywords: Andes; Arequipa province; Cactaceae; climate event; Opuntietea sphaericae; Peru; syntaxonomy Nomenclature: Brako & Zarucchi (1993), Tropicos (http://www.tropicos.org), PBI Solanum Project (http:// www.solanaceaesource.org), eFloras (http://www.efloras.org) and The Plant List (Version 1; http://www.theplantlist.org/) Abbreviations: col. = column; DCA = Detrended Correspondence Analysis; rel. = relevé Submitted: 20 November 2014; revised version submitted: 19 May 2015; accepted: 21 May 2015 Co-ordinating Editor: Erwin Bergmeier

Introduction In the arid regions of southern Peru, rainfall is very variable. Dry years with very limited seasonal rainfall alternate with periods of abundant rainfall that result in germination and sprouting of numerous annual herbs and geophytes which are not observed during normal periods of precipitation. Interannual variability in summer precipitation is partly influenced by the El Niño Southern

Oscillation (ENSO) and the strength and position of the Bolivian High and Southern Hemisphere Subtropical Convergence Zones or SACZ (Lenters & Cook 1999). In 2012, rainfall was exceptionally high; a climatic event that apparently takes place every 10 to 15 years in the drier regions of South Peru (Huertas 2009). The rainfall tripled the normal precipitation values in Arequipa province (Fig. 1) and resulted in the emergence of species that do not appear in drier years.

*Corresponding author’s address: Environmental Sciences, Nature Conservation and Plant Ecology Group, Wageningen University, Droevendaalsesteeg 3a, 6708 PB Wageningen, The Netherlands; daniel.montesinos@wur.nl. Complete addresses of all authors can be found at the bottom of the paper © 2015 Gebrüder Borntraeger, 70176 Stuttgart, Germany DOI: 10.1127/phyto/2015/0023

www.borntraeger-cramer.de 0340-269X/2015/0023 $ 21.60

eschweizerbart_xxx

phyto_45_3_203_250_montesinos_0023.indd 203

09.11.15 12:23


204

Daniel B. Montesinos-Tubée et al.

Thibault & Brown (2008) studied how extreme precipitation events greatly modify the structure and composition of arid and semi-arid ecosystems, noting that extreme weather events will increase in frequency and magnitude due to climate change and ENSO events (Dillon & Rundel 1989), and pointing out that the ecological impacts of such events are still poorly understood. Studies by Galán de Mera & Vicente Orellana (1996), Galán de Mera & Gómez Carrión (2001) and Galán de Mera et al. (2009, 2010) provide important sources to understand the composition of plant communities in South Peru during normal periods of (little) precipitation. As they sampled the vegetation in dry periods, a lot of species emerging after exceptional rainfall were missed. The vegetation composition of the arid ecosystems of the province and department of Arequipa in southern Peru, especially after abundant rainfall, is still insufficiently studied. The floristic relationships between the mesotropical and supratropical bioclimatic zones are still poorly understood and documented. Sarmiento (1975) presented a general overview of the phytogeography and vegetation ecology of arid plant formations in South America. Since then, overviews of the vegetation in the arid and subarid regions have been

given from North Chile by Villagrán et al. (1981, 1982), Gutiérrez et al. (1998), Luebert & Gajardo (2000, 2005), Navarro & Rivas Martínez (2005) and Luebert & Pliscoff (2006), from Ecuador (Loayza & Morrone 2011), Bolivia (Navarro 1996; Navarro & Maldonado 2005) and Argentina (Kiesling 1999). The floristic composition and ecology of various ecosystems (coastal and mountainous) in the south of Peru have also been studied (Asociación Especializada para el Desarrollo Sostenible 1998; Arakaki & Cano 2003; Franco et al. 2004; Galán de Mera et al. 1997, 2002a, 2002b, 2003, 2009, 2010, 2011a, 2011b; Gutte 1985, 1986; Kuentz et al. 2007; Schwarzer et al. 2010; Talavera et al. 2010; Montesinos 2010, 2011, 2012a, 2012b; Montesinos et al. 2012). In Arequipa province, the floristic composition of the arid ecosystems has been studied by Weberbauer (1912, 1945), Linares Perea & Benavides (1995), Puig et al. (2002), Linares Perea (2005), Linares Perea et al. (2010) and Heim (2014). Galán de Mera et al. (2010) recently presented a bioclimatic classification of the department of Arequipa, mentioning the indicator species for the different mountain slopes and their floristic relations. The arid regions of South Peru contain many endemic cactus species, distributed along the western slopes of the

Fig. 1. Precipitation data for the years 1931–2015 (data missing for 1939 and1940, 1949 and 1960) averaged by combining data from the meteorological stations of Socabaya (2337 m a.s.l.), La Pampilla (2371 m a.s.l.), Huasacache (2207 m a.s.l.) and Characato (2641 m a.s.l.), all in Arequipa city (16°26’10’’ S; 71°30’47’’ W). The latest El Niño events occurred in the years 1972–1973, 1982–1983 (missing data for 6 months) and 1997–1998. Data obtained from ONERN (1974), Sahley (1996) and SENAMHI (2013). The diamonds indicate normal years, circles indicate El Niño events and the square shows the peak precipitation (333.6 mm) reached in 2012.

eschweizerbart_xxx

phyto_45_3_203_250_montesinos_0023.indd 204

09.11.15 12:23


Xerophytic plant communities after extreme rainfall in South Peru

central Andes (Weberbauer 1945; Rauh 1958; Britton & Rose 1919, 1920; Ritter 1981; Aragón 1982; Hunt 1992, 2006; Lombardi 1995; Galán de Mera & Vicente Orellana 1996; Sahley 1996; Mariño et al. 1998; Galán de Mera & Gómez Carrión 2001; Mauseth et al. 2002; Arakaki 2003; Arakaki et al. 2006; Galán de Mera et al. 2009, 2011b; Montesinos 2010, 2011, 2012a; Ostolaza 2011, 2014). Notwithstanding their diversity, abundance and competitiveness, hardly anything is known about their ecology, especially under extreme climatic conditions. Moreover, little is known about the endemism of plant species in the cacti communities of the specific arid ecosystems. Vegetation research is urgently needed, as the habitats occurring along the western slopes of the Andes are underrepresented in Peru’s national reserve system (Sahley 1996) and have been ranked to be of high priority for research and conservation (Centro de Datos para la Conservación 1986). Our study had three objectives: (a) to study the species composition, cover and structure of the xeric vegetation and xeric scrub vegetation in the Arequipa province, South Peru under the influence of an extreme climatic

205

event; (b) to analyze the floristic composition, vegetation structure, ecology and distribution of the vegetation along an altitudinal gradient from 2020 to 3260 m a.s.l., and (c) to present a syntaxonomic overview of the succulent rich vegetation of South Peru based on relevés made in a period of vegetation development following abundant rainfall.

Study area The 25 sampled transects (Fig. 2) are located in seven districts in the Arequipa province (Arequipa department, South Peru) between 2020 m a.s.l. and 3260 m a.s.l. elevation. The study area in the province of Arequipa is located between 16°44'10" S; 71°18'04" W and 16°10'51" S; 71°43'14" W. The geology comprises Cretaceous and Tertiary igneous intrusive rocks and marine sediments, Tertiary and Quaternary volcanic rocks (primarily ignimbrites), and Quaternary eolian and alluvial sediments (Holmgren et al. 2001). In the Yura region there are Callovian fossils with sandstone sediments and volcanic

Fig. 2. Map of the fieldwork area in Arequipa province. The administrative districts are indicated. The numbers show the locations of the studied sites. Image source: Landsat 7 Enhanced Thematic. Mapper (ETM+) Acquisition date = 10 May, 2001. Glovis Visualization Portal (http://www.glovis.usgs.gov), a part of the Earth Resources and Science Center (EROS) of the USGS.

eschweizerbart_xxx

phyto_45_3_203_250_montesinos_0023.indd 205

09.11.15 12:23


206

Daniel B. Montesinos-Tubée et al.

Table 1. Localities studied in Arequipa province; bioclimatic zonation according to Rivas-Martínez et al. (1999), Kuentz et al. (2007) and Galán de Mera et al. (2012). District

Areas

# relevés

Lat S

Lon W

Altitude (m a.s.l.)

Slope (º)

Aspect Bioclimatic zone

1

Alto Selva Alegre

Cerro Pacheco, Quebrada Peral

38

16° 19’

71° 28’

2700– 3190

5–40(18.7)

S(SW)E(SE)

mesotropical

2

Chiguata

Quebrada Cañuma

5

16° 24’

71° 34’

3020

20– 45(33.6)

S, W

mesotropical

3

Jacobo Hunter

Cerro San Ignacio, Huasacache

15

16° 28’

71° 34’

2220– 2600

15– 50(25.7)

W

mesotropical

4

Mollebaya

Molinoyoc, Cerro Pajonal

6

16° 29’

71° 28’

2800– 3020

4–45(23)

N, S

mesotropical

5

Pocsi

Pampa Culanayoc

6

16° 31’

71° 24’

2990– 3030

8–10(9)

N, S

mesotropical

6

Polobaya

Quebrada de Chapi, 29 Quebrada Escalerilla

16° 42’

71° 19’

2340– 3260

6–45(19)

all

mesotropical

7

Socabaya

Cerro Llorón, Lara

39

16° 27’

71° 31’

2300– 2580

2–14(8)

W-E

mesotropical

8

Uchumayo

El Huayco, Congata, 24 Variante Uchumayo

16° 25’

71° 41’

2020– 2450

8–50 (31.4) E, S

thermotropical

9

Yura

Corontorio, Cerro Los Andes

16° 13’ - 16° 18’

71° 36’ - 71° 41’

2590– 3260

5–60(26.2)

thermotropical, mesotropical

34

rocks originating from the Jurassic era (Westermann et al. 1980). In general terms the relief is volcanic, with some sedimentary quartzite and sandstones (Treacy 1994; Galán de Mera et al. 2009). The main rivers are the Chili and Sabandia, which flow through Arequipa city. Their wide valleys are intensively used for agriculture. The plains and slopes west, north and east of Arequipa city are formed of the deposits of three volcanoes: Misti (5822 m a.s.l.), Chachani (6022 m a.s.l.), and Pichu-Pichu (5415 m a.s.l.). The southern rocky and more arid slopes are granite outcrops overlain by sandy soil. Table 1 presents the geographic areas in the administrative districts studied, altitudinal range (m a.s.l.) and average elevation, the total number of relevés per district, slope inclination and aspect, and biogeographic zone.

Bioclimate We used the methodology of Rivas-Martínez et al. (1999) and following approaches by Galán de Mera et al. (2010, 2012), to determine the thermicity index (It) which is used as a measure of the climatic thermic restrictions and is applied by the following formula: It = (T + M + m) 10 T: mean annual temperature (°C), M: mean highest temperature of the coldest month (°C), m: mean lowest temperature of the coldest month (°C).

all

We also applied the approach by Kuentz et al. (2007) and Galán de Mera et al. (2012). The following bioclimatic belts were identified according to our research: thermotropical (Uchumayo district and lower slopes of Yura district): It = 610–471, 2000–2600 m a.s.l.; mesotropical (Arequipa and Chiguata zone): It = 470–311, 2100– 3260 m a.s.l. Precipitation records were registered for 2012 in the La Pampilla station (2371 m a.s.l.) with 319.8 mm, Huasacache station (2207 m a.s.l.) with 266.9 mm and Socabaya station (2337 m a.s.l.) with 333.6 mm. The relation between precipitation and elevation largely depends on distance from the Andean crest, due to the lack of rising air masses on the Pacific slope of the Andes and because the orographic precipitation that do cross the Andes rain out at high elevations, which is why, in the lee of the mountain range, the precipitation decreases rapidly as elevation decreases (Holmgren et al. 2001, Roe 2005). According to Holmgren et al. (2001) and Galán de Mera et al. (2010, 2012), the upper limit of the thermotropical bioclimatic zone in the Arequipa province is at an elevation of between 2000 and 2100 m a.s.l. The mesotropical bioclimate extends between 2100 to 3100 m a.s.l., and is succeeded by the mesotropical-supratropical bioclimate, which extends from 3100 to 3800 m a.s.l.

eschweizerbart_xxx

phyto_45_3_203_250_montesinos_0023.indd 206

09.11.15 12:23


Xerophytic plant communities after extreme rainfall in South Peru

Methods Phytosociology and classification The relevés were set out following the Zürich-Montpellier method (Braun-Blanquet 1979) in plots without essential environmental differences in the vegetation. Structural differences were typical and can consequently be considered as a characteristic system property (Glavac 1996). Much attention was paid to the uniformity of the environmental factors and the distribution of species within the plot. According to Glavac (1996), the general concept is that the splitting of the plant communities into mosaic microcoenoses finally hinders the possibility to distinguish general vegetation types. Due to the mosaic structure of the vegetation at the studied scale of 10– 100 m², a certain degree of structural heterogeneity is inherent to the stands. Depending on the scale a certain inhomogeneity is always enclosed and has to be accepted (Dierschke 1994). According to Barkman (1979) even socalled homogeneous stands or phytocoenoses are actually mosaics consisting of finer mosaics, etc. This compound mosaic structure of vegetation seems to be of a general nature. Fieldwork was conducted during March and April 2012 (the peak flowering period of the vast majority of annual species after the precipitation period between December and April). Relevés were made in xeric vegetation after exceptional rain. Many species remaining dormant in the much more common dry years emerged and contributed to unusually high species diversity. In total, 196 relevés were made in 25 transects (in nine districts), within the altitudinal range of 2020–3260 m a.s.l. The relevés were 25 m² in communities with abundancy of annual herbs and shrubs, and columnar cacti and 64 m² in scrubland communities. For each relevé, the presence of species was noted and the percentage actual cover per species was estimated (Mueller-Dombois & Ellenberg 1974; Knapp 1984). For calculations, the percentage values were transformed into a nine-point ordinal cover/abundance scale (Westhoff & Van der Maarel 1973): 0–1% = 1; 2% = 2; 3% = 3; 4–7% = 4; 8–20% = 5; 21–37% = 6; 38–68% = 7; 69–88% = 8 and 89–100% = 9. Presence class values are presented in percentage (1–100%) for Table 3 and Appendices 1–8. The relevés were classified with TWINSPAN (Hill 1979) and a synoptic vegetation table was constructed. As syntaxa described in literature were based on relevés mostly or exclusively made in normal years with low rainfall, we only used perennial species for the comparison with previously published syntaxa. However as our relevés were all made in the same climatic conditions, all species were used while comparing the syntaxa based on our dataset. Besides an ordination diagram based on Detrended Correspondence Analysis (DCA: CANOCO 4.5, Ter

207

Braak & Šmilauer 2002) as well as a Farthest Neighbour clustering PC-ORD, Sørensen, Bray-Curtis Distance Measure) (McCune & Mefford 1999) were used to show the similarity in the hierarchical structure of the syntaxa described and to enable the syntaxa to be compared with related communities from literature. In the TWINSPAN analysis on our own data we used all relevés and species. As all relevés were made in the same wet season, all species including the annuals were used to compare the plant communities. In the DCA and cluster analysis we used a dataset (with presence class values I–V) containing our communities and the communities already published, in which the annuals were excluded and only perennials, except those with very low occurrence, were used. Annuals were excluded because they could not be used for comparison, as the vegetation surveys of other authors were done in dry periods when the specific annuals were not present. For community comparison by DCA and cluster analysis, 55 perennial and biannual species (including those listed by Galán de Mera & Vicente Orellana 1996; Galán de Mera & Gómez Carrión 2001; Galán de Mera et al. 2003, 2009, 2011b) were included which occurred with high presence even outside the rainy season over the studied communities, such as Adesmia augusti, Aloysia spathulata, Ambrosia artemisioides, Aphyllocladus denticulatus, Armatocereus riomajensis, Atriplex atacamensis, Atriplex rotundifolia, Austrocylindropuntia subulata, Balbisia meyeniana, Balbisia weberbaueri, Browningia candelaris, Browningia viridis, Cantua candelilla, Cantua volcanica, Carica augusti, Corryocactus aureus, Corryocactus brevistylus, Corryocactus puquiensis, Croton ruizianus, Diplostephium meyenii, Encelia canescens, Ephedra americana, Euphorbia apurimacensis, Euphorbia tacnaensis, Gochnatia arequipensis, Grindelia boliviana, Grindelia tarapacana, Haageocereus limensis, Haageocereus platinospinus, Haageocereus pluriflorus, Jatropha macrantha, Kageneckia lanceolata, Krameria lappacea, Lantana scabiosiflora, Larrea divaricata, Lycianthes lycioides, Lycium distichum, Mulguraea arequipensis, Neoraimondia arequipensis, Opuntia sphaerica, Opuntia tunicata, Oreocereus hempelianus, Oreocereus tacnaensis, Paronychia microphylla var. arequepensis, Prosopis laevigata var. andicola, Proustia berberidifolia, Senecio yurensis, Senna birostris var. arequipensis, Stipa ichu, Tecoma fulva subsp. arequipensis, Tecoma tanaeciiflora, Trixis cacalioides, Weberbauerocereus rauhii, Weberbauerocereus torataensis and Weberbauerocereus weberbaueri. As the dendrogram with all communities showed a very dissimilar group of communities, this outgroup was excluded in a second run, as well as in the DCA. New syntaxa were described with due regard to the International Code of Phytosociological Nomenclature (Weber et al. 2000).

eschweizerbart_xxx

phyto_45_3_203_250_montesinos_0023.indd 207

09.11.15 12:23


208

Daniel B. Montesinos-Tubée et al.

Floristics The collected plant specimens were identified at the Universidad Nacional de San Agustín (HUSA) and the Universidad Nacional Mayor de San Marcos (USM) herbariums, using the digital versions of Missouri Botanical Gardens (MO) and Field Museum of National History (F). Botanical collections were later labeled and placed at the USM, HUSA, Michael Owen Dillon Institute (HSP), the Universidad Nacional San Antonio Abad del Cusco herbarium (CUZ), the Universidad Nacional de Trujillo (HUT), the Universidad Nacional de Cajamarca (CPUN) and the Missouri Botanical Gardens (MO). Information on the distribution of species was obtained from Asociación Especializada para el Desarrollo Sostenible (1998), Arakaki & Cano (2003), Franco et al. (2004), Galán de Mera et al. (2003, 2009, 2012), Schwarzer et al. (2010), Talavera et al. (2010), Montesinos (2011, 2012a), Montesinos et al. (2012), Galiano et al. (2013) and Heim (2014). In the synoptic table we added the status of species with an asterisk (Brako & Zarucchi 1993; León et al. 2006; http://www.tropicos.org): endemic (in Peru), native (America) and introduced.

Results and discussion Syntaxonomic overview Based on a total of 196 relevés made on the xerophytic slopes of the Arequipa province between 2000 and 3260 m a.s.l. the vegetation sampled is assignable to one class (Opuntietea sphaericae) and one order (Oreocereo leucotrichi-Neoraimondietalia arequipensis). Syntaxa from literature used here for comparison are given in small script. The following syntaxa were distinguished: Opuntietea sphaericae Galán de Mera & Vicente Orellana 1996 Oreocereo leucotrichi-Neoraimondietalia arequipensis Galán de Mera & Vicente Orellana 1996 The Opuntietea sphaericae has been defined on the presence of Opuntia sphaerica, a cactus which is distributed from Peru to Argentina (Britton & Rose 1919, 1920; Hunt 1992) and is well represented in a variety of vegetation studies in Peru (Galán de Mera & Vicente Orellana 1996; Galán de Mera et al. 2001, 2002a, 2003, 2005, 2009, 2011b, 2012) and Chile (Luebert & Gajardo 2005). The affinity of the studied vegetation to the order Oreocereo leucotrichi-Neoraimondietalia arequipensis is defined by the presence of Ambrosia artemisioides, Armatocereus riomajensis, Corryocactus aureus, Haageocereus platinospinus, Neoraimondia arequipensis and Oreocereus hempelianus.

