University of Alaska Building 7 Report

Page 121

Figure 4.20 Velocity comparison between Chandler measurement (green plotted line) and UAF simulation (red plotted line). Bold green trend line illustrates free fall. It should be noted that we conducted two separate simulations involving the failure of the core columns and exterior columns over 8 stories: One was the failure of all columns from Floor 12 to Floor 19; the second was the failure of all columns from Floor 6 to Floor 13. The two simulations were identical in terms of the downward velocity and acceleration of the northwest corner at the top of building. We therefore found that the collapse could have started at various floors. Based on our subsequent review of video footage, we found that Floor 16 is the uppermost floor where the collapse could have initiated, because the video shows Floor 17 to Floor 47 falling uniformly as a unit (see Figure 4.21 below). Although some floors below Floor 17 are somewhat visible in the video, it cannot be determined with confidence that they are falling as a unit with the floors above.

108


Turn static files into dynamic content formats.

Create a flipbook

Articles inside

REFERENCES

2min
pages 124-125

Figure 4.20 Velocity comparison between Chandler measurement (green plotted line) and UAF simulation (red plotted line). Bold green trend line illustrates free fall

1min
page 121

Figure 4.17 (a) Comparison of simulated collapse to perspective 1; (b) comparison of simulated collapse to perspective 2

0
page 119

2.7 Summary and Conclusion

0
page 86

3.2.2 Girder A2001 Web Stiffeners Prevent Flange Failure and Girder Walk-off

2min
pages 93-95

Table 2.3 Comparison of UAF and NIST Modeling

1min
page 87

4.6 Results of Core Column/Exterior Column Failure Analysis

0
page 118

2.6.2 ABAQUS Analysis

3min
pages 81-85

3.2.3 Lateral Support Beams Prevent Beam Buckling

2min
pages 96-99

2.6.1 SAP2000 Thermal Deformation Analysis

4min
pages 77-80

Figure 2.36 Modeling process for a beam to girder shear connector, “STC.”

0
page 66

Table 2.1 Column loading for the Floor 12 and 13 assembly

1min
page 57

Figure 2.21 SAP2000 model of entire WTC 7 without roof

0
page 54

Figure 2.24 Column number layout of Floor 13 (NIST, 2008, NCSTAR 1A

0
page 56

Figure 2.26 Small section of typical floor slab of WTC 7 with finer meshing

1min
page 59

Figure 2.29 Plan View: Model of floor slabs in strong direction (parallel to flutes

0
page 61

Figure 2.46 Seated moment connection of exterior girders to exterior columns ABAQUS model

0
page 72

2.2 Solid Works Modeling

1min
page 45

2.1.3 Background Studies

1min
page 39

1.5.3 Approach 3: Simulating the Collapse of WTC 7

0
page 36

Figure 2.5 Area of floor where connection failure was modeled by NIST

1min
page 43

1.5.2 Approach 2: Evaluation of NIST’s Collapse Initiation Hypothesis

1min
page 35

Figure 2.6 Progressive collapse separated into two parts

1min
page 44

Figure 2.3 Approach used to model buckled beams in LS-DYNA model (NIST, 2008, NCSTAR 1-9, Vol. 2

1min
pages 41-42

1.4.3 Arup and Nordenson, April 2010

2min
page 33

Figure E.3 Finite Element Model of WTC7 in SAP2000, as viewed from the south

0
page 20

Figure 1.6 WTC 7 was in free fall for approximately 2.25 seconds over a distance of approximately 8 stories or 32.0 meters (NIST, 2008, NCSTAR 1A

0
page 25

EXECUTIVE SUMMARY

2min
page 14

2.2 Hypothetical Failure Mechanisms for West Penthouse and North Face Roofline

5min
pages 17-19

Figure 1.4 WTC 7 tenants on September 11, 2001 (FEMA, 2002

0
page 23

Figure 1.9 WTC 7 steel frame building geometry prior to its collapse (FEMA, 2002

1min
page 27

Figure 1.5 The collapse of WTC 7 at 5:20 PM (source unknown

1min
page 24

1.4.2 National Institute of Standards and Technology, November 2008

2min
page 30
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.