˝≤+>¥ »+|t #˚j·T+&ç˝≤
|òæõø£˝Ÿ f…dtº áyÓ+{Ÿ‡˝À ˝≤+>¥ »+|t #ê˝≤ eTTK´yÓTÆq~. ˝≤+>¥ C…+|tqT $esê\T 16`17 ù|J˝À düTHêj·÷dü+>± #˚j·T&ÜìøÏ düT\TyÓ’q f…øÏïø˘ @+{À ‘Ó\TdüT≈£î+<ë+..
JEE MAIN CHEMISTRY TOPIC WISE AND YEAR WISE ANALYSIS
16`17 ù|J˝À
SEETHARAMAIAH, CHAIRMAN IMPULSE EDUCATIONAL INSTITUTIONS,
k˛eTyês¡+ 29 nø√ºãsY 2018
X¯øÏÔ eqs¡T\T C≤Á>∑|ò”- 9
mdt◊ / ø±ìùdºãT˝Ÿ, ÄsY|”m|òt
ôdŒwü˝Ÿ 19, 21˝À
22 ˝À
H√{Ï|òæπøwüHé
Ç+f…*C…Hé‡ ã÷´s√˝À ñ<√´>±\T
1054
sêe÷q+<ä rs¡ú ø√s¡T‡\≈£î ÄVü‰«q+ 12 ˝À
12 ˝À
JEE MAIN MODEL PAPER-2 15 ˝À
12
Ä+Á<ÛäÁ|üuÛÑ
$<ë´Á|üuÛÑ
A N D H b˛{° R A|üØP ø£å\ Á|Rü‘˚´ø£A+ B H A kÕÿ\sYwæ|t\T
H√{Ï|òæπøwüHé‡
Ç+f…*C…Hé‡ ã÷´s√˝À 1054 b˛düTº\T ˳ØLRi»R½ x¤¦Ü[Li ª«sVLiú¼½»R½* aSÅÁ Aµ³R¶*LRiùLiÍÜ[ ®µ¶[aRPªyùxmsòLigS D©«sõ −s−sµ³R¶ xqsÕÁ=²R¶Lki BLiÛÉÁÖÁÛÇÁ©±s= ÊÁWùL][ÍýÜ[ 1054 |qsNRPWùLjiÉÔÁ @zqs|qsíLiÉÞ F¡xqsíVÌÁ ˳ÏÁLkiòNTP |qsNRPWùLjiÉÔÁ @zqs|qsíLiÉÞ/FsgêjiNRPWùÉÓÁª±s FsgêSª±sV c 2018 úxmsNRPÈÁ©«s −s²R¶VµR¶ÌÁ ¿P[aSLRiV. ®ªsVV»R½òLi F¡xqsíVÌÁV : ¾»½ÌÁVgRiV LSúuíyÌÁNRPV xqsLiÊÁLiµ³j¶LiÀÁ −sÇÁ¸R¶Vªy²R¶ÍÜ[ 20, \|¤¦¦¦µR¶LSËص`¶ÍÜ[ 36 @L>Ri»R½ : xmsµ][ »R½LRigRi¼½ D¼d½òLñRi»R½. @˳ÏÁùLóji µR¶LRiÆØxqsVò ¿P[xqsVNRPV®©s[ ÊÁWùL][NTP xqsLiÊÁLiµ³j¶LiÀÁ©«s úFyLi¼d½¸R¶V
¬øqsê u≤´+ø˘˝À 800 |”y√ b˛düTº\T
˳ØxtsQ©«sV ¿RÁµR¶ª«s²R¶Li, LS¸R¶V²R¶Li, ª«sWÉýزR¶²R¶Li »R½xmsö¬sxqsLji. ª«s¸R¶VxqsV : 27 GÎÏÁþNRPV −sVLi¿RÁNRPW²R¶µR¶V. Fs{qs=, Fs{qsíÌÁNRPV H®µ¶[ÎÏÁVþ, JÕdÁ{qsÌÁNRPV ª«sVW®²¶[ÎÏÁVþ gRiLjixtsíQ ª«s¹¸¶WxmsLji−sV¼½ xqs²R¶ÖÁLixmso DLiÈÁVLiµj¶. FsLizmsNRP −sµ³y©«sLi : lLiLi²R¶Li¿ÁÌÁ LS»R½ xmsLkiORPQ, BLiÈÁLRiWù*/xmsLRi=©yÖÁÉÔÁ ÛÉÁ£qsí µy*LS. µR¶LRiÆØxqsVò −sµ³y©«sLi : A©±s\ÛÍÁ©±sÍÜ[ µR¶LRiÆØxqsVò {mnsÇÁÙ : ÇÁ©«sLRiÍÞ, JÕdÁ{qsNTP ¿ÁLiµj¶©«s xmsoLRiVxtsQ @˳ÏÁùLóRiVÌÁNRPV LRiW.50, Fs{qs=, Fs{qsí, FsN`P= xqsLki*£qs®ªsV©±s, ª«sVz¤¦¦¦ÎÏÁÌÁNRPV DÀÁ»R½Li. µR¶LRiÆØxqsVòNRPV ÀÁª«sLji ¾»½[µk¶ : ©«sª«sLiÊÁL`i 10, 2018 {mnsÇÁ٠¿ÁÖýÁLi¿RÁVÈÁNRPV ÀÁª«sLji ¾»½[µk¶ : ©«sª«sLiÊÁL`i 13, 2018 ®ªsËÞ\|qsÉÞ : www.ncs.gov.in sÈÁõLi, −sÇÁ¸R¶V©«sgRiLRiLi. ¾»½ÌÁLigSßá : \|¤¦¦¦µR¶LSËص`¶, NRPLkiLi©«sgRiL`i, ÅÁª«sVøLi, ª«sLRiLigRiÍÞ ®ªsËÞ\|qsÉÞ : www.canarabank.com
mHém˝Ÿd” Ç+&çj·÷ *$Tf…&é˝À 635 b˛düTº\T ZNP©«sLSËØùLiN`P Fs¬s−sVµj¶ ª«sLiµR¶ÌÁ {msª¯[ F¡xqsíVÌÁ ˳ÏÁLkiòNTP ©¯[ÉÓÁ zmnsZNP[xtsQ©±s ÇØLki ¿P[zqsLiµj¶. FsLizms\ZNP©«s @˳ÏÁùLóRiVÌÁV ª«sVßÓáFyÍÞ gý][ÊÁÍÞ Fs²R¶VùZNP[xtsQ©±s xqsLki*|qs£qsc ÛËÁLigRiVÎÏÁ¨LRiV ÛÍÁ[µy Fs©±sHÉÔÁÉÔÁC Fs²R¶VùZNP[xtsQ©±s BLiÈÁlLi[õxtsQ©«sÍÞcúlgi[ÈÁL`i ©¯[LiVV²yÍýÜ[ Gµ][ INRP ¿][ÈÁ G²yµj¶ FyÈÁV F¡xqsíV úgS²R¶Vù¹¸¶[VÉÞ ²T¶Fý~ª«sW B©±s ËØùLiNTPLig`i @Li²`¶ \|mns©y©±s= N][L`i= ¿RÁµR¶ªyÖÁ. N][LRiV= xmspLRiòLiVV©«s »R½LS*»R½ úF~ÛËÁ[xtsQ©«sLki A{mnsxqsL`i x¤¦Ü[µy»][ ZNP©«sLS ËØùLiN`PÍÜ[NTP ¼d½xqsVNRPVLiÉØLRiV. F¡xqsíVÌÁV : 800 ÇÁ©«sLRiÍÞ c 404, JÕdÁ{qsc 216,Fs{qs=c120, Fs{qsíc60 @L>Ri»R½ : 60 aS»R½Li ª«sWLRiVäÌÁ»][ G\®µ¶©y ²T¶úgki D¼d½òLñRi»R½. (Fs{qs=, Fs{qsí, µj¶ªyùLigRiVÌÁNRPV 55 aS»R½Li ª«sWLRiVäÌÁV) ª«s¸R¶VxqsV : @Ní][ÊÁL`i 1, 2018 ©yÉÓÁNTP 20 ©«sVLiÀÁ 30 GÎýÏÁ ª«sVµ³R¶ù DLi²yÖÁ. (LjiÇÁlLi[*xtsQ©±s ª«sLjiòxqsVòLiµj¶) FsLizmsNRP: A©±s\ÛÍÁ©±s AÛËêÁNíTPª±s ÛÉÁ£qsí, úgRiW£ms ²T¶xqsäxtsQ©± , BLiÈÁ LRiW*ù µy*LS.. µR¶LRiÆØxqsVò : A©±s\ÛÍÁ©±sÍÜ[.. ÀÁª«sLji¾»½[µj¶ : ©«sª«sLiÊÁL`i 13, 2018 xmsLkiORPQ¾»½[µj¶ : ²T¶|qsLiÊÁL`i 23, 2018 xmsLkiORPQ ZNP[LiúµyÌÁV : ALiúµ³R¶úxms®µ¶[a`Pc ÀdÁLSÌÁ, ÀÁ»R½WòLRiV, GÌÁWLRiV, gRiVLiÈÁWLRiV, NRP²R¶xms, NSNTP©y²R¶, NRPLRiWõÌÁV, ®©sÌýÁWLRiV, ILig][ÌÁV, LSÇÁª«sVLiú²T¶, úbdPNSNRPVÎÏÁLi, ¼½LRiVxms¼½, −sÇÁ¸R¶Vªy²R¶, −saSÅÁxm-
»R½−sVÎÏÁ©y²R¶VÍÜ[¬s ©«sª«sLRi»R½õ x¤¦Ü[µy NRPÖÁgji©«s Fs©±sFsÍÞ{qs BLi²T¶¸R¶W ÖÁ−sVÛÉÁ²`¶, @©«sVÊÁLiµ³R¶ −s˳ØgSÍýÜ[ ÆØ×dÁgS D©«sõ 635 ÛÉÁNUPõztsQ¸R¶V©±s @ú|msLiÉÔÁ£qs, úgS²R¶Vù¹¸¶[VÉÞ ÆØ×dÁÌÁ ˳ÏÁLkiòNTP µR¶LRiÆØxqsVòÌÁV N][LRiV»][Liµj¶.
F¡xqsíVÌÁ −sª«sLSÌÁV : 1. ÛÉÁNUPõztsQ¸R¶V©±s @ú|msLiÉÔÁ£qs ú\ÛÉÁ¬sLig`ic335 @L>Ri»R½ : gRiVLjiòLixmso F~Liµj¶©«s ËÜLïRiV/xqsLixqsó ©«sVLiÀÁ xqsLiÊÁLiµ³j¶»R½ BL ÇÁ¬dsLjiLig`i xqsÛËêÁNíRPVÍÜ[ NRP¬dsxqsLi 55 aS»R½Li (Fs{qs=, Fs{qsíÌÁNRPV 50 aS»R½Li) ª«sWLRiVäÌÁ»][ ª«sVW®²¶[ÎýÏÁ ²T¶Fý~ª«sW D¼d½òLñRi»R½. 2. úgS²R¶Vù¹¸¶[VxtsQ©±s @ú|msLiÉÔÁ£qs ú\ÛÉÁ¬sLig`ic 300 @L>Ri»R½ : gRiVLjiòLixmso D©«sõ ËÜ[LïRiV ©«sVLiÀÁ xqsLiÊÁLiµ³j¶»R½ −s˳ØgRi LiÍÜ[ NRP¬dsxqsLi 55 aS»R½Li (Fs{qs=, Fs{qsíÌÁNRPV 50 aS»R½Li) ª«sWLRiVäÌÁ»][ BL ÇÁ¬dsLjiLig`i ²T¶úgki D¼d½òLñRi»R½. FsLizmsNRP : G{ms, ¾»½ÌÁLigSßá, ZNP[LRiÎÏÁ, NRPLSõÈÁNRP, »R½−sVÎÏÁ©y²R¶V, xmsoµR¶V¿P[èLji, ÌÁORPQµk¶ª«soÌÁV úFyLi»yÌÁNRPV ¿ÁLiµj¶©«s @˳ÏÁùLóRiVÌÁ©«sV @NRP²R¶−sVN`P ª«sWLRiVäÌÁV»][ FyÈÁV BLiÈÁLRiW*ù Aµ³yLRiLigS.. µR¶LRiÆØxqsVò : A©±s\ÛÍÁ©±sÍÜ[ ÀÁª«sLji¾»½[µj¶ : @Ní][ÊÁL`i 25, 2018 ®ªsËÞ\|qsÉÞ : www.nlcindia.com
sêe÷q+<ä rs¡ú ø√s¡T‡\≈£î ÄVü‰«q+ ¾»½ÌÁLigSßáÍÜ[¬s úgS−dsVßá ¬sLRiVµ][ùgRi ¸R¶VVª«s¼d½ ¸R¶VVª«s NRPVÌÁNRPV DÀÁ»R½ bPORPQßác¥¦¦¦xqsíÍÞc˳Ü[ÇÁ©«s ª«sxqs¼½»][ FyÈÁV DFyµ³j¶ Aµ³yLji»R½ ryLiZNP[¼½NRP bPORPQßá NSLRiùúNRPª«sWÌÁNRPV @L>Ri»R½ ª«sVLji¸R¶VV AxqsNTPò gRiÌÁ @˳ÏÁùLóRiVÌÁ ©«sVLiÀÁ ry*−sV LSª«sV©«sLiµR¶ ¼d½LóRi LRiWLRiÍÞ B¬szqsíÈÁWùÉÞ µR¶LRiÆØxqsVòÌÁV N][LRiV»][Liµj¶. @L>Ri»R½ÌÁV : úgS−dsVßá @˳ÏÁùLóRiVÌÁV @LiVV DLi²yÖÁ. ( ¿RÁµR¶Vª«so ª«sVµ³R¶ùÍÜ[ D©«sõ ªyLRiV @L>RiVÌÁV NSµR¶V) ª«s¸R¶VxqsV : 18 ©«sVLiÀÁ 35 GÎýÏÁ ª«sVµ³R¶ù DLi²yÖÁ. Bµj¶ ª«sLRiZNP[ AL`i\®ªsZNP[/L][ztsQ¬ds/²T¶²T¶¸R¶VWÒÁ|¤¦¦¦¿`ÁZNP[\®ªs xms´R¶NSÌÁ µy*LS bPORPQßá F~Liµj¶©«sªyLRiV @L>RiVÌÁV NSLRiV. bPORPQßá
xmspLRiòLiVV©«sªyLRiV Dµ][ùgRiLi ¿P[¸R¶VVÈÁNRPV zqsµôðR¶LigS DLi²yÖÁ. NSª«sÌÁzqs©«s xmsú»yÌÁV : @L>Ri»R½ÌÁ ILjiÑÁ©«sÍÞ xqsLíjizmnsZNPÉÞ= ª«sVLji¸R¶VV ÑÁLSN``P= |qsÉÞ, Fy£qsF¡Lí`i Fn¡ÉÜ[, Aµ³yL`i NSLïRiV, lLi[xtsQ©±s NSLïRiVÌÁ»][ FyÈÁV LRiW. 250ÌÁ LjixmnsLi²R¶ÊÁVÍÞ ²T¶FyÑÁÉÞ Â¿ÁÖýÁLi¿yÖÁ. ÀÁª«sLji¾»½[µj¶ : ©«sª«sLiÊÁL`i 1, 2018©«s DµR¶¸R¶VLi 10gRiLiÈÁÌÁNRPV xqsLixqsóÍÜ[ ¥¦¦¦ÇÁLRiV NSªyÖÁ. B»R½LRi −sª«sLSÌÁNRPV : 9133908000, 9133908111, ÑÁÍýØ ²T¶AL`i²T¶G A{mns£qsÍÜ[gRiÌÁ ÇØËÞ ²T¶úzqsíN`P ®ªs[V®©s[ÇÁL`i©«sV xqsLiúxmsµj¶Li¿RÁgRiÌÁLRiV.
k˛eTyês¡+ 29 nø√ºãsY 2018
úxms¼½Ë³Øª«sLi»R½V\ÛÍÁ©«s −sµyùLóRiVÌÁV D©«sõ»R½ ¿RÁµR¶Vª«soÌÁV ¿RÁµR¶Vª«soNRPV®©s[LiµR¶VNRPV úF¡»y=x¤¦¦¦NRPLigS −s−sµ³R¶ xqsLixqsóÌÁV @Liµj¶Li¿P[ ryäÌÁL`iztsQ£msÌÁ −sª«sLSÌÁV..