Ambrosio artemisioidis-Weberbauerocerion weberbaueri all. nov. (Holotypus: Euphorbio apurimacensis-Weberbauerocereetum weberbaueri Montesinos-Tubée et al. 2015) Weberbauerocereo weberbaueri-Browningietum candelaris Galán de Mera & Vicente Orellana 1996 (Typus: Table 2, col. 15 in Galán de Mera et al. 2011) – haageocereetosum pluriflori subass. nov. (Typus: Rel. 6, Table 2, col. 1.1) – onoseridetosum odoratae subass. nov. (Typus: Rel. 21, Table 2, col. 1.2) – neoraimondietosum arequipensis subass. nov. (Typus: Rel. 30, Table 2, col. 1.3) Senecioni yurensis-Weberbauerocereetum weberbaueri ass. nov. (Typus: Rel. 17, Table 2, col. 2.2) – oenotheretosum verrucosae subass. nov. (Typus: Rel. 6, Table 2, col. 2.1) – chionopappetosum benthamii subass. nov. (Typus: Rel. 17, Table 2, col. 2.2) – ephedretosum americanae subass. nov. (Typus: Rel. 32, Table 2, col. 2.3) – eremodrabetosum schulzii subass. nov. (Typus: Rel. 39, Table 2, col. 2.4) Euphorbio apurimacensis-Weberbauerocereetum weberbaueri ass. nov. (Typus: Rel. 13, Table 2, col. 3.1) – kramerietosum lappaceae subass. nov. (Typus: Rel. 13, Table 2, col. 3.1) – jatrophetosum macranthae subass. nov. (Typus: Rel. 28; Table 2, col. 3.2) Lycio distichi-Weberbauerocereetum weberbaueri ass. nov. (Typus: Rel. 4, Table 2, col. 4) Cantuo volcanicae-Weberbauerocereetum weberbaueri ass. nov. (Typus: Rel. 11, Table 2, col. 5) Paronychio microphyllae-Weberbauerocereetum weberbaueri ass. nov. (Typus: Rel. 5, Table 2, col. 6) Neoraimondio arequipensis-Weberbauerocerion rauhii all. nov. (Lectotypus: Weberbauerocereo rauhii-Browningietum candelaris Galán de Mera et al. 2009) In the synoptic table (Table 3) the following associations as described by Galán de Mera et al. (2009, 2011b) were combined. In general, diagnostic species are missing, except for Browningia viridis in the last mentioned association. Further research is needed to clarify the presence of the associations in this alliance. Weberbauerocereo rauhii-Browningietum candelaris Galán de Mera et al. 2009 – larreetosum divaricatae Galán de Mera et al. 2011 Armatocereo riomajensis-Neoraimondietum arequipensis Galán de Mera, et al. 2011 Weberbauerocereo rauhii-Corryocactetum brevistyli Galán de Mera et al. 2009 Neoraimondio arequipensis-Browningietum viridis Galán de Mera et al. 2011

eschweizerbart_xxx

phyto_45_3_203_250_montesinos_0023.indd 208

09.11.15 12:23


Xerophytic plant communities after extreme rainfall in South Peru

Corryocaction brevistyli Galán de Mera & Vicente Orellana 1996 (Typus: Oreocereo tacnaensis-Corryocactetum brevistyli, type 9, Table 2 in Galán de Mera & Vicente Orellana 1996) Balbisio weberbaueri-Ambrosietum artemisioidis Galán de Mera et al. 2011 (Typus: Table 4, col. 1 in Galán de Mera et al. 2011b) Aloysio spathulatae-Corryocactetum brevistyli ass. nov. (Typus: Rel. 2, Table 2, col. 8.1) – oenotheretosum rubidae subass. nov. (Typus: Rel. 2, Table 2, col. 8.1) – adesmietosum augusti subass. nov. (Typus: Rel. 9, Table 2, col. 8.2) Weberbauerocereo weberbaueri-Corryocactetum brevistyli Galán de Mera & Gómez Carrión 2001 Corryocacto aurei-Browningietum candelaris Galán de Mera & Vicente Orellana 1996 Oreocereo tacnaensis-Corryocactetum brevistyli Galán de Mera & Vicente Orellana 1996 Grindelio bolivianae-Corryocactetum puquiensis Galán de Mera & Gómez Carrión 2001 Diplostephio tacorensis-Parastrephietum lepidophyllae: corryocactetosum brevistyli Galán de Mera et al. 2003 Weberbauerocereo rauhii-Corryocactetum brevistyli crotonetosum ruiziani Galán de Mera et al. 2009

Vegetation description (Tables 2 and 3; Appendices 1–8) The class Opuntietea sphaericae and order Oreocereo leucotrichi-Neoraimondietalia arequipensis represent the cactus formations in dry regions of South America, especially in the Andes of central and south Peru. Diagnostic species of the class: Opuntia sphaerica. Diagnostic species of the order: Ambrosia artemisioides, Armatocereus riomajensis, Corryocactus aureus, Haageocereus platinospinus, Oreocereus hempelianus, Browningia candelaris and Tarasa operculata. The new alliance Ambrosio artemisiodis-Weberbauerocerion weberbaueri is characterized by the co-occurrence of the perennial shrub Ambrosia artemisioides and the columnar cactus Weberbauerocereus weberbaueri distributed in South Peru (Galán de Mera & Vicente Orellana 1996; Brako & Zarucchi 1993). It is restricted to dry regions, with precipitation below 80 mm/year, covered by vegetation with abundant cacti accompanied by few other xerophytes. Weberbauerocereus weberbaueri and Exodeconus pusillus are character species of this alliance. The Ambrosio artemisioidis-Weberbauerocerion weberbaueri is differentiated against the Neoraimondio arequipensis-Weberbauerocerion rauhii and Corryocaction brevistyli by species like Solanum peruvianum, Cristaria multifida, Fuertesimalva chilensis, Plantago limensis, Aristida adscensionis, Exodeconus

209

pusillus. Also annual species turned out to be differential. The Ambrosio artemisiodis-Weberbauerocerion weberbaueri includes the previously described Weberbauerocereo weberbaueri-Browningietum candelaris Galán de Mera & Vicente Orellana 1996 and six other new associations. Ecology and distribution: In our study this alliance represents communities on sandy soils and sedimentary volcanic soils with quartzite and sandstone screes mixed with fine gravel on barren hillsides with xerophytic vegetation between 2000 and 2900 m a.s.l. This alliance is representative of the vegetation units occurring in the Arequipa city boundary zones where the abundance of Weberbauerocereus weberbaueri is characteristic. Species of the Ambrosio artemisiodis-Weberbauerocerion weberbaueri are highly indicative of dry environmental conditions. For instance Browningia candelaris, Haageocereus platinospinus, Hoffmannseggia viscosa var. egena, Montiopsis cumingii and Weberbauerocereus weberbaueri are species that occur on dry slopes in the Arequipa region and can also occur in Moquegua and Tacna regions (Brako & Zarucchi 1993; http://www. tropicos.org). Weberbauerocereus weberbaueri is endemic to the Arequipa province and has not been found outside this region (Rauh 1958; Ritter 1981; Aragón 1982; Brako & Zarucchi 1993; Sahley 1996; Mariño et al. 1998; Arakaki 2003). Despite the high abundance of annual and biannual species encountered within the Weberbauerocereus weberbaueri communities, it is most unlikely that the majority of character species of the associations occur in scrubland units. In contrast, species of the Corryocaction brevistyli are highly indicative of subhumid conditions. They occur on clay soils associated with scrubland vegetation on volcanic slopes in the north and northwest of Arequipa province in boundary with the Prepuna and Puna. Here several species have been identified that also occur in the highland communities, for example: Adesmia spp., Balbisia weberbaueri, Calceolaria inamoena, Chersodoma spp., Diplostephium meyenii, Gochnatia arequipensis, Kageneckia lanceolata, Lupinus spp., Mulguraea arequipensis. The ecology of Corryocactus brevistylus has been studied by some authors (Aragón 1982; Galán de Mera & Vicente Orellana 1996; Cáceres et al. 2000; Galán de Mera & Gómez Carrión 2001; Mauseth et al. 2002). We have identified the distribution of the units within the Corryocaction brevistyli ranging between an elevation of 2800 and 3260 m a.s.l. in the Arequipa province. According to Brako & Zarucchi (1993), the species also occurs in the Puno region. This is the first time that Neuontobotrys lanata, Paronychia microphylla var. arequipensis and Senecio yurensis, have been referred to in a phytosociological context. Apart from the reference by Brako & Zarucchi (1993), Al-Shehbaz (2006) and León et al. (2006), these biannual species have considerable abundance in the Arequipa re-

eschweizerbart_xxx

phyto_45_3_203_250_montesinos_0023.indd 209

09.11.15 12:23


210

Daniel B. Montesinos-Tubée et al.

Table 2. Typus relevés of all the new associations and subassociations. 3.1

3.2

4

5

6

Relevé number

6

21

30

6

17

32

39

13

28

4

11

5

2

9

Area (m²)

25

25

25

25

25

25

25

25

25

25

25

25

64

64

2

2

2

2

2

2

2

2

2

2

2

2

2

3

0

4

0

7

7

4

5

4

3

6

3

8

8

0

Syntaxon

Elevation (m a.s.l. / 10)

1.1 1.2 1.3 2.1 2.2 2.3 2.4

8.1 8.2

2

7

3

3

0

5

9

6

4

0

4

5

0

4

Slope (°)

40

30

45

25

6

20

10

40

20

7

14

25

45

10

Aspect

S

S

S

S

S

E

N

NNE

W

SE

WSW

E

N

N

Species richness

11

10

11

16

18

19

8

19

16

15

13

19

23

26

4

2

3

2

5

2

3

2

6

2

3

3

1

4

1

Character species of class and order Haageocereus platinospinus

5

Opuntia sphaerica

2

2 3

Ambrosia artemisioides

3

4 5

5

5

5

Armatocereus riomajensis Tarasa operculata

2

Oreocereus hempelianus

2

4

4

3

2

Corryocactus aureus

2

Ambrosio artemisioidis-Weberbauerocerion weberbaueri Weberbauerocereus weberbaueri Exodeconus pusillus

3 1

5

6

1

4

4

5

2

5

5

6 1

4

6 2

1. Weberbauerocereo weberbaueri-Browningietum candelaris Browningia candelaris

5

3

Calandrinia ciliata

1

1

1

1.1 haageocereetosum plurifoli Haageocereus pluriflorus

1

Nolana spergularoides

1

1.2 onoseridetosum odoratae Onoseris odorata

2

Euphorbia hinkleyorum

2

Drymaria divaricata

1

Plantago limensis

1

Cystopteris fragilis

1

1.3 neoraimondietosum arequipensis Neoraimondia arequipensis

4

Tiquilia paronychioides

1

Tetragonia ovata

1

2. Senecioni yurensis-Weberbauerocereetum weberbaueri Senecio yurensis

2

Neuontobotrys lanata

2

Mostacillastrum pectinifolium

3

1 1

2.1 oenotheretosum verrucosae Oenothera verrucosa

2

Cuscuta cockelerii

1

2.2 chionopappetosum benthamii Chionopappus benthamii

6

eschweizerbart_xxx

phyto_45_3_203_250_montesinos_0023.indd 210

09.11.15 12:23


Xerophytic plant communities after extreme rainfall in South Peru

211

Table 2. cont. 3.1

3.2

4

5

6

Relevé number

6

21

30

6

17

32

39

13

28

4

11

5

2

9

Area (m²)

25

25

25

25

25

25

25

25

25

25

25

25

64

64

Syntaxon

Elevation (m a.s.l. / 10)

1.1 1.2 1.3 2.1 2.2 2.3 2.4

8.1 8.2

2

2

2

2

2

2

2

2

2

2

2

2

2

3

0

4

0

7

7

4

5

4

3

6

3

8

8

0

2

7

3

3

0

5

9

6

4

0

4

5

0

4

Slope (°)

40

30

45

25

6

20

10

40

20

7

14

25

45

10

Aspect

S

S

S

S

S

E

N

NNE

W

SE

WSW

E

N

N

Species richness

11

10

11

16

18

19

8

19

16

15

13

19

23

26

Dipyrena glaberrima

3

Gaya mollendoensis Tarasa rahmerii

1

2.3 ephedretosum americanae Ephedra americana

5

Hoffmannseggia prostrata

1

Mastigostyla cyrtophylla

1

Bryantiella glutinosa

1

Mirabilis elegans

2

2

2

2

2.4 eremodrabetosum schulzii Eremodraba schulzii

4

Chorizanthe commisuralis

1

3. Euphorbio apurimacensis-Weberbauerocereetum weberbaueri Euphorbia apurimacensis

5

Puya cylindrica

5

2

3.1 kramerietosum lappacea Fuertesimalva chilensis

1

Krameria lappacea

2

Anredera diffusa

2

Astrolepis sinuata

1

Aloysia spathulata

4

Alternanthera halimifolia

3

Myriopteris myriophylla

1

Gaya mollendoensis

4

Gaya mollendoensis

4

3.2 jatrophetosum macranthae Jatropha macrantha

5

Cystopteris fragilis

1

Cheilanthes fractifera

1

Senecio yurensis

4

4. Lycio distichi-Weberbauerocereetum weberbaueri Lycium distichum

2

Aphyllocladus denticulatus

4

5. Cantuo volcanicae-Weberbauerocereetum weberbaueri Cantua volcanica

2

Tecoma fulva subsp. arequipensis

3

eschweizerbart_xxx

phyto_45_3_203_250_montesinos_0023.indd 211

09.11.15 12:23


212

Daniel B. Montesinos-Tubée et al.

Table 2. cont. 3.1

3.2

4

5

6

Relevé number

6

21

30

6

17

32

39

13

28

4

11

5

2

9

Area (m²)

25

25

25

25

25

25

25

25

25

25

25

25

64

64

Syntaxon

Elevation (m a.s.l. / 10)

1.1 1.2 1.3 2.1 2.2 2.3 2.4

8.1 8.2

2

2

2

2

2

2

2

2

2

2

2

2

2

3

0

4

0

7

7

4

5

4

3

6

3

8

8

0

2

7

3

3

0

5

9

6

4

0

4

5

0

4

Slope (°)

40

30

45

25

6

20

10

40

20

7

14

25

45

10

Aspect

S

S

S

S

S

E

N

NNE

W

SE

WSW

E

N

N

Species richness

11

10

11

16

18

19

8

19

16

15

13

19

23

26

2

2

6. Paronychio microphyllae-Weberbauerocereetum weberbaueri Paronychia microphylla var. arequepensis Dalea exilis

1

3

Pteromonnina ramosa

2

Corryocaction brevistyli Corryocactus brevistylus

5

4

Balbisia weberbaueri

2

4

Gochnatia arequipensis

4

5

Mulguraea arequipensis

5

8. Aloysio spathulatae-Corryocactetum brevistyli Senecio subcandidus

2

3

Aloysia spathulata

3

2

Senna birostris var. arequipensis

2

8.1 oenotheretosum rubidae Kageneckia lanceolata

5

Croton ruizianus

4

Lantana scabiosiflora

2

Heliotropium toratense

2

Oenothera rubida

1

Vasquezia oppositifolia

1

Bomarea ovata

1

Tigridia sp.

1

8.2 adesmietosum augusti Adesmia augusti

2

Pectocarya anomala

1

Austrocylindropuntia subulata

4

Diplostephium meyenii

3

Companions Allionia incarnata Aristida adscencionis

2 1

2

1

2

1

4

2

5

Bowlesia sodiroana Cheilanthes arequipensis

1 1

1

2

2

2

Cheilanthes pruinata Chenopodium petiolare Cristaria multifida

1

1 1

Cryptantha parviflora

1

2 1

2

2

1

eschweizerbart_xxx

phyto_45_3_203_250_montesinos_0023.indd 212

09.11.15 12:23


Xerophytic plant communities after extreme rainfall in South Peru

213

Table 2. cont. 3.1

3.2

4

5

6

Relevé number

6

21

30

6

17

32

39

13

28

4

11

5

2

9

Area (m²)

25

25

25

25

25

25

25

25

25

25

25

25

64

64

Syntaxon

Elevation (m a.s.l. / 10)

1.1 1.2 1.3 2.1 2.2 2.3 2.4

8.1 8.2

2

2

2

2

2

2

2

2

2

2

2

2

2

3

0

4

0

7

7

4

5

4

3

6

3

8

8

0

2

7

3

3

0

5

9

6

4

0

4

5

0

4

Slope (°)

40

30

45

25

6

20

10

40

20

7

14

25

45

10

Aspect

S

S

S

S

S

E

N

NNE

W

SE

WSW

E

N

N

Species richness

11

10

11

16

18

19

8

19

16

15

13

19

23

26

Drymaria divaricata

1

Eragrostis nigricans

1

1 5

3

Eragrostis peruviana

2 3

Facelis plumosa Fuertesimalva chilensis

1

2

1

Galium aparine

1

Gamochaeta americana

1

Hoffmannseggia viscosa var. egena

1

Pteromonnina macbridei

1

Montiopsis cumingii

2

Mostacillastrum gracile

1

Nama dichotoma

1

1

Oxalis megalorrhiza

1

2

1

1

2 3

Pectocarya lateriflora

1

2

2

1

3

Pellaea ternifolia

1 1

Plantago linearis

2

1

3

Portulaca pilosa

1

Schkuhria multiflora

2

1

1 1

1

Solanum paposanum Solanum peruvianum

1

1

Quinchamalium procumbens

Senecio sp.

2 1

1

1 1

1

Tagetes multiflora

2 2

2

1

2

1 2 2

gion and we are not aware of their occurrence in other vegetation series. 1. Weberbauerocereo weberbaueri-Browningietum candelaris (Table 2, col. 1.1–1.3 and Table 3, col. 1. Appendix 1, Fig. 3) Physiognomy and composition: The vegetation of this association grows on widely distributed rocky scree with pockets of sand. Thirty-one relevés were made, yielding

4 1

Tarasa rahmerii Tiquilia elongata

1 2 1

1 2

1 1

1

5

a total of 69 species. As in the previous units, annual grasses and herbs dominate after sufficient rainfall. The cacti in this association are columnar (up to 4 m high), not prostrate. Syntaxonomy: Diagnostic species for this association are the columnar species Weberbauerocereus weberbaueri and Browningia candelaris with the herb Calandrinia ciliata and with lower frequency also species like Euphorbia hinkleyorum, Nolana spergularoides and Onos-

eschweizerbart_xxx

phyto_45_3_203_250_montesinos_0023.indd 213

09.11.15 12:23


214

Daniel B. Montesinos-Tubée et al.

eris odorata. It is further differentiated by the prostrate Haageocereus platinospinus. Ecology and distribution: The association is located in the thermotropical and mesotropical belts between 2020 and 2500 m a.s.l. on the sandy and rocky dry slopes of the districts of Uchumayo and Polobaya in the Arequipa province. The columnar cactus Weberbauerocereus weberbaueri grows in areas with sandy soils and frequent wind gusts that transport sand which eventually builds dunes, and is distributed over the western arid slopes and hills between the Chili River near Uchumayo district and the Yura River. The vegetation cover varied from 15% cover of cacti to up to 70% cover of the annual vegetation. Tiquilia elongata forms communities with low cover in the lomas formations (Galán de Mera et al. 2011a). The Weberbauerocereo weberbaueri-Browningietum candelaris (Galán de Mera et al. 2009, 2011b) is an association described for the Arequipa province apparently based on only one relevé with eight species. No full table was found for this unit. We consider community 1 as derived from our own classification to be sufficiently similar to the relevé mentioned above, and consequently adopted the association name (Table 3, communities 1–2). The relevé by Galán de Mera et al. (2011b) originates from the same area in the Uchumayo district. Also in the DCA and the dendrogram (Fig. 10, 11) are clustered with five more associations, characterized by Weberbauerocereus weberbaueri and Exodeconus pusillus. Consequently we have decided to distinguish a separate alliance. This is also supported by the similar-

ity in ecological conditions and altitudinal distribution. It differs considerably from the Corryocaction brevistyli in terms of ecology, species composition and elevation. 1.1 haageocereetosum pluriflori (Table 3, col. 1. Appendix 1) Physiognomy and composition: The low frequency and cover of annual species characterize this subassociation for its proximity to the very dry semi-desert. Xeric species dominate the slopes, especially those with columnar forms like Browningia candelaris, and with lower frequency Weberbauerocereus weberbaueri. Prostrate cactae with constancy are Haageocereus platinospinus and H. pluriflorus. Syntaxonomy: The haageocereetosum pluriflori is differentiated against the other two subassociations of the Weberbauerocereo weberbaueri-Browningietum candelaris by Haageocereus pluriflorus and the annual Nolana spergularoides. Ecology and distribution: The subassociation is part of the xerophytic vegetation series distributed over the driest slopes of Uchumayo (2020 m a.s.l., Uchumayo district). The ecosystem is much degraded: waste plastic has become trapped by wind action in the cacti spines, a phenomenon known as “witches’ knickers”. 1.2 onoseridetosum odoratae (Table 3, col. 1. Appendix 1. Fig. 3) Physiognomy and composition: Apart from biennial herbs, grasses, and succulents, there are numerous annual

Fig. 3. Weberbauerocereo weberbaueri-Browningietum candelaris onoseridetosum odoratae in Chapi, Polobaya district at 2500 m a.s.l.

eschweizerbart_xxx

phyto_45_3_203_250_montesinos_0023.indd 214

09.11.15 12:23


Xerophytic plant communities after extreme rainfall in South Peru

species, many of them endemic. The columnar cacti can grow up to 4 m tall. Syntaxonomy: The onoseridetosum odoratae is differentiated by many species like Onoseris odorata, Euphorbia hinkleyorum, Urocarpidium albiflorum, Armatocereus riomajensis, Plantago linearis, Oxalis sp., Plantago limensis, Mirabilis elegans and Senecio yurensis. Ecology and distribution: This subassociation occurs on dry, stony slopes and is characteristic of the thermotropical bioclimate. In normal years, these slopes are assumed to receive a mean precipitation of between 2–10 mm, but it is estimated that in 2012 50 mm of rain fell on. 1.3 neoraimondietosum arequipensis (Table 3, col. 1. Appendix 1) Physiognomy and composition: As in the previous units, annual grasses and herbs dominate after sufficient rainfall. The cacti in this subassociation are columnar (up to 4 m high), not prostrate. Syntaxonomy: This subassociation is differentiated by the columnar Neoraimondia arequipensis, the yellowflowered Exodeconus flavus, Tetragonia ovata, Leptoglossis acutiloba and the purplish-flowered Tiquilia grandiflora and by the relatively high cover and frequency of the character species of the alliance Weberbauerocereus weberbaueri. Ecology and distribution: The vegetation of this subassociation grows on widely distributed rocky scree with pockets of sand, located between 2020 and 2100 m a.s.l. on the dry slopes of Uchumayo district. The subassociations haageocereetosum pluriflori, onoseridetosum odoratae and neoraimondietosum arequipensis of the association Weberbauerocereo weberbaueriBrowningietum candelaris are characterized by the presence of several columnar and prostrate cacti together with many annual grasses and herbs emerging after the rain event, and – with the exception of the woody Ambrosia artemisioides and the biannual Senecio yurensis – particularly also by the absence of shrubs. These xerophytic communities are strongly influenced by sand deposits, and every year they experience high radiation in areas that are unlikely to receive precipitation (except during ENSO and other extreme climatic events like the one occurred in 2012). The vegetation is structured by columnar cacti (species of Browningia, Neoraimondia, Armatocereus, Weberbauerocereus) and by decumbent species such as Oreocereus hempelianus, Haageocereus platinospinus (occasionally accompanied by H. pluriflorus) co-occurring with the globular Opuntia sphaerica. The biannual semi-woody Tiquilia elongata (Boraginaceae) establishes on drift sands that are prone to wind erosion. After the first precipitation, it rapidly germinates together with Aristida adscensionis and Cristaria multifida. Tiquilia elongata, an endemic species (León & Sánchez 2006), is well distributed on the arid hills in southern Peru (Moore et al. 2006; Schwarzer et al. 2010; Galán

215

de Mera et al. 2011b). The cactus Browningia candelaris is frequent in these ecosystems and associated with Opuntia sphaerica and Haageocereus platinospinus. 2. Senecioni yurensis-Weberbauerocereetum weberbaueri (Table 3, col. 3. Appendix 2. Fig. 4) Physiognomy and composition: The vegetation is composed of one columnar cactus (Weberbauerocereus weberbaueri) and dwarf shrubs of Ambrosia artemisioides, Senecio yurensis and Tarasa operculata. The herb layer is characterized by the high frequency of Cristaria multifida, Exodeconus pusillus and Tiquilia elongata. The columnar cactus Weberbauerocereus weberbaueri reaches up to 5 m in height. The vegetation is dominated by some shrubs and annual herbs. Syntaxonomy: Character species are Senecio yurensis, Neuontobotrys lanata, and several endemic species with low frequency only, like Mostacillastrum pectinifolium, Chionopappus benthamii, Gaya moyendoensis, Loxanthocereus jajoianus, Mastigostyla cyrthophylla, Eremodraba schulzii, Orobanche weberbaueri and Tarasa thyrsoidea. Oreocereus hempelianus is differential against the other associations of this alliance. Within our study this association contains the highest endemic species diversity. Ecology and distribution: The vegetation of the association occurs in the thermotropical and mesotropical belts between 2450 and 2700 m a.s.l. on dry sandy rocky slopes and gravel soils across the district of Uchumayo and Yura in the Arequipa province. The association Senecioni yurensis-Weberbauerocereetum weberbaueri is well represented on sedimentary soils on the lower slopes of the Chachani volcano, between the Yura and Chili rivers, at elevations between 2450 and 2700 m a.s.l. The Weberbauerocereus weberbaueri communities in this locality are more strongly influenced by higher amounts of precipitation than the communities on the southwestern hills. They contain 61 species, with many endemics and few shrubby species and more dominance of annual herbs. Other cacti species are less frequent where the higher frequency of the prostrate Opuntia sphaerica is more prominent. Weberbauerocereus weberbaueri remains constant in the landscape, accompanied by Ambrosia artemisioides. Among the endemics, Mostacillastrum pectinifolium is a species restricted to Arequipa province (Al-Shehbaz 2006) together with the monotypic shrub Chionopappus benthamii reported from North Peru (Leiva Gonzáles et al. 2008) and recently from South Peru (botanical collections at USM herbarium), which is presumably a new subspecies yet to be confirmed. 2.1 oenotheretosum verrucosae (Table 3 ; Table 2: 2.1; 3: 3. Appendix 2) Physiognomy and composition: Characterized by the abundance of Weberbauerocereus weberbaueri together with Oreocereus hempelianus and Oenothera verrucosa.

eschweizerbart_xxx

phyto_45_3_203_250_montesinos_0023.indd 215

09.11.15 12:23


216

Daniel B. Montesinos-Tubée et al.

