University of Alaska Building 7 Report

Page 14

EXECUTIVE SUMMARY This report presents the findings and conclusions of a four-year study of the collapse of World Trade Center Building 7 (WTC 7) — a 47-story building that suffered a total collapse at 5:20 PM on September 11, 2001, following the horrible events of that morning. Figure E.1 shows the layout of WTC 7 in relation to the World Trade Center complex prior to September 11, 2001. Figure E.2 shows the structural layout of Floor 13. Figure E.3 shows the finite element model of WTC 7. This study was conducted by a three-person team of researchers at the University of Alaska Fairbanks (UAF) Department of Civil and Environmental Engineering with funding provided by Architects & Engineers for 9/11 Truth, Inc., a 501(c)(3) nonprofit organization whose purpose is to conduct research and educate the public about the World Trade Center building collapses on 9/11. According to the National Institute of Standards and Technology (NIST) — an agency of the U.S. Department of Commerce that investigated the three building failures on 9/11 — the collapse of WTC 7 was the first known instance of the total collapse of a tall building primarily due to fires. However, many independent researchers have studied the collapse of WTC 7 and assembled a body of evidence that raises questions about the validity of NIST’s conclusions. The objective of this study, therefore, was threefold: (1) Examine the structural response of WTC 7 to fire loads that may have occurred on September 11, 2001; (2) Rule out scenarios that could not have caused the observed collapse; and (3) Identify types of failures and their locations that may have caused the total collapse to occur as observed. The UAF research team utilized three approaches for examining the structural response of WTC 7 to the conditions that may have occurred on September 11, 2001. First, we simulated the local structural response to fire loading that may have occurred below Floor 13, where most of the fires in WTC 7 are reported to have occurred. Second, we supplemented our own simulation by examining the collapse initiation hypothesis developed by NIST. We also reviewed the collapse initiation hypotheses advanced by private engineering firms whose studies were commissioned as part of litigation related to the collapse of WTC 7. Third, we simulated several scenarios within the overall structural system in order to determine what types of local failures and their locations may have caused the total collapse to occur as observed. Before conducting a thorough and detailed evaluation of building response due to fire 1


Turn static files into dynamic content formats.

Create a flipbook

Articles inside

REFERENCES

2min
pages 124-125

Figure 4.20 Velocity comparison between Chandler measurement (green plotted line) and UAF simulation (red plotted line). Bold green trend line illustrates free fall

1min
page 121

Figure 4.17 (a) Comparison of simulated collapse to perspective 1; (b) comparison of simulated collapse to perspective 2

0
page 119

2.7 Summary and Conclusion

0
page 86

3.2.2 Girder A2001 Web Stiffeners Prevent Flange Failure and Girder Walk-off

2min
pages 93-95

Table 2.3 Comparison of UAF and NIST Modeling

1min
page 87

4.6 Results of Core Column/Exterior Column Failure Analysis

0
page 118

2.6.2 ABAQUS Analysis

3min
pages 81-85

3.2.3 Lateral Support Beams Prevent Beam Buckling

2min
pages 96-99

2.6.1 SAP2000 Thermal Deformation Analysis

4min
pages 77-80

Figure 2.36 Modeling process for a beam to girder shear connector, “STC.”

0
page 66

Table 2.1 Column loading for the Floor 12 and 13 assembly

1min
page 57

Figure 2.21 SAP2000 model of entire WTC 7 without roof

0
page 54

Figure 2.24 Column number layout of Floor 13 (NIST, 2008, NCSTAR 1A

0
page 56

Figure 2.26 Small section of typical floor slab of WTC 7 with finer meshing

1min
page 59

Figure 2.29 Plan View: Model of floor slabs in strong direction (parallel to flutes

0
page 61

Figure 2.46 Seated moment connection of exterior girders to exterior columns ABAQUS model

0
page 72

2.2 Solid Works Modeling

1min
page 45

2.1.3 Background Studies

1min
page 39

1.5.3 Approach 3: Simulating the Collapse of WTC 7

0
page 36

Figure 2.5 Area of floor where connection failure was modeled by NIST

1min
page 43

1.5.2 Approach 2: Evaluation of NIST’s Collapse Initiation Hypothesis

1min
page 35

Figure 2.6 Progressive collapse separated into two parts

1min
page 44

Figure 2.3 Approach used to model buckled beams in LS-DYNA model (NIST, 2008, NCSTAR 1-9, Vol. 2

1min
pages 41-42

1.4.3 Arup and Nordenson, April 2010

2min
page 33

Figure E.3 Finite Element Model of WTC7 in SAP2000, as viewed from the south

0
page 20

Figure 1.6 WTC 7 was in free fall for approximately 2.25 seconds over a distance of approximately 8 stories or 32.0 meters (NIST, 2008, NCSTAR 1A

0
page 25

EXECUTIVE SUMMARY

2min
page 14

2.2 Hypothetical Failure Mechanisms for West Penthouse and North Face Roofline

5min
pages 17-19

Figure 1.4 WTC 7 tenants on September 11, 2001 (FEMA, 2002

0
page 23

Figure 1.9 WTC 7 steel frame building geometry prior to its collapse (FEMA, 2002

1min
page 27

Figure 1.5 The collapse of WTC 7 at 5:20 PM (source unknown

1min
page 24

1.4.2 National Institute of Standards and Technology, November 2008

2min
page 30
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.