1. ÉØÉØ úÈÁ£qsí D®ªsV©±s ryäÌÁL`iztsQ£ms xmnsL`i ©«sWùL][\|qs©±s= 2018c19 ©«sWùL][\|qs©±s=ÍÜ[ F¡£qsí úgS²R¶Vù¹¸¶[VxtsQ©±s ¿P[}qsLiµR¶VNRPV AxqsNTPò NRP©«sxmsLji¿P[ ª«sVz¤¦¦¦ÎØ @˳ÏÁùLóRiVÌÁNRPV ÉØÉØ úÈÁ£qsí ryäÌÁL`iztsQ£msÌÁ©«sV @Liµj¶r¡òLiµj¶. ZNP[ÈÁgjiLji : úxms¼½Ë³ÏÁ Aµ³yLRiLigS.. @L>Ri»R½ : xqsLiÊÁLiµ³j¶»R½ úgS²R¶Vù¹¸¶[VxtsQ©±sÍÜ[ 60 aS»R½Li ª«sWLRiVäÌÁV F~Liµj¶©«s ª«sVz¤¦¦¦ÎØ @˳ÏÁùLóRiVÌÁV ª«sWú»R½®ªs[V @L>RiVÌÁV. ú\|msÛÇÁ£qs @Li²`¶ LjiªyLï`i= : FsLizms\ZNP©«s ªyLjiNTP ÈÁWùxtsQ©±s {mnsÇÞ»][ FyÈÁV xqsLiÊÁLiµ³j¶»R½ Å LRiVèÌÁV @Liµj¶ryòLRiV. ÀÁª«sLji¾»½[µj¶ : ©«sª«sLiÊÁL`i 5, 2018 µR¶LRiÆØxqsVò : A©±s\ÛÍÁ©±sÍÜ[
−sª«sLSÌÁNRPV ®ªsËÞ\|qsÉÞ :
http://www.b4s.in/andhra/TTW1
2. NSÛÍÁ[ÇÞ ËÜ[Lï`i BLi²T¶¸R¶W ryäÌÁL`iztsQ£ms úF¡úgSª±sV ˳ØLRi»`½ÍÜ[ ¸R¶VW¬sª«sLji=ÉÔÁ @²T¶øxtsQ©±s N][xqsLi Fs£qs.Fs.ÉÓÁ ²T¶|qsLiÊÁL`i 2018 N]LRiNRPV AxqsNTPò D©«sõ @˳ÏÁùLóRiVÌÁNRPV C ryäÌÁL`iztsQ£msÌÁV @Liµj¶ryòLRiV.
: BLi²T¶¸R¶V©±s zqsÉÓÁÇÁ©±s @LiVV DLi²yÖÁ. ªyL<jiNRP NRPVÈÁVLiÊÁ Aµy¸R¶VLi LRiW. 6 ÌÁORPQÌÁ NRPLiÛÉÁ[ »R½NRPVä
@L>Ri»R½
ª«s NRPÖÁgji 12 ª«s»R½LRigRi¼½ ¿RÁµR¶Vª«so»R½V©«sõ ªyLRiV @L>RiVÌÁV. @˳ÏÁùLóRiVÌÁ ªyL<jiNRP NRPVÈÁVLiÊÁ Aµy¸R¶VLi LRiW. 4 ÌÁORPQÌÁ NRPLiÛÉÁ[ »R½NRPV䪫sgS DLi²T¶ ryÉÞÍÜ[ úxms¼½Ë³ÏÁ ¿RÁWzms DLiÛÉÁ[ ªyLjiNTP xmspLjiò NSÛÍÁ[ÒÁ ÈÁWùxtsQ©±s ryäÌÁL`iztsQ£ms @Liµj¶ryòLRiV.
ú\|msÛÇÁ£qs ª«sVLji¸R¶VV LjiªyLï`i=: FsLizms\ZNP©«s @˳ÏÁùLRiVóÌÁNRPV LRiW. 7®ªs[ÌÁV ryäÌÁL`iztsQ£msgS @Liµj¶ryòLRiV. ÀÁª«sLji¾»½[µj¶ : ©«sª«sLiÊÁL`i 2, 2018 µR¶LRiÆØxqsVò
: A©±s\ÛÍÁ©±sÍÜ[
−sª«sLSÌÁNRPV ®ªsËÞ\|qsÉÞ :
http://www.b4s.in/andhra/CBI1
3. ÉØÉØ úÈÁ£qsí ryäÌÁL`iztsQ£ms xmnsL`i {qsö¿`Á ®´¶LRi{ms 2018c19 {qsö¿`Á ®´¶LRi{msÍÜ[ F¡£qsí úgS²R¶Vù¹¸¶[VÉÞ Â¿P[}qsLiµR¶VNRPV AxqsNTPò D©«sõ @˳ÏÁùLóRiVÌÁNRPV ÉØÉØ úÈÁ£qsí ryäÌÁL`izts£ms©«sV @Liµj¶r¡òLiµj¶. {qsö¿`Á ®´¶LRi{ms xqsLiÊÁLiµ³j¶»R½ N][LRiV=ÌÁV @LiVV©«s {qs=¿`Á @Li²`¶ z¤¦¦¦¸R¶VLjiLig`i, A²T¶¸R¶WÌÁÒÁ ª«sVLji¸R¶VV {qs=¿`Á ÍØLilgi[*ÇÞ Fy´yÌÁÒÁ, A²T¶¹¸¶W {qsö¿`Á ®´¶LRi{ms, {qsö¿`Á ÍØLilgi[*ÇÞ Fy´yÌÁÒÁ @Li²`¶ A²T¶¸R¶WÌÁÒÁ xqsLiÊÁLiµ³j¶»R½ úF~úgSª±sV=ÌÁÍÜ[ G\®µ¶©y ˳ØLRi¼d½¸R¶V −sµyù xqsLixqsóÌÁ {msÒÁ ¿P[¸R¶VVÈÁNRPV AxqsNTPò D©«sõªyLjiNTP ryäÌÁL`iztsQ£ms©«sV @Liµj¶ryòLRiV. ZNP[ÈÁgjiLji : úxms¼½Ë³ÏÁ Aµ³yLRiLigS @L>Ri»R½ : úgS²R¶Vù¹¸¶[VxtsQ©±s ²T¶úgkiÍÜ[ 60 aS»R½Li ª«sWLRiVäÌÁV NRPÖÁgji {qsö¿`Á ®´¶LRi{ms xqsLiÊÁLiµ³j¶»R½ N][LRiV=ÌÁÍÜ[ AxqsNTPò NRPÖÁgji©«s ªyLRiV @L>RiVÌÁV. ®ªsVVµR¶ÉÓÁ ÛÍÁ[µy lLiLi²R¶ª«s xqsLiª«s»R½=LRiLiÍÜ[ Fs©±sL][ÍÞ Â¿P[xqsVNRPV©«sõ −sµyùLóRiVÌÁV NRPW²y @|msý^ ¿P[xqsVN][ª«s¿RÁVè. µR¶LRiÆØxqsVò : A©±s\ÛÍÁ©±sÍÜ[.. ú\|msÛÇÁ£qs @Li²`¶ LjiªyLï`i= : FsLizmsNRP @LiVV©«s ªyLjiNTP C {qs䪱sV NTPLiµR¶ xmsoLRiVxtsQVÌÁNRPV ®©sÌÁNRPV LRiW. 2000 ª«sVLji¸R¶VV ú{qsQòÌÁNRPV LRiW. 2250 @Liµj¶ryòLRiV.
ÀÁª«sLji¾»½[µj¶ : @Ní][ÊÁL`i 15, 2018 −sª«sLSÌÁNRPV ®ªsËÞ\|qsÉÞ : http://www.b4s.in/andhra/PMS50 www.buddy4study.com / Call:08448709545, 08527484563
r¢ÇÁ©«sùLi»][..
bPORPQßá NSLRiùúNRPª«sWÌÁV
NSÌÁxmsLji−sV¼
@L>Ri»R½
AÉÜ[®ªsVV\ÛËÁÍÞ c2, 3 −dsÌÁL`i xqsLki*zqsLig`i
ª«sVW²R¶V ®©sÌÁÌÁV
xmsµR¶ª«s »R½LRigRi¼½ Fy£qs
FsÌÁúNíS¬sN`P ª«sxqsVòª«soÌÁV (|qsÍÞFn¡©±s...)
ª«sVW²R¶V ®©sÌÁÌÁV
xmsµR¶ª«s »R½LRigRi¼½ Fy£qs
FsÌÁúNíUPztsQ¸R¶V©±s (²]®ªsVzqsíN` )
©yÌÁVgRiV ®©sÌÁÌÁV
xmsµR¶ª«s »R½LRigRi¼½ Fy£qs
²T¶ÉÔÁ{ms ª«sVLji¸R¶VV úzmsLiÉÞ xmsÕýÁztsQLig`i @zqs|qsíLiÉÞ
ª«sVW²R¶V ®©sÌÁÌÁV
BLiÈÁLkiø²T¶¸R¶VÉÞ Fy£qs
FsN_LiÉÞ @zqs|qsíLiÉÞ= (ÉØùÖdÁ)
ª«sVW²R¶V ®©sÌÁÌÁV
ÕdÁNSª±sV Fy£qs
NRPLixmspùÈÁL`i ¥¦¦¦Lï`i®ªs[L`i @zqs|qsíLiÉÞ
ª«sVW²R¶V ®©sÌÁÌÁV
BLiÈÁLkiø²T¶¸R¶VÉÞ Fy£qs
r¡ÍØL`i zqsxqsíª±sV B¬sríyÛÍýÁ[xtsQ©±s, xqsLki*£qs
ª«sVW²R¶V ®©sÌÁÌÁV
BLiÈÁLkiø²T¶¸R¶VÉÞ Fy£qs/HÉÔÁH
\ÛÉÁÌÁLjiLig`i ®ªsVztsQ©±s AxmslLi[ÈÁL`i
ª«sVW²R¶V ®©sÌÁÌÁV
G²R¶ª«s »R½LRigRi¼½ Fy£qs/|mnsLiVVÍÞ
k˛eTyês¡+ 29 nø√ºãsY 2018
A N D H R A Pb˛{°R|üA B H A Øø£å\ Á|ü‘˚´ø£+ k˛ŒsY º ‡ $»j·YT Vü≤C≤πs Á{À|ò” $CÒ‘· eTT+u…’ −sÇÁ¸º¶V x¤¦¦¦ÇØlLi[ úÉÜ[{mns −sÛÇÁ[»R½gS ª«sVVLi\ÛËÁ úNTPZNPÉÞ ÇÁÈíÁV ¬sÖÁÀÁLiµj¶. ÛËÁLigRiÎÏÁ¨LRiVÍÜ[¬s ÀÁ©«sõry*−sV }qsí²T¶¸R¶VLiÍÜ[ C ®©sÌÁ 20©«s ÇÁLjigji©«s \|mns©«sÍýÜ[ ª«sVVLi\ÛËÁ 4−sZNPÈýÁ ¾»½[²y»][ ²³T¶ÖýdÁ\|ms −sÇÁ¸R¶VLi ryµ³j¶LiÀÁLiµj¶. µk¶Li»][ ª«sVVLi\ÛËÁ Jª«sLSÍÞgS C úÉÜ[{mns¬s xmsµ][ryLji µR¶NTPäLi¿RÁVNRPV©«sõµj¶.
j·T÷mdt Á>±+&éÁ|æ $CÒ‘·>± øÏMT ¬s’ø√HÓHé ¸R¶VWFs©±s úgSLi²`¶úzms lLi[xqsV −sÛÇÁ[»R½gS |mnsLSLki ú\®²¶ª«sL`i NTP−dsV \lLiN][®©s©±s ¬sÖÁ¿y²R¶V. @®ªsVLjiNSÍÜ[¬s Azqsí©±sÍÜ[ C ®©sÌÁ 22©«s ÇÁLjigji©«s C lLi[xqsVÍÜ[ 56 ÍØù£msÌÁ lLi[xqsV©«sV @LiµR¶LjiNRPLiÛÉÁ[ ®ªs[gRiLigS \lLiN][®©s©±s 1 gRiLiÉØ 34 ¬s−sVuyÌÁ 18.643 |qsNRP©«sýÍÜ[ xmspLjiò ¿P[zqs −sÇÁ¸R¶VLi ryµ³j¶Li¿yLRiV. C lLi[xqsVÍÜ[ lLi²`¶ÊÁVÍÞ ú\®²¶ª«sL`i ®ªsL`iríy|ms©±s lLiLi²][ róy©«sLiÍÜ[ ¬sÌÁVª«sgS ®ªsVLji=®²¶£qs ú\®²¶ª«sL`i ÌÁWLiVV£qs ¥¦¦¦−sVÌíÁ©±s ª«sVW²][róy©«sLi µR¶NTPäLi¿RÁVNRPV©yõLRiV.
cÕ+ô|òTÆ zô|Hé #Ódt {À]ï $CÒ‘· \*‘Y uyLi\|mnsV J|ms©±s @Li»R½LêS¼d½¸R¶V ¿Á£qs ÉÜ[LRiõ®ªsVLiÉÞ −sÛÇÁ[»R½gS ALiúµ³R¶úxms®µ¶[a`P úgSLi²`¶ ª«sWxqsíL`i FsLi.AL`i. ÌÁÖÁ»`½ ËØÊÁV ¬sÖÁ¿y²R¶V. \¿Á©yÍÜ[ C ®©sÌÁ 22©«s ÇÁLjigji©«s C ÉÜ[LkiõÍÜ[ ÌÁÖÁ»`½ ¬sLñki»R½ »]−sVøµj¶ L_Li²`¶ÌÁ »R½LS*»R½ G²R¶V FyLiVVLiÈýÁ»][ ÖdÁ ²T¶ (\¿Á©y), µy¸º¶V ¿yLiúlgi©±s (\¿Á©y)ÌÁ»][ xqsLi¸R¶VVNRPòLigS @úgRiróy©«sLiÍÜ[ ¬sÖÁ¿y²R¶V.
<˚e<ÛäsY Á{À|ò” eH˚¶ {ÀØï ÁbÕs¡+uÛÑ+ ®µ¶[ª«sµ³R¶L`i úÉÜ[{mns ª«s®©sï[ ÉÜ[Lkiõ ²³T¶ÖýdÁÍÜ[ C ®©sÌÁ 23©«s úFyLRiLi˳ÏÁ\®ªsVLiµj¶. »]ÖÁÖdÁg`i ª«sWù¿`ÁÍÜ[ ˳ØLRi»`½ Fs..»][ ˳ØLRi»`½ ÕÁ..»R½ÌÁxms²T¶Liµj¶. C ÉÜ[LkiõÍÜ[ Fs ÇÁÈíÁVZNP|msí ©±sgS µj¶®©s[a`PNSLkiòN`P, ˳ØLRi»`½ ÕÁ.. ÇÁÈíÁV ZNP|msí©±sgS úZaP[¸R¶V£qs@¸R¶VùL`i ª«sùª«sx¤¦¦¦LjixqsVò ©yõLRiV.@ÍØlgi[ ˳ØLRi»`½ zqs...ÇÁÈíÁVNRPV @ÑÁLiNRPùLRi¥¦¦¦®©s[ ryLRi´R¶ùLi ª«sz¤¦¦¦xqsVò©yõLRiV.
Á|ü|ü+#· #ê+|æj·THéwæ|t˝À ã»s¡+>¥≈£î s¡»‘·+ úxmsxmsLi¿RÁ {qs¬s¸R¶VL`i lLiÑýÁLig`i ¿yLizms¸R¶V©±sztsQ£msÍÜ[ ˳ØLRi»R½ lLiÇýÁL`iÊÁÇÁLRiLig`i xmsp¬s ¸R¶WNTP LRiÇÁ»R½ xms»R½NRPLi µR¶NTPäLiµj¶. x¤¦¦¦Lilgi[Lji LSÇÁµ³y¬s ÊÁV²y|ms£qsíÍÜ[ C ®©sÌÁ 22©«s ÇÁLjigji©«s xmsoLRiVxtsQVÌÁ ú{mnsxqsíLiVVÍÞ 65ZNP[ÒÁÌÁ −s˳ØgRiLi \|mns©«sÍýÜ[ 24GÎÏÁþ ÊÁÇÁ LRiLig`i 9c16FyLiVVLiÈýÁ ¾»½[²y»][ ÈÁNRPVÉÜ[ IÉÜ[gRiVL][(ÇÁFy©±s)¿P[¼½ÍÜ[ J²T¶ LRiÇÁ »R½Li µR¶NTPäLi¿RÁVNRPV©yõ²R¶V. µk¶Li»][ úxmsxmsLi¿RÁ {qs¬s¸R¶VL`i ¿yLizms¸R¶V©±sztsQ£ms ¿RÁLjiú»R½ ÍÜ[ lLiLi²R¶V xms»R½NSÌÁV lgiÖÁÀÁ©«s »]ÖÁ ˳ØLRi»R½ lLiÇýÁL`igS gRiVLjiòLixmso F~Liµy²R¶V.