Other differences include the absence of species proper to the puna and being more characteristic of the arid communities with dominance of few perennials such as Ambrosia artemisioides, Oreocereus hempelianus and Tarasa operculata. The annual part of the vegetation is rich in species, and its cover varies between the relevés. Syntaxonomy: The oenotheretosum verrucosae is differentiated from the other subassociations by Oenothera verrucosa, Cuscuta cockelerii, Atriplex rotundifolia and Cistanthe calycina. Ecology and distribution: The vegetation of the subassociation grows on superficial rocky soils partly covered by clayey sand, at elevations between 2610–2900 m a.s.l. in Yura district. 2.2 chionopappetosum benthamii (ab. 3, col. 3. Appendix 2. Fig. 4) Physiognomy and composition: Characterized by the abundance of Weberbauerocereus weberbaueri in all relevés. Other differences include the similarity to the scrubland vegetation with Corryocactus brevistylus. Syntaxonomy: Differential species are Chionopappus benthamii, Dipyrena glaberrima, Gaya mollendoensis, Tarasa operculata Bowlesia sodiroana, Fuertesimalva chilensis, Myriopteris myriophylla, Cheilanthes pruinata, Cheilanthes arequipensis and Solanum medians. Ecology and distribution: The vegetation of this subassociation grows on slopes covered by clayey sand and abundance of rocks and stones at elevations between 2670 and 2700 m a.s.l.

2.3 ephedretosum americanae (Table 3, col. 3. Appendix 2) Physiognomy and composition: By comparison with the eremodrabaetosum schulzii, the herb layer is more species-rich and columnar cacti are more abundant; Weberbauerocereus weberbaueri is always present. Syntaxonomy: This subassociation is differentiated by Ephedra americana and by the annuals Hoffmannseggia prostrata, Mastigostyla cyrtophylla, and the endemic subshrub Tarasa thyrsoidea. Further differentiating against the other subassociations are species like Bryantiella glutinosa, Cistanthe celosioides, Mirabilis elegans and Montiopsis cumingii. Ecology and distribution: The vegetation of the subassociation occurs at a mean elevation of 2450 m a.s.l. on sandy dry rocky slopes across the Congata road to Cerro Verde (Uchumayo district). This subassociation represents the vegetation of the driest hills southwest of Arequipa city. 2.4 eremodrabetosum schulzii (Table 3, col. 3. Appendix 2. Fig. 4) Physiognomy and composition: The near absence of cacti is characteristic, but small annual herbs and annual shrubs (average height 30 cm) are more frequent. Syntaxonomy: The subassociation has three differential species: the annual herb Chorizanthe commisuralis, the annual shrub Eremodraba schulzii, and the holoparasitic herb Orobanche weberbaueri that is considered as to parasitize cacti and shrub roots. It is further character-

Fig. 4. Slopes in the Yura district where the Senecioni yurensis-Weberbauerocereetum weberbaueri develops with the subassociations eremodrabetosum schulzii (A) and chionopappetosum benthamii (typicum) (B) at 2600–2700 m a.s.l.

eschweizerbart_xxx

phyto_45_3_203_250_montesinos_0023.indd 216

09.11.15 12:23


Xerophytic plant communities after extreme rainfall in South Peru

ized by the absence of cacti including Weberbauerocereus weberbaueri and Opuntia sphaerica. Ecology and distribution: The vegetation of this subassociation grows on arid soils with sandstone gravel in the arid hills of Yura district at an elevation of around 2600 m a.s.l. 3. Euphorbio apurimacensis-Weberbauerocereetum weberbaueri (Table 3, col. 4. Appendix 3. Fig. 5) Physiognomy and composition: A total of 68 species were recorded, among which many endemics from the Arequipa region. Shrubs are more frequent than in the preceding communities. The diagnostic shrub Euphorbia apurimacensis and Jatropha macrantha (both endemic) can reach up to 2 m in height. Globular cacti are also common, together with many annual herbs and few dwarf shrubs. Cacti are mostly represented by the constant Weberbauerocereus weberbaueri and, with low frequency, also by Browningia candelaris, Neoraimondia arequipensis, and Opuntia sphaerica, and by the columnar cactus Corryocactus brevistylus. Much of the vegetation consists of annual species. Syntaxonomy: The diagnostic species Euphorbia apurimacensis is very frequent. Other diagnostic species with lower frequency are Puya cylindrica, Astrolepis sinuata, Krameria lappacea and Jatropha macrantha. Ecology and distribution: The vegetation of this association occurs in the mesotropical belt and is widely distributed on steep granitic slopes with sandy soils. This vegetation grows on the extensive dry rocky slopes on the left bank of Socabaya River south of Arequipa city (Hunter, Socabaya, and Yarabamba district), at an elevation of 2230–2740 m a.s.l. For the Euphorbio apurimacensis-Weberbauerocereetum weberbaueri we identified one of the highest numbers of species endemic to Peru which are widely distributed in the arid rocky hills and ravines south of Arequipa city. Species diversity is high, with 68 species, of which 65 are native, including 16 endemics, and only 49 native species. Three species are introduced. The endemic shrubs Euphorbia apurimacensis and Jatropha macrantha form a dense vegetation structure together with Weberbauerocereus weberbaueri and the native Ambrosia artemisioides. 3.1 kramerietosum lappaceae (Table 3, col. 4. Appendix 3) Physiognomy and composition: This subassociation is characterized by a high species diversity; fifty species were recorded from 15 relevés. Weberbauerocereus weberbaueri has high constancy and cover and occurs in combination with Euphorbia apurimacensis, Tarasa operculata, and Ambrosia artemisioides. Syntaxonomy: This subassociation is differentiated by Krameria lappacea, a prostrate shrub with grayish leaves and purple flowers and by species like Fuertesimalva chilensis, Anredera diffusa, Astrolepis sinuata, Aloysia

217

spathulata, Alternanthera halimifolia, Gaya mollendoensis, Pellaea ternifolia, Schkuhria multiflora and Solanum paposanum. Ecology and distribution: The xerophytic kramerietosum lappaceae grows between 2460 and 2740 m a.s.l., on the arid rocky slopes of the hills west and southwest of Socabaya and Yarabamba districts with occurrence on sandy steep slopes between large boulders. 3.2 jatrophetosum macranthae (Table 3, col. 4. Appendix 3) Physiognomy and composition: The cover of columnar cacti and of annual vegetation is high. The vegetation includes sprawling and succulent shrubs, annual herbs, grasses, and ferns. Syntaxonomy: The main differential species is Jatropha macrantha, a euphorbious succulent shrub with palmate leaves and red flowers. Other differential species (annuals) are: Cystopteris fragilis, Cheilanthes fractifera, Mentzelia scabra subsp. chilensis, Portulaca pilosa, Stipa plumosa and Allionia incarnata. Senecio yurensis, a character species at the alliance level, is also differentiating against the kramerietosum lappaceae. Ecology and distribution: The jatrophetosum vegetation grows on rocky slopes with sandy soil, between 2320 and 2580 m a.s.l., on the southern hills southwest of Socabaya, Jacobo Hunter, and Tiabaya districts. Although there is some floristic affinity and ecologic similarity with the Weberbauerocereo rauhii-Browningietum candelaris (Galán de Mera et al. 2009), there is a major difference in species composition and in the distribution of columnar and prostrate cacti. The absence of Euphorbia apurimacensis is characteristic on the lower slopes (< 2200 m a.s.l.) of our study area, but this species is well represented in the Euphorbio apurimacensis-Weberbauerocereetum weberbaueri between 2230–2740 m a.s.l. Galán de Mera et al. (2009) refer to the plant communities growing on the slopes of the Colca and Cotahuasi rivers in the north of Arequipa province. These communities occur in different hydrographic basins and are characterized by the constancy of the vicariant Weberbauerocereus rauhii, absent from our communities. 4. Lycio distichi-Weberbauerocereetum weberbaueri (Table 3, col. 5. Appendix 4. Fig. 6) Physiognomy and composition: The physiognomy of the vegetation is determined by the continuous high cover of the columnar cactus Weberbauerocereus weberbaueri. The globular cactus Opuntia sphaerica is less abundant. Syntaxonomy: Character species are Lycium distichum and with lower frequency also Aphyllocladus denticulatus. It is further differentiated against the other associations of this alliance by Montiopsis cumingii. Ecology and distribution: This vegetation grows between 2600 and 2930 m a.s.l., the upper limit of the distri-

eschweizerbart_xxx

phyto_45_3_203_250_montesinos_0023.indd 217

09.11.15 12:23


218

Daniel B. Montesinos-Tubée et al.

bution of Weberbauerocereus weberbaueri in the study area. It is recorded from the summits of the hills from the Chapi River in the Polobaya district, developing on sandy slopes with carbonates and without rocks of 6–7° with a southerly aspect. The association occurs in the mesotropical belt. In the phytosociological reference for Lycium distichum by Galán de Mera et al. (2011b), the association Lycio distichi-Baccharidetum uniflorae is described based on three réleves in dry ecosystems with heavy anthropic influence and absence of cacti. We consider this unit as not comparable to our study based on species composition and ecology. Lycium distichum is found from sea level up to 3500 m a.s.l. in southern Peru and northern Chile (Brako & Zarucchi 1993). This is also true for the asteraceous shrub Aphyllocladus denticulatus, which is mentioned by Schwarzer et al. (2010) from the arid pumice slopes of the Huaynaputina volcano in Moquegua, south Peru. 5. Cantuo volcanicae-Weberbauerocereetum weberbaueri (Table 3, col. 6. Appendix 5. Fig. 7ab, 9) Physiognomy and composition: Thirty-nine plant species (xerophytes, annual herbs, shrubs and one tree species) were found in this association. The columnar Weberbauerocereus weberbaueri dominates the landscape, with individual specimens attaining up to 4 m in height. Shrubs are common. Tecoma fulva subsp. arequipensis is present with low frequency. The tree Prosopis laevigata var. andicola was found in only one relevé, where its cover was relatively high and individuals were 3–6 m tall. The mixture of endemic, native and introduced species is characteristic on these slopes, and vegetation cover can reach 100% after high precipitation (about 300 mm recorded in 2012). Syntaxonomy: This association contains the following diagnostic species: Cantua volcanica, Tecoma fulva subsp. arequipensis and with very low presence class also Helogyne apaloidea, Prosopis laevigata var. andicola. It is further differentiated by the class characteristics Corryocactus aureus, Chenopodium incisum, Encelia canescens and Heterosperma diversifolium. Ecology and distribution: The vegetation of the Cantuo volcanicae-Weberbauerocereetum weberbaueri occurs in the mesotropical belt and represents a relict of the natural vegetation of Arequipa before the city was built (Fig. 10). It grows on degraded land, where both endemic and introduced species co-occur in the high cover of Weberbauerocereus weberbaueri. Sixteen relevés were made at an elevation between 2305 and 2345 m a.s.l. As a consequence of urbanization and harvesting for fuel, the native legume tree Prosopis laevigata var. andicola is rapidly declining and is threatened with extinction. The vegetation of this association occurs in the district of Socabaya at the boundary with the district of José Luis Bustamante y Rivero and it presumably extends to the semi-arid slopes in the dis-

tricts of Yarabamba, Sogay, and Quequeña. In contrast, the Schino mollis-Tecometum arequipensis Galán de Mera et al. 2009 (Galán de Mera et al. 2009) represented for sandy soils in ravine slopes near the city of Arequipa, lacks the presence of the columnar cactus Weberbauerocereus weberbaueri and other species here reported. The Cantuo volcanicae-Weberbauerocereetum weberbaueri and the Schino mollis-Tecometum arequipensis (Galán de Mera et al. 2009) differ greatly in species composition. The first association occurs in ravines and rocky slopes along water channels where columnar cactae are absent. The Prosopis pallida community (= Prosopis laevigata var. andicola), as described by Galán de Mera et al. (2009), is only based on one relevé with five species in which even Weberbauerocereus weberbaueri is missing. 6. Paronychio microphyllae-Weberbauerocereetum weberbaueri (Table 3, col. 7. Appendix 6) Physiognomy and composition: Within the distribution area of Weberbauerocereus weberbaueri, this association dominates the lower slopes of the Misti volcano. Columnar cacti dominate the slopes together with dwarf shrubs, annual herbs and grasses. On the sedimentary volcanic soils the vegetation cover is high. Only few annual and perennial shrubs are part of the vegetation. Syntaxonomy: The association of Paronychio microphyllae-Weberbauerocereetum weberbaueri is characterized by Paronychia microphylla var. arequipensis (the variety arequipensis is endemic of the Arequipa region), Dalea exilis, and Pteromonnina ramosa. Differential species are Mostacillastrum gracile, Gamochaeta purpurea, Spergularia fasciculata and Quinchamalium procumbens. Ecology and distribution: The association grows in the mesotropical belt between 2700 and 2850 m a.s.l. on sedimentary volcanic soils, in areas where precipitation is likely to be more abundant compared to the other localities within the distribution area of Weberbauerocereus weberbaueri. It occurs on the slopes of the Misti volcano, at the boundary between the Chilina valley and the populated district of Alto Selva Alegre, Mariano Melgar and Miraflores, northeast of Arequipa city. Alliance: Neoraimondio arequipensis-Weberbauerocerion rauhii (Table 3, col. 8–12) Based on previously published syntaxa (Galan de Mera et al. 2009; 2011b), our synoptic table shows a unit clearly distinguished by the character species Weberbauerocereus rauhii and the columnar cactus Neoraimondia arequipensis. This unit is here described as a new alliance. Armatocereus riomajensis is most probably also a character species of this alliance as, apart from Armatocereo riomajensis-Euphorbietum apurimacensis in Appendix 1, it is only highly frequent in the Neoraimondio-Weberbauerocerion. Our comparison with previously published syntaxa revealed the necessity to distinguish one more new alliance for which we introduce the new name Neorai-

eschweizerbart_xxx

phyto_45_3_203_250_montesinos_0023.indd 218

09.11.15 12:23


Xerophytic plant communities after extreme rainfall in South Peru

Fig. 5. Euphorbio apurimacensis-Weberbauerocereetum weberbaueri with the subassociation jatrophetosum macranthae on the rocky slopes of Jacobo Hunter and Tiabaya, at 2300–2560 m a.s.l. The city of Arequipa can be seen in the valley and the Chachani volcano at the top right side.

219

Fig. 6. Slopes in Chapi, Polobaya district at 2600 m a.s.l. with (A) Lycio distichi-Weberbauerocereetum weberbaueri and (B) Weberbauerocereo weberbaueri-Browningietum candelaris onoseridetosum odoratae.

Fig. 7. Comparison of the arid slopes in Socabaya district (elevation 2320 m a.s.l.), before (A) and after (B) the rain event in which Cantuo volcanicae-Weberbauerocereetum weberbaueri occurs.

Fig. 8. Rocky slopes represented by the association of Balbisio weberbaueri-Ambrosietum artemisioidis in the Chiguata district (3190 m a.s.l.).

eschweizerbart_xxx

phyto_45_3_203_250_montesinos_0023.indd 219

09.11.15 12:23


220

Daniel B. Montesinos-Tubée et al.

mondio arequipensis-Weberbauerocerion rauhii, grouping five associations described by Galán de Mera et al. (2009, 2011b). It is negatively differentiated against the AmbrosioWeberbauerocerion by the absence of Tarasa operculata, Senecio yurensis, Cantua volcanica, Paronychia microphylla var. arequepensis and Solanum peruvianum, which are constant and common in the Ambrosio-Weberbauerocerion. Furthermore, the new alliance differs from Corryocaction brevistyli by the absence of shrubs like Balbisia weberbaueri, Diplostephium meyenii and Grindelia tarapacana. For the comparison with the other alliances, no annual species were used in the analysis. Weberbauerocereus rauhii is distributed in South Peru (Galán de Mera et al. 2009, 2011b; Brako & Zarucchi 1993). It is restricted to dry regions, with scarce precipitation, on steep alluvial slopes with mesotropical arid/ semi-arid bioclimate, covered by vegetation with abundant cacti accompanied by few xerophytes. It is distributed in interandean valleys from the Colca and Cotahuasi canyons (Arequipa province), and in the Moquegua and Tacna provinces. Galán de Mera et al. (2009) described the association of Weberbauerocereo rauhii-Corryocactetum brevistyli for the Colca and Cotahuasi canyons (in the north of the Arequipa department). This association is absent in Arequipa province. Also other associations with Weberbauerocereus rauhii are absent from our study area, its distribution is more easterly, towards areas that receive more precipitation. W. rauhii becomes replaced by W. weberbaueri, which turn out to be dominant and very characteristic in association with Euphorbia apurimacensis and Jatropha macrantha. In Table 3 the following associations as described by Galán de Mera were grouped together within the new alliance. In general however, diagnostic species are missing, except for Browningia viridis in the last mentioned association. Although listed below the associations, are not further discussed as clearly further research is needed to clarify the position of the associations in this alliance. • Table 3, comm. 8: Weberbauerocereo rauhii-Browningietum candelaris larreetosum divaricatae Galán de Mera et al. 2011 • Table 3, comm. 9: Armatocereo riomajensis-Neoraimondietum arequipensis Galán de Mera et al. 2011 • Table 3, comm. 10: Weberbauerocereo rauhii-Browningietum candelaris Galán de Mera et al. 2009 • Table 3, comm. 11: Weberbauerocereo rauhii-Corryocactetum brevistyli Galán de Mera et al. 2009 • Table 3, comm. 12: Neoraimondio arequipensisBrowningietum viridis Galán de Mera et al. 2011 Alliance: Corryocaction brevistyli The alliance represented by the columnar cactus Corryocactus occurs in semi-dry regions where xerophyte vegetation is abundant and predominant. According to the floristic affinity a number of communities could be as-

signed to the Corryocaction brevistyli, including several previously described associations and one new association. Syntaxonomy: The Corryocaction brevistyli is characterized by Corryocactus brevistylus, Balbisia weberbaueri, Gochnatia arequipensis and Mulguraea arequipensis and by the differential species Diplostephium meyenii and Grindelia tarapacana. Ecology and distribution: The alliance represented by the columnar cactus Corryocactus brevistylus is distributed from Peru to North Chile (Galán de Mera & Vicente Orellana 1996). In our study this alliance represents communities on sedimentary volcanic soils with fine gravel and clay on hillsides with both xerophytic scrub vegetation between 2700 and 3260 m a.s.l. Communities with the columnar cactus Corryocactus brevistylus have been described by several authors (Galán de Mera & Vicente Orellana 1996; Galán de Mera & Gómez Carrión 2001; Galán de Mera et al. 2002a, 2003, 2009, 2010, 2011b; Luebert 2004; Galán de Mera 2005). Moreover, the species occurs in mountain regions in South Peru (Mariño et al. 1998; Holmgren et al. 2001; Mauseth et al. 2002, 2006; Medina 2006; NatureServe 2009; Ostolaza 2011, 2014). Popularly known as “sancayo” (Cáceres et al. 2000; Ostolaza 2011), the edible fruits are commonly used by people in the Andes because of their medicinal properties and vitamin content (Cáceres et al. 2000). Brako & Zarucchi (1993) define its distribution as between 2000 and 3500 m a.s.l. for the southern Peruvian Andes. We found that the species is likely to occur in subhumid scrublands, rarely growing on dry slopes; it was mostly absent from our relevés. The association Weberbauerocereo weberbaueri-Corryocactetum brevistyli (Galán de Mera & Gómez Carrión 2001) has to be rejected as both namegiving cactus species do not co-occur, apart from a small transition zone. The relevés as published by Galán de Mera & Gómez Carrión (2001) were only made in this transition zone. As shown in the synoptic table and supported by the ordination and cluster analysis both species appear to belong to different alliances. The ecology of both cactus species is different; W. weberbaueri occurs in xeric ecosystems with very low cover by shrubs, receiving more annual insolation and having sandy soil texture. By contrast, C. brevistylus occurs in scrubland ecosystems with higher cover and abundance of shrubs, on sandy to clayey soils in areas that receive higher precipitation because of their proximity to the Prepuna and Puna alpine ecosystems. While the distribution of the Corryocaction is restricted to south and south-western slopes of the Chachani, Misti and Pichu Pichu volcanoes, the relevés of Galán de Mera & Gómez Carrión have been made in the Yura district between Arequipa city and Chachani volcano. Also the floristic composition differs considerably. Besides, species in common appear to be only companions. Many of the species described by Galán de Mera &

eschweizerbart_xxx

phyto_45_3_203_250_montesinos_0023.indd 220

09.11.15 12:23


Xerophytic plant communities after extreme rainfall in South Peru

Goméz Carrión (2001) were not found on our sites; they are: Grindelia boliviana, Bromus villosus, Echinopsis pamparuizii, Opuntia soehrensii, Spergularia congestifolia, and Senecio richii. Except for the two cactae mentioned, these species are likely to occur more in scrubland ecosystems close to the Prepuna and Puna. 7. Balbisio weberbaueri-Ambrosietum artemisioidis (Table 3, col. 13. Appendix 7. Fig. 8) Physiognomy and composition: This association consists of scrubland vegetation of semiarid mesotropical bioclimate located on pleistocenic deposits (Galán de Mera et al. 2011b). Columnar cactus, shrubs, herbs and grasses are characteristic of the vegetation with higher density and coverage by Corryocactus brevistylus. Syntaxonomy: Character species are Bromus trinii, Chersodoma juanisernii, Cumulopuntia mistiensis, Lupinus cf. eriocladus, Lupinus saxatilis, Senecio phylloleptus and Solanum corneliomulleri. The perennial endemic shrub Cantua candelilla, although found in two relevés only, is restricted to this association. Differential species are Parietaria debilis, Oxalis megalorrhiza, Tarasa tenuis. Ecology and distribution: Growing between 2700 and 3260 m a.s.l. on Pleistocenic sedimentary volcanic soils, in areas where precipitation is probably more abundant than elsewhere in the distribution area of Weberbauerocereus weberbaueri. It occurs on the slopes of the Misti, Chachani and Pichu-Pichu volcanoes in the Arequipa province. The Balbisio weberbaueri-Ambrosietum artemisioidis (Galán de Mera et al. 2011b) occurs in our study area and we jointed 37 relevés to describe this association with addition of several character species and a broader overview of its distribution. This unit represents the scrubland cacti communities in South Peru with consistent occurrence of Corryocactus brevistylus and the absence of other columnar cacti. This association together with the Aloysio spathulatae-Corryocactetum brevistyli represents the units growing on sedimentary volcanic soils at the lower slopes of Misti, Pichu-Pichu and Chachani volcanoes in the Arequipa province and at an elevation of 2800 and 3260 m a.s.l. Shrub cover is higher in this unit and species abundance comprises numbers overpassing 60 species. 8. Aloysio spathulatae-Corryocactetum brevistyli (Table 3, col. 14. Appendix 8) Physiognomy and composition: The shrubby vegetation is dense, with high cover of the columnar Corryocactus brevistylus. The total cover is more than 80%. Five species of cacti are present. Annuals and grasses are also very common. Eight endemic species are reported for this association. Syntaxonomy: Senecio subcandidus, Aloysia spathulata, Senna birostris var. arequipensis, Pectocarya anomala and Adesmia augusti are character species. It is further char-

221

acterized by species with lower constancy like Austrocylindropuntia subulata Croton ruizianus, Heliotropium toratense, Kageneckia lanceolata, Lantana scabiosiflora and Lupinus misticola. Ecology and distribution: It grows in the mesotropical belt between 2800 and 3040 m a.s.l. on mostly rocky, sometimes steep slopes with large boulders. It occurs on the lowermost rocky slopes of the Pichu-Pichu volcano in the district of Mollebaya. It differs from the Balbisio weberbaueri-Ambrosietum artemisioidis by the sandy-clayey soil texture and higher cover by rocks and stones. 8.1 oenotheretosum rubidae (Table 3, col. 14. Appendix 8) Physiognomy and composition: The vegetation is dense and shrubby. Syntaxonomy: This subassociation is very well differentiated by many species. Differential species are the tree Kageneckia lanceolata (3–5 m), the shrubs Croton ruizianus and Lantana scabiosiflora, the subshrub Lupinus misticola, and besides by species like Heliotropium toratense, Pectocarya lateriflora, Oenothera rubida, Villanova oppositifolia, Bomarea ovata, Cremolobus chilensis, Gaya mollendoensis, Heterosperma diversifolium, Nama dichotoma, Paronychia microphylla var. arequepensis and Tigridia sp. nov. (Montesinos et al. in prep.). Ecology and distribution: Vegetation of the oenotheretosum arequipensis grows at an elevation of 2800 m a.s.l. on rocky slopes (45° inclination) with clayey soil and large boulders in the district of Mollebaya. 8.2 adesmietosum augusti (Table 3, col. 14. Appendix 8) Physiognomy and composition: The vegetation of this subassociation consists mostly of annuals and shrubs. Syntaxonomy: The adesmietosum augusti is differentiated by Adesmia augusti, Pectocarya anomala, Austrocylindropuntia subulata, Pellaea ternifolia, Diplostephium meyenii, Plantago linearis, Poa asperiflora, Spergularia fasciculata, Pteromonnina macbridei, and besides by Mulguraea arequipensis, the character species of the alliance (with relatively high cover) and Corryocactus aureus, diagnostic species of the class and order. Ecology and distribution: The vegetation of the adesmietosum augusti grows on slopes (10°) with abundant rocks and stones at an elevation of 3040 m a.s.l., in the extensive highland plateaus of Mollebaya and Pocsi districts. The following eight previously published associations and one subassociation can be assigned to the Corryocaction brevistyli. They have been used as reference in the comparison with the syntaxa based on our relevés. Further research is needed to clarify the syntaxonomic position. • Table 3, comm. 15: Weberbauerocereo weberbaueriCorryocactetum brevistyli Galán de Mera & Gómez Carrión 2011

eschweizerbart_xxx

phyto_45_3_203_250_montesinos_0023.indd 221

09.11.15 12:23


222

Daniel B. Montesinos-Tubée et al.

Table 3. Table with the presence values of each unit for this study and those from literature. Scientific name (species with one asterisk are indicated as endemics for Peru and species with two asterisk as endemics for the Arequipa province). Presence percentage values (1–100) are given for those communities with more than five relevés and presence values with roman letters are given for those units with less than four relevés. In the Ambrosio-Weberbauerocerion the following associations: 1. Weberbauerocereo weberbaueri-Browningietum candelaris (this study), 2. Weberbauerocereo weberbaueri-Browningietum candelaris, 3. Senecioni yurensis-Weberbauerocereetum weberbaueri (this study), 4. Euphorbio apurimacensis-Weberbauerocereetum weberbaueri (this study), 5. Lycio distichi-Weberbauerocereetum weberbaueri (this study), 6. Cantuo volcanicae-Weberbauerocereetum weberbaueri (this study) and 7. Paronychio microphyllae-Weberbauerocereetum weberbaueri (this study). In the Neoraimondio arequipensis-Weberbauerocerion rauhii the following associations: 8. Weberbauerocereo rauhii-Browningietum candelaris larreetosum divaricatae, 9. Armatocereo riomajensis-Neoraimondietum arequipensis, 10. Weberbauerocereo rauhii-Browningietum candelaris, 11. Weberbauerocereo rauhii-Corryocactetum brevistyli and 12. Neoraimondio arequipensis-Browningietum viridis. In the Corryocaction brevistyli the following associations: 13. Balbisio weberbaueri-Ambrosietum artemisioidis (this study), 14. Aloysio spathulatae-Corryocactetum brevistyli (this study), 15. Weberbauerocereo weberbaueri-Corryocactetum brevistyli, 16. Balbisio weberbaueri-Ambrosietum artemisioidis, 17. Corryocacto aureiBrowningietum candelaris, 18. Oreocereo tacnaensis-Corryocactetum brevistyli, 19. Grindelio bolivianae-Corryocactetum puquiensis, 20. Diplostephio tacorensis-Parastrephietum lepidophyllae: corryocactetosum brevistyli, 21. Armatocereo riomajensis-Euphorbietum apurimacensis and 22. Weberbauerocereo rauhii-Corryocactetum brevistyli crotonetosum ruiziani. Ambrosio artemisioidis-Weberbauerocerion weberbaueri

Neoraimondio-Weberbaueroceerion rauhii

Corryocaction brevistyli

Community number

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

Relevé #

31

?

39

35

11

19

12

2

2

5

5

9

37

12

7

4

8

2

4

10

7

2

Total species number

66

8

61

68

34

39

35

11

10

18

14

15

76

62

25

20

22

19

36

50

38

16

100

60

44

57

100

86

II

100

II

III

80

II

100 100 100

30

17

86

IV

86

II

75

II

II

100

Characteristics of class and order Opuntia sphaerica

65

II

67

37

36

58

33

I

Ambrosia artemisioides

52

II

74

94

100

58

100

I

Oreocereus hempelianus

10

Armatocereus riomajensis (**)

16

9

Haageocereus platinospinus (*)

74

9

41

Corryocactus aureus (*) Tarasa operculata

16

Browningia candelaris

45

85 II

11

I

27

I

14

9

63

33

77

100

84

67

6

80 I

II

100

20

22

100

60 40

43 100

II

50 11

5

25

84

67

75 I

60

70

29

I

86

II

86

Ambrosio artemisioidis-Weberbauerocerion weberbaueri Weberbauerocereus weberbaueri (*)

35

Exodeconus pusillus

74

II

85

89

100

79

100

41

17

55

26

33

57

Neoraimondio arequipensis-Weberbauerocerion rauhii Weberbauerocereus rauhii (*) Neoraimondia arequipensis

19

II

6

II

II

100 100

56

II

II

80

100

I

Corryocaction brevistyli Balbisia weberbaueri (*)

5

11

Corryocactus brevistylus

12

14

9

33

Mulguraea arequipensis (*) Gochnatia arequipensis

81 100

3

100

29

IV

100 100

86

IV

42

50

27

100

86

II

II

100 40

I

II

II 14 14

1. Weberbauerocereo weberbaueri-Browningietum candelaris Calandrinia ciliata

51

Onoseris odorata (*)

35

Euphorbia hinkleyorum

26

Nolana spergularoides (**)

26

Urocarpidium albiflorum

19

Haageocereus pluriflorus (*)

16

Tarasa sp.1

16

Exodeconus integrifolius

13

Tetragonia ovata

13

11

18

eschweizerbart_xxx

phyto_45_3_203_250_montesinos_0023.indd 222

09.11.15 12:23


Xerophytic plant communities after extreme rainfall in South Peru

223

Table 3. cont. Ambrosio artemisioidis-Weberbauerocerion weberbaueri

Neoraimondio-Weberbaueroceerion rauhii

Corryocaction brevistyli

Community number

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

RelevĂŠ #

31

?

39

35

11

19

12

2

2

5

5

9

37

12

7

4

8

2

4

10

7

2

Total species number

66

8

61

68

34

39

35

11

10

18

14

15

76

62

25

20

22

19

36

50

38

16

Tiquilia paronychioides

13

Exodeconus flavus

10

Ozyroe biflora

10

Heterosperma ovatifolium

10

Astragalus confinis

6

Leptoglossis acutiloba (*)

6

Plagiobothrys myosotoides

6

Tiquilia grandiflora

6

Dalea pennellii

3

2. Senecioni yurensis-Weberbauerocereetum weberbaueri Senecio yurensis

23

64

Neuontobotrys lanata

23

59

Mostacillastrum pectinifolium (**)

33

Chionopappus benthamii (*)

23

Oenothera verrucosa (**)

18

Chorizanthe commisuralis

13

Cuscuta cockerellii (**)

13

Eremodraba schulzii (**)

13

Gaya mollendoensis (**)

13

Hoffmannseggia prostrata

13

Mastigostyla cyrtophylla (*)

13

Dipyrena glaberrima

10

Cistanthe calycina

8

Orobanche weberbaueri (**)

8

Tarasa thyrsoidea (*)

8

Loxanthocereus jajoianus (**)

3

20

8 11

11

11

11

II 14

3. Euphorbio apurimacensis-Weberbauerocereetum weberbaueri Euphorbia apurimacensis (*)

83

Jatropha macrantha (*)

34

Puya cylindrica (**) Astrolepis sinuata

100

100 22

31 6

26

Krameria lappacea

23

Mentzelia scabra subsp. chilensis

14

Cheilanthes fractifera (*)

11

Stipa plumosa

11

Alternanthera halimifolia

9

Cheilanthes bonariensis

3

Heliotropium arborescens var. grisellum

3

29 20

20

11

I

14

4. Lycio distichi-Weberbauerocereetum weberbaueri Lycium distichum

64

Aphyllocladus denticulatus

27

13

5. Cantuo volcanicae-Weberbauerocereetum weberbaueri Cantua volcanica (**)

58

I

IV

eschweizerbart_xxx

phyto_45_3_203_250_montesinos_0023.indd 223

09.11.15 12:23


224

Daniel B. Montesinos-TubĂŠe et al.

Table 3. cont. Ambrosio artemisioidis-Weberbauerocerion weberbaueri Community number

1

2

3

4

5

6

7

Neoraimondio-Weberbaueroceerion rauhii 8

9

10

11

12

Corryocaction brevistyli 13

14

15

16

17

18

19

20

21

22

RelevĂŠ #

31

?

39

35

11

19

12

2

2

5

5

9

37

12

7

4

8

2

4

10

7

2

Total species number

66

8

61

68

34

39

35

11

10

18

14

15

76

62

25

20

22

19

36

50

38

16

Tecoma fulva subsp. arequipensis

32

Helogyne apaloidea

5

Prosopis laevigata var. andicola

5

17

6. Paronychio microphyllae-Weberbauerocereetum weberbaueri Paronychia microphylla var. arequepensis (**)

13

14

Dalea exilis

32 27

67

5

25

10

83

Pteromonnina ramosa (**)

75

Bromus trinii

35

Lupinus cf. eriocladus

28

Lupinus saxatilis (*)

22

Cantua candelilla (**)

5

Chersodoma juanisernii (*)

16

Cumulopuntia mistiensis (**)

14

Solanum corneliomulleri (*)

5

Senecio phylloleptus

14

8. Aloysio spathulatae-Corryocactetum brevistyli Senecio subcandidus (*)

92

Aloysia spathulata (*)

11

67

Adesmia augusti (*)

42

Pectocarya anomala

50

Senna birostris var. arequipensis

3

50

Kageneckia lanceolata

33

Croton ruizianus

25

Lantana scabiosiflora

3

Heliotropium toratense (*)

6

29

I

11

I

14

II

29

II

33 33

Austrocylindropuntia subulata

25

Lupinus misticola (**)

17

20

OTHER CLASS CHARACTERISTICS Nicotiano-Ambrosietea arborescentis Solanum peruvianum

42

49

74

73

5

33

3

45

11

46

36

92

6

36

25

5

17

29

10

Palauo dissectae-Nolanetea gayanae Cristaria multifida

68

41

Tiquilia elongata (*)

19

28

Fuertesimalva chilensis

13

38

Cryptantha parviflora (*)

10

Cistanthe celosioides

29

Plantago limensis (*)

32

Cistanthe paniculata (*)

16

63

27

25

8

8

Eragrostis peruviana

43

6 17

Pectocarya lateriflora

79

Bryantiella glutinosa

10

I

51

9

11

75

63

24

83

68

50

14

eschweizerbart_xxx

phyto_45_3_203_250_montesinos_0023.indd 224

09.11.15 12:23


Xerophytic plant communities after extreme rainfall in South Peru

225

Table 3. cont. Ambrosio artemisioidis-Weberbauerocerion weberbaueri

Neoraimondio-Weberbaueroceerion rauhii

Corryocaction brevistyli

Community number

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

RelevĂŠ #

31

?

39

35

11

19

12

2

2

5

5

9

37

12

7

4

8

2

4

10

7

2

Total species number

66

8

61

68

34

39

35

11

10

18

14

15

76

62

25

20

22

19

36

50

38

16

15

6

17

57

75

II

20

57

42

22

50

10

14

Argyrochosmetea niveae Cheilanthes pruinata

6

Cystopteris fragilis

19

Pellaea ternifolia

19

17 31

14

Cheilanthes arequipensis

8

54

Myriopteris myriophylla

13

9

8 9 5

13

24

Woodsia montevidensis

19

Sedum reniforme (*)

28

25

II

29

Echinopsio-Proustietea Senecio tovari (*)

16

Bomarea ovata

25

Calamagrostietea vicunarum Diplostephium meyenii

24

Mutisia lanigera

8

Calceolaria inamoena

3

Olsynium junceum

22

Lobivia pampana (*)

14

33

43

I

II

II

70

II

Polypodio-Tillandsietea Tillandsia capillaris

25

Deuterocohnio-Puyetea Polyachyrus sphaerocephalus

11

10

Distichlio-Anthobryetea Suaeda foliosa

11

Atriplex myriophylla

5

Atriplex semibaccata

5

Atriplex rotundifolia (*)

15

11

Crassuletea connatae Crassula connata

5

3

18

41

8

Soncho-Bidentetea Mesembryanthemum crystallinum

6

Chenopodium petiolare

3

8

32

Nicotiana paniculata

8

I

21

Parietaria debilis

54

Villanova oppositifolia

14

Galinsoga parviflora

33

42 42

Companions Aristida adscencionis

81

Hoffmannseggia viscosa var. egena

10

Senecio sp. Montiopsis cumingii

II

85

66

27

18

11

19

5

14

36

10

10

60

100

Mirabilis elegans

19

21

Oenothera rubida

10

Oxalis sp.

32

42

67

20

27

75

II

29

16

16

25

16

42

45

eschweizerbart_xxx

phyto_45_3_203_250_montesinos_0023.indd 225

09.11.15 12:23


226

Daniel B. Montesinos-TubĂŠe et al.

Table 3. cont. Ambrosio artemisioidis-Weberbauerocerion weberbaueri Community number

1

2

3

4

5

6

7

Neoraimondio-Weberbaueroceerion rauhii 8

9

10

11

12

Corryocaction brevistyli 13

14

15

16

17

18

19

20

21

22

RelevĂŠ #

31

?

39

35

11

19

12

2

2

5

5

9

37

12

7

4

8

2

4

10

7

2

Total species number

66

8

61

68

34

39

35

11

10

18

14

15

76

62

25

20

22

19

36

50

38

16

37

33

Plantago linearis

49

Drymaria divaricata (*)

23

8

Pteromonnina macbridei (**)

6

15

Solanum paposanum

6

10

Eragrostis nigricans

10

Tagetes multiflora

35

Portulaca pilosa

19

Tarasa rahmerii

16

Nama dichotoma

13

19 11

73

86

45

77

71

91

15

11

26

54

11

80

9 18

Ephedra americana

26

26

9

6

67

6

92

8

91

14

III

100

I

92

27

75

24

25

26

83

5

92

I

I

60

40

43

42

95

58

3

57

I

14

II

Lycianthes lycioides

9

20

Gamochaeta purpurea

33 75

5

6

5

Bowlesia sodiroana

6

21

9

67

3

8

Heterosperma diversifolium

10

Solanum medians (*)

6

11

Viguiera lanceolata

I

20

25 50

14

17

14

20

51

33

41

58

54

33

54

100

I

27

47 10

29

22

Galium aparine Schkuhria multiflora

40

43

63

3

5

3

II

5

Chondrosum simplex

Spergularia fasciculata

I

25

6 17

II

26

6

Gamochaeta americana

50

33

67

Tigridia sp. (**)

8

25

18

38

3

8

3

Erigeron bonariensis

5

Malva parviflora

5

17

I

5

Anredera diffusa

26

Fagonia chilensis Trixis cacalioides

17

51

Quinchamalium procumbens

Porophyllum ruderale

42

58

53

Allionia incarnata

20

58

Encelia canescens

Facelis plumosa

30

100

68

51

Chenopodium incisum

100

18

62

6

58

21

59

Mostacillastrum gracile

33 66

Oxalis megalorrhiza

Senecio vulgaris

76

37

10 II

63 18

60

I

Grindelia tarapacana

19

17

Cremolobus chilensis

11

25

Muehlenbeckia hastulata

5

Tarasa rhombifolia (*)

27

II

Tarasa sp.2

14

Tarasa tenuis

46

Vulpia myuros

22

10

Gnaphalium dombeyanum

22

10

Coreopsis fasciculata

5

eschweizerbart_xxx

phyto_45_3_203_250_montesinos_0023.indd 226

09.11.15 12:23


Xerophytic plant communities after extreme rainfall in South Peru

227

Table 3. cont. Ambrosio artemisioidis-Weberbauerocerion weberbaueri Community number

1

2

3

4

5

6

7

Neoraimondio-Weberbaueroceerion rauhii 8

9

10

11

12

Corryocaction brevistyli 13

14

15

16

17

18

19

20

21

22

RelevĂŠ #

31

?