ø£¬s+{Ÿ nô|ò’sY‡
ª«sVz¤¦¦¦ÎÏÁÌÁ\|ms \ÛÍÁLigjiNRP ®ªs[µ³j¶LixmsoÌÁ ¬sLRixqs©«s DµR¶ùª«sVLi −dsV ÈÁW »R½LRi¥¦¦¦ÍÜ[ ®ªsV©±s ÈÁW DµR¶ùª«sVLi úFyLRiLi˳ÏÁ\®ªsVLiµj¶. 2017ÍÜ[ INRP \ÛÍÁLigjiNRP ®ªs[µ³j¶LixmsoÌÁ ZNP[xqsV ©«sVLiÀÁ ¬sLô][ztsQgS ÊÁ¸R¶VÈÁxms²T¶©«s ª«sWÒÁ ú|mnsLi¿`Á LS¸R¶VËØLji FyxqsäÍÞ ª«sWÇÁÙLji xqs¥¦¦¦ J 15 ª«sVLiµj¶ NRPÖÁzqs C DµR¶ùª«sW¬sõ ÛËÁLigRiÎÏÁ¨LRiVÍÜ[ C ®©sÌÁ 21©«s úFyLRiLiÕ³ÁLi¿yLRiV. \lLiÛÍÁ[* aSÅÁÍÜ[ xms¬s¿P[}qs xqsFnyLiVV ªyÍØÌÁ }msLRiV©«sV x¤¦Ý£qs NUPzmsLig`i ríy£mnsgS ª«sWLRiVxqsWò \lLiÛÍÁ[* ª«sVLiú¼½»R½*aSÅÁ C ®©sÌÁ 22©«s D»R½òLRiV*ÌÁV ÇØLki ¿P[zqsLiµj¶. BNRP\|ms −dsLji¬s úxms¼½ −s˳ØgRiLi, aSÅÁ»][ NRPÖÁzms x¤¦Ý£qs NUPzmsLig`i @zqs|qsíLiÉÞÌÁVgS xqsLiËÜ[µ³j¶Li¿yÖÁ= DLiÈÁVLiµR¶¬s \lLiÛÍÁ[* aSÅÁ ¾»½ÖÁzmsLiµj¶. \®ªsµR¶ù, xmsLRiù®ªs[ORPNRP, »R½µj¶»R½LRi −s˳ØgSÍýÜ[ FyLjiaRPVµ³R¶ù NSLjiøNRPVÌÁVgS xms¬s¿P[}qs úgRiW£msc²U¶ Dµ][ùgRiVÛÍÁ[ xqsFnyLiVVªyÍØÌÁV.
uÛ≤s¡rj·T u≤´+≈£î\ ˝≤uÛÑ<ëj·Tø£‘· ‘·≈£îÿe úÕÁN`P= NRPWÈÁ−sVÍÜ[¬s −sVgRi»y ®µ¶[aSÌÁ»][ F¡ÖÁ}qsò ˳ØLRi¼d½¸R¶V ËØùLiNRPVÌÁ ÍØ˳ÏÁµy¸R¶VNRP»R½ »R½NRPV䪫sgS DLiµR¶¬s ª«sVW²U¶£qs B®©s*xqsíL`i= xqsLki*£qs C ®©sÌÁ 22©«s ®ªsÌýÁ²T¶LiÀÁLiµj¶. ª«sVWÌÁµ³R¶©«sxmsLRiLigS ¿RÁWzqs©y ®µ¶[bdP ËØùLiNRPVÌÁV ÊÁÌÁ{¤¦¦¦©«sLigS D©yõ¸R¶V¬s ¾»½ÖÁzmsLiµj¶. @|qsÉÞ NS*ÖÁÉÔÁ zqsóLRixms®²¶[ N]µôk¶ ª«s¿P[è ALójiNRP xqsLiª«s»R½=LRiLi ©«sVLiÀÁ xmsLjizqsó¼½ ®ªsVLRiVgRiVxms²]¿RÁè¬s }msL]äLiµj¶. ª«sWlLiäÉýÜ[ Aµ³j¶xms»R½ùLi D©«sõ úxms˳ÏÁV»R½*LRiLigRi ËØùLiNRPVÍýÜ[ LRiVßá ª«sù¸R¶WÌÁV @µ³j¶NRPLigS DLi²R¶ÈÁLi ª«sÌýÁ ®ªsVV»R½òLi ËØùLiNTPLig`i ª«sùª«sxqsó ÍØ˳ÏÁµy¸R¶VNRP»R½ ®µ¶ÊÁ÷¼½LiÉÜ[LiµR¶¬s }msL]äLiµj¶.
mÁs¡ø√≥˝À •˝≤|òü\ø£+ Ä$wüÿs¡D ®©s[»yÒÁ xqsV˳أtsQ¿RÁLiúµR¶ ËÜ[£qs AÇص`¶ z¤¦¦¦Liµ`¶.. úxms˳ÏÁV»y*¬sõ GLSöÈÁV ¿P[zqs 75 GÎÏÁVþ xmspLRiòLiVV©«s xqsLiµR¶LRi÷éLigS C ®©sÌÁ 21©«s FsúLRiN][ÈÁÍÜ[ úxmsµ³y¬s ©«slLi[LiúµR¶®ªsWµk¶ Çؼd½¸R¶V xms»yNS¬sõ FsgRiVLRi®ªs[zqs, bPÍØxmnsÌÁNS¬sõ A−sxtsQäLjiLi¿yLRiV. −sxms»R½Vò xqsª«sV¸R¶VLiÍÜ[ xqs¥¦¦¦¸R¶VNRP NSLRiùúNRPª«sWÍýÜ[ −sZaP[xtsQ }qsª«sÌÁLiµj¶Li¿P[ zqsÊÁ÷Liµj¶NTP ®©s[»yÒÁ xqsV˳أtsQ ¿RÁLiúµR¶ËÜ[£qs }msLjiÈÁ BNRP\|ms GÉØ @ªyLïRiV Bryòª«sV¬s ®ªsWµk¶ úxmsNRPÉÓÁLi¿yLRiV. AÇص`¶ z¤¦¦¦Liµ`¶ Fn¢ÇÞ xqs˳ÏÁVùÌÁV úÕÁÉÓÁ£tsQ FyÌÁNRPVÌÁ ¿P[¼½ÍÜ[ −s¿yLRißá FsµR¶VL]ä©«sõ FsúLRiN][ÈÁÍÜ[¬s \ÛÇÁÌÁVgRiµj¶ xqsLiÅÁù 3ÍÜ[ A bPÍØxmnsÌÁNS¬sõ GLSöÈÁV ¿P[¸R¶V©«sV©yõLRiV.
ÁøϬø{Ÿ qT+∫ Á|üMDY ≈£îe÷sY $s¡eTD ˳ØLRi»R½ }ms£qs ËÝÌÁL`i úxms−dsßãÞ NRPVª«sWL`i úNTPZNPÉÞ ©«sVLiÀÁ −sLRi−sVxqsVò©«sõÈýÁV C ®©sÌÁ 20©«s úxmsNRPÉÓÁLi¿y²R¶V. D»R½òLRiúxms®µ¶[a`PNRPV ¿ÁLiµj¶©«s 32 GÎÏÁþ úxms−dsßãÞ 2007ÍÜ[ FyNTPryò©±s»][ \ÛÇÁxmspL`iÍÜ[ ÇÁLjigji©«s ª«s®©sï[»][ @Li»R½LêS¼d½¸R¶V ZNPLkiL`i©«sV ®ªsVVµR¶ÌÁV|msÉíزR¶V. 2012 ª«sLRiNRPV rygji©«s AlLi[ÎÏÁþ @Li»R½LêS¼d½¸R¶V ZNPLkiL`iÍÜ[ 68 ª«s®©sï[ÌÁV A²T¶ 77 −sZNPÈýÁV xms²R¶g]ÉíزR¶V. 10 ÉÓÁ20 ÍýÜ[ 8,6 ÛÉÁxqsíVÌÁV A²T¶ 27 −sZNPÈýÁV ¼d½aS²R¶V. úxms−dsßãÞ @µR¶V÷é»R½ úxmsµR¶LRi+©«s»][®©s[ Aú}qsíÖÁ¸R¶WÍÜ[ 2008ÍÜ[ ÇÁLjigji©«s ª«sVVN][äßáxmso ª«s®©sï[ zqsLki£qs NSª«sV®©s*ÍÞò ËØùLiN`P úÉÜ[{mns¬s ˳ØLRi»`½ ¿P[ÑÁNTPäLi¿RÁVNRPVLiµj¶.
mø£Hê$Tø˘‡ bò˛s¡+ qT+∫ πø{°ÄsY≈£î ÄVü‰«q+
sêÁcÕº\T
¾»½ÌÁLigSßá LSúxtsí HÉÔÁ ª«sVLiú¼½ ZNP. »yLRiNRPLSª«sWLSª«soNRPV ª«sLRiÍïÞ FsNRP©y−sVN`P= Fn¡LRiLi©«sVLiÀÁ ª«sVL][ryLji A¥¦¦¦*©«sLi ÌÁÕ³ÁLiÀÁLiµj¶. 2019 ÇÁ©«sª«sLji 22©«sVLiÀÁ25 ª«sLRiNRPV zqs*ÈêÁLýSLi²`¶ÍÜ[¬sµyª¯[£qsÍÜ[ ÇÁLRigRi©«sV©«sõ 49ª«sª«sLRiÍïÞ FsNRP©y−sVN`P=Fn¡LRiLi xqsµR¶xqsV=NRPV úxms¾»½[ùNRP @¼½´j¶gS ¥¦¦¦ÇÁLRiV NSªyÌÁ¬s ZNP[ÉÔÁAL`iNRPV FsNRP©y−sVN`P= Fn¡LRiLi C ®©sÌÁ 21©«s A¥¦¦¦*©«sLi xmsLizmsLiµj¶. ¾»½ÌÁLigSßá LSúxtsíLiÍÜ[ xmsÈíÁßØÕ³Áª«sXµôðj¶, ²T¶ÑÁÈÁ\ÛÍÁÛÇÁ[xtsQ©±s, CJ²U¶ÕdÁ, Dµ][ùgSÌÁ NRPÌÁö©«s, úxms˳ÏÁV»R½* FyÌÁ©«sÍÜ[ FyLRiµR¶LRi+ NRP»R½ ª«sLiÉÓÁ NUPÌÁNRP @LiaSÍýÜ[ ¾»½ÌÁLigSßá úxms˳ÏÁV»R½*Li @ª«sVÌÁVxmsLjiÀÁ©«s xqsLixqsäLRißáÌÁ\|ms xqsµR¶xqsV=ÍÜ[ úxmsxqsLigjiLi¿yÌÁ¬s ZNP[ÉÔÁAL`i©«sV Fn¡LRiLi N][LjiLiµj¶.
$»j·Tyê&É˝À n+‘·sê®rj·T |ü&Ée b˛{°\T ©«sª«sLiÊÁL`i 16, 17, 18 ¾»½[µk¶ÍýÜ[ −sÇÁ¸R¶Vªy²R¶ NRPXuñy©«sµj¶ÍÜ[ @Li»R½LêS¼d½¸R¶V xms²R¶ª«s F¡ÉÔÁÌÁV ¬sLRi*z¤¦¦¦xqsVò©«sõÈýÁV NRPXuñyÑÁÍýØ NRPÛÍÁNíRPL`i ÕÁ.ÌÁOUPQøNSLi»R½Li ®ªsÌýÁ²T¶Li ¿yLRiV. xmsLSùÈÁNRP LRiLigRi @Õ³Áª«sXµôðj¶ÍÜ[ ˳ØgRiLigS ©«sª«sLiÊÁL`iÍÜ[ −sÇÁ¸R¶Vªy²R¶ÍÜ[ ª«sVW²R¶V úxms¾»½[ùNRPNSLRiùúNRPª«sWÌÁV ¬sLRi*z¤¦¦¦Li¿RÁ©«sV©«sõÈýÁV ¾»½ÖÁFyLRiV. BLiµR¶VÍÜ[˳ØgRi LigS @Li»R½LêS¼d½¸R¶V xms²R¶ª«s F¡ÉÔÁÌÁ©«sV xmso©«sõ−sVxmnsWÉÞÍÜ[ ¬sLRi*z¤¦¦¦Li¿P[LiµR¶VNRPV GLSöÈÁV ¿P[aSLRiV.
ôV≤#Y ` 1_ øÏ düeT÷\ e÷s¡TŒ\T
$<ë´Á|üuÛÑ 13
øÏ*eT+C≤s√ n~Ûs√Væ≤+∫q bÕ\eT÷s¡T Á|üC≤ yÓ’<äT´&ÉT
u…+>∑fi¯Ss¡T˝À yÓTHé ≥÷ ñ<ä´eT+ ÁbÕs¡+uÛÑ+
Vü≤Ödt ø°|æ+>¥ kÕº|òt>± dübòÕsTTyê˝≤\T
Ä+Á<ÛäÁ|üuÛÑ
C≤rj·T+ AúzmnsNS ÅÁLi²R¶LiÍÜ[ Fs\¾»½ò©«s bPÅÁ LRiLi NTPÖÁª«sVLiÇØL][ÍÜ[ ª«sVx¤¦¦¦ÊÁW ËÞ©«sgRiL`iÍÜ[¬s xqsVúaRPV»R½ úxmsÇØ\®ªsµR¶ù aSÅÁ FsLi²T¶ ²yNíRPL`i ª«sVµ³R¶VxqsW µR¶©±slLi²ïT¶ C ®©sÌÁ 22©«s @µ³j¶L][z¤ ¦¦Li¿yLRiV. ª«sVx¤¦¦¦ÊÁWËÞ©«sgRiL`i úÛÉÁ NTPäLig`i NýRPËÞ »R½LRixmso©«s ª«sVx¤¦¦¦ÊÁW ËÞ©«sgRiL`i ËØÖÁNRPÌÁ©«sV LRiOTPQLi¿yÖÁ, @®©s[ ¬s©yµR¶Li»][ A¸R¶V©«s NTPÖÁ ª«sVLiÇØL][¬s @µ³j¶L][z¤¦¦¦Li¿yLRiV.
nyÓT]ø±˝À y˚>∑+>± n_Ûeè~Δ #Ó+<äT‘·Tqï uÛ≤wü>± ‘Ó\T>∑T @®ªsVLjiNSÍÜ[ @¼½®ªs[gRiLigS @Õ³Áª«sXµôðj¶ ¿P[LiµR¶V»R½V©«sõ ˳ØxtsQgS ¾»½ÌÁVgRiV ˳ØxtsQ ¬sÖÁÀÁLiµj¶. 2010c17 NSÌÁLiÍÜ[ @®ªsVLjiNSÍÜ[ BLigýkixtsQV −sV©«s¥¦¦¦ B»R½LRi ˳ØxtsQÌÁ\|ms @µ³R¶ù¸R¶V©«sLi ¿P[zqs©«s |qsLiÈÁL`i xmnsL`i B−sVúlgi[xtsQ©±s xqsLixqsó C ®©sÌÁ 22©«s®ªsÌýÁ²T¶LiÀÁLiµj¶. 2017ÍÜ[ ¸R¶VWFs£qsÍÜ[ 4ÌÁORPQÌÁNRPV\|msgS ¾»½ÌÁVgRiV ª«sWÉýØ ®²¶[ªyLRiV©yõLRiV. C xqsLiÅÁù 2010©yÉÓÁ»][F¡ÖÁè¾»½[ lLiÉíÓÁLixmso. úxmsxmsLi¿RÁ ªyßÓá ÇÁù xqsµR¶xqsV= @Li¿RÁ©y úxmsNSLRiLi @®ªsVLjiNSÍÜ[ ¾»½ÌÁVgRiV ª«sWÉýØ®²¶[ªyLji xqsLiÅÁù 2010c17 NSÌÁLiÍÜ[ GNRPLigS 86 aS»y¬sNTP |msLjigjiLiµj¶.