39

35

11

19

12

2

2

5

5

9

37

12

7

4

8

2

4

10

7

2

Total species number

66

8

61

68

34

39

35

11

10

18

14

15

76

62

25

20

22

19

36

50

38

16

Adiantum poiretii

8

Gnaphalium lacteum

22

Descurainia myriophylla

35

Bartsia serrata

5

Conyza tunariensis

5

Poa asperiflora

11

25

Gilia laciniata

17

Paronychia setigera

8

OTHER TAXA: Balbisia meyeniana

40

Larrea divaricata Atriplex imbricata

20

II

30

II I

20

Tecoma tanaeciifolia

40

Browningia viridis

100

Melocactus peruvianus

22

Proustia berberidifolia

14

Echinopsis pamparuizii

14

Tunilla soehrensii

14

Stipa ichu

14

I

I I

Muehlenbeckia volcanica

I

Ophryosporus peruvianus

I 43

20

I

10

Adesmia spinosissima

Spergularia congestifolia

III

IV

20

I

20

29

10

75

Atriplex atacamensis

63

II

Euphorbia tacnaensis

25

II

Ligaria cuneifolia

13

Parastrephia lepidophylla

II

Oreocereus leucotrichus

II

Oreocereus tacnaensis

II

Spergularia collina

II

II

10

I

40

50

50

Dunalia spinosa

II

Mutisia acuminata

I

Opuntia exaltata

III

Proustia oblongifolia

II

Puya ferruginea

II

Tillandsia usneioides

I

Pitcairnia sp.

I

Sedum sp.

I

Philibertia solanoides

I

29

Alonsoa acutifolia

I

29

Calamagrostis humboldtiana

I

Nassella asplundii

I

Caiophora superba

I

Artemisa sp.

I

Chersodoma jodopappa

II

10

II 14

10

eschweizerbart_xxx

phyto_45_3_203_250_montesinos_0023.indd 227

09.11.15 12:23


228

Daniel B. Montesinos-Tubée et al.

Table 3. cont. Ambrosio artemisioidis-Weberbauerocerion weberbaueri

Neoraimondio-Weberbaueroceerion rauhii

Corryocaction brevistyli

Community number

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Relevé #

31

?

39

35

11

19

12

2

2

5

5

9

37

12

7

4

8

2

4

10

7

2

Total species number

66

8

61

68

34

39

35

11

10

18

14

15

76

62

25

20

22

19

36

50

38

16

I

10

Senecio richii

29

Corryocactus puquiensis

IV

Grindelia boliviana

29

Argyrochosma nivea

IV 13

I

71 30 10

Franseria fruticosa

90

Fabiana stephani

50

Baccharis boliviensis

20

Belloa piptolepis

10

Bromus lanatus

20

Calamagrostis intermedia

20

Calamagrostis vicunarum

22

I

10

Chersodoma arequipensis

I

Euphorbia sp.

10 10

Junellia juniperina

10

Muhlenbergia peruviana

14

10

Nassella pubiflora

10

Senecio clivicolus

10

Tetraglochin cristatum

10

Viguiera procumbens

10

Grindelia bergii

14

Baccharis uniflora

14

Dalea cylindrica

57

Opuntia tunicata

43

II

Carica augusti

II

Opuntia ficus-indica

I

Zinnia peruviana

I

• Table 3, comm. 16. Balbisio weberbaueri-Ambrosietum artemisioidis Galán de Mera et al. 2011 • Table 3, comm. 17: Corryocacto aurei-Browningietum candelaris Galán de Mera & Vicente Orellana 1996 • Table 3, comm. 18: Oreocereo tacnaensis-Corryocactetum brevistyli Galán de Mera & Vicente Orellana 1996 • Table 3, comm. 19: Grindelio bolivianae-Corryocactetum puquiensis Galán de Mera & Gómez Carrión 2001 • Table 3, comm. 20: Diplostephio tacorensis-Parastrephietum lepidophyllae corryocactetosum brevistyli Galán de Mera et al. 2003 • Table 3, comm. 21: Armatocereo riomajensis-Euphorbietum apurimacensis Galán de Mera et al. 2009 • Table 3, comm. 22: Weberbauerocereo rauhii-Corryocactetum brevistyli crotonetosum ruiziani Galán et al. 2009

Overview of the xerophyte plant communities after extreme rainfall Dillon & Rundel (1989) and Thibault & Brown (2008) have demonstrated how extreme precipitation events greatly modify the structure and composition of arid and semi-arid vegetation, noting that it is predicted that due to climate change and ENSO events these variations may occur. It is noteworthy that these events are still poorly known in terms of their effects on the xerophytic vegetation of Peru. It can be deduced that they can greatly modify the structure of a plant community generating lush cover and frequency of annuals not seen in normal years of precipitation. Nevertheless it has been observed that biannuals and perennials are also affected, but not as much as the annual vegetation in terms of cover and abundance. In the arid ecosystems studied, we found that all vegetation along a 1000-m elevation transect changed more in

eschweizerbart_xxx

phyto_45_3_203_250_montesinos_0023.indd 228

09.11.15 12:23


Xerophytic plant communities after extreme rainfall in South Peru

structure (species cover and abundance) than in species composition (species presence or absence). As the relevés were made 75 days after the start of the rainy season, we were able to sample the vast majority of annuals. Plant communities in the xerophytic ecosystems changed dramatically (Fig. 7a–b) in physiognomy and composition after the high rainfall event in comparison to normal years of precipitation. On the arid slopes of Chapi (Polobaya district), 6 of the 52 species are perennial (cacti, 11.5%) and the remaining 46 (88.5%) are annuals that germinated after the exceptional heavy rainfall. In the scrubland cacti association of Balbisio weberbaueri-Ambrosietum artemisioidis, 21 (32.2%) of the 78 species are biannual to perennial and the remainder (67.7%) is annual. Vegetation in arid areas is primarily limited by precipitation. The Ambrosio artemisiodis-Weberbauerocerion weberbaueri communities are no exception. According to the hypothesis of Holmgren et al. (2001), plant communities change rapidly along steep elevation-precipitation gradients. We describe different associations with Weberbauerocereus weberbaueri occurring in areas with irregular limited annual precipitation, sometimes only 120 mm/year. In this climate, above 3000 m a.s.l., on the hills and slopes of Misti, Chachani, and Pichu-Pichu volcanoes, woody species are abundant in association to Corryocactus brevistylus and the plant communities apparently did not change greatly after the extreme rainfall of 2012.

229

In the Weberbauerocereus weberbaueri communities on dry slopes, we found that plant cover and diversity of annual species changed dramatically after the extreme rainfall of 2012. This temporary event favored species that are not found in dry years.

Plant community composition and distribution The only tree reported in our study area is a woody legume (Prosopis laevigata var. andicola) associated among other species, with Tecoma fulva subsp. arequipensis and Weberbauerocereus weberbaueri, as can be seen in the Yarabamba extensive plains and slopes. From the photograph published by Weberbauer (1945) (Fig. 10), we deduce that these communities used to be well represented on the hills where Arequipa city now lies. Furthermore, these plant communities can still be found in the surroundings of the Alfredo Rodriguez Ballon Airport (district of Cerro Colorado) and in the hills of Yarabamba and Mollebaya district. On the other hand, the community of Atriplex rotundifolia and Ephedra americana (Galán de Mera et al. 2011b) occurs in the lomas formations. Both species are widely distributed between 500 and 3000 m a.s.l. in the department of Arequipa (Brako & Zarucchi 1993). Ephedra americana is also present between 3400–3700 m a.s.l. in the Prepuna of Moquegua (Montesinos et al. 2012). Therefore E. americana can be considered a companion

Fig. 9. Xeric environs of Arequipa city showing the scattered distribution of the columnar Weberbauerocereus weberbaueri in a vegetation dominated by dwarf shrubs (most probably Ambrosia artemisioides and Tarasa operculata). Photograph by Walter V. Runcie, taken in 1939 between Cayma and Cerro Colorado district (Weberbauer 1945: 309). In present time the city of Arequipa is here established.

eschweizerbart_xxx

phyto_45_3_203_250_montesinos_0023.indd 229

09.11.15 12:23


230

Daniel B. Montesinos-Tubée et al.

species for different phytosociological units in South Peru. Introduced species like Aristida adscensionis, Galium aparine, Mesembryanthemum crystallinum, Malva parviflora, Senecio vulgaris, Vulpia myuros can be found over a wide range of ecosystems in the Arequipa province, especially in urban areas, on agricultural land, and in grazed areas. They are increasingly becoming an environmental problem for natural communities (especially those close to urban areas), where many native and endemic species can be outcompeted by the alien species. It is well known that introduced species may outcompete native species and change the structure and functioning of native communities and ecosystems (Bossdorf et al. 2005). Generally urbanization leads to an increase of grasses and herbs at the cost of woody species (Marzluff & Ewing 2001, McKinney 2008). This has a negative effect on the diversity of birds and other animals, which is correlated with vegetation structure and plant species richness (McKinney 2008). This may become a serious problem for the conservation of native and endemic species in the near future, aggravated by expanding urbanization without concern for the degradation of natural communities. Nature conservation should be prioritized here. In the synoptic table (Table 3), many species that have been used for vegetation classification in our study, belong to other classes and are hence companion species in the syntaxa described. Other classes are compared as follows: The Nicotiano-Ambrosietea arborescentis (Galán de Mera et al. 2002a) includes Solanum peruvianum, a nitrophytic plant well represented in coastal and scrubland ecosystems of Peru as shown in Tropicos database (http:// www.tropicos.org) and Brako & Zarucchi (1993). It is a common in the vicinity of the Ambrosio artemisiodisWeberbauerocerion weberbaueri and is considered an annual or biannual species. On the other hand, the Palauo dissectae-Nolanetea gayanae (Galán de Mera 2005) represents Peruvian Pacific coastal communities. Several of the mentioned species are also found on the arid slopes above 2000 m a.s.l., for example Cistanthe celosioides, C. paniculata, Cristaria multifida, Cryptantha parviflora, C. peruviana, Eragrostis peruviana, Fuertesimalva chilensis, Bryantiella glutinosa, Pteromonnina ramosa, Pectocarya lateriflora, Plantago limensis and Tiquilia elongata. We found most of these species occurring on sandy slopes of the Arequipa province. They emerged after the severe rainfall of 2012. Regarding to the chasmophyte vegetation, we considered the Argyrochosmetea niveae (Gutte 1986) where several ferns and some succulents are characteristic of rock edges and fissures. We found that Cheilanthes arequipensis, C. myriophylla, C. pruinata, Cystopteris fragilis, Pellaea ternifolia, Sedum reniforme and Woodsia montevidensis occur on semi arid and scrubland slopes, mostly within the Weberbauerocerion weberbaueri and the Corryocaction brevistyli. The occurrence of

these species is occasional and they form part of the companions in the xerophyte communities. For instance, also the halophyte class Distichlio-Anthobryetea (Navarro 1993) is present where Atriplex myriophylla, A. rotundifolia, A. semibaccata and Suaeda foliosa are reported in one association (Weberbauerocereo weberbaueri-Tecometum arequipensi), which is near the salt marshes in the Socabaya district, where the Batido-Salicornietea ambiguae Borhidi 1996 (Montesinos 2012b) occurs. The scrubland class Echinopsio-Proustietea (Montesinos et al. 2012) and the grassland class Calamagrostietea vicunarum (Rivas-Martínez & Tovar 1982) contain some species also present in the scrubland units close to the puna. The species Diplostephium meyenii, Lobivia pampana, Calceolaria inamoena, Senecio tovari, among others, are occasionally present in the Corryocaction brevistyli. The Soncho-Bidentetea Hoff 1983 (Galán de Mera 2005) comprises ruderal species that are close to urban and agricultural areas, we have distinguished few species of this class such as Chenopodium petiolare, Galinsoga parviflora, Mesembryanthemum crystallinum, Nicotiana paniculata, Parietaria debilis and Villanova oppositifolia occurring in our study area. These species may indicate the anthropic activities near the communities. Inside the Polypodio-Tillandsietea Bolòs, Cervi & Hatschbach 1991 (Galán de Mera 2005), we include Tillandsia capillaris, an epiphyte plant growing occasionally on Balbisia weberbaueri stems. Finally, in Deuterocohnio longipetalaePuyetea ferrugineae Rivas Martínez & Navarro in Navarro & Maldonado 2002 (Galán de Mera 2005), we include Polyachyrus sphaerocephalus, a perennial climber with pink flowers, which grows in rock crevices as seen in the Balbisio weberbaueri-Ambrosietum artemisioidis.

Cluster analysis and DCA ordination After construction of a dendrogram (not shown) with all clusters and communities, a group with very low similarity to our syntaxa appeared as outgroup. The outgroup comprises the following previously published syntaxa: Grindelio bolivianae-Corryocactetum puquiensis Galán de Mera & Gómez Carrión 2001, Haageocereo limensisNeoraimondietum arequipensis Galán de Mera & Rosa 2002, Tristerido peruviani-Myrcianthetum quinquelobae Galán de Mera & Rosa 2012, Barnadesio blakeanaeOphryosporidetum peruviani Galán de Mera & Cáceres 2002, Adiantetum subvolubilis Galán de Mera & Rosa 2002, Neoporterio islayensis-Neoraimondietum arequipensis Galán de Mera et al. 2002, Acantholippio deserticolae-Atriplicetum imbricatae: atriplicetosum imbricatae, ambrosietosum artemisioidis Luebert & Gajardo 2005, Weberbauerocereo torataensis-Corryocactetum brevistyli Galán de Mera et al. 2009, Schino mollis-Tecometum arequipensis Galán de Mera et al. 2009, Schino mollis-Tecometum tanaeciiflorae Galán de Mera et al. 2009, Acacio

eschweizerbart_xxx

phyto_45_3_203_250_montesinos_0023.indd 230

09.11.15 12:23


Xerophytic plant communities after extreme rainfall in South Peru

231

Fig. 10. First axis DCA analysis of 22 vegetation units (weighed by presence class) and based on 55 plant species (see Methods and Table 3 for the vegetation units in the synoptic table). The points representing the respective alliances are enveloped. Axis 1 eigenvalues (0.526) and length of the gradient (3.257) and Axis 2 eigenvalues (0.330) and length of the gradient (2.995).

Fig. 11. Bray-Curtis distance measure dendrogram with Farthest Neighbor linkage method. The analysis produced 22 clusters (weighed by presence class) and based on 55 plant species (see methods and Table 3 for the synoptic table). For the names of the communities presented in the dendrogram we refer to Table 3.

eschweizerbart_xxx

phyto_45_3_203_250_montesinos_0023.indd 231

09.11.15 12:23


232

Daniel B. Montesinos-Tubée et al.

macracanthae-Tecometum guarumis Galán de Mera et al. 2009, Community of Prosopis pallida, Tecoma fulvae Galán de Mera et al. 2009, Echinopsio chalaensis-Randietum armatae Galán de Mera et al. 2009, Polyachyro sphaerocephali-Puyetum densiflorae Galán de Mera et al. 2009, Dunalio spinosae-Baccharidetum latifoliae Galán de Mera et al. 2003, Lycio distichum-Baccharidetum uniflorae Galán de Mera et al. 2011, Anredero diffusae-Diplostephietum meyenii Montesinos, Cleef & Sýkora 2012. The outgroup was removed from the data set and a new dendrogram (Fig. 11) was constructed. Already at a low similarity level 3 clearly distinct groups appeared corresponding with the three alliances delineated in the syntaxonomic table (Table 3). Communities 1 to 7 in the dendrogram represent the Ambrosio artemisiodis-Weberbauerocerion weberbaueri, communities 8 to 12 the alliance Neoraimondio-Weberbauerocerion and communities 13 to 22 the Corryocaction brevistyli. Also in the DCA diagram (Fig. 11) the three alliances occurred as three distinct non-overlapping units, confirming the results of the cluster analysis. Although community 17 was overlapping while displaying axes 1 and 2, this is not the case with DCA axes 1 and 3 (not shown). The alliances are ordered along the main floristic gradient from left to right as follows: Neoraimondio-Weberbauerocerion, Ambrosio artemisiodis-Weberbauerocerion weberbaueri and Corryocaction brevistyli. This

gradient corresponded with a moisture gradient from dry climate with very little precipitation to a more subhumid climate. The second axis corresponded to an increase in elevation. The distinction of the three alliances is confirmed by the dendrogram and the DCA diagram. Although in the final analysis we only used a dataset in which the annuals were deleted and only perennials, excluding those with very low occurrence were used, we besides conducted a series of tests using different sets of species and all resulted in a division of two separate units characterized by these columnar cactae previously mentioned to be diagnostic species of one sole alliance (Corryocaction brevistyli). The separation of Weberbauerocereus weberbaueri and Corryocactus brevistylus as character species of two separate alliances is not only confirmed by the statistical analysis, but also agrees with the distribution and ecological conditions of these columnar cactus species along the interandean dry valleys.

Endemism The area is supported by species that are localy, or widely distributed within the study region. A total of 50 endemic species were found in the studied sites of the Arequipa province corresponding to 27% of the total flora. In Fig.

Fig. 12. Diagram indicating the total number of endemic species found in the associations described in this publication. Light grey columns indicated for number of endemic species from Peru and dark grey columns for the number of endemic species proper to the Arequipa region. Were: 1.Weberbauerocereo weberbaueri-Browningietum candelaris, 2. Senecioni yurensisWeberbauerocereetum weberbaueri, 3. Euphorbio apurimacensis-Weberbauerocereetum weberbaueri, 4. Lycio distichi-Weberbauerocereetum weberbaueri, 5. Cantuo volcanicae-Weberbauerocereetum weberbaueri, 6. Paronychio microphyllaeWeberbauerocereetum weberbaueri, 7. Balbisio weberbaueri-Ambrosietum artemisioidis and 8. Aloysio spathulatae-Corryocactetum brevistyli.

eschweizerbart_xxx

phyto_45_3_203_250_montesinos_0023.indd 232

09.11.15 12:23


Xerophytic plant communities after extreme rainfall in South Peru

12, the total number of endemics is shown for each of the eight associations described in this study. From the total number of endemics, 18 species (9.6%) are endemic to the Arequipa region (Brako & Zarucchi 1993, León et al. 2006, http://www.tropicos.org). The two associations with highest number of endemics are Senecioni yurensisWeberbauerocereetum weberbaueri (Yura district) with, 11 species endemic to Peru and nine species to the Arequipa province and the Balbisio weberbaueri-Ambrosietum artemisioides (10 species endemic to Peru and six endemics to the Arequipa region) from the Misti volcano slopes. In some associations the character species are mainly or even only represented by species with relatively low presence class. This can be explained by the scattered and distant occurrence of these species although characteristic of the representative and homogeneous vegetation.

Comparison with other xeric vegetation units outside Peru As stated in the introduction, the xerophytic plant formations have been studied in South America by Sarmiento (1975). Later studies have broadened the knowledge of how plant communities are distributed along the arid regions of the Pacific coast and on dry inter-Andean slopes. Outside of Peru, several authors have studied plant communities and formations with xerophytic species. In Ecuador, Loayza & Morrone (2011) described the distribution of cacti stating that few species have an ample distribution range deducing that plant community description to association level is yet unknown in different regions of the country. In Chile, Villagrán et al. (1981, 1982), Gutiérrez et al. (1998), Luebert & Gajardo (2000, 2005), Navarro & Rivas Martínez (2005) and Luebert & Pliscoff (2006) present overviews of the vegetation of the arid scrubland and grassland formations. Luebert & Gajardo (2005) described the Acantholippio deserticolae-Atriplicetum imbricatae Luebert & Gajardo which has been included in the Opuntietea sphaericae, but this association does not share any species with our study except Ambrosia artemisioides. Other xerophytic species included Chilean endemics and were absent in our sites. In Bolivia, Navarro (1996) and Navarro & Maldonado (2005) described the occurrence of xerophytic species in different ecosystems, also at the phytosociological level but their units differ greatly and do not resemble those of South Peru.

233

creasingly populated without supervision or control. This trend generated a great loss of biodiversity. Until today no conservation program exists. Nevertheless, some organizations have made strenuous efforts to improve the conservation of the dry ecosystems of the Arequipa province by mass forestation with native and introduced trees in order to counteract air pollution (Montesinos 2012c) and by the creation of local botanical gardens. Other issues concern desertification which also causes the degradation of ecosystems. Major disturbances are related to volcanism, seismic activity and flashfloods. The city of Arequipa is located in one of the most active volcanic chains of the Andes where Misti volcano is considered a serious threat (Sandri et al. 2014). Earthquakes are also frequent in the Arequipa region (Tavera et al. 2002); they may cause severe damage and rock avalanches on nearby mountain slopes. Although these natural disturbances can cause losses to certain ecosystems at the same time they can create new natural habitats and restart succession. The local governments must urgently address the long-term conservation of the slopes near the Arequipa city, since the fragile arid ecosystems have a significant seed bank with high diversity and richness in endemics (25.5%). Nature conservation and urbanization supervision and control must be addressed to avoid the loss of diversity in the Arequipa environs.

Final conclusions For full comprehensive comparison based on all life forms it is recommendable to make many more relevés of other habitats and regions including all life forms. It is obvious that more research is needed before an overall revision of the succulent rich vegetation of the Peruvian Andes is possible. Many previously described associations, when confronted in an overview based on a synoptic table, are missing diagnostic species. As this appears to be a huge and complicated task, it is highly advisable to perform this project in a joint effort with all vegetation experts of the region.

Author contributions D.B.M.T. planned the research and conducted the field sampling, D.B.M.T. and K.V.S. performed the statistical analyses and all authors jointly wrote and revised the manuscript.

Natural disturbances, land use and conservation Since the late 1950s, the slopes of the Chili and Sabandía rivers, San Lázaro and adjacent ravines, have been in-

eschweizerbart_xxx

phyto_45_3_203_250_montesinos_0023.indd 233

09.11.15 12:23


234

Daniel B. Montesinos-Tubée et al.

Acknowledgements Special thanks are due to the USM, HSP, HUSA, CPUN, CUZ, WAG, MO and F herbariums for making their collections available for the study of the botanical specimens. We are grateful for financial support from the NCP Group (Wageningen University, Netherlands), Michell & Company (Arequipa, Peru) and Alberta Mennega Stichting (Utrecht, Netherlands). We also thank the Dirección General de Flora y Fauna Silvestre (DGFFS-Ministry of Agriculture, Peru) for the permits for making botanical collections during our study. Special thanks to AGC-Lara managers, C. Macedo, J.A. Quiroz, J.C. Quiroz, J. Quispe, M. Callata, E. Cuno, G. Pastor, A. Pinto, M. Rivera and C. Tejada for fieldwork support. We also thank I. Al-Shehbaz, J. Wieringa, R. Medina, M. Chanco, C. Ostolaza, F. Cáceres, E. Navarro, H: Trinidad, A. Pauca, I. Treviño, B. Britto, M.I. La Torre and W. Galiano for their taxonomical comments on some of the species. E. Quiroz Paz-Soldán and R. Kiesling helped with literature. S. Montesinos gave suggestions in the natural disturbance section. K. Zeballos helped with improving the quality of images. Landsat data were provided courtesy of USGS EROS. B. DeVries gave assistance on the map imaging development. Joy Burrough advised on the English of a near-final draft.

References Al-Shehbaz, I. 2006. The genus Sisymbrium in South America, with synopses of the genera Chilocardamum, Mostacillastrum, Neuontobotrys, and Polypsecadium (Brassicaceae). Darwiniana 44: 341–358. Aragón, G.A. 1982. Cactáceas de los alrededores de la ciudad de Arequipa. Boletín de Lima 4: 86–94. Arakaki, M. 2003. Relaciones taxonómicas en el género peruano Weberbauerocereus Backeberg. Quepo 17: 60–71. Arakaki, M. & Cano, A. 2003. Composición florística de la cuenca del río Ilo-Moquegua y lomas de Ilo, Moquegua, Perú. Revista Peruana de Biología 10: 5–19. Arakaki, M., Ostolaza, C., Cáceres, F. & Roque, J. 2006. Cactaceae endémicas del Perú. Revista Peruana de Biología 13: 193–219. Asociación Especializada para el Desarrollo Sostenible 1998. Estudio de la biodiversidad Cuenca del Cotahuasi: La Unión-Arequipa. Flora Medicinal. AEDES, Arequipa, Perú. Barkman, J.J. 1979. The investigation of vegetation texture and structure. In: Werger, M.J.A (ed.) 1979. The study of vegetation, pp. 123–160. Dr. W. Junk Publishers, The Hague, NL. Bossdorf, O., Auge, H., Lafuma, L., Rogers, W.E., Siemann, E. & Prati, D. 2005. Phenotypic and genetic differentiation between native and introduced plant populations. Oecologia 144: 1–11. Brako, L. & Zarucchi, J. 1993. Catalogue of the flowering plants and gymnosperms of Peru. Monographs in Systematic Botany from the Missouri Botanical Garden 45: 1–1286. Braun-Blanquet, J. 1979. Plant sociology, the study of plant communities. McGraw-Hill, New York, US. Britton, N.L. & Rose, J.N. 1919. The Cactaceae. Descriptions and illustrations of plants of the cactus family. The Carnegie Institution of Washington 1: 1–96.

Britton, N.L. & Rose, J.N. 1920. The Cactaceae. Descriptions and illustrations of plants of the cactus family. The Carnegie Institution of Washington 2: 63–68, 171–216. Cáceres, F., García, A. & Ponce, E. 2000. “El Sancayo”, Corryocactus brevistylus (Schumann ex Vaupel) Britton & Rose. Quepo 14: 37–42. Centro de Datos para la Conservacion 1986. Ecosistemas críticos en el Perú: recomendaciones del CDC-Perú al World Resources Institute. Universidad Nacional Agraria La Molina, Lima, PE. Dierschke, H. 1994. Pflanzensoziologie – Grundlagen und Methoden. Verlag Eugen Ulmer, Stuttgart, DE. Dillon, M.O. & Rundel, P.W. 1989. The botanical response of the Atacama and Peruvian desert floras to the 1982–83 El Niño event. In: Glynn, P.W. (ed.) Global ecological consequences of the 1982–83 El Niño-Southern Oscillation, pp. 487–504. Elsevier Science Publishers, New York, US. Franco, J., Cáceres, C. & Sulca, J. 2004. Flora y vegetación del departamento de Tacna, Perú. Ciencia y Desarrollo 8: 23–30. Galán de Mera, A. 2005. Clasificación fitosociológica de la vegetación de la región del Caribe y América del Sur. Arnaldoa 12: 86–111. Galán de Mera, A. & Vicente Orellana, J.A. 1996. Las comunidades con Corryocactus brevistylus del Sur de Perú. Phytologia 80: 40–47. Galán de Mera, A. & Gómez Carrión, J. 2001. Las comunidades con cactáceas del sur del Perú. Nuevos datos sobre la alianza Corryocaction brevistyli. Acta Botanica Malacitana 26: 240– 246. Galán de Mera, A. Vicente Orellana, J.A. Lucas, J. & Probanza, A. 1997. Phytogeographical sectoring of the Peruvian coast. Global Ecology & Biogeography Letters 6: 349–367. Galán de Mera, A. Rosa, M. & Cáceres, C. 2002a. Una aproximación sintaxonómica sobre la vegetación del Perú. Clases, órdenes y alianzas. Acta Botanica Malacitana 27: 75–103. Galán de Mera, A., Cáceres, C. & Gonzáles, A. 2002b. Las comunidades con Cactáceas del Sur del Perú, II. Nueva asociación y alianza del desierto costero. Acta Botanica Malacitana 27: 270–272. Galán de Mera, A., Cáceres, C. & Gonzáles, A. 2003. La vegetación de la alta montaña andina del sur de Perú. Acta Botanica Malacitana 28: 121–147. Galán de Mera, A., Linares Perea, E., Campos de la Cruz, J. & Vicente Orellana, J. 2009. Nuevas observaciones sobre la vegetación del sur del Perú. Del desierto pacífico al altiplano. Acta Botanica Malacitana 34: 1–35. Galán de Mera, A., Linares Perea, L., Trujillo, C. & Villasante, F. 2010. Termoclima y humedad en el sur del Perú. Bioclimatología y bioindicadores en el departamento de Arequipa. Zonas Áridas 14: 71–83. Galán de Mera, A., Linares Perea, E. & Campos de la Cruz, J. 2011a. Interpretación fitosociológica de la vegetación de las lomas del desierto peruano. Revista de Biología Tropical 59: 809–828. Galán de Mera, A., Linares Perea, E., Campos de la Cruz, J., Trujillo Vera, C., Villasante Benavides, F. & Vicente Orellana, J.A. 2011b. Novedades sobre la vegetación del departamento de Arequipa (Perú). Arnaldoa 18: 125–144. Galán de Mera, A., Vicente Orellana, J.A., Linares Perea, E., Campos de la Cruz, J., Trujillo Vera, C. & Villasante Benavides, F. 2012. Patrones de distribución de las comunidades de Cactáceas en las vertientes occidentales de los Andes peruanos. Caldasia 34: 257–275.

eschweizerbart_xxx

phyto_45_3_203_250_montesinos_0023.indd 234

09.11.15 12:23


Xerophytic plant communities after extreme rainfall in South Peru Galiano, W.H., Montesinos-Tubée, D.B. & Núñez, M.P. 2013. Adiciones a la flora del sur de Perú: 2004–2011. El Antoniano 122: 175–184. Glavac, V. 1996. Vegetationsökologie – Grundfragen, Aufgaben, Methoden. Gustav Fischer Stuttgart, DE. Gutiérrez, J.R., López-Cortes, F. & Marquet, P. 1998. Vegetation in an altitudinal gradient along the Río Loa in the Atacama Desert of northern Chile. Journal of Arid Environments 40: 383–399. Gutte, P. 1985. Beitrag zur Kenntnis zentralperuanischer Pflanzengesellschaften IV. Die grasreiche Vegetation der alpine Stufe. Wissenschaftliche Zeitschrift der Karl-Marx-Universität Leipzig, Mathematisch-Naturwissenschaftliche Reihe, 34: 357–401. Gutte, P. 1986. Beitrag zur Kenntnis zentralperuanischer Pflanzengesellschaften III. Pflanzengesellschaften der subalpinen Stufe. Feddes Repertorium 97: 319–371. Heim, E. 2014. Flora of Arequipa, Peru. A field guide for nature lovers. Books on Demand, Norderstedt, DE. Hill, M.O. 1979. Twinspan, a Fortran program for arranging multivariate data in an ordered two way table by classification of the individuals and the attributes. Cornell University, Department of Ecology and Systematics, Ithaca, NY, US. Holmgren, C., Betancourt, J.L., Aasen Rylander, K., Roque, J., Tovar, O., Zeballos, H., Linares, E. & Quade, J. 2001. Holocene vegetation history from fossil rodent Middens near Arequipa, Peru. Quaternary Research 56: 242–251. Huertas, L. 2009 Injurias del tiempo. Desastres naturales en la historia del Perú. Universidad Ricardo Palma. Editorial Universitaria, Lima, PE.Hunt, D. 1992. CITES Cactaceae Checklist. Royal Botanical Gardens, Kew, UK. Hunt, D. 2006. The New Cactus Lexicon. Dh Books, Milborne Port, UK. Kiesling, R. 1999. Cactaceae. In: Zuloaga F.O. & Morrone, O. (eds.) Catálogo de las plantas vasculares de la República Argentina, pp. 423–488. Missouri Botanical Garden, St. Louis, US. Knapp, R. 1984. Considerations on quantitative parameters and qualitative attributes in vegetation and in phytosociological relevés. In: Knapp, R. (ed.) Sampling methods and taxon analysis in vegetation science, pp. 77–100. Dr. W. Junk, The Hague, NL. Kuentz, A., Galán de Mera, A., Ledru, M.P. & Thouret, J.C. 2007. Phytogeographical data and modern pollen rain of the puna belt in southern Peru (Nevado Coropuna, Western Cordillera). Journal of Biogeography 34: 1762–1776. Leiva González, S., Zapata Cruz, M., Gayoso Bazán, G., Lezama, P., Quipuscoa, V. & Dillon, M. 2008. Diversidad florística de la Loma Mongón, Pro Mongón, Provincia Casma, Departamento Ancash, Perú. Arnaldoa 15: 45–62. Lenters, J.D. & Cook, K.H. 1999. Summertime precipitation variability over South America: Role of the large-scale circulation. Monthly Weather Review 127: 409–431. León, B., Roque, J., Ulloa Ulloa, C., Jørgensen, P.M., Pitman, N. & Cano, A. (eds.) 2006. Libro Rojo de las plantas endémicas del Perú. Revista Peruana de Biología 13: 946–965. León, B. & Sánchez, I. 2006. Boraginaceae endémicas del Perú. Revista Peruana de Biología 13: 177–181. Linares Perea, E. 2005. Flora Andina: Estudio Botánico de Quebradas y Puna entre Arequipa y el Valle del Colca. Boletín de la Sociedad Geográfica de Lima 118: 91–144. Linares Perea, E. & Benavides, M.B. 1995. Flora silvestre del transecto Yura-Chivay, Departamento de Arequipa. Boletín de Lima 100: 211–254.

235

Linares Perea, E., Campos, J., Nauray Huari, W., Vicente Orellana, J.A. & Galán de Mera, A. 2010. Nuevas adiciones a la flora del Perú, V. Arnaldoa 17: 99–112. Loayza, C. & Morrone, J.J. 2011. Análisis panbiogeográfico de algunas Cactaceae del Ecuador. Gayana Botanica 68: 220– 225. Lombardi, G. 1995. Cactus de Moquegua y Tacna. Quepo 9: 23–32. Luebert, F. 2004. Apuntes sobre la vegetación de bosque y matorral del desierto precordillerano de Tarapacá (Chile). Chloris Chilensis 7: 1–8. Luebert, F. & Gajardo, R. 2000. Vegetación de los Andes áridos del norte de Chile. Lazaroa 21: 111–130. Luebert, F. & Gajardo, R. 2005. Vegetación alto andina de Parinacota (norte de Chile) y una sinopsis de la vegetación de la Puna meridional. Phytocoenologia 35: 79–128. Luebert, F. & Pliscoff, P. 2006. Sinopsis bioclimática y vegetacional de Chile. Editorial Universitaria, Santiago de Chile, CL. Mariño, L., Zambrano, N., Mogrovejo, E., Mogrovejo, Y., Villanueva, R. 1998. Cactáceas del Cañón de Cotahuasi. Quepo 12: 88–94. Marzluff, J.M, & Ewing, K. 2001. Restoration of fragmented landscapes for the conservation of birds: a general framework and specific recommendations for urbanizing landscapes. Restoration Ecology 9: 280–292 Mauseth, J.D., Kiesling, R. & Ostolaza, C. 2002. A cactus odyssey. Journeys in the wilds of Bolivia, Peru, and Argentina. Timber Press, Portland, US. Mauseth, J.D., Benigno, S., Cáceres, F. & Ostolaza, C. 2006. A mistletoe that attacks cacti. Cactus and Succulent Journal 78: 88–91. McCune, B. & Mefford, M. J. 1999. PC-ORD for Windows. Multivariate Analysis of Ecological Data Version 4.25. MjM Software, Gleneden Beach, Oregon, US. McKinney, M.L. 2008. Effects of urbanization on species richness: A review of plants and animals. Urban Ecosystems. 11: 161–176. Medina, F. 2006. Determinación y descripción de los ecosistemas de la subcuenca del Cotahuasi. AEDES, Arequipa, PE. Montesinos-Tubée, D.B. 2010. Cactus y suculentas de Moquegua. Quepo 24: 28–41. Montesinos-Tubée, D.B. 2011. Diversidad florística de la cuenca alta del río Tambo-Ichuña (Moquegua, Peru). Revista Peruana de Biología 18: 119–132. Montesinos-Tubée, D.B. 2012a. Lista anotada de nuevas adiciones para la flora andina de Moquegua, Perú. Revista Peruana de Biología 19: 303–312. Montesinos-Tubée, D.B. 2012b. Vegetación halófila de tres localidades andinas en la vertiente pacífica del Sur de Perú. Chloris Chilensis 15(2): 1–25. Montesinos-Tubée, D.B. 2012c. Árboles y leñosas de Arequipa: Soluciones para mitigar la contaminación. Cuzzi Editores, Arequipa, PE. Montesinos-Tubée, D.B., Cleef, A.M. & Sýkora, K.V. 2012. Andean shrublands of Moquegua, South Peru: Prepuna plant communities. Phytocoenologia 42: 29–55. Moore, M.J., Tye, A. & Jansen, R.K. 2006. Patterns of longdistance dispersal in Tiquilia subg. Tiquilia (Boraginaceae): implications for the origins of amphitropical disjuncts and Galapagos Islands endemics. American Journal of Botany 93: 1163–1177. Mueller-Dombois, D. & Ellenberg, H. 1974. Aims and methods of vegetation ecology. John Wile, New York, US.

eschweizerbart_xxx

phyto_45_3_203_250_montesinos_0023.indd 235

09.11.15 12:23


236

Daniel B. Montesinos-Tubée et al.

Navarro, G. 1993. Vegetación de Bolivia: el Altiplano meridional. Rivasgodaya 7: 69–98. Navarro, G. 1996. Catálogo ecológico preliminar de las cactáceas de Bolivia. Lazaroa 17: 33–84. Navarro, G. & Maldonado, M. 2005. Geografía ecológica de Bolivia. Vegetación y ambientes acuáticos. Fundación Simón 1. Patiño, Santa Cruz, BO. Navarro, G. & Rivas-Martínez, S. 2005. Datos sobre la fitosociología del norte de Chile: la vegetación en un transecto desde San Pedro de Atacama al volcán Licancabur (Antofagasta, II Región). Chloris Chilensis 8(2): 1–6. NatureServe 2009. International ecological classification standard: Terrestrial ecological classifications. Sistemas ecológicos de los Andes del Norte y Centro. NatureServe Central Databases. Arlington, VA, US. ONERN 1974. Oficina Nacional de Evaluación de Recursos Naturales. Inventario, evaluación y uso racional de los recursos naturales de la costa: cuencas de los ríos Quilca y Tambo. ONERN, Lima, PE. Ostolaza, C. 2011. 101 cactus del Perú. Ministerio del Ambiente, Lima, PE. Ostolaza, C 2014. Todos los cactus del Perú. Ministerio del Ambiente. Lima, PE. Puig, H., Fabre, A., Bellan, M.F., Lacaze, D., Villasante, F. & Ortega, A. 2002. Déserts et richesse floristique: les lomas du sud péruvien, un potentiel à conserver. Sécheresse 13: 215– 225. Rauh, W. 1958. Beitrag zur Kenntnis der Peruanischen Kakteenvegetation. Springer. Heidelberg, DE. Ritter, F. 1981. Kakteen in Südamerika, 4. Friedrich Ritter Selbstverlag. Spangenberg, DE. Rivas-Martínez, S. & Tovar, O. 1982. Vegetatio Andinae, I. Datos sobre las comunidades vegetales altoandinas de los Andes Centrales del Perú. Lazaroa 4: 167–187. Rivas-Martinez, S. Sánchez Mata, D. & Costa, M. 1999. North American Boreal and Western temperate Forest Vegetation (Syntaxonomical synopsis of the potential natural plant communities of North America, II). Itinera Geobotanica 12: 5–316. Roe, G.H. 2005. Orographic precipitation. Annual Review of Earth and Planetary Sciences 33: 645–671. Sahley, C.T. 1996. Bat and Hummingbird Pollination of an Autotetraploid Columnar Cactus, Weberbauerocereus weberbaueri (Cactaceae). American Journal of Botany 83: 1329– 1336. Sandri, L., Thouret, J.C., Constantinescu, R., Biass, S. & Tonini, R. 2014. Long-term multi-hazard assessment for El Misti volcano (Peru). Bulletin of Vulcanology 76: 1–26. Sarmiento, G. 1975. The dry plant formations of South America and their floristics. Journal of Biogeography 2: 233–251.

Schwarzer, C., Caceres, F., Cano, A., La Torre, M. I. & Weigend, M. 2010. 400 years for long-distance dispersal and divergence in the northern Atacama desert and insights from the Huaynaputina pumice slopes of Moquegua, Peru. Journal of Arid Environments 74: 1540–1551. SENAMHI 2013. Información meteorológica de las estaciones de La Pampilla (Arequipa). SENAMHI, Arequipa, PE. Talavera, C., Ortega, A. & Villegas, L. 2010. Flora y vegetación de la Reserva Nacional de Salinas y Aguada Blanca, Perú. In: Zeballos, H., Ochoa, J.A. & López, E. (eds.) Diversidad biológica de la Reserva Nacional de Salinas y Aguada Blanca (Arequipa-Moquegua), pp. 89–104. Desco / PROFONANPE / SERNANP, Lima, PE. Tavera, H., Buforn, E., Bernal, I., Antayhua, Y. & Vilacapoma, L. 2002. The Arequipa (Peru) earthquake of June 23, 2001. Journal of Seismology 6: 279–283. Ter Braak, C.J.F. & Šmilauer, P. 2002. CANOCO. Reference manual and CanoDraw for Windows User’s guide: Software for Canonical Community Ordination (version 4.5). Microcomputer Power, Ithaca, NY, US. Thibault, K.M. & Brown, J.H. 2008. Impact of an extreme climatic event on community assembly. Proceedings of the National Academy of Sciences of the USA 105: 3410–3415. Treacy, J.M. 1994. Las chacras de Coporaque. Andenería y riego en el valle del Colca. Instituto de Estudios Peruanos, Lima, PE. Villagrán, C., Armesto, J.J. & Arroyo, M.T.K. 1981. Vegetation in a high Andean transect between Turi and Cerro León in Northern Chile. Vegetatio 48: 3–16. Villagrán, C., Arroyo, M.T.K. & Armesto, J.J. 1982. La vegetación de un transecto altitudinal de los Andes del norte de Chile (18–19° S). In: Veloso, A. & Bustos, E. (eds.) El ambiente natural y las poblaciones humanas de los Andes del Norte Grande de Chile (Arica, lat. 18°28´ S), pp. 13–70. UNESCO, Montevideo, UR Weber, H.E., Moravec, J. & Theurillat, J.P. 2000. International Code of Phytosociological Nomenclature. 3rd edition. Journal of Vegetation Science 11: 739–768. Weberbauer, A. 1912. Pflanzengeographische Studien im südlichen Peru. Botanische Jahrbücher für Systematik 107: 27–46. Weberbauer, A. 1945. El mundo vegetal de los Andes Peruanos. Estación Experimental Agrícola de la Molina. Dirección de Agricultura, Lima, PE. Westermann, G.E.G., Riccardi, A.C., Palacios, O. & Rangel, C. 1980. Jurásico Medio en el Perú. República del Perú. Instituto Geológico Minero y Metalurgico [Boletin No. 9. Serie “D” Estudios Especiales], Lima, PE. Westhoff, V. & van der Maarel, E. 1973. The Braun-Blanquet approach. In: Whittaker, R.H. (ed.) Ordination and classification of communities, pp. 617–726. Junk, The Hague, NL.