<˚X¯+˝ÀH˚ Á|ü<ä∏eT+>± Áu…sTT© *|æ˝À z≥s¡T ø±s¡T¶\T ®µ¶[aRPLiÍÜ[®©s[ úxms´R¶ª«sVLigS @Liµ³R¶VÌÁ N][xqsLi úÛËÁLiVVÖdÁ ÖÁzmsÍÜ[©«sW JÈÁLRiV Fn¡ÉÜ[ gRiVLjiòLixmso NSLïRiVÌÁ©«sV ¾»½ÌÁLigSßá LSúxtsí Fs¬sõNRPÌÁ xqsLixmnsVLi ÇØLki ¿P[zqsLiµj¶. ZNP[LiúµR¶ Fs¬sõNRPÌÁ xqsLixmnsVLi úxmsµ³y©«s NRP−sVxtsQ©«sL`i J{ms LSª«s»`½ N]LiµR¶LRiV µj¶ªyùLigRiVÌÁNRPV C úÛËÁLiVVÖdÁ JÈÁLRiV gRiVLjiòLixmso NSLïRiVÌÁ©«sV xmsLizmsßÔá ¿P[zqs NSLRiùúNRPª«sW¬sõ úFyLRiLiÕ³ÁLi¿yLRiV. @©«sLi»R½LRiLi úÛËÁLiVVÖdÁ ÖÁzmsÍÜ[ ª«sVVúµj¶LiÀÁ©«s NRPLRixmsú»yÌÁV, ª«sVWgRi, ÊÁµ³j¶LRiVÌÁNRPV @LóRiª«sV¹¸¶[VùÍØ \|qs©±s ÍØLilgi[*ÑÁ»][ LRiWF~Liµj¶LiÀÁ©«s ÀÁú»yÌÁ {qs²U¶ÌÁ©«sV LSª«s»`½ A−sxtsQäLjiLi¿yLRiV. úxmsª«sVVÅÁ úNUP²yNSLRiVÌÁV xmsoÛÍýÁÌÁ g][{ms¿RÁLiµ`¶, −ds−dsFs£qs ÌÁORPQøßãÞÌÁ»][ C{qs C ÀÁú»yÌÁV LRiWF~Liµj¶LiÀÁLiµj¶.
<˚X¯yê´|üÔ+>± nHé]»sY«&é ¬s’˝Ò« {Ϭø≥¢ ø=qT>√\T @©±sLjiÇÁL`i*²`¶ \lLiÛÍÁ[* ÉÓÁZNPÈýÁ©«sV ¸R¶VWÉÔÁFs£qs ®ªsVV\ÛËÁÍÞ ¸R¶W£ms µy*LS N]©«sVg][ÌÁV ¿P[}qs xqsµR¶VFy¸R¶W¬sõ ©«sª«sLiÊÁL`i 1©«sVLiÀÁ ®µ¶[aRPªyùxmsòLigS @LiµR¶VËØÈÁVÍÜ[NTP ¾»½[©«sV©«sõÈýÁV \lLiÛÍÁ[*aSÅÁ C ®©sÌÁ 23©«s úxmsNRPÉÓÁLiÀÁLiµj¶. CaS©«sù xqsLjix¤¦¦¦µôR¶V, xmsbP誫sV ª«sVµ³R¶ù \lLiÛÍÁ[* ÇÜ[©«sýÍÜ[ −sV©«s¥¦¦¦ −sVgjiÖÁ©«s 15 ÇÜ[©«sýÍÜ[ BxmsöÉÓÁZNP[ C xms´R¶NRPLi @ª«sVÍýÜ[ DLiµj¶. úxms¸R¶WßÓáNRPVÌÁ r¢NRPLSùLóRiLi \lLiÛÍÁ[*aSÅÁ ©yÌÁVlgi[ÎÏÁþ úNTP»R½Li ª«sVVLi\ÛËÁÍÜ[ C ¸R¶W£ms©«sV úxms®ªs[aRP|msÉíÓÁLiµj¶.
n+‘·sê®rj·T+
@®ªsVLjiNSÍÜ[ −s®µ¶[bdP¸R¶VVÌÁV Dµ][ùgSÌÁV ¿P[xqsVNRPV®©s[LiµR¶VNRPV −dsÌÁV NRPÖÁöLi¿P[ |¤¦¦¦¿`Ác1ÕdÁ −dsryÍýÜ[ xqsª«sVWÌÁ ª«sWLRiöVÌÁV ¼d½xqsVN]¿P[èLiµR¶VNRPV @µ³R¶ùORPV²R¶V úÈÁLi£ms ®©s[»R½X»R½*LiÍÜ[¬s úxms˳ÏÁV»R½*Li zqsµôðR¶\®ªsVLiµj¶. N]¬sõ úxms¾»½[ùNRP \®©sxmsoßØùÌÁV @ª«sxqsLRi\®ªsV©«s Dµ][ùgSÍýÜ[ −s®µ¶[bdP¸R¶VVÌÁ©«sV ¬s¸R¶V−sVLi¿RÁVNRPV®©s[LiµR¶VNRPV @NRPä²T¶ NRPLi|ms¬dsÌÁNRPV úxmsxqsVò»R½Li |¤¦¦¦¿`Ác1ÕdÁ @ª«sNSaRPLi NRPÖÁör¡òLiµj¶. A úxms¾»½[ùNRP\®©sxmsoßØùÌÁV, DFyµ³j¶.. Dµ][ùgjic¸R¶VÇÁª«sW¬s xqsLiÊÁLiµ³R¶Li.. @®©s[ xmsµyÌÁ©«sV xmso©«sLjiõ LRi*ÀÁLi¿RÁ²R¶Li µy*LS |¤¦¦¦¿`Ác1ÕdÁ −dsry −sµ³y©«sLiÍÜ[ xmspLjiò ª«sWLRiöVÌÁV ¼d½xqsVNRPVLSËÜ[»R½V©«sõÈýÁV x¤¦Ü[LiÍØùLi²`¶ |qsNRPWùLjiÉÔÁ −s˳ØgRiLi ¾»½ÖÁzmsLiµj¶.
n‘·´+‘· bı&ÉyÓ’q düeTTÁ<ä e+‘Óq ÁbÕs¡+uÛÑ+ úxmsxmsLi¿RÁLiÍÜ[®©s[ @»R½ùLi»R½ F~²R¶\®ªs©«s xqsª«sVVúµR¶ª«sLi¾»½©«sgS gRiVLjiòLixmsoF~Liµj¶©«s ¥¦¦¦LiNSLig`icÇÁÙx¤¦¦¦LiVV¬s \¿Á©y@µ³R¶ùORPV²R¶V ÒÁ ÑÁ©±szmsLig`i C®©sÌÁ 23©«s @µ³j¶NS LjiNRPLigS úFyLRiLiÕ³ÁLi¿yLRiV. |msLRiÍÞ©«sµj¶ ®²¶ÍíØÍÜ[¬s ¥¦¦¦LiNSLig`icÇÁÙx¤¦¦¦LiVVª«sV NSª¯[ xmsÈíÁßØÌÁ©«sV NRPÌÁVxmso»R½W Cª«sLi¾»½©«s©«sV ¬sLjiøLi¿yLRiV. CúÕÁ²êT¶ ®ªsVV»R½òLi F~²R¶ª«so 55NTP.−dsV.NSgS, BLiµR¶VÍÜ[ 22.9NTP.−dsV xqsª«sVVúµR¶Li\|ms, 6.7NTP.−dsV. ryLRiLigRiLiÍÜ[ DLiµj¶. úxmsxqsVò»R½Li ¥¦¦¦LiNSLig`i©«sVLiÀÁ ÇÁÙx¤¦¦¦LiVVNTP úxms¸R¶Wßá xqsª«sV¸R¶VLi 3gRiLiÈÁÌÁV NSgS, C ª«sLi¾»½©«sª«sÌýÁ 30¬s−sVuyÌÁNRPV »R½gæRi©«sVLiµj¶.
ø£åj·Tyê´~ÛøÏ q÷‘·q ∫øÏ‘ê‡ $<Ûëq+ ª«sVLiµR¶VÌÁNRPV »R½gæRiNRPVLi²y úxmsxmsLi¿RÁLiÍÜ[®©s[ @®©s[NRP ª«sVLiµj¶¬s ®ªs[µ³j¶xqsVò©«sõ ORPQ¸R¶Vªyùµ³j¶NTP ©«sW»R½©«s ÀÁNTP»y= −sµ³y©y¬sõ ÛËÁÍØLRi£qsNTP ¿ÁLiµj¶©«s aSúxqsòQ®ªs[»R½òÌÁV @Õ³Áª«sXµôðj¶ ¿P[aSLRiV. C ®©sÌÁ 21©«s ¬sLRi*z¤¦¦¦LiÀÁ©«s xmsLkiORPQÍýÜ[ C ©«sW»R½©«s −sµ³y©«sLi xqs»R½öéÖÁ»yÌÁ©«sV @Liµj¶LiÀÁ©«sÈýÁV aSúxqsòQ®ªs[»R½òÌÁV ¾»½ÖÁFyLRiV. ©«sW»R½©«s −sµ³y©«sLi µy*LS úxmsxqsVò»R½ ªyùµ³j¶úgRixqsVòÍýÜ[ 80 aS»R½Li ª«sVLiµj¶NTP ORPQ¸R¶Vªyùµ³j¶¬s aSaRP*»R½LigS µR¶WLRiLi ¿P[¸R¶Vª«s¿RÁVè. úxmsxqsVò»R½Li D©«sõ ÀÁNTP»y= −sµ³y©«sLi µy*LS 55 aS»R½Li ª«sVLiµj¶NTP ORPQ¸R¶Vªyùµ³j¶¬s »R½gæjiLi¿RÁª«s¿RÁVè.
‘Ó\+>±D s¡#·sTTÁ‹øÏ X¯øÏÔuÛÑ{Ÿ |ü⁄s¡kÕÿs¡+
nyês¡T¶\T
@®ªsVLjiNSÍÜ[ zqsóLRixms²T¶©«s ¾»½ÌÁLigSßá µR¶×Á»R½ LRi¿RÁLiVVú¼½ gji²ýR¶ xqsVÇØ»R½NRPV c 2018 xqsLiª«s»R½=LS¬sNTP gS©«sV aRPNTPò˳ÏÁÉÞ »]ÖÁ LRi¿RÁ©«s xmsoLRiryäLRiLi ÌÁÕ³ÁLiÀÁLiµj¶. A®ªsV LRiÀÁLiÀÁ©«s ¸R¶WLiÉÞ= @ª«sWLig`i FsÖÁ|mnsLiÉÞ= : ¸R¶W©±s @LiÈÁ¿RÁÊÁVÍÞ Fnyù−sVÖdÁ @Li²`¶ ®ªs[VNTPLig`i A£mns ®ªsW²R¶ÍÞ= BLi²T¶¸R¶W @®©s[ xmsoxqsòNS¬sNTP C @ªyLïRiV µR¶NTPäLiµj¶. xqsVÇØ»R½©«sV aRPNTPò˳ÏÁÉÞ xmsoLRiryäLS¬sNTP FsLizmsNRP ¿P[zqs©«sÈýÁV ÇÁ²êU¶ÌÁ Fyù®©sÍÞ C ®©sÌÁ 19©«s úxmsNRPÉÓÁLiÀÁLiµj¶. }msµR¶ÌÁ ÒÁ−s»R½Li, zms»R½Xry*ª«sVù ª«sùª«sxqsó, ¼½LRiVgRiVËØÈÁV, NRPª«sVWù¬sÇÁLi »R½µj¶»R½LRi @LiaSÌÁ\|ms C xmsoxqsòNRPLiÍÜ[ xqsVÇØ»R½ −sLjiLi¿yLRiV. ¸R¶VVª«s LRi¿RÁLiVVú»R½ aRPNTPò ryøLRiNSLóRiLi aRPNTPò˳ÏÁÉÞ Fn¢Li®²¶[xtsQ©±s 2008ÍÜ[ C @ªyLïRiV©«sV ®©sÌÁN]ÖÁöLiµj¶.
bòÕ© mdt Hê]eTHé≈£î ˝≤˝ŸãVü≤<ä÷sY XÊÁdæÔ nyês¡T¶ ©yù¸R¶VN][−sµR¶V²R¶V, xqsVú{msLi N][LíRiVÍÜ[ {qs¬s¸R¶VL`i ©yù¸R¶Vªyµj¶ FnyÖdÁ Fs£qs ©yLjiª«sV©±sNRPV ÍØÍÞÊÁx¤¦¦¦µR¶WL`iaSúzqsQò Çؼd½¸R¶V FsN`P=ÛÍÁ©±s= @ªyLïRiV c 2018 ÌÁÕ³ÁLiÀÁLiµj¶. ²³T¶ÖýdÁÍÜ[ C ®©sÌÁ 22©«s ÇÁLjigji©«s NSLRiùúNRPª«sVLiÍÜ[ DxmsLSúxtsíxms¼½ ®ªsLiNRP¸R¶Vù©y¸R¶VV²R¶V C @ªyLïRiV©«sV úxmsµy©«sLi ¿P[aSLRiV.
14
Ä+Á<ÛäÁ|üuÛÑ
$<ë´Á|üuÛÑ
A N D H b˛{° R A|üØP ø£å\ Á|Rü‘˚´ø£A+ B H A
ÁXÊ$Tø£ $uÛÑ»q <˚ìô|’ Ä<Ûës¡|ü&ÉT‘·T+~? 1. Aµy¸R¶VLi, D»R½ö¼½ò, Dµ][ùgji»R½ÌÁ\|ms úxms˳ÏÁV»R½* ª«sù¸R¶VLi xms©«sVõÌÁ −sµy©yÌÁV xqsóWÌÁ úxms˳تyÌÁNRPV xqsLiÊÁLiµ³j¶LiÀÁ©«s®µ¶[ N][aRP −sµ³y©«sLi @¬s ¬sLRi*¿RÁ©«sLi BÀÁèLiµj¶ Fsª«sLRiV? 1. |qsÖÁg`i ª«sV©±s 2. úN_µ³R¶L`i 3. @©±s−s©±s 4. ZNP[©±s= 2. C NTPLiµj¶ ªyÉÓÁÍÜ[ ®ªsVVµR¶ÉÓÁ xmsLi¿RÁª«sL<Ri úxmsßØ×ÁNS NSÌÁLiÍÜ[ ®©sÌÁN]ÌÁöÊÁ²T¶©«sµj¶? 1. z¤¦¦¦LiµR¶Vróy©±s ¸R¶WLiÉÔÁ ÊÁ¹¸¶WÉÓÁN`P= 2. z¤¦¦¦LiµR¶Vróy©±s ®ªsVzqs¬ds ÈÁWÍÞ= 3. z¤¦¦¦LiµR¶Vróy©±s B©±s |qsNíTP \|qs²`¶= 4. ÕÁÍظº¶V DNRPVä NRPLSøgSLRiLi 3. C NTPLiµj¶ ªyÉÓÁÍÜ[ ALójiNRP ryLizmnsVNRP @ª«sróyxms©y r¢NRPLRiùLi NS¬sµj¶? 1. ÛÉÁÖÁFn¡©±s 2. ¬dsÉÓÁ FyLRiVµR¶ÌÁ 3. ryLiúxmsµy¹¸¶[V»R½LRi BLiµ³R¶©«s ª«s©«sLRiVÌÁV 4. ª«sVW²R¶ ©«sª«sVøNSÌÁ ¬sLRiWøÌÁ©y NSLRiùúNRPª«sVLi 4. NS©±sNRPlLiLiÉÞ ÇØÕÁ»yÍÜ[¬s xms©«sVõÌÁNRPV xqsLiÊÁLiµ³j¶LiÀÁ NTPLiµj¶ ªyÉÓÁÍÜ[ xqs\lLi©«sµj¶ Gµj¶? 1. ZNP[LiúµR¶ LSúuíyÌÁ lLiLi²T¶LiÉÓÁNTP @µ³j¶NSLRiLi DLiÈÁVLiµj¶ 2. LSúuíyÌÁ xmsLjiµ³j¶ÍÜ[¬s−s 3. ZNP[Liúµy¬sNTP @µ³j¶NSLRiLi DLiÈÁVLiµj¶ 4. ZNP[LiúµR¶Li ª«sxqsWÌÁV ¿P[zqs LSúuíyÌÁNRPV xmsLi¿RÁV»R½VLiµj¶ 5. úxmsÇÁÌÁ ©«sVLiÀÁ ²T¶FyÑÁÈýÁV }qsNRPLjiLiÀÁ ÊÁVVßØÌÁV ª«sVLiÇÁÚLRiV ¿P[}qs ª«sùNRPVòÌÁ©«sV ú\|ms®ªs[ÈÁV xqsLixqsó©«sV Gª«sVLiÉØLRiV? 1. ªyßÓáÇÁù ËØùLiNRPLýRiV 2. −s»R½ò ªyùFyLRixqsVòÌÁV 3. ®µ¶[bdP¸R¶V ËØùLiNRPLýRiV 4. ª«s²ïU¶ ªyùFyLRixqsVòÌÁV 6. ª«sùª«sry¸R¶V D»R½ö»R½VòÌÁ úlgi[²T¶Lig`i ¿RÁÈíÁLi FsxmsöV²R¶V ¿P[¸R¶VÊÁ²T¶Liµj¶? 1. 1947 2. 1957 3. 1948 4. 1937 7. NTPLiµj¶ ªyÉÓÁÍÜ[ ª«sVz¤¦¦¦ÎØ ª«sVLi²yÌÁÌÁ©«sV GLSöÈÁV ¿P[zqs©«s ª«sVLiú¼½»R½* aSÅÁ Gµj¶? 1. ú{qsQò xqsLiZOP[Qª«sV aSÅÁ 2. úgS−dsVßá ª«sVLiú¼½»R½* aSÅÁ 3. ª«sW©«sª«s ª«s©«sLRiVÌÁ @Õ³Áª«sXµôðj¶ aSÅÁ 4. ALójiNRPaSÅÁ 8. NTPLiµj¶ ªy¬sÍÜ[ FsLi3 úµR¶ª«sù N]ÌÁª«sW©«sLiÌÁ ¿P[LRi¬sµj¶ Gµj¶? 1. úxmsÇÁÌÁ»][ D©«sõ ©«sgRiµR¶V 2. »R½FyÍØ xqsLixqsóÍýÜ[¬s ²T¶ª«sWLi²`¶ ²T¶FyÑÁÈýÁV 3. ËØùLiNRPVÌÁ ª«sµôR¶ D©«sõ NSÌÁ ²T¶FyÑÁÈýÁV 4. ËØùLiNRPVÌÁ ª«sµôR¶ D©«sõ ²T¶ª«sWLi²`¶ ²T¶FyÑÁÈýÁV 9. LSúxtsíLiÍÜ[ ÇÁ©«s»y ª«súxqsòQ xmsLizmsßÔá FsxmsöV²R¶V úxms®ªs[aRP|msÉíØLRiV? 1. 1975 2. 1965 3. 1966 4. 1976 10. 1975 ©«sVLi²T¶ ZNP[LiúµR¶ gRißØLiNRP xqsLixqsó úxms¿RÁVLjiLi¿P[ ®©s[xtsQ©«sÍÞ @N_LiÉÞ= ríyÉÓÁzqsíN`P=©«sV Gª«sV¬s zmsÌÁVryòLRiV? 1. úgki©±s }msxmsL`i 2. FsÍýÜ[ }msxmsL`i 3. \®ªsÉÞ }msxmsL`i 4. lLi²`¶ }msxmsL`i 11. ¸R¶VV.Fs©±s.²T¶.{ms. LRiWF~Liµj¶Li¿P[ ª«sW©«sªyÕ³Áª«sXµôðj¶ xqsWÀdÁÍÜ[ A¸R¶VVLôSª«sV xqsWÀdÁ NRP¬sxtsíQ −sÌÁVª«s.... xqsLiª«s»R½=LSÌÁV? 1. 30 xqsLi.ÌÁV 2. 25 xqsLi.ÌÁV 3. 35 xqsLi.ÌÁV 4. 32 xqsLi.ÌÁV 12. ryµ³yLRißáLigS @Õ³Áª«sXµôðj¶ ª«sù¸R¶WÌÁ©«sV xmsLjigRißáÍÜ[NTP ¼d½xqsN][¬s ÊÁ®²ê¶ÉÞ Gµj¶? 1. JÉÞ A©±s @N_LiÉÞ 2. \lLiÛÍÁ[* 3. ryµ³yLRißá 4. Gµk¶ NSµR¶V 13. ˳ØLRi»R½®µ¶[aRPLiÍÜ[ |msLSöélLiø©±s= ÊÁ®²ê¶ÉÞ úxms®ªs[aRP|msÉíØÌÁ¬s xqsWÀÁLiÀÁ©«s ªyLRiV Fsª«sLRiV? 1. @Li¿RÁ©yÌÁ NRP−sVÉÓÁ 2. xqsLSäLji¸R¶W NRP−sVxtsQ©±s 3. FyÌÁ©y xqsLixqsäLRißáÌÁ NRP−sVxtsQ©±s 4. NRPLiúÉÜ[ÌÁL`i @Li²`¶ A²T¶ÈÁL`i ÇÁ©«sLRiÍÞ 14. LjiªyùLixms²`¶ xmsÕýÁN`P ²T¶úzqsíÊÁWùxtsQ©±s zqsxqsíª±sV (AL`i.zms.²T¶.Fs£qs) @LiÛÉÁ[ G−sVÉÓÁ? 1. úxmsÇØ xmsLizmsßÔá ª«sùª«sxqsó©«sV úxmsOSQÌÁ©«s ¿P[¸R¶V²R¶Li 2. úxmsÇØ xmsLizmsßÔá ª«sùª«sxqsó©«sV úN]»R½ògS úxms®ªs[aRP|msÈíÁ²R¶Li 3. úxmsÇØ xmsLizmsßÔá ª«sùª«sxqsó©«sV LRiµôR¶V ¿P[¸R¶V²R¶Li 4. Gµk¶NSµR¶V 15. 2011 ª«s xqsLiª«s»R½=LRixmso Azqs¸R¶V©±s ÕÁÑÁ®©s£qs A£ms B¸R¶VL`i @ªyLïRiV©«sV F~Liµj¶©«s NRPLi|ms¬ds Gµj¶? 1. xqs©±s ®©sÉÞª«sL`iä NRPLi|ms¬ds BLi²T¶¸R¶W 2. xqs©±s ª«sWL`iä NRPLi|ms¬ds BLi²T¶¸R¶W 3. Aµj¶»R½ù ÕÁLýS úgRiW£ms BLi²T¶¸R¶W 4. Fyr¡ä{qsíÍÞ c µR¶OTPQßá N]Lji¸R¶W 16. L][ÖÁLig`i úxmsßØ×ÁNS ª«spùx¤¦¦¦Li G úxmsµ³y©«s ª«sVLiú¼½ NSÌÁLiÍÜ[ úxms®ªs[aRP|msÉíØLRiV?
1. LSÒÁª±s gSLiµ³k¶ 2. BLiµj¶LSgSLiµ³k¶ 3. ®ªsVVLSLêki ®µ¶[aS¸º¶V 4. ÍØÍÞ ÊÁx¤¦¦¦µR¶WL`i aSúzqsQò 17. úNS£qs ¿P[zqs©«s ¿ÁNRPVä©«sV G −sµ³R¶LigS úxmsµ³y©«sLigS ª«sWLRi誫s¿RÁVè? 1. ÇØLki ¿P[zqs©«s ª«sùNTPò¿P[ 2. ËØùLiNRPV µy*LS 3. ˳ØLRi¼d½¸R¶V }qsíÉÞ ËØùLiN`P µy*LS 4. ®ªs[L]NRP ª«sùNTPòNTP ª«sWLjiö²T¶ ¿P[zqs©«s »R½LRiVªy»R½ 18. ²R¶ÊýÁWù.²R¶ÊýÁWù. L][rí¡ úxms¼½ Fyµj¶LiÀÁ©«sµj¶? 1. úxmsµR¶LRi+©y úxms˳ت«sLi 2. ÇÁ©yË³Ø @Õ³Áª«sXµôðj¶ −sZaýP[xtsQßá 3. ALójiNSÕ³Áª«sXµôðj¶ róyLiVV 4. úÉÓÁZNPÉÞ ²_©±s zqsµôðyLi»R½Li 19. µj¶¹¸¶W¬ds @®©s[ LRiNRPLi .... NTP xqsLiÊÁLiµ³j¶LiÀÁLiµj¶? 1. N]»R½òLRiNRPLi xms¼½ò ª«sLi²R¶gRiLi 2. xmsaRPVxqsLiª«sLôðRi©«s \|¤¦¦¦úÕÁ²`¶ LRiNRPLi 3. N]»R½òLRiNRPLi FsLRiVª«so ª«sLigRi²R¶Li 4. Gµk¶ NSµR¶V 20. ˳ØLRi»R½®µ¶[aRPLiÍÜ[ ®ªsVVµR¶ÉÓÁryLji Çؼd½¸R¶V Aµy¸R¶V @Li¿RÁ©yÌÁ©«sV @µ³j¶NSLjiNRPLigS FsxmsöV²R¶V úxmsNRPÉÓÁLi¿yLRiV? 1. 1956 2. 1954 3. 1955 4. 1953 21. N][ÍÞ lLigRiVÛÍÁ[ÈÁLki @µ³yLjiÉÔÁ¬s GLSöÈÁV ¿P[¸R¶WÌÁ¬s G ÊÁ®²ê¶ÉÞÍÜ[ úxms¼½Fyµj¶Li¿yLRiV? 1. 2007c08 2. 2008c09 3. 2009c10 4. 2010c11 22. úxmsxmsLiÀdÁNRPLRißáNRPV xqsLiÊÁLiµ³j¶LiÀÁ NTPLiµj¶ ªyÉÓÁÍÜ[ xqsLjiNS¬sµj¶? 1. −s−sµ³R¶ ®µ¶[aSÌÁ ª«sVµ³R¶ù }qs*¿RÁèégS úxmsª«sz¤¦¦¦Li¿RÁ²R¶Li 2. −s−sµ³R¶ ®µ¶[aSÌÁ ª«sVµ³R¶ù ryLiZNP[¼½NRP xmsLjiÇìØ©«sLi }qs*¿RÁèégS
3. 6c14 xqsLi.ÌÁV 4. 5c15 xqsLi.ÌÁV 27. µj¶*¼d½¸R¶V ²T¶ÑÁ®©s*£qsí®ªsVLiÉÞ NRP−sVxtsQ©±s @µ³R¶ùORPVÌÁV? 1. ª«sVVÅÁLêki 2. LRiLigRiLSÇÁ©±s 3. gSLæ`i 4. AL`i.|¤¦¦¦¿`Á. xmsÛÉÁ[ÍÞ 28. Çؼd½¸R¶V Aµy¸R¶W¬sõ zqsóLRi µ³R¶LRiÌÁÍÜ[ gRißÓá}qsò... ª«sxqsVòLiµj¶? 1. ªyxqsòª«s Aµy¸R¶VLi 2. »R½ÌÁxqsLji Aµy¸R¶VLi 3. ª«sù¸R¶WL>Ri Aµy¸R¶VLi 4. ©yª«sVª«sWú»R½xmso Aµy¸R¶VLi 29. ²T¶ª«sWLi²R¶V ª«sVLji¸R¶VV xqsxmsýLiVVÌÁ ª«sVµ³R¶ù xqsx¤¦¦¦xqsLiÊÁLiµ³R¶ gRiVßáNRPLi FsÌýÁxmsöV²R¶W.... @ª«sµ³R¶VÌÁ ª«sVµ³R¶ù DLiÈÁVLiµj¶? 1. 0, c1 2. 0, 1 3. c1, + 1 4. Gµk¶ NSµR¶V 30. ALiúµ³yËØùLiNRPV©«sV róyzmsLiÀÁ©«s xqsLiª«s»R½=LRiLi Gµj¶? 1. 1940 2. 1938 3. 1932 4. 1923 31. ˳ÏÁWgRiLRi÷é ÇÁÍØÌÁ©«sV |msLi¿RÁVÈÁNRPV ¬dsLRiV c −dsVLRiV... xms´R¶NS¬sõ FsxmsöV²R¶V úFyLRiLiÕ³ÁLi¿yLRiV? 1. 2002 2. 2000 3. 1998 4. 2001
Ç+&çj·THé mø±qMT
32. 1951c52ÍÜ[ ®µ¶[aRPLiÍÜ[ ª«sùª«sry¸R¶VµyLRiVÌÁNRPV ÌÁÕ³ÁLiÀÁ©«s ®ªsVV»R½òLi xmsLRixms¼½ÍÜ[ ª«s²ïU¶ ªyùFyLRiVÌÁ µy*LS F~Liµj¶©«sµj¶? 1. 60 aS»R½Li 2. 80 aS»R½Li 3. 70 aS»R½Li 4. 50 aS»R½Li 33. ALiúµ³R¶úxms®µ¶[a`P ª«sùª«sry¸R¶V ª«sWlLiäÉÞ ¿RÁÈíÁLi ¿P[zqs©«s xqsLiª«s»R½=LRiLi Gµj¶? 1. 1971 2. 1966 3. 1958 4. 1962 34. H.FsLi.Fs£mns. ª«sVVÅÁù NSLSùÌÁ¸R¶VLi FsNRPä²R¶ DLiµj¶? 1. ªyztsQLigíRi©±s 2. ÌÁLi²R¶©±s
mdt◊/ø±ìôùdºãT˝Ÿ, ÄsY|”m|òt ôdŒwü˝Ÿ
úxmsª«sz¤¦¦¦Li¿RÁ²R¶Li 3. −s−sµ³R¶ ®µ¶[aSÌÁ ª«sVµ³R¶ù ª«sVWÌÁµ³R¶©«sLi }qs*¿RÁèégS úxmsª«sz¤¦¦¦Li¿RÁ²R¶Li 4. −s−sµ³R¶ ®µ¶[aSÌÁ ª«sVµ³R¶ù ª«sxqsVò }qsª«sÌÁV }qs*¿RÁèégS úxmsª«sz¤¦¦¦Li¿RÁ²R¶Li 23. 1960ÍÜ[ @®ªsVLjiNS »R½ÌÁxqsLji Aµy¸R¶VLi 2500 ²yÌÁLýRiV ª«sV©«s ®µ¶[aRPLi A róyLiVVNTP FsxmsöV²R¶V ¿P[LRiVNRPV©«sõµj¶? 1. 2002 2. 1986 3. 1992 4. 2008 24. NTPLiµj¶ ªyÉÓÁÍÜ[ xmsLji−sV»R½ Ëص³R¶ù»R½ ˳ØgRiry*ª«sVù xqsLixqsó ÌÁORPQßáLi NS¬sµj¶ Gµj¶? 1. ˳ØgRiry*ª«sVVÌÁV 20 NRPLiÛÉÁ[ »R½NRPV䪫sgS DLi²yÖÁ 2. ¬sLRiLi»R½LRi ªyLRixqs»R½*Li»][ NRPW²T¶©«s NSL]ölLi[ÈÁV xqsLixqsó Bµj¶ 3. ˳ØgRiry*ª«sVVÌÁ\|ms xmsLRixqsöLRi IxmsöLiµR¶Li µy*LS @Li»R½LæRi»R½ FyÌÁ©«s©«sV ¬sLñRiLiVVLi¿RÁª«s¿RÁVè 4. ˳ØgRiry*ª«sVùLi ¬sLRi*x¤¦¦¦ßá úxms¾»½[ùNRPLigS DLi²R¶©«sª«sxqsLRiLi ÛÍÁ[µR¶V 25. 2009 xqsLiª«s»R½=LRiLiÍÜ[ −s®µ¶[bdP ª«sWLRiNRP úµR¶ª«sù ¬sÌÁ*ÌÁV @µ³j¶NRPLigS gRiÌÁ ®µ¶[aRPLi Gµj¶? 1. úÛËÁÑÁÍÞ 2. BLi²T¶¸R¶W 3. \¿Á©y 4. LRiuyù 26. G ª«s¸R¶VxqsV −sµyùLóRiVÌÁ N][xqsLi xqsLRi*bPORPQ @Õ³Á¸R¶W©±s LRiWF~Liµj¶Li¿yLRiV? 1. 7c15 xqsLi.ÌÁV 2. 4c14 xqsLi.ÌÁV
3. ©«sWù¸R¶WL`iä 4. ÛÇÁ¬dsªy 35. zqsÉØLki£qs FyùLkiÊÁ£qs ¹¸¶VVNRPä @LóRiLi G−sVÉÓÁ? 1. ª«s©«sLRiVÌÁ ZNP[ÉØLiVVLixmso ryª«sVLóRiùLi 2. ¬saRPèÌÁ ²T¶ª«sWLi²`¶ ¬sÊÁLiµ³R¶©«s 3. B»R½LRi −sxtsQ¸R¶WÌÁ¬dsõ xqsª«sW©«sLi NSª«so 4. B»R½LRi −sxtsQ¸R¶WÌÁ¬dsõ xqsª«sW©«sLi 36. 1951ÍÜ[ ˳ÏÁWµy©±s DµR¶ùª«sVLiÍÜ[ ˳ØgRiLigS ©«sÍæÜLi²R¶ ÑÁÍýØ F¡¿RÁLixmsÖýÁÍÜ[ 100 FsNRPLSÌÁ ˳ÏÁW−sV¬s µy©«sLi ¿P[zqs©«s ˳ÏÁWry*−sV Fsª«sLRiV? 1. −s. ¿RÁLiúµylLi²ïT¶ 2. zqs. LS−sVlLi²ïT¶ 3. úNTPuñylLi²ïT¶ 4. −s. LSª«sV¿RÁLiúµylLi²ïT¶ 37. Dµ][ùgRi ¥¦¦¦−dsV xms´R¶NRPLi @®©s[ úgS−dsVßá xms¬s NSLRiùúNRPª«sW¬sõ ®ªsVVµR¶ÈÁ G LSúxtsíLiÍÜ[ úFyLRiLiÕ³ÁLi¿yLRiV? 1. xmsLiÇØËÞ 2. ZNP[LRiÎÏÁ 3. ª«sV¥¦¦¦LSúxtsí 4. xmsbP誫sV ÛËÁLigSÍÞ 38. ˳ØLRi»R½®µ¶[aRPLiÍÜ[ ®ªsVVµR¶ÈÁ róyzmsLi¿RÁÊÁ²T¶©«s xmsLjiúaRPª«sV Gµj¶? 1. ª«súxqsòQ xmsLjiúaRPª«sV 2. NSgji»R½Li 3. ÉÓÁ. ¾»½[¸R¶WNRPV 4. ÇÁ©«sxms ©yLRi 39. úaS−sVNRP −s˳ÏÁÇÁ©«s ®µ¶[¬s\|ms Aµ³yLRixms²R¶V»R½VLiµj¶? 1. xmsLji−sV»R½ ª«sWlLiäÉÞ 2. −sxqsòLRißá ª«sWlLiäÉÞ 3. xqsLixmspLñRi ª«sWlLiäÉÞ 4. µ³R¶LRi −s¿RÁORPQßá 40. ®ªsVVµR¶ÉÓÁ ALójiNRP xqsLixmnsVLi \¿ÁLRiø©±s Fsª«sLRiV? 1. Fs.ZNP. ¿RÁLiµy 2. ZNP.zqs. ¬s¹¸¶Wgji 3. Fs. xqsLi»y©«sLi 4. ZNP.zqs. xmsLi»`½ 41. xqsµR¶LRi©±s |mszqsí\|qs²`¶= ÖÁ−sVÛÉÁ²`¶ FsxmsöV²R¶V GLSöÈÁV ¿P[aSLRiV?
k˛eTyês¡+ 29 nø√ºãsY 2018
1. 1976 2. 1972 3. 1980 4. 1967 42. ÅÁLki£mns NSÌÁLi Fs.zmsÍÜ[ FsxmsöV²R¶V úFyLRiLi˳ÏÁª«sVª«so»R½VLiµj¶? 1. ÇÁÚ©±s ®ªsVVµR¶ÉÓÁ ªyLRiLiÍÜ[ 2. @Ní][ÊÁL`i ª«sVW²R¶ª«s ªyLRiLiÍÜ[ 3. |qs|msíLiÊÁL`i ®ªsVVµR¶ÉÓÁ ªyLRiLiÍÜ[ 4.®ªs[V ®ªsVVµR¶ÉÓÁ ªyLRiLiÍÜ[ 43. 2010 ÍÜ[ úxmsxmsLi¿RÁ ËØùLiNRPV @Li¿RÁ©y úxmsNSLRiLi úxmsxmsLi¿RÁ ª«sXµôj¶ lLi[ÈÁV FsLi»R½? 1. 2.9 aS»R½Li 2. 4.9 aS»R½Li 3. 3.9 aS»R½Li 4. 1.9 aS»R½Li 44. @Õ³Áª«sXµôðj¶ ¿ÁLiµj¶©«s ALójiNRP ª«sùª«sxqsóÍÜ[....? 1. úaRPª«sV ª«sVWÌÁµR¶©«sLi ªy²R¶NRPLi |msLRiVgRiV»R½VLiµj¶ 2. úaRPª«sV ª«sVWÌÁµ³R¶©«sLi ªy²R¶NRPLi »R½gæRiV»R½VLiµj¶ 3. ˳ÏÁW−sV xqsx¤¦¦¦ÇÁ ª«s©«sLRiVÌÁ úFy¼½¬sµR¶ùLi |msLRigRiV»R½VLiµj¶ 4. ª«sùª«sry¸R¶V D»R½ö»R½VòÌÁ Aµy¸R¶V ªyùN][¿RÁ»R½*Li FsNRPV䪫s 45. ª«sV©«s®µ¶[aRPLiÍÜ[ ®ªsVVµR¶ÉÓÁ −sµR¶Vù¿RÁèéNTPò ZNP[LiúµR¶Li? 1. ËÜLiËØLiVV 2. ²yLêjiÖÁLig`i 3. ©ygSLêRiV©«s rygRiL`i 4. ²T¶g][÷¸º¶V 46. Aµy¸R¶V @xqsª«sW©«s»R½ÌÁ ª«sÌýÁ NTPLiµj¶ ªyÉÓÁÍÜ[ Gµj¶ xqsLi˳ÏÁ−sLi¿RÁµR¶V? 1. ALójiNRP xqsLiO][Q˳ÏÁLi 2. DµR¶ùª«sWÌÁ xmsoÈíÁVNRP 3. ÒÁª«s©«s úxmsª«sWßØÍýÜ[ ª«sù»yùxqsLi 4. ª«sW©«szqsNRP róyLiVVÍÜ[ ª«sù»yùxqsLi 47. xqsWäÍÞ ú²y£ms KÉÞ=©«sV »R½gæjiLi¿RÁVÈÁNRPV D®µô¶[bPLiÀÁ©«s xms´R¶NRPLi Gµj¶? 1. −dsV©±s= NRPª±sV ®ªsVLjiÉÞ ryäÌÁL`iztsQ£ms= 2. g][ xqsWäÍÞ 3. ¿RÁÍÜ[ −sµyùÌÁ¸R¶VLi 4. Gµk¶ NSµR¶V 48. ©«sª«sLRi»yõÌÁNRPV G¹¸¶[V @LiaSÍýÜ[ ®ªsxqsVÌÁVËØÈÁV DLiÈÁVLiµj¶? 1. ªyßÓáÇÁùLi 2. \|mns©y©±s= 3. ¸R¶WÇÁª«sW©«sù ¬sLRi*x¤¦¦¦ßá 4. \|msª«s¬dsõ 49. ˳ØLRi»R½ ALójiNRP úxmsßØ×ÁNRPÌÁ LRi¿RÁ©«s\|ms G ®µ¶[aRP úxms˳ت«sLi DLiµj¶? 1. úFy©±s= 2. BLigýSLi²`¶ 3. LRiuyù 4. @®ªsVLjiNS 50. ˳ØLRi»R½ FyLjiúaS−sVNSÕ³Áª«sXµôðj¶ ËØùLiNRPV, ©yËØLïRiV ryµ³yLRißá Õ³dÁª«sW xqsLixqsóÌÁV FsxmsöÉÓÁ ©«sVLi²T¶ ÊÁVVßáµy»R½ÌÁVgS @©«sVª«sV¼½Li¿RÁÊÁ²ïyLiVV? 1. 1985 2. 1990 3. 1995 4. 1980 51. 1991NRPV ª«sVVLiµR¶V ˳ØLRi»R½ ALójiNRP ª«sùª«sxqsó @©«sVxqsLjiLiÀÁ©«s úxmsßØ×ÁNRPÌÁ©«sV G −sµ³R¶LigS zmsÌÁVryòLRiV? 1. xqs*ÌÁöNS×ÁNRP úxmsßØ×ÁNRPÌÁV 2. ¬sLRiLi»R½LRi úxmsßØ×ÁNRPÌÁV 3. xqsLi®µ¶[aS»R½øNRP úxmsßØ×ÁNRPÌÁV 4. µk¶LçRiµR¶Lji+ úxmsßØ×ÁNRPÌÁV 52. 1951xqsLi.ÍÜ[ ®µ¶[aRP @ORPQLSxqsù»R½ lLi[ÈÁV? 1. 36 aS»R½Li 2. 36 aS»R½Li NRPLiÛÉÁ[ FsNRPV䪫s 3. 20 aS»R½Li NRPLiÛÉÁ[ FsNRPV䪫s 4. 20aS»R½Li NRPLiÛÉÁ[ »R½NRPV䪫s 53. BLiµj¶LSgSLiµ³k¶ úFyLRiLiÕ³ÁLiÀÁ©«s 20 xqsWú»yÌÁ ALôðjiNRP NSLRiù úNRPª«sVLi NS¬sµj¶? 1. ú»ygRiV¬dsLRiV xmsLjiaRPVú˳ÏÁ»R½ 2. Ëص³R¶ù»y¸R¶VV»R½ xmsLjiFyÌÁ©«s 3. −s¬s¹¸¶WgRiµyLRiV¬sNTP xqsLiÊÁLiµ³j¶LiÀÁ©«sµj¶ 4. xmsLjiaRPVú˳ÏÁ»R½ 54. xqsVLiµR¶LRi LSÇÁ©±s NRP−sVÉÔÁ G LRiLigS¬sNTP xqsLiÊÁLiµ³j¶LiÀÁ©«sµj¶? 1. −sµR¶Vù»`½ 2. −sµR¶ù 3. |msúÉÜ[ÖÁ¸R¶VLi 4. ÀÁ©«sõ»R½LRi¥¦¦¦ xmsLjiúaRPª«sVÌÁV
1. 3 -6. 4 11. 2 16. 3 21. 4 26. 3 31. 2 36. 4 41. 3 46. 1 51. 4
düe÷<ÛëHê\T
2. 4 3. 4 7. 2 8. 2 12. 1 13. 3 17. 2 - 18. 3 22. 1 23. 1 27. 4 28. 1 32. 3 33. 2 37. 3 38. 1 42. 1 43. 3 47. 1 48. 4 52. 4 53. 2
4. 1 9. 4 14. 1 19. 2 24. 3 29. 2 34. 1 39. 3 44. 1 49. 3 54. 3
Dr.M.Reddi Ramu Associate professor Academic Coordinator Kuppam Engineering College Cell: 08897892659
5. 3 10. 3 -15. 2 20. 1 25. 3 30. 4 35. 2 40. 2 45. 4 50. 2
k˛eTyês¡+ 29 nø√ºãsY 2018
A N D H b˛{° R A|üØP R A B H A ø£å\ Á|ü‘˚´ø£+
>∑‘· dü+∫ø£ ‘·s¡TyêsTT 63. If O < < < < 2 and if ƒ(x)A= cos (x + ) + (cos (x + ) + cos(x + ) = 0, x C R . then value of - is equal to 1. 2 / 3 2. 4 /3 3. /2 4. /3 64. If 'a' is real constant and A, B, C are variable angles and ( a2 - 4) TanA + aTanB+ ( a2 +4) TanC = 6a Then the least value of Tan2A + Tan2B + Tan2C is____ 1. 10 2. 12 3. 14 4. 20
68. S – I : ~ (~ p ~ r) = p q V S – II : ~ p ~ q = (pv ~ q) (qv ~ p) Which of the following is true about above two statements S – I and S – II. 1. Both S – I, S – II are true and S – II is a correct explanation of S – I. 2. Both S – I, S – II are true, but S – II is not a correct explanation of S – I. 3. S – I is true and S – II is false 4. S – I is false and S – II is true 69. The area bounded by the graph f (x) > 0 on [0,a] and x-axis is a2/2 + a/2 sin a + /2 cos a then f ( /2) is 1. 0 2. 1 3. 1 1/2 4. 2
77. If the function ƒ(x) = x3 + 3 (a - 7) x2 +3 (a2 - 9) x -1 has a point of maximum at positive values of x then. 1. a C [ - , 29/7] 2. a C (- ,7) 3. a C [ - , -3]U (3, 29/7) 4. a C (3, )U ( - ,-3) 8
67. Each of the 'n' urns contain 4 white and 6 black balls. The (n + 1)th urn contains 5 white and 5 black balls. One of the urn is chosen at random and two balls are drawn from it without replacement. Both the balls turn out to be black. If the probability that the (n + 1)th urn was chosen to draw the balls is 1/16, then the value of n is 1. 10 2. 11 3. 12 4. 13
76. A and B are two square matrices such 2 that A B = BA and if (AB)10 AkB10 then k is 1. 1001 2. 1023 3. 1042 4. 1014
78. The circum circle of ABC is x + y - 5x - 4y + 6 = 0 , if a parabola (k +1) y2 = x have sides AB, BC, CA as tangents then the value of k is 1. - 7/8 2. -11/13 3. 2/3 4. 4/7 2
79. Let andn nare the roots of x +10x - 7 = 0 . If an = + for n >1then the value of a12 - 7a10/2a11is 1. 4 2. -5 3. 5 4. -3 80. If x1, x2, x3,....x4001 are in an AP such that 1/ x1x2 + 1/ x2x3 + .... + 1/ x4000 x4001 = 10 and x2 + x4000 = 50 then x1 - x4001 = 1. 20 2. 30 3. 40 4. 100 81. If f(x) is a continuous function in [0, ] such that f(0) = f( ) = 0 then the value of 11
(ƒ(2x) + f (2x)) sinx.cos xdx is equal to 1. 2. 2 3. 3 4. 0 82. Suppose A and B are two nonsingular matrices such that AB = BA2 and B5 = I, then 1. A32 = I 2. A31 = I 3. A30 = I 4. A50 = I 83. tann (x - [x]) + tann-2 (x -[x]) dx = where [] is g.i.f 1. 1/n 2. 1/n-1 3. 1/n-2 4. 1/n+1
70. The average marks of boys in a class is 52 and that of girls is 42. The average marks of boys and girls combined is 50. The percentage of boys in the class is 1. 40 2. 20 3. 80 4. 60
84. Let f (x) = ax2 + bx + c with degree less than or equal to 2, f(0) = 0, f(2) = 2. The minimum value of 1. 4 2. 2 3. 1 4. 0
71. Domain of derivative of the function f(x)
85.
=
is 1. R-{-1,0,1} 3. R-{0}
72. The value of equal to 1. 0 2. 12
1. 4
3. 3/4
4. 0 2
86. iƒ (t) dt = sin x-x cos x - x /2 for all x C R - {0} then the value of ƒ( /6) is 1. 0 2. 1 3. -1/2 4. 3/2s
2. R-{-1,1} 4. R is 3. 9
2. 4/3
4. 6
73. If A is the area between the curve y = x6 (1- x)7 and x - axis then the number of prime factors of A-1 is ___ 1. 3 2. 4 3. 2 4. 5 74. The solution of the differential equation
87. The value of 1. 1
2. -1
89. Two circles passing through the points A(1, 2) and E(2, 1) touch the line 4x + 8y - 7 = 0 at B and D. The possible coordinate of point C such that ABCD is a parallelogram is 1. (15/2, -9/2) 2. (0, 3) 3. (1/2, 5/2) 4. (-5/2, 3/4) 90. If z1, z2 are complex numbers such that Re(z1) =| z1 - 2 |, Re(z2) = | z2 - 2 | and Arg(z1 - z2) = / 3, then Im (z1 + z2) = 1. 2 / 3 2. 4 / 3 3. 2 3 4. 3
is 3. 0
4. 2
düe÷<ÛëHê\T
2
2
$<ë´Á|üuÛÑ 15
r r 88. If {ar(x-y+2) - br (y-x-1) } = 0, A n C N, then bn is equal to 1. an 2. (-1)n an 3. (-1)n 2nan 4. 2nan
8
66. Let a, b, c be three non-coplanar vectors and d be a non-zero vector, which is perpendicular to a + b + c. Now, if d = (sin x) (a × b) + (cos y) (b×c) + 2 (c×a) then minimum value of x2 + y2 is equal to 1. 2 2. 2 /2 3. 2/4 4. 5 2/4
MATHEMATICS
88 8
65. The distance of the point (3, 4, 5) from the plane x + y + z = 2 measured parallel to the line 2x = y = z is. 1. 4 3 2. 6 3. 5 2 4. 12
JEE MAIN MODEL PAPER-2
Ä+Á<ÛäÁ|üuÛÑ
63. 2
64. 2
65. 2
66. 4
67. 1
68. 4
69. 3
70. 3
71. 2
72. 4
73. 4
74. 1
75. 3
76. 2
77. 3
78. 1
79. 2
80. 2
81. 4
82. 2
83. 2
84. 2
85. 2
86. 3
87. 1
88. 3
89. 1
90. 2
Seetharamaiah
Chairman Impulse Educational Institutions Cell : 9848743658
SSC - CGL - Bits
1. In each of the questions, four alternatives are given for the Idiom/Phrase. Choose the alternative which best expresses the meaning of the Idiom/Phrase and click the button corresponding to it. Button her lip 1. Tell us more 2. Stop talking 3. Invite us too 4. Enjoy herself 2. In each of the questions, four alternatives are given for the Idiom/Phrase. Choose the alternative which best expresses the meaning of the Idiom/Phrase and click the button corresponding to it. Invent cock and bull stories 1. Delightful fables 2. Eco-friendly accounts 3. Absurd and unlikely stories 4. Credible tales 3. Out of the four alternatives, choose the one which can be substituted for the given words/sentences and click the button corresponding to it. Act of making things like new again. 1. Innovate 2. Renovate 3. Motivate 4. Activate 4. Out of the four alternatives, choose the one which can be substituted for the given words/sentences and click the button corresponding to it. One who knows everything. 1. Omniscient 2. Conscious 3. Intellectual 4. Learned 5. Out of the four alternatives, choose the one which can be substituted for the given words/sentences and click the button corresponding to it. Any morbid dread of water. 1. Hydrofoil 2. Hydrophobia 3. Hydraulic 4. Hyacinth
75. For an ellipse x2/9 + y2/4 =1with vertices A and A1, tangent drawn at the point P in the first quadrant meets the y-axis in Q and the chord A1P meets the y-axis in M. If 'O' is the origin then OQ2 -MQ2 equals to 1. 9 2. 13 3. 4 4. 5
6. A sentence/a part of the sentence is underlined. Four alternatives are given to the underlined part which will improve the sentence. Choose the correct alternative and click the button corresponding to it. In case no improvement is needed, click
the button corresponding to "No improvement". You have come here with the intention in insulting me. 1. for insulting me 2. of insulting me 3. on insulting me 4. No improvement 7. A sentence/a part of the sentence is underlined. Four alternatives are given to the underlined part which will improve the sentence. Choose the correct alternative and click the button corresponding to it. In case no improvement is needed, click the button corresponding to "No improvement". I did not give at the examination as my circumstances are bad. 1. write 2. sit 3. appear 4. No improvement 8. A sentence/a part of the sentence is underlined. Four alternatives are given to the underlined part which will improve the sentence. Choose the correct alternative and click the button corresponding to it. In case no improvement is needed, click the button corresponding to "No improvement". Though he worked hard, but he failed. 1. and 2. yet 3. then 4. No improvement 9. A sentence/a part of the sentence is underlined. Four alternatives are given to the underlined part which will improve the sentence. Choose the correct alternative and click the button corresponding to it. In case no improvement is needed, click the button corresponding to "No improvement". No sooner did the teacher come into the class when we stood up. 1. since 2. then 3. than 4. No improvement 10. A sentence/a part of the sentence is underlined. Four alternatives are given to the underlined part which will improve the sentence. Choose the correct alternative and click the button corresponding to it. In case no improvement is needed, click the button corresponding to "No improvement". He was so much a coward to help his friend. 1. so much cowardly 2. too much of a coward 3. as coward 4. No improvement 11. In the following question, select the related word pair from the given lternatives. Army : Soldier : : ? : ? 1. Troupe : Artist 2. Principal : School 3. Tyre : Car 4. Minister : Council 12. In the following question, select the related number from the given alternatives. 354 : 351 : : 478 : ? 1. 481 2. 447 3. 475 4. 477 13. In the following question, select the related letter/letters from the given alternatives. PTY : DHM : : SQZ : ? 1. IEO 2. GEN 3. GFN 4. IFP 14. In the following question, select the odd word pair from the given alternatives. 1. Table Tennis–Indoor 2. Cricket–Outdoor 3. Football – Outdoor 4. Indoor–Chess 15. In the following question, select the od d letter/letters from the given alternatives. 1. IQY 2. CKT 3. EMU 4. HPX
düe÷<ÛëHê\T 1. 2 2. 3 3. 2 -6. 2 7. 3 8. 2 11. 1 12. 3 13. 2
4. 1 5. 2 9. 3 10. 2 14. 4 15. 2
THE BEAUTY OF PHYSICS LIES IN THE RELATIVITY The whole beauty of Physics lies in the relativity. Nature never ce ases to amaze an observer who is observing it in different perspectives. Everything that happens around us is relative. Two observers may not find the same thing in the same way. Here, we limit our discussion on relativity only to classical mechanics. Classical mechanics is the branch where we work on bodies/ particles moving at a speed not any where near the speed of light and dimensions of the bodies being greater than 10-8m. In this article, I shall discuss the concepts of relative motion which particularly helps JEE Main/Advanced aspirants. Let us recall some basic definitions of the terms we normally use in Physics. Frame of reference : The point from which an observer performs analysis. Rest : With respect to a frame of reference, if a particle does not change its coordinates in space, then it is said to be in the state of rest. Motion : With respect to a frame of reference, if a particle changes its coordinates in space, then it is said to be moving or in the state of motion. To define anything in Physics, we have to start with a phrase “with respect to a frame of reference”. There is nothing absolute in this nature. The fundamental aspects, rest and motion, are relative. So everything we define based on these fundamental aspects are bound to be relative. Nothing can be absolute. Paradoxically, nothing is absolute in this nature except relativity. For example, a tree is at rest as observed by a person standing on the ground. The same tree is in motion as observed by a person moving in a bus. To explain the relativistic behavior of nature mathematically, we make use of vector algebra. Relative Position, Relative Velocity and Relative Acceleration : Consider two points A and B in space. Their position vectors are represented as shown below,
CHEMISTRY TOPIC WISE AND YEAR WISE JEE MAIN ANALYSIS TOPIC NAME
Tangent of the angle made by rain with the vertical as observed by man, Vr sina – Vm Tana = Vr cos Note : Man observes rain along the vertical if =0 i.e., Vr sin – Vm = 0 Vm=Vr sin * If man moves at a speed of Vr sin along the horizontal component of rains velocity, he feels rain drops hitting him vertically. One need not remember any formula. Once you know the approach, a problem can be solved using the conceptual analysis. For example, A man standing on ground observes rain at a speed of 5 m/s, at an angle 370 east of south. a. With how much velocity should he run to observe rain along the vertical? b. If he runs with half of the velocity calculated in part (a), how does he observe rain?
Solution :
2011 2012
2013
2014
2015 2016
2017
2018
CHEMIAL BONDING
2
2
4
2
2
2
2
3
D-BLOCK & F-BLOCK
0
1
2
2
1
2
0
0
METALLURGY
0
1
0
1
1
1
0
1
P-BLOCK
1
0
1
1
3
1
0
2
PERIODIC TABLE
1
1
1
0
1
1
1
0
QUALITATIVE ANALYSIS 0 S-BLOCK HYDROGEN & ITS COMPOUNDS 1 TRANSISTION ELEMENTS & COORDINATION
0
0
0
1
1
1
0
1
0
1
1
2
2
1
CHEMISTRY
2
0
1
1
1
2
1
2
GOC
1
0
3
3
2
2
1
1
HYDROCARBONS
2
3
0
2
0
3
0
1
2
0
1
2
2
0
4
0
2
2
1
2
1
2
1
1
AROMATIC COMPOUNDS
0 2
0 0
3 0
0 1
0 1
0 0
1 1
2 2
PRACTICAL ORGANIC CHEMISTRY ATOMIC STRUCTURE GASEOUS STATE
0 1 2
CHEMICAL EQUILIBRIUM
0
IONIC EQUILIBRIUM CHEMICAL KINETICS ELECTROCHEMISTRY MOLE CONCEPT SOLID STATE SOLUTION AND COLLIGATIVE PROPERTIES SURFACE CHEMISTRY THERMODYNAMICS AND THERMO CHEMISTRY EQUIVALENT CONCEPT AND TITRATION ENVIRONMENT CHEMISTRY CHEMISTRY IN EVERY DAY LIFE
3 1 1 2 1
1 1 1 1 1 1 1 1 1
1 1 2 0 1 1 1 2 1
1 1 0 1 1 1 4 2 1
3 1 0 1 0 1 1 1 1
2 1 1 1 0 1 0 0 0
1 1 0 0 1 1 1 3 1
1 0 0 0 2 2 1 1 1
0 0
1 1
0 1
2 1
1 2
1 2
1 1
1 1
3
1
2
1
1
1
2
2
0
0
0
1
0
0
0
0
xqsWú»y¬sõ FyÉÓÁLi¿RÁLi²T¶. @˳ÏÁùLóji LRi¬sõLig`i ¿P[}qsÈÁxmsöV²R¶V ÛËÁLi²R¶ª«s*NRPVLi²y ¬sÉØ LRiVgS DLi®²¶[ÍØ ¿RÁWxqsVN][ªyÖÁ. ÛÉÁ[N`PA£mns ¼d½xqsV NRPV®©s[ÈÁxmsöV²R¶V \ÛÍÁ©±s úNS£qs @LiVV¾»½[ Fn¢ÍÞ @ª«so »R½VLiµj¶ NSÊÁÉíÓÁ ÇØúgRi»R½ò ª«sz¤¦¦¦Li¿yÖÁ. ÛÉÁ[N`P A£mns »R½LRiVªy»R½ FnýyÉÞgS NSNRPVLi²y 20 ²T¶úgkiÌÁ N][ßáLi »][ ®ªsÛÎýÁ[ÈíÁVgS ¿RÁWxqsVNRPVLiÛÉÁ[ ÍØLig`i ÇÁLi£ms ËØgS ª« xqsVòLiµj¶. ¿P[»R½VÌÁ©«sV NSÎýÏÁ©«sV \|qsNýTPLig`i ¿P[}qsò ÇÁLizmsLig`iNRPV ®ªsVLRiVgæS DLiÈÁVLiµj¶. ÍØLi²T¶Lig`i NRPW²y NRPlLiNíRPVgS ¼d½xqsVN][ªyÖÁ.
0
1
0
1
0
1
1
1
ÍØLig`i ÇÁLi£ms ÛÉÁNTPõN`P=: C®ªsLiÉÞ=ÍÜ[ ÍØLig`i ÇÁLi£msNTP
0
0
0
0
0
0
0
1
ALKYL HALIDE ALCOHOL,
is the position of A w.r.t O , is the position of B w.r.t O, ..... is the position of B w.r.t A or the relative position of B as observed by A. By the triangle law of vector addition. � � r� BA = rB - rA �The relative position of B w.r.t A = Position of B-Position of A Differentiating the above equation w.r.t time, we get � � � VBA = VB - VA �The relative velocity of B w.r.t A= Velocity of B- Velocity of A Differentiating the above equation w.r.t time, we get � � � aBA = aB - aA � The relative acceleration of B w.r.t A= acceleration of B - acceleration of A With these simple mathematical expressions, we can analyze the motion from any given frame of reference. Example : Initial separation between two persons A and B is 100m. A starts chasing B moving along east with speeds 30m/s and 20m/s respectively. When and where will they meet?
� � (a) Vr = 3 i - 4 j , Let velocity of man be Vm = Vmj � � � Velocity of rain as observed by man will be Vrm = Vr - Vm The angle at which man observes rain is Tan
� Vrm = (3-Vm)i - 4 j
= 3 -Vm/4
Man observes rain along vertical if = 0 or Vm=3m/s � � (b) Now, it’s given Vr = 1.5 i and Vr = 3 i- 4 j � � � � Velocity of rain as observed by man will be Vrm = Vr - Vm , Vrm = (1.5)i - 4 j Man observes rain at an angle Tan
=1.5/4, So, =
tan-1
3/8
Brain teaser : A long conducting straight wire carries current i. The current in a conductor is due to the flow of free charges inside it with drift velocity. The equation of current in a conductor is given by i=nqAVd. n- number of free charges per unit volume, A - area of cross-section of the wire q- charge of each free charge, Vd.- Drift velocity
Method 1 : Working from the ground frame of reference
Say they meet at distance x from B. Distance travelled by B, x=20t Distance travelled by A, 100+x=30t Subtracting both 100=10t t=10 sec. x=200m Method 2 : Working from the B’s frame of reference
It is obvious that, the current in a conductor is due to the drift velocity. Now, consider an observer who is moving along the drift velocity and with same speed. With respect to him, the velocity of the free charges is zero. He should observe no current. What is wrong in the perspective? Think…!!!! q� vd q� vd Vd
A
Correct perspective : B observes that A is moving towards him at a relative speed of 10m/s Say they meet at distance x from B. Displacement of Displacement of Displacement of A as observed by B, B observes that A covers a relative displacement of 100m towards him to meet him. � w.r.t B, r� AB = VAB t 100=10 t => t=10 sec.
Suppose, it is a copper wire. Electrons move with drift velocity and protons are at rest. By convention we take the sense of current along the motion of positive charges. Now, if the person moves along the drift velocity, he observes electrons to be at rest. But, with re spect to him, the positive charges move in the oppo site direction with drift velocity giving the same result of current. In his frame of reference, the current still remains same. rest +
-
�vd
rest
Vd
�
+
-
Rain-Man problem :
A man standing still on the ground observes rain at some speed and at some angle with the vertical. When he starts moving on the ground, he observes the same rain at a different speed and different angle with the vertical. This phenomenon can be analyzed with the relative velocity concept that we discussed above.
rest
Students are advised to practice by doing analysis on the same case from different frames of reference to get better clarity with the relativity.
� Vd
D.VIKRAM,
FOUNDER & CEO NINE EDUCATION IIT ACADEMY, HYD cell : 9866889904
@¬sõLiÉÓÁNRPLiÛÉÁ[ ÍØLig`i ÇÁLi£ms ¿yÍØ ¾»½[ÖÁNRP @®©s[ ˳ت«s ©«sÍÜ[ ¿yÍØ ª«sVLiµj¶ @˳ÏÁùLóRiVÌÁV DLiÉØLRiV. NS¬s úxms¾»½[ùNRP\®ªsV©«s ÛÉÁNTPõN`P= FyÉÓÁ}qsò®©s[ @µj¶ ¾»½[ÖÁNRP. ÛÉÁNTPõN`P= FyÉÓÁLi¿RÁNRPF¡¾»½[ ¿yÍØ NRPxtsíQ\®ªsV©«sµj¶ NRPW²y ÍØLig`i ÇÁLi}ms. ÍØLig`i ÇÁLi£ms −sxtsQ¸R¶VLi ÍÜ[ ®ªsV©±s=NTP, D®ªsV©±s=NRPV µR¶WLRiLi ®ªs[LRiV®ªs[LRiVgS DLiÈÁVLiµj¶. FsNRPV䪫s µR¶WLRiLi ÍØLig`i ÇÁLi£ms ¿P[¸R¶WÌÁLiÛÉÁ[ úríyLig`ixmnsQpÉÞ ¼d½xqsVN][ª«s²R¶Li ¿yÍØ ª«sVVÅÁùLi. C INRPä −sxtsQ¸R¶VLiÍÜ[®©s[ @˳ÏÁùLóji −sÇÁ¸R¶VLi Aµ³yLRixms²T¶ DLiÈÁVLiµj¶. C −s˳ØgRiLÍÜ[ −sÇÁ¸R¶VLi ryµ³j¶Li¿yÌÁLiÛÉÁ[ IZNP[ INRP −sÇÁ¸R¶V xqsWú»R½Li úríyLig`i xmnsQpÉÞ ¼d½xqsVN][ª«s²R¶Li. @µj¶ ÛÍÁ£mnsí ú»][ ¿P[xqsWò \lLiÉÞ xmnsQpÉÞ ÇÁLi£ms ¿P[¸R¶WÖÁ. N]Li»R½ ª«sVLiµj¶NTP ÛÍÁ£mnsí ú»][ ¿P[¸R¶V²R¶Li BÊÁ÷Liµj¶gS DLi²R¶ ª«s¿RÁVè. @ÍØLiÉÓÁ ªyÎýÏÁV \lLiÉÞ ú»][ ¿P[xqsWò ÛÍÁ£mnsí xmnsQpÉÞ ÇÁLi£ms ¿P[¸R¶WÖÁ. −dsVLRiV G xmnsQpÉÞ ¼d½xqsVNRPV ©yõ úríyLig`i xmnsQpÉÞ ¼d½xqsVNRPVLiÛÉÁ[®©s[ ÇÁLi£ms ËØgS ª«sxqsVòLiµj¶. úríyLig`i xmnsQpÉÞ ©«sVLiÀÁ 30 |qsí£ms= µR¶W LS¬sõ LRi©±s@£ms ¿P[}qsò ÛÉÁ[N`PA£mns ËØgS ª«sxqsVòLiµj¶. ¼d½xqsVNRPV®©s[ ÛÍÁLi»`½©«sV ÊÁÉíÓÁ ÍØLig`i ÇÁLi£ms Aµ³y LRixms²T¶ DLiÈÁVLiµR¶®©s[
EHTER CARBOHYDRATES, AMINO ACIDS AND POLYMERS, BIOMOLECULES CARBOXYLIC ACIDS ,THEIR DERIVATIVES
JEE MAINS ANALYSIS
SEETHARAMAIAH, CHAIRMAN IMPULSE EDUCATIONAL INSTITUTIONS, PRAGATHI NAGAR, MIYAPUR, KPHB,HYDERABAD. CELL- 9848743658
Ä+Á<ÛäÁ|üuÛÑ
$<ë´Á|üuÛÑ b˛{° |üØø£å\ Á|ü‘˚´ø£+ k˛eTyês¡+
29 nø√ºãsY 2018
16 17
ù|J\T
ÍØLig`i ÇÁLi£ms
¿P[¸R¶VLi²T¶ÍØ.. ø±ìùdºãT˝Ÿ |òæõø£˝Ÿ f…øÏïø˘ - 4 |òæõø£˝Ÿ f…dtº áyÓ+{Ÿ‡˝À ˝≤+>¥ »+|t #ê˝≤ eTTK´yÓTÆq~. ˝≤+>¥ C…+|tqT düTHêj·÷dü+>± #˚j·T&ÜìøÏ düT\TyÓ’q f…øÏïø˘ @+{À ‘Ó\TdüT≈£î+<ë+..