Author addresses Montesinos-Tubée, Daniel B. (Corresponding author, daniel.montesinos@wur.nl, dbmtperu@gmail.com)1,3, Sýkora, Karle V. (karle.sykora@gmail.com)1, Quipuscoa-Silvestre, Víctor (vquipuscoas@hotmail.com) 2,3, Cleef, Antoine M. (cleef@uva.nl)4 1Environmental Sciences, Nature Conservation and Plant Ecology Group. Wageningen University. Droevendaalsesteeg 3a, 6708 PB Wageningen, The Netherlands 2Departamento Académico de Biología. Universidad Nacional de San Agustín, Arequipa, Peru 3Instituto Científico Michael O. Dillon (IMOD), Arequipa, Peru. 4University of Amsterdam, Institute for Biodiversity and Ecosystem Dynamics (IBED). P.O. Box 94248 1090 GE Amsterdam, The Netherlands

eschweizerbart_xxx

phyto_45_3_203_250_montesinos_0023.indd 236

09.11.15 12:23


Relevé number

1

10 11 12

13

14

15

16

17

18 19 20 21

22

23

24

25

26

27

28

29 30 31

Area (m²)

25 25 25 25 25 25 25 25 25 25 25 25

25

25

25

25

25

25 25 25 25

25

25

25

25

25

25

25

25 25 25

Elevation (m a.s.l. / 10)

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

0

0

0

0

0

0

0

0

0

5

5

5

4

4

4

4

4

4

4

4

4

4

4

4

0

0

0

1

0

0

0

3

3

3

2

2

2

2

2

2

0

0

0

8

8

8

8

7

7

7

7

7

7

7

7

3

9

9

0

3

3

2

45 45 45 40 45 40 35 40 35 45 45 45

12

12

12

12

25

30 30 30 30

25

25

25

45

50

50

15

45 45 40

S

SSW

SSW

NNE

11

9

11

15

Slope (°)

2

3

4

5

S

6

S

7

S

8

9

Aspect

S

S

S

S

S

S

S

Species richness

13 12

9

11 11 11 12 12

9

26 17 23

S

S

NNW NNW NNW NNW 19

27

25

20

ENE

S

S

S

17

18

8

13 10

S

ENE ENE ENE 10

9

13

S

S

S

10 11 10 P

Character species of class and order Haageocereus platinospinus

5

5

4

Opuntia sphaerica

2

2

3

Ambrosia artemisioides

2

2

4 3

4

5

5

2

3

3

3

6

6

4

4

4 4

3

3

Armatocereus riomajensis Tarasa operculata

2

2

4

4

3

3

4 2

3

4

4

2

4

4

2

3 5

2

2

4

2

4

3

2

4

2

2 6 1

2 2

2

5

1

Oreocereus hempelianus

5 3

3

2

3

3 2

3

2

74

2

65

3

5

52 16

2

16 10

eschweizerbart_xxx

Ambrosio artemisioidis-Weberbauerocerion weberbaueri Weberbauerocereus weberbaueri Exodeconus pusillus

3 1

4 1

1

1

1

1

1

2 1

4

1

1

1

1

1

1

2

5

5

5

4

5

5

4

2

1

2

4

5

1

5

4

2

3

3

2

35

1

1

1

74

Weberbauerocereo weberbaueri-Browningietum candelaris Browningia candelaris Calandrinia ciliata

4 2

1

1

5

4

1

1

1

2

1

1

1

1

1

1

1

4

5

5

1

2

1

2

1

3

45

1

51

Xerophytic plant communities after extreme rainfall in South Peru

phyto_45_3_203_250_montesinos_0023.indd 237

Appendix 1. Weberbauerocereo weberbaueri-Browningietum candelaris and subassociations.

haageocereetosum plurifoli Haageocereus pluriflorus Nolana spergularoides

1 1

2 1

1

1

1

1

16

1

26

onoseridetosum odoratae Onoseris odorata

1

1

1

1

Tagetes multiflora

2

1

1

1

1

1

Oxalis sp.

2

2

2

1

2

2

Plantago limensis

1

1

2

1

2

1

1

2

3

3

3

1

2

2

3

3

4

1

1

Euphorbia hinkleyorum Drymaria divaricata Senecio yurensis

1 1

1 2

4

2

1

1

Cystopteris fragilis

2 3

Pellaea ternifolia

1

1 2

Tarasa rahmerii

1

Exodeconus integrifolius

2

Fuertesimalva chilensis

2

2

1

1

2

2

1

1

2

1

1

1

35

1

35

2

32 1

32

2

26

1

1

1

1

23

1

19

2

19 1

19 1

1

1

19

1

19

1

16

1

16

1 2

2

1

1

2

2

2

1

1 2

1

1 3

1

2

1 1

23

2

1 2

2

1

13 1

13

237

1

Tarasa sp.1

2

1

1

Portulaca pilosa Urocarpidium albiflorum

1

1

4

Mirabilis elegans

2 2

09.11.15 12:23


1

Oenothera rubida

1

Ozyroe biflora

1

1

1

10

1

1

10 1

Astragalus confinis

1

1

Plagiobothrys myosotoides

10

1 1

238

phyto_45_3_203_250_montesinos_0023.indd 238

Heterosperma ovatifolium

6 1

6

neoraimondietosum arequipensis Neoraimondia arequipensis

3

Tiquilia paronychioides

3

5

1

Tetragonia ovata

1

Exodeconus flavus

1 2

Leptoglossis acutiloba

4

5

19

1

1

13

1

1

13

1

1 1

6

1

1

6

1

Tiquilia grandiflora

4 1

10

Companions Aristida adscencionis

2

1

1

1

1

Cristaria multifida

3

1

1

1

1

1

Solanum peruvianum

1

2

1

Cistanthe celosioides

1

Neuontobotrys lanata

2

1

2

1

1 1

1

2

2

2

eschweizerbart_xxx

Senecio sp.

1 2

2

2

Cistanthe paniculata

1

1

1

Cryptantha parviflora

1

1

2

1

1

1

2

2

2

2

3

2

2

3

2

4

4

4

1

1

1

2

2

2

1

2

1

2

2

2

68

2

1

1

2

42

2

2

1

2

1

1

1 1

Mesembryanthemum crystallinum

1

1

19

2

1

19

23

16

1

4

10 10

1 1

1

10 1

10 10 6

1

6

1

6

1

6 1

1

6 1

2

1

1 3

6 6

2

Sites: 1–9 Variante de Uchumayo, Uchumayo district; 10–24: Arid slopes in Chapi (Polobaya district); 25–31 El Huayco, Uchumayo district. Other species: Facelis plumosa 1 in 12; Dalea pennellii 3 in 21; Porophyllum ruderale 1 in 24; Chenopodium petiolare 1, Senecio vulgaris 1 in 28.

6

Daniel B. Montesinos-Tubée et al.

Solanum paposanum

1

13

Schkuhria multiflora Solanum medians

29

1

1 1

1

1

1 1

81

2

1

1

Montiopsis cumingii

Pteromonnina macbridei

1

1

2

1

Heterosperma diversifolium

Cheilanthes pruinata

1

1

1

1

Bowlesia sodiroana

1

2 2

1

4

2

1

1

Hoffmannseggia viscosa var. egena

1

1

1 2

Eragrostis nigricans

Astrolepis sinuata

2

1

Tiquilia elongata Nama dichotoma

1

09.11.15 12:23


Relevé number

1

2

3

9 10 11 12 13 14 15 16 17 18 19 20

21

22

23

24

25

26

27 28 29 30 31 32 33 34 35 36 37 38 39

Area (m²)

25

25

25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25

25

25

25

25

25

25

25 25 25 25 25 25 25 25 25 25 25 25 25

Elevation (m a.s.l. / 10)

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

6

6

6

9

7

7

7

7

7

6

6

6

6

7

7

7

7

7

7

7

6

6

6

6

6

6

4

4

4

4

4

4

4

4

5

5

5

5

5

6

6

6

0

3

3

3

3

3

1

1

1

1

0

0

0

0

0

0

0

7

7

7

7

7

7

5

5

5

5

5

5

5

5

9

9

9

9

9

7

7

7

34 25 25 25 25 25 60 60 60 60 6

6

6

6

6

6

6

40

40

40

40

40

40

20 20 20 20 20 20 20 20 10 10 10 10 10

S

S

S

S

S

S WSW WSW WSW WSW WSW WSW E

Slope (°)

4

Aspect

NW NW NW S

Species richness

15

16

5

S

6

S

7

S

8

S

S

S

S

S

S

S

14 18 15 16 12 17 11 16 18 18 17 16 19 19 18 20 18 19

23

23

22

23

26

23

E

E

E

E

E

E

E

N N N N N

13 14 14 12 15 19 14 16 9 11 11 9

8 P

Character species of class and order Tarasa operculata

4

4

3

Ambrosia artemisioides Opuntia sphaerica

2

3

2

Oreocereus hempelianus

4

5

5

3

4

3

3

4

2

4

2

3

3

1

2

2

3

4

4

4

4

3

4

4

4

4

5

4

5

4

3

3

2

3

4

3

3

3

2

2

2

2

5

2

4

4

4

4

4

4

4

5

4

5

5

3

3

5

5

4

5

5

5

5

5

3

3

Corryocactus brevistylus

3

1

3

2

3

3

2

3

4

3

3

1

2

3

2

3

2

2 3 2

1

1

2

2

3

2

2

2

1

2

2

1

1

1

3

3

2

2 85 74 67

3

41 12

Ambrosio artemisioidis-Weberbauerocerion weberbaueri eschweizerbart_xxx

Weberbauerocereus weberbaueri

5

5

5

Exodeconus pusillus

1

2

2

5

6

5

5

5

5

2

5

7

6

6

6

6

6

6

5

5

5

4

4

4

4

4

4

4

5

4

4

4

4

5

3

4

2

4 85

2

3

2

2

3

3

2

3

2

2

2 41

Senecioni yurensis-Weberbauerocereetum weberbaueri Senecio yurensis Neuontobotrys lanata

1 1

Mostacillastrum pectinifolium

1

2

1 2

1

1

1

1

2

3 2

1

1

1

3

4

2

3

2

1

1

1

2

2

1

1

2

2

2

2

3

2

2

3

1

2

1

2

3

2

2

2

2

3

2

2

1

2

1

1

1

1

1

1

2

2

64

2

2

59

Xerophytic plant communities after extreme rainfall in South Peru

phyto_45_3_203_250_montesinos_0023.indd 239

Appendix 2. Senecioni yurensis-Weberbauerocereetum weberbaueri.

33

oenotheretosum verrucosae Oenothera verrucosa

1

2

Atriplex rotundifolia

4

2

Cuscuta cockelerii

2

2

Cistanthe calycina Loxanthocereus jajoianus

1

2

1

18 2

2

15

1

13 1

2

1

8

2

3

chionopappetosum benthamii Tarasa rahmerii Chionopappus benthamii

1 4

Bowlesia sodiroana

2

2

1

1

2

2

6

6

6

5

6

5

2

1

1

1

1

1

1

1

1

1

1

1

1

1

Cheilanthes pruinata

1

1

Gaya mollendoensis Myriopteris myriophylla Dipyrena glaberrima

2 3

2

1 3

2

1

1

26

4

23 1

21

1

1

15

1

1

13

2

13 3

Solanum medians

1

Cheilanthes arequipensis

1

3 2

2

10

1

10

1

2

8

2

2

ephedretosum americanae Ephedra americana Hoffmannseggia prostrata

5

5

5

5

4

5

5

4

26

2

2

1

2

2

2

2

2

21

1

2

1

1

1

13

239

Mirabilis elegans 09.11.15 12:23


1

Bryantiella glutinosa

1

1

1

1 1

Montiopsis cumingii

2

Cistanthe celosioides

1

Tarasa thyrsoidea

1

2

1

2 1 1

1

13

1

10

2

10

1

8

2

8

240

phyto_45_3_203_250_montesinos_0023.indd 240

Mastigostyla cyrtophylla

eremodrabetosum schulzii Eremodraba schulzii

5

5

5

5

4 13

Chorizanthe commisuralis

1

1

1

1

1 13

Orobanche weberbaueri

1

1

1

8

Companions Aristida adscencionis

1

1

1

1

1

2

2

2

1

1

1

2

1

1

1

1

1

1

1

1

2

1

2

1

1

Pectocarya lateriflora

1

1

2

1

1

1

1

1

1

1

1

2

1

2

2

1

2

2

3

2

1

1

2

1

2

2

Tagetes multiflora

3

2

1

3

2

2

2

1

2

Nama dichotoma

1

1

1

1

1

1

Oxalis megalorrhiza

2

1

2

1

1

1

Plantago linearis

1

2

1

2

2

2

1

1

eschweizerbart_xxx

Pteromonnina macbridei

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2

1

2

2

1

2

2

2

2

2

2

1

2

1

2

3

1

1

2

1

1

1

1

1

1

1

1

2

1

2

2

1

2

2

2

1

2

2

2

2

2

2

2

1

1

2

1

1

2

3

2

3

2

38

2

1

2

1

1

2

2

31

2

2

3

3

2

2

2

1

1

2

1

2

1

2

1 2

1 1

1

1

1

2

Paronychia microphylla var. arequepensis

3

2

2

2

2

1

2

2

2 2

2

1 1

1

77

1

2 59 49

1

1

1

2

1

2

1

1

1

2

1

1 1

1

49 2

2

3

2

2 41

28 1

1

1

2

1

4

4

4

4

5 28 18

1

1

1

2

1

15 13

1

Chenopodium petiolare

1

62

1

Cistanthe paniculata Fagonia chilensis

1

15 2

1

1

1

10 10

1

10 2

8 1

1

Balbisia weberbaueri

2

2

5

Crassula connata

1

1

5

Facelis plumosa Schkuhria multiflora Senecio sp.

1

1

8

1

5 1

1 1

Sites: 1–6, 13–26 Corontorio, Yura district; 7–12 Cerro Los Andes - Cono Norte, Yura district; 27–34 Quebrada Enlozada, Congata, Uchumayo district; 35–39 Corontorio, Yura district.

5 1

5

Daniel B. Montesinos-Tubée et al.

Drymaria divaricata

1

1

Portulaca pilosa

Solanum paposanum

85 79

1

2

1

2

1

2

1

2 2

1

1

1

4 2

1

2 1

2 2

1

Tiquilia elongata 1

3

2

Pellaea ternifolia

Hoffmannseggia viscosa var. egena

1

1

2

Sedum reniforme

3

2

1

1

Fuertesimalva chilensis

2

1

Solanum peruvianum Cristaria multifida

2

09.11.15 12:23


Relevé number

1

2

3

4

10 11

12

13

14

15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

31

32 33 34 35

Area (m²)

25

25

25

25 25 25 25 25 25 25 25

25

25

25

25

25 25 25 25 25 25 25 25 25 25 25 25 25 25 25

25

25 25 25 25

Elevation (m a.s.l. / 10)

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

7

7

7

6

6

6

6

5

5

5

5

4

4

4

4

4

5

5

5

5

4

4

4

4

4

3

3

3

3

3

4

3

3

3

3

4

4

4

8

5

4

2

6

6

6

6

6

6

6

6

6

8

6

4

2

8

6

4

2

0

8

6

4

2

0

6

4

4

4

4

5

5

5

40 40 40 40 40 40 40 40

40

40

40

40

15 20 20 20 20 20 20 20 20 20 20 20 20 20 20

40

38 38 38 38

Slope (°)

5

N

8

E

9

NW NW NW

N

Species richness

21

20 20 21 18 17 19 15 21

16

N

7

Aspect

20

N

6

E

E

E

NNE NNE NNE NNE W W W W W W W W W W W W W W W NNE 21

19

20

15

18 18 14 11 15 12 15 14 14 14 14

7

16 13 12

18

E

E

E

E

17 19 22 24 P

Character species of class and order Ambrosia artemisioides

4

5

4

5

5

5

Tarasa operculata

3

2

3

5

2

4

Opuntia sphaerica

2

2

6 4

2

Corryocactus aureus Corryocactus brevistylus

5

3

2

5

5

5

5

5

3

5

4

2

4

3

4

2

2

2

2

4

6

6

6

5

1

3

4 4

4

6

5

4

4

2

4

2

2

6

5

5

5

5

4

6

3

3

5

4

4

2

3

2

2

2

2

2

5

4 3

3

5

5

94

4

77

2

37

3

14

4

Browningia candelaris

14

5

4

6

eschweizerbart_xxx

Neoraimondia arequipensis

4

5

4

4

6

Ambrosio artemisioidis-Weberbauerocerion weberbaueri Weberbauerocereus weberbaueri

5

4

5

5

5

5

4

5

6

5

5

5

5

6

Exodeconus pusillus

4

4

1

1

2

3

2

5

5 1

1

4

4

5

4

5

5

5

5

6

6

6

6

6

1

89 17

Euphorbio apurimacensis-Weberbauerocereetum weberbaueri Euphorbia apurimacensis

5

5

5

5

5

5

5

5

1

1

1

2

2

2

Puya cylindrica

5

5

5

5

5

5

5

5

5

4

5

5

5

5

5

5

4

1

1

1

1

1

1

2

2

1

1

5

4

5

2

5

5

5

5

4

5

83

5

31

2

46

Xerophytic plant communities after extreme rainfall in South Peru

phyto_45_3_203_250_montesinos_0023.indd 241

Appendix 3. Euphorbio apurimacensis-Weberbauerocereetum weberbaueri.

kramerietosum lappacea Fuertesimalva chilensis

1

1

1

Anredera diffusa

2

Astrolepis sinuata Krameria lappacea

1

1

2

3

2 2

2

Pellaea ternifolia

2

2

1 2

2

2

2

2

1

2

26

2

23

1

14

4

4

4

11

Gaya mollendoensis

4

3

4

4

Solanum paposanum

1 2

1 2

Myriopteris myriophylla

2 2

4

Cheilanthes pruinata

1

Mostacillastrum gracile

1

Heliotropium arborescens var. grisellum

3

11

1

Alternanthera halimifolia Lycianthes lycioides

1

26 1

4 1

2

1

2

Aloysia spathulata Schkuhria multiflora

1

2

11

2

11

4

3

2

1

2

9 9

4

9

2

6

2

6 2

3

jatrophetosum macranthae 2

Senecio yurensis

2

3 1

4

3 1

5 2

4

2

5

2

2

4

4

5

4

5

34 20

241

Jatropha macrantha 09.11.15 12:23


1

1

1

1

1

Mentzelia scabra subsp. chilensis

2

Cheilanthes fractifera

1

2

1

1

17

2

2

2

2

14

1

1

1

1

1

242

phyto_45_3_203_250_montesinos_0023.indd 242

Cystopteris fragilis

11

Stipa plumosa

11

Companions Eragrostis nigricans

1

Nama dichotoma

1

4

1

1 1

2

Tagetes multiflora

1

1

Aristida adscencionis

2

2

Montiopsis cumingii

1

2

Cheilanthes arequipensis

1

1

Tarasa rahmerii

1

1

1

1

2

2

2

Pectocarya lateriflora

2

2 1 2

eschweizerbart_xxx

2

Gamochaeta americana

1

1

1

2

2

1 2

Drymaria divaricata Eragrostis peruviana

1

2 1

2

1

2

1

1

2

2

4

4

1

1

1

1

2

2

1

2

2

2

1

1

1

1

1

3

2

1

1

1

1

1

1

1

1

3

4

2

3

2

3

1

1

1

1

1

1

2

2

1

1

1

1

2

1

2

1

2

1

2

2

2

2

1

2

1

1

1

1 1

2

2

1

1

1

1

1

2

1

1

1 1

1 1 2

2

1

2

2

1

3

2

3

2

1

3

1

86

1

1

1

1

1

1

1

1

1

1

1

1

80

3

4

4

4

3

4

74

1

2

1

71

2

1

2

66

1

1

60

2

5

4

4

3

4

1

1

1

2

1

1

2

1

1

1 1

1

1

2

1

1

2

1

1

1

1

1 1

2

1

1

1

2

1

2

2

2

1

3

2

1

2

2

1 1

2

1 4

1

1

3

1 2

1

1

1

1

2

1

2

1

1

1

1

51

1

37

2

3

26

1

17 14

1

1

14 11

1

1

1

11 1

1

1

11

1

2

2

11

2

9

Allionia incarnata

2 1

3

6

1

Cistanthe paniculata

1

6

1

Heliotropium toratense

6 1

1

2

6 6

2 1

1

1

Sites 1–15, 31–35 Cerro San Ignacio, Jacobo Hunter district; 16–30 Cerro Llorón, Socabaya district. Other species: Gochnatia arequipensis 4 in 1; Cheilanthes bonariensis 1 in 4; Viguiera lanceolata 2 in 6; Senna birostris var. arequipensis1 in 6; Crassula connata 1 in 9; Lantana scabiosiflora 2 in 14; Cristaria multifida 3 in 34; Facelis plumosa 1 in 35.

6 6

Daniel B. Montesinos-Tubée et al.

Senecio vulgaris Tigridia sp.

51

1

17

2

1

54

1

1

1

Chenopodium incisum

54 2

3

Portulaca pilosa 1

2

2

1 2

1

1

2

1

Hoffmannseggia viscosa var. egena

Plantago limensis

1

4

Calandrinia ciliata

Spergularia fasciculata

2

2 1

3

2 1

1

1

2

1

1 1

1

2 1

2

1 2

2

1 3

Senecio sp.

1

1

2

1

Paronychia microphylla var. arequepensis Balbisia weberbaueri

2 1

3

1

Ephedra americana

1 1

Solanum peruvianum

Oxalis megalorrhiza

1

09.11.15 12:23


Xerophytic plant communities after extreme rainfall in South Peru

243

Appendix 4. Lycio distichi-Weberbauerocereetum weberbaueri. Relevé number

1

2

3

4

5

6

7

8

9

10

11

Area (m²)

25

25

25

25

25

25

25

25

25

25

25

Elevation (m a.s.l. / 10)

2

2

2

2

2

2

2

2

2

2

2

6

6

6

6

6

6

6

6

9

9

9

0

0

0

0

2

2

2

2

3

3

3

7

7

7

7

6

6

6

6

6

6

6

Aspect

SE

SE

SE

SE

S

S

S

S

S

S

S

Species richness

15

15

15

15

8

12

14

14

12

16

9

Slope (°)

P Character species of class and order Ambrosia artemisioides

3

4

4

Tarasa operculata

4

4

2

Opuntia sphaerica

5

3

5

4

2

1

4

4

4

2

2

3

4

4

4

100

3

2

2

100

3

3

36

Ambrosio artemisioidis-Weberbauerocerion weberbaueri Weberbauerocereus weberbaueri

5

4

6

Exodeconus pusillus

6

6

1

6

5

1

6

6

5

6

100

1

2

2

2

55

Lycio distichi-Weberbauerocereetum weberbaueri Lycium distichum

2

Aphyllocladus denticulatus

2

2

4

4

2

6

5

5

2

64

2

2

2

1 1

2

2

1

45

1

1

45

1

1

27

Companions Montiopsis cumingii

1

2

Tagetes multiflora

1

1

1

1

Solanum paposanum

4

2

2

2

Cristaria multifida

1

1

2

Eragrostis nigricans

4

2

Oxalis sp.