µR¶WLRiLi ®ªsV©±s=NTP 3.8 −dsVÈÁLýRiV, D®ªsV©±s=NTP 2.5−dsVÈÁLýRiV DLiÈÁVLiµj¶. ÇÁLi£ms ¿P[}qs ª«sVVLiµR¶V ÛÉÁ[N`P A£mns \ÛÍÁ©±s ©«sVLiÀÁ ¼d½xqsVN][ ªyÖÁ. @xmsöV²R¶V ËزU¶ zmnsÉÞgS DLi®²¶[ ÍØ ¿RÁWxqsV N][ªyÖÁ. G C®ªsLiÉÞÍÜ[ xqsZNP=£qs @ªy*ÌÁ©yõ ËزU¶zmnsÉÞ®©s£qs »R½xmsö¬sxqsLji. ª«sVVLiµR¶VgS −dsV úríyLig`i xmnsQpÉÞ©«sV FsLi¿RÁVNRPV¬s @®µ¶[ xmnsQpÉÞ»][ úFyNíUPxqsV ®ªsVVµR¶ÌÁV |msÉíØÖÁ. IZNP[ xmnsQpÉÞ»][ úFyNíUPxqsVÍÜ[ ÛÍÁLi»`½ |msLi¿RÁVNRPVLiÈÁW DLi ²yÖÁ. @ÌÁªyÈÁV @¹¸¶[Vùª«sLRiNRPV IZNP[ ÛÍÁg`i»][ FsNRPV䪫s ryLýRiV úFyNíUPxqsV ¿P[¸R¶WÖÁ. úFyNíUPxqsVÍÜ[®©s[
LRi©±s@£ms NRPlLiNíRPVgS DLi®²¶[ÍØ ¿RÁWxqsVN][ªyÖÁ. @xmsöV®²¶[ ÛÉÁ[N`P A£mns NRPlLiNíRPVgS ª«sxqsVòLiµj¶. z¤¦¦¦ÍÞ= \|ms©«s NSNRPVLi²yÉÜ[\|ms®©s[ LRi¬sõLig`i ¿P[¸R¶WÖÁ. ÛËÁLi²R¶ @ª«s*NRPVLi²y LRi©±s ¿P[¸R¶WÖÁ. ¿Á£qsí J|ms©±s ¿P[¸R¶WÖÁ. |¤¦¦¦²`¶ úxqsíLiVVÉÞgS DLi²yÖÁ. zqsöLiÉÞ Â¿P[zqs©«s »R½LRiVªy»R½ úríyLig`i xmnsQpÉÞ»][ ÇÁLi£ms ¿P[¸R¶WÖÁ. \ÛÍÁ©±s úNS£qs @ª«s*NRPVLi²y ¿P[¸R¶WÖÁ. ÛÉÁ[N`P A££mns \ÛÍÁ©±s \|ms©«s xmnsQpÉÞ ®ªs[¸R¶WÖÁ. FnýyÉÞgS ÇÁLi£ms ¿P[¸R¶VNRPW²R¶µR¶V. @ÍØgRi¬s \|¤¦¦¦gS NRPW²y ÇÁLi£ms ¿P[¸R¶VNRPW²R¶µR¶V. FsLiµR¶VNRPLiÛÉÁ[ lLiLi²T¶LiÉÓÁ¬s ¸R¶Wª«slLi[ÇÞ Â¿P[xqsVNRPV¬s ÇÁLi£ms ¿P[}qsò A ÇÁLi£ms FsNRPV䪫s µR¶WLRiLi xms²R¶V»R½VLiµj¶. −dsVLRiV ¿P[}qs ¸R¶Wª«slLi[ÇÞ N][ßáLi ÇÁLi£ms µR¶WLS¬sõ |msLi¿RÁV »R½VLiµj¶. ËزU¶ @®©s[µj¶ FnyÍÜ[ú»R½W ª«sVVLiµR¶VNRPV DLi²yÖÁ. INRP ®ªs[ÎÏÁ ËزU¶ ®ªs©«sNRPNRPV xms²T¶¾»½[ A ²T¶|qsí©±s=©«sV ÛÍÁNTPäryòLRiV. @LiµR¶VNRP¬s FnyÍÜ[ú»R½W ª«sVVLiµR¶VNRPV DLi²yÖÁ. B−s FyÉÓÁ}qsò NS*ÖÁ\|mns @ª«s*²R¶®ªs[V NSNRPVLi²y ®ªsVLjiÉÞ ª«sWLRiVäÌÁV ryµ³j¶Li¿P[ @ª«sNSaRPLi DLiµj¶.
c NRPª«sVÍÞ, zmnsÑÁNRPÍÞ N][¿`Á
LSª«sVxmsö @NS²R¶−sV |qsÍÞ c 9704736037
Ä+Á<ÛäÁ|üuÛÑ
18
$<ë´Á|üuÛÑ
A N D H b˛{° R A|üØP ø£å\ Á|Rü‘˚´ø£A+ B H A
IBPS CLERK PRELIMS SPECIAL Directions 1-5 : Study the following table to answer the question. Production of different food grains (in thousand tones) by six states in 2007 State
Wheat Rice Jower Bajra
Rajasthan
240
160
120
80
Uttar Pradesh
360
250
210
180
Chhattisgarh
280
220
150
130
Kerala
120
230
100
170
West Bengal
100
280
200
140
Tamil Nadu
160
290
240
160
1. What was the average production of bajra ( in thousand tones) by all the given states in 2007? a. 133 1/3 b. 142 4/9 c. 145 d. 148 e. 143 1/3
d. 5 kmph
e. None of these
7. A boatman rows up stream at 4kmph, 2 kmph and 8 kmph on Monday, Wednesday and Thursday respectively. Then find the ratio between the downstream speed of boat on Monday, Wednesday, and Thursday together and the rate of current on the same days together? a. 4:7 b. 3:1 c. 4:1 d. 4:3 e. None of these 8. A boatman rows up stream at 16 kmph and 2 kmph on Tuesday and Friday. Then find the difference between the downstream speed of boat on Tuesday and Friday together and the speed of boat in still water on the same days together? a. 1.7 kmph b. 11 kmph c. 5 kmph d. 3 kmph e. None of these
16. 45 46 70 a. 353 d. 352
141 ? 1061.5 b. 353.5 c. 352.5 e. None of these
17. 15 25 40 a. 115 d. 120
65 ? 195 b. 90 c. 105 e. None of these
18. 120 320 ? 2070 5195 13007.5 a. 800 b. 920 c. 850 d. 900 e. None of these 19. 0.248 1.24 18.6 ? 16275 732375 a. 465 b. 336 c. 424 d. 512 e. 639 20. 14 12 a. 6987 d. 6687
21 59 231 1149 ? b. 6787 c. 6887 e. 6587
Directions 21-25 : In the following questions two equations numbered I and II are given. You have to solve both the equations. a. if x > y b. if x < y c. if x < y
QUANTITATIVE APTITUDE
2. Total production of rice by Kerala and Tamil Nadu together is what percent of total production of jowar produced by these states together?(rounded off to nearest integer) a. 155 b. 158 c. 153 d. 159 e. 151
Days Monday Tuesday Wednesday Thursday Friday
Days Monday Tuesday Wednesday Thursday Friday
Upstream distance
Down stream distance
30% 20% 24% 14% 12%
24% 15% 15% 20% 26%
Speed of boat in Streampeed still Water 5 4 3
6 4 -
6. A boatman rows downstream at 6kmph on Wednesday. Find the speed of upstream? a. 7 kmph b. 2 kmph c. 3 kmph
29. The sum of the present ages of a mother and a daughter is 54 years and the difference between their present ages is 30 years. What is the ratio of the age of mother to that of daughter after 8 years? a. 5 : 3 b. 7 : 3 c. 3 : 1 d. 2 : 1 e. 5:2 30. If a man can row 13.3 km downstream in 19 minutes and his rowing speed in still water is 38kmph, how much distance can he cover upstream in 15 minutes? (in km) a. 7.75 b. 9.5 c. 8.5 d. 8.25 e. 9.25 31. Pinky while selling an article incurred a loss of 15%. Had she sold it for Rs. 96 more, she would have earned a profit of 17%. What is the cost price of the article? a. Rs. 350 b. Rs. 300 c. Rs. 346 d. Rs. 385 e. Rs. 320
33. A alone can do a piece of work in 6 days. B can do the same piece of work in 8 days. A and B signed to do it for Rs 3200.They completed the work in 3 days with the help of C. How much is to be paid to C? a. Rs. 380 b. Rs. 600 c. Rs. 400 d. Rs. 420 e. Rs. 450
4. What is the difference between total production of rice and that of jowar (in thousand tones) by Rajasthan, Chhattisgarh and Tamil Nadu together in 2007? a. 160 b. 180 c. 150 d. 140 e. 120
Direction 6-10 : Study the following table and missing table carefully to answer the given questions Down Stream Distance = 200 km Up Stream Distance = 300 km
28. A train crosses a 220 m-long-bridge in 20 seconds. If the length of the train is 100m, what is the speed of the train? a. 55.7 km/h b. 52 km/h c. 50.6 km/h d. 57.6 km/h e. 53.4 km/h
32. If two fair dice are thrown simultaneously, then what is the probability that the sum of the numbers appearing on the top faces of the dice is less than 5? a. 1/3 b. 2/5 c. 7/9 d. 8/17 e. None of these
3. What is the ratio of the total production of bajra by Rajasthan, Uttar Pradesh and Chhattisgarh together to total production of jowar by these here states together? a. 14 : 17 b. 13 :15 c. 13 :16 d. 13 :17 e. 14 :19
5. If the total production of wheat by Chhattisgarh, Kerala and West Bengal together in 2008 was more than that in2007 by 18%, what was the total production of these three states together in 2008(in thousand tones)? a. 480 b. 557 c. 488 d. 590 e. 596
k˛eTyês¡+ 29 nø√ºãsY 2018
34. A pipe can fill a tank in 8 hrs, but due to a leakage it took 29 1/3 hours to fill the tank. If the tank is full, in how much time will the tank become empty due to the leakage? a. 11 hrs b. 12 hrs c. 9 1/2hrs d. 9 hrs e. 11 1/2 hrs
9. What time will be taken by a boat to cover a distance on Tuesday along the stream, if the upstream of boat is 3 kmph? a. 4 hours b. 5 hours c. 2 hours d. 3 hours e. None of these 10. What is the sum of total distance travelled by the boat on Monday, Wednesday and Friday together? a. 316 b. 328 c. 356 d. 296 e. 336 Direction 11-15 : What value should come in place of the questions mark (?) in the following questions? 11. 18.5 × 21.4 × ? = 6255.22 a. 15.8 b. 14.6 c. 17.4 d. 17.2 e. 16.4 12. 1.5 × 78 ÷ 0.5 = ? a. 238 b. 234 d. 216 e. 261
c. 243
13. 302.46 + 395.72 - 123.47 = ? a. 576.77 b. 547.17 c. 547.77 d. 574.71 e. 577.71 3
14.3 4096 ÷ 64 = 3 ? a. 16 b. 8 c. 64
d. 4 e. 4
15. ? % of 800 = 293 - 22% of 750 a. 14 b. 18 c. 12 d. 16 e. 20 Directions 16-20 : What should come in place of the questions mark (?) in the following number series problems
d. if x > y e. if x = y or the relationship cannot be established. 21. I- x2 - x - 12 = 0 II- y2 + 5y + 6 = 0 22. I-x2 - 8x + 15 = 0 II- y2 - 3y +2 = 0 23. I- x2 - 32 = 112 II- y - 169 = 0
35. Pawan invested Rs 16, 400 in each of the two schemes A and B. A offers compound interest (compounded annually) and scheme B offers simple interest. In both the schemes he invested for two years and the rates of interest of both the schemes are equal. If the interest earned by him from scheme A is Rs 236.16 more than the interest earned by him from scheme B, what is the rate of interest (pcpa) of both the schemes? a. 9 b. 11 c. 14 d. 12 e. 8
24. I- x - 121=0 II- y2 - 121 = 0 25. I- x2 - 16=0 II- y2 - 9y + 20 = 0
düe÷<ÛëHê\T 1. e
2. c
3. c
4. a
5. d
26. In a village 56% of the total population are literates. The ratio of literate males to females is 4 : 3 and the ratio of illiterate males to females is 6 : 5. The number of illiterate males in the village is what per cent of the literate males in the village? a. 72.5 b. 80 c. 77.5 d. 75 e. 55
6. b
7. c
8. e
9. c
10. b
11. a
12. b
13. d
14. c
15. d
16. b
17. e
18. e
19. a
20. c
21. e
22. a
23. b
24. d
25. c
27. A and B started a business by investing some amount in the ratio of 6 : 13. After 6 months C joined them with an amount equal to the amount invested by A. If the total annual profit is Rs. 14960, what is C's share in the profit? a. Rs. 2070 b. Rs. 2190 c. Rs. 2040 d. Rs. 2130 e. Rs. 225
26. d
27. c
28. d
29. e
30. c
31. b
32. e
33. c
34. a
35. d
Y. Srinivasa Rao Subject Expert Cell :
8498018293
Ä+Á<ÛäÁ|üuÛÑ
$<ë´Á|üuÛÑ 19 ªbÕeغ n+&é nHéÁ_{Ïwt s¡÷˝Ÿ Ç+&çj·÷µ nH˚ |ü⁄düÔø±ìï mes¡T s¡∫+#ês¡T? k˛eTyês¡+ 29 nø√ºãsY 2018
A N D H b˛{° R A|üØP R A B H A ø£å\ Á|ü‘˚´ø£+
3. xqsVlLi[LiúµR¶©y´`¶ ÛËÁ©«sLêki 4. \|ms @¬sõ¸R¶VV 1. G xqsLiª«s»R½=LRiLiÍÜ[ ˳ØLRi»R½ Çؼd½¸R¶V NSLiúlgi£qs©«sV GLSöÈÁV ¿P[aSLRiV? 17. C NTPLiµj¶ ªyÉÓÁÍÜ[ −sV»R½ªyµR¶VÌÁ ÌÁOSQùÌÁ©«sV gRiVLjiòLi¿RÁLi²T¶? 1. 1880 xqsLi.ÍÜ[ 2. 1885 xqsLi.ÍÜ[ 1. LSÇØùLigRi xqsLixqsäLRißáÌÁ©«sV úxms®ªs[aRP|msÉíØÖÁ 3. 1890 xqsLi.ÍÜ[ 4. 1895 xqsLi.ÍÜ[ 2. xqs*¸R¶VLi úxms¼½xms¼½ò ryµ³j¶Li¿yÖÁ 2. ®ªsVVµR¶ÉÓÁ ˳ØLRi»R½ Çؼd½¸R¶V NSLiúlgi£qs FsNRPä²R¶ ÇÁLjigjiLiµj¶? 3. xmsú¼½NRPÌÁ µy*LS úxmsÇÁÌÁÍÜ[ \¿Á»R½©«sùLi ¼d½xqsVNRPVLSªyÖÁ 1. ª«sVúµyxqsV 2. ©«sWù²³T¶ÖýdÁ 4. \|ms @¬sõ¸R¶VV 3. ËÜLiËØLiVV 4. NRPÌÁNRP»yò 18. Fs¬sõryLýRiV µyµyËظº¶V ©_L][ÒÁ ˳ØLRi»R½ Çؼd½¸R¶V 3. C NTPLiµj¶ ªyLjiÍÜ[ Fsª«sLji¬s ˳ØLRi¼d½¸R¶V Çؼd½¸R¶V zms»yª«sVx¤¦¦¦§²R¶VgS zmsÌÁVryòLRiV? 1. G.J. x¤¦¦¦¨ùª±sV 2. xqsL][ÑÁ¬ds©y¸R¶VV²R¶V 3. AL`i.zqs. µR¶»yò 4. xqsV˳أtsQ¿RÁLiúµR¶ËÜ[£qs NSLiúlgi£qsNRPV @µ³R¶ùORPQ»R½ ª«sz¤¦¦¦Li¿yL4. ˳ØLRi»R½ Çؼd½¸R¶V NSLiúlgi£qsNRPV @µ³R¶ùORPQ»R½ ª«sz¤¦¦¦LiÀÁ©«s úxms´R¶ª«sV RiV? ˳ØLRi¼d½¸R¶VV²R¶V Fsª«sLRiV? 1. INRPäryLji ª«sWú»R½®ªs[V 2. 2 1. ª«sV¥¦¦¦»yøgSLiµ³k¶ 2. ²R¶ÊýÁWù.zqs. ÛËÁ©«sLêki ryLýRiV 3. LSÛÇÁ[LiúµR¶úxmsryµ`¶ 4. LSÇÞ ÕdÁ¥¦¦¦L`i ËÜ[£qs 3. 10 ryLýRiV 4. 3 5. ˳ØLRi»R½ Çؼd½¸R¶V NSLiúlgi£qsNRPV »]ÖÁ ª«sVVzqsýLi @µ³R¶ùORPV²R¶V ryLýRiV Fsª«sLRiV? 19. ˳