1

Solanum peruvianum

1

1

Fuertesimalva chilensis

1

2

Plantago limensis

2

2

4

1

1

1

1

1

1

1

1

2

1

1

1

45 36

1

Aristida adscencionis

1

1

1

2

1

1

36 1

1

27 1

1

36 27

1

Schkuhria multiflora Crassula connata

91

45 1

2 1

1

100

73

1

Senecio sp.

Dalea exilis

1

1 2

1

2

1

1

1

27 18

Oxalis megalorrhiza

1

1

18

Solanum medians

1

1

18

Tarasa rahmerii

1

2

Trixis cacalioides

4

4

Urocarpidium albiflorum

18 18 1

1

18

Sites: 1–8 Quebrada Escalerilla, Chapi, Polobaya district. 9–11 Chapi, Polobaya district. Other species: Armatocereus riomajensis 5 in 2; Haageocereus platinospinus 3 in 2; Pellaea ternifolia 1 in 2; Eragrostis peruviana 2 in 3; Nama dichotoma 1 in 3; Corryocactus aureus 3 in 4; Ephedra americana 2 in 9; Balbisia weberbaueri 4 in 10; Pectocarya lateriflora 1 in 10; Chenopodium incisum 1 in 10

eschweizerbart_xxx

phyto_45_3_203_250_montesinos_0023.indd 243

09.11.15 12:23


244

phyto_45_3_203_250_montesinos_0023.indd 244

Appendix 5. Cantuo volcanicae-Weberbauerocereetum weberbaueri. Relevé number

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Area (m²)

25

25

25

25

25

25

25

25

25

25

25

25

25

25

25

25

25

25

25

Elevation (m a.s.l. / 10)

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

2

2

2

3

0

5

1

4

4

4

4

4

4

4

4

4

4

4

4

2

2

2

4

3

14

3

14

14

14

14

14

14

14

14

14

14

Aspect

SE

SE

-

-

-

SE

WSW

WSW

WSW

WSW

WSW

WSW

WSW

WSW

WSW

WSW

WSW

WSW

WSW

Species richness

12

7

10

14

14

9

9

15

14

13

13

16

18

11

14

14

12

14

19

Slope (°)

P Character species of class and order Ambrosia artemisioides

4

Tarasa operculata Corryocactus aureus

2 4

Opuntia sphaerica

4

4

5

5

5

4

4

2

4

5

4

2

2

2

6

4

5

5

4

5

4

4

5

4

3

4

89

4

5

6

5

3

3

3

4

4

4

3

84

3

2

2

2

2

2

63

2

2

2

2

1

58

2

Oreocereus hempelianus

5

2

3 2

2

2

11

Ambrosio artemisioidis-Weberbauerocerion weberbaueri Weberbauerocereus weberbaueri

4

2

2

eschweizerbart_xxx

Exodeconus pusillus

2

4 2

4

5

4

5

4

6

5

2

4

5

4

2

5

79

2

26

Cantuo volcanicae-Weberbauerocereetum weberbaueri Cantua volcanica

2

2

2

3

2

Tecoma fulva subsp. arequipensis

2

2

2

3

5

3

2

2

3

58

2

5

5

32

Companions Eragrostis nigricans

4

5

4

5

5

4

5

4

5

4

5

5

Tarasa rahmerii

6

6

1

2

3

3

2

4

4

4

2

2

4

1

1

68

Pectocarya lateriflora

2

2

4

3

2

3

2

2

4

4

4

2

63

5

5

4

4

6

Chenopodium incisum Encelia canescens

4

6

6

6

1

2

4

3

4

4

4

5

5

5

6

5

2 4

2 4

Heterosperma diversifolium

2 2

Aristida adscencionis

3 4

4

3

2

2

2

Allionia incarnata 4

5

2

2

2

2

2

5

1

Hoffmannseggia viscosa var. egena

2

2

47

2

4

3

37

2

32 26 26

2

2

2 2

2

1

21 21 16

2

11 1

2

2

1

Nama dichotoma 2

2

2 2

Paronychia microphylla var. arequepensis

4

4

2

Cristaria multifida

Suaeda foliosa

2

3 2

4

42

Nicotiana paniculata Portulaca pilosa

1

58 53

5 3

Chenopodium petiolare

3

3 4

2

1

11 11

4

11

09.11.15 12:23

Sites 1–19 AGC - Lara, Socabaya district. Other species: Atriplex myriophylla 2 in 1; Eragrostis peruviana 2 in 5; Atriplex semibaccata 2 in 8; Senecio vulgaris 1 in 7; Chondrosum simplex 4 in 5; Helogyne apaloidea 6 in 7; Malva parviflora 1 in 10; Solanum peruvianum 3 in 12; Mostacillastrum gracile 2 in 13; Cheilanthes arequipensis 1 in 13; Erigeron bonariensis 1 in 14; Prosopis laevigata var. andicola 7 in 19

Daniel B. Montesinos-Tubée et al.

4

Plantago linearis

Ephedra americana

4

2

4 2

100


Xerophytic plant communities after extreme rainfall in South Peru

245

Appendix 6. Paronychio microphyllae-Weberbauerocereetum weberbaueri. Relevé number

1

2

3

4

5

6

7

8

9

10

11

12

Area (m²)

25

25

25

25

25

25

25

25

25

25

25

25

Elevation (m a.s.l. / 10)

2

2

2

2

2

2

2

2

2

2

2

2

8

8

8

8

8

8

8

8

7

7

7

7

Slope (°)

5

5

5

5

5

5

5

5

0

0

0

0

25

25

25

25

25

25

25

25

10

10

10

10

Aspect

E

E

E

E

E

E

E

E

E

E

E

E

Species richness

17

20

20

21

19

19

19

18

20

16

16

20 P

Character species of class and order Ambrosia artemisioides

5

6

5

5

6

6

6

6

Tarasa operculata

3

2

2

2

4

4

4

4

Opuntia sphaerica

3

3

Corryocactus aureus

2

2

6

6

6

6

100 67

2

2

33 3

2

4

6

33

Ambrosio artemisioidis-Weberbauerocerion weberbaueri Weberbauerocereus weberbaueri

6

6

6

Exodeconus pusillus

4

6

2

2 2

6

4

6

1

1

6

6

100 33

Paronychio microphyllae-Weberbauerocereetum weberbaueri Paronychia microphylla var. arequepensis Dalea exilis

4

Pteromonnina ramosa

2

3

2

4

4

4

1

1

1

2

1

1

1

1

1

2

3

4

3

3

2

3

1

2

2

67 83

1

1

75

100

1

2

1

1

1

1

2

2

1

1

2

1

1

1

1

1

1

1

Companions Tagetes multiflora

1

1

Fuertesimalva chilensis

1

1

Mostacillastrum gracile

1

1

1

1

1

1

1

1

1

2

Nama dichotoma

1

1

1

1

1

1

1

1

1

1

Ephedra americana

3

3

3

2

2

5

2

5

2

2

2

1

1

Eragrostis peruviana Gamochaeta purpurea

1

Aristida adscencionis

2

2

3

1

1

1

1

1

1

1

1

2

Eragrostis nigricans

1

1

1

1

3

2

2

2

Quinchamalium procumbens

1

1

1

1

3

1

1

2

Spergularia fasiculata

2

2

1

1

1

Solanum paposanum

2

3

2

3

Pellaea ternifolia

1

Balbisia weberbaueri

4

Chondrosum simplex

1 4

Galinsoga parviflora

Oenothera rubida

2 2

4

1

Cheilanthes pruinata

1

4 1

75

1

2

67

2

67

2

58

1

42 33

1

1

33

1

1

33

3 2

1

33

3

33 1

25

1

25 4

Cantua volcanica

1

2

1

Tillandsia capillaris

75

1

1

1

1

3

4

1

Plantago limensis

83

2

67

1

2

92

3

1 4

2

Solanum peruvianum

1 5

67

1

1

Plantago linearis

1

3

1

1

2

92 92

3

2

25 17 17

Sites: 1–12 Quebrada Peral, Misti volcano slopes, Alto Selva Alegre district. Other species: Heterosperma diversifolium 1 , Facelis plumosa 1, Portulaca pilosa 1 in 12

eschweizerbart_xxx

phyto_45_3_203_250_montesinos_0023.indd 245

09.11.15 12:23


246

phyto_45_3_203_250_montesinos_0023.indd 246

Appendix 7. Balbisio weberbaueri-Ambrosietum artemisioidis. Relevé number

1

2

3

4

5

6

10 11 12 13 14 15 16 17 18 19 20 21 22

23

24

25

26 27 28

29

30

31 32 33 34 35 36 37

Area (m²)

64

64

64

64

64

64 64 64 64 64 64 64 64 64 64 64 64 64 25 25 25 25

25

25

25

25 25 25

25

25

25 25 25 25 25 25 25

Elevation (m a.s.l. / 10)

3

3

3

3

3

3

3

3

3

2

2

2

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

0

0

0

0

0

0

0

0

0

9

9

9

9

9

9

9

9

9

9

9

9

9

2

2

2

1

1

1

2

2

1

1

1

1

1

1

1

1

1

7

7

7

0

0

0

3

3

9

9

9

9

9

Slope (°)

7

8

9

3

3

3

3

3

1

1

3

3

3

3

3

7

0

6

6

6

2

3

6

6

2

5

5

5

5

5

10 10 10 10

8

8

8

8

8

38 38 38 38 34 34 34 34

30

30

30

10 10 10

30

30

10 10 40 40 40 40 40

W

W

W

W

W

S

Aspect

SW SW SW SW SW

N

S

NE

NE

NE

W

W

NE

NE

W

Species richness

17

27 23 21 21 24 17 19 22 18 16 13 16 14 27 23 23 23

21

22

26

26 24 20

20

19

18 19 31 28 23 29 24

13

18

15

17

N

N

N

S

S

S

S

S

S

W

W

S

S

S

S

S

P Character species of class and order Tarasa operculata

2

1

2

1

3

2

3

2

3

Opuntia sphaerica

3

2

3

4

3

4

4

4

4

2

Ambrosia artemisioides

6

5

5

5

5

4

4

3

4

2 3

4

2

1

2

2

3

2

3

2

2

3

1

2 3

2

3

2

2

2

2

2

2

2

2

2

1

1

4

5

84 3

4

4

3

57 30

Corryocactus aureus

3

2

5

Corryocaction brevistyli eschweizerbart_xxx

Corryocactus brevistylus

6

6

6

6

6

6

6

6

6

5

5

4

Balbisia weberbaueri

4

5

4

4

4

6

6

6

6

4

4

3

5

4

4

4

Mulguraea arequipensis Gochnatia arequipensis

6

5

6

6

5

4 5

4

6

5

5

5

6

6

5

5

6

6

6

5

4

4

4

4

3

3

4

3

4

4

5

5

5

4

3

3

2

4

4

4

5

5

5

5

4

5

5

5

4

5

100

5

6

6

6

6

81

5

5

5

4

4

4

42

4

4

3

4

4

4

27

4

4

3

Balbisio weberbaueri-Ambrosietum artemisioidis Bromus trinii

4

Lupinus cf. eriocladus

2

2

2

2

4

6

5

5

6

3 1

Cumulopuntia mistiensis

1

1

1

1

1

2

3

2

4

2

1

3

35 28

Lupinus saxatilis Chersodoma juanisernii

3

1

2

2 2

2

3

4

2

2

2

4

3

22 16

1

14

Senecio phylloleptus

5

5

4

4

2

14

Cantua candelilla

2 2

5

2

5

Companions Mostacillastrum gracile

1

1

Tagetes multiflora

1

1

Plantago linearis

2

2

Pectocarya lateriflora

1

1

1

1

1

1

1

2

2

1

1

1

1

1

1

1

1

1

1

2

1

1

1

1

2

2

1

1

1

1

1

1

1

1

1

1

1

Cheilanthes pruinata Bowlesia sodiroana

1

Parietaria debilis

1

Oxalis megalorrhiza

1

1

1

1

1

1

1

1

1

1

2

2

2

1

1

2

1

1

3

2

3

2

2

2

2

2

2

2

2

1

1

1

1

1

1

1

1

1

1

1

1

2

1

2

1

2

2

1

1

1

1

1

1

1

1

2

1

1

1

1

1

1

1

1

1

1

1

1

1

2

1

1 1

1

2

2

2

1

1

2

1

1

1

1

2

2

2

1

1

1

1

1

1

1

1

1

1

1

1

2

1

1

2

1

2

1

1 2

1

2

1

2

1

1

2

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2

1

1

1

1

1

1

95 92 76

1

68 2

2

2

2

1

57

1

1

1

1

1

1

1

1

1

54

54

1

1

1

1

1

51

Daniel B. Montesinos-Tubée et al.

Solanum corneliomulleri

2

09.11.15 12:23


1

1

1

3

2

1

1

Tarasa tenuis Ephedra americana Crassula connata Facelis plumosa

4

2

2

1

1

1

2

3

2

1

1

1

1

1

1

1 1

1

1

1

Solanum medians

1

1

1

Aristida adscencionis

2

1

1

1

2

Fuertesimalva chilensis Tarasa rhombifolia

1

2

1

1

1

1

1

1

1

1

2

2

2

2

1

1

2

2

2

4

2

1

1

3

2

2

1

1

1

1

1

2

2

2

1

1

1

2

1

1

1

2

2

2

1

2

1

1

1

5

5

4

1

2

2

3

2

2

3

1

1

2

2

1

1

2

1

1

2

1

eschweizerbart_xxx

1

1

1

1

1

1

1

1

1

1

1

2

2

2

1

1

Tarasa rahmerii

4

4

1

1

1

1

1

2

2

1

1

1

2 1

1

1

2

3

3

1

1

2

1

1

41

1

1

41

1

1

1

38 35

1

30

24 4

2

2

3

2

3

3

1

24

24

1

1

1

1

1

1

1

1

1

1

1

22 22

2

1

22 22

2

2

2

1

2

2

2

22

2

2

1

2

22

1

1

2 2

1

1

1

1

2

1

1

2

2

19

19

1

16

2

16

1

1 4

4

3

4

1

2

16

4 3

1

1

2

1

Lobivia pampana 1

1

1

19 2

5

1

1

1

Senecio tovari

1

46 43

19

1

Oenothera rubida

2 2

1

2

1

Montiopsis cumingii

1 2

19

2 1

1 2

3

Woodsia montevidensis Cryptantha peruviana

1

2

3

2 2

2

1

1

2

2 2

2

2

Gnaphalium dombeyanum

2

51

1

1

3

Grindelia tarapacana

1

24

Vulpia myuros

1

4

27 1

1

1

4

1

1

1

3

3

3

1 4

2

27 1

Pellaea ternifolia

1

2

1

1

1

2

2

1

1

Galium aparine

3

1

1

Olsynium junceum

Tarasa sp.2

1

4

Gamochaeta purpurea

Pteromonnina macbridei

2

3

27

1

Eragrostis peruviana

Gnaphalium lacteum

3

1

Diplostephium meyenii

Nama dichotoma

2

3

2

2

Cheilanthes arequipensis

1

1

1 2

2

1

Descurainia myriophylla Solanum paposanum

2

16

2

3

3

2

1

14 14

Villanova oppositifolia

1

Cremolobus chilensis

1

1

1

2

1

1

1

14

1

11

Cuscuta cockerellii

2

3

2

3

11

Neuontobotrys lanata

4

3

3

2

11

Oenothera verrucosa

3

3

2

2

11

Poa asperiflora

1

2

3

3

11 1

2

1

1

11

247

09.11.15 12:23

Polyachyrus sphaerocephalus

Xerophytic plant communities after extreme rainfall in South Peru

phyto_45_3_203_250_montesinos_0023.indd 247

Spergularia fasciculata


2

Chenopodium petiolare

2

2

2

1

8

2

8

Mutisia lanigera

1

Senecio yurensis

2

2

2

2

5 5

2

2

5

Coreopsis fasciculata

2 2

1

2

5 5

Paronychia microphylla var. arequepensis

3

2

5

Calceolaria inamoena

2

Gamochaeta americana Solanum peruvianum

1

1

Conyza tunariensis

Muehlenbeckia hastulata

8

8 1

1

1

8 3

Bartsia serrata Erigeron bonariensis

1

2

Viguiera lanceolata

248

phyto_45_3_203_250_montesinos_0023.indd 248

Adiantum poiretii

2 1

3 3 3

Sites: 1–12 Quebrada Peral, Misti volcano slopes, Alto Selva Alegre district; 13–26 Cerro Pacheco, Misti volcano slopes, Alto Selva Alegre district; 27–29 El Viscachal, Polobaya district; 30–32 Cerro Los Andes, Cono Norte, Chachani volcano slopes, Yura district; 33–37 Chiguata, Chiguata district. eschweizerbart_xxx

Daniel B. Montesinos-Tubée et al.

09.11.15 12:23


Xerophytic plant communities after extreme rainfall in South Peru

249

Appendix 8. Aloysio spathulatae-Corryocactetum brevistyli. Relevé number

1

2

3

4

5

6

7

8

9

10

11

12

Area (m²)

64

64

64

64

64

64

64

64

64

64

64

64

Elevation (m a.s.l. / 10)

2

2

2

2

2

2

3

3

3

3

3

3

8

8

8

8

8

8

0

0

0

0

0

0

0

0

0

0

0

0

4

4

4

4

4

4

45

45

45

45

45

45

10

10

10

10

10

10

Slope (°) Aspect

N

N

N

N

N

N

N

N

N

N

N

N

Species richness

30

23

24

33

30

28

26

29

26

23

27

22

Opuntia sphaerica

2

2

2

2

2

2

5

4

5

4

4

4

100

Tarasa operculata

1

1

1

1

2

1

1

2 2

25

Character species of class and order

Corryocactus aureus

2

Ambrosia artemisioides

2

2

67

4

17

Corryocaction brevistyli Corryocactus brevistylus

5

5

5

4

4

5

4

5

4

4

5

4

100

Balbisia weberbaueri

4

2

3

3

4

2

3

2

4

3

4

2

100

Gochnatia arequipensis

4

4

4

5

6

6

Mulguraea arequipensis

5

5

5

5

5

5

100

5

5

5

5

5

5

50

Aloysio spathulatae-Corryocactetum brevistyli Senecio subcandidus

3

Aloysia spathulata Senna birostris var. arequipensis

2

2

3 2

3

3

2

4

4

3

1

3

3

3

3

3

92

4

2

4

4

3

67

1

2

2

50

oenotheretosum rubidae Pectocarya lateriflora

1

1

1

Oenothera rubida

1

1

1

Villanova oppositifolia

2

1

2

Kageneckia lanceolata

5

5

3

Lantana scabiosiflora

3

2

Heliotropium toratense

3

2

Croton ruizianus

4

4

4

Bomarea ovata

2

1

2

1

2

2

50

1

1

42

1

42

2

33

3

2

33 2

25 1

1

25

1

1

1

Nama dichotoma

1

1

1

2

2

Tigridia sp.

1

1

Chondrosum simplex

1

1

25 17

1 1

Gilia laciniata

1 1

1

17

1

17

1

17

1

Lupinus misticola

2 1

Solanum peruvianum Tecoma fulva subsp. arequipensis

25 25

1

Fuertesimalva chilensis

Solanum paposanum

25

2

Erigeron bonariensis

Grindelia tarapacana

25

2

Heterosperma diversifolium

Paronychia microphylla var. arequepensis

33 25

1 2

2

1

Cremolobus chilensis Gaya mollendoensis

1

17 2

17

2

17

2 3

2

17

3

17

adesmietosum augusti Pectocarya anomala Pellaea ternifolia

1 1

Adesmia augusti

2

Diplostephium meyenii

1

1

1

1

1

50

1

1

1

1

1

50

1

2

2

2

42

3

3

3

3

33

eschweizerbart_xxx

phyto_45_3_203_250_montesinos_0023.indd 249

09.11.15 12:23


250

Daniel B. Montesinos-Tubée et al.

Plantago linearis

1

1

Spergularia fasciculata

1

2

Austrocylindropuntia subulata

4

Poa asperiflora

1

1 2

4 2

33 1

33

5

25

1

2

25

2

1

2

1

1

1

Companions Bowlesia sodiroana

1

1

1

2

2

1

2

1

Tagetes multiflora

1

1

1

1

1

1

1

1

Eragrostis peruviana

2

3

2

1

2

2

1

2

1

2

3

1

1

2

1

1

1

2

Cheilanthes pruinata

2

2

2

2

2

1

2

2

2

Tarasa rahmerii

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

66

1

1

1

58

1

1

58

1

58

Aristida adscencionis

Drymaria divaricata Eragrostis nigricans Facelis plumosa

1

Mostacillastrum gracile

1

1

Lycianthes lycioides

3

2

Ephedra americana

1

2

2

1

1

1

1

1

1

2

2

2 3

3

1

1

1

1

42

1

1

1

1

42

1

1

1

1

75

3

Galium aparine

Gamochaeta americana

1

2 1

1

91 83

75

1

1

Portulaca pilosa

100

75

1

1

Galinsoga parviflora Pteromonnina macbridei

1

1

3

50 42

1 1

1

3

33 1

33 1

25

Sites: 1–6 Cerro Pajonal, Mollebaya district. 7–12 Pampa Culanayoc, Pocsi district. Other species: Cystopteris fragilis 2 in 5; Crassula connata, Paronychia setigera 1 in 6.

eschweizerbart_xxx

phyto_45_3_203_250_montesinos_0023.indd 250

09.11.15 12:23


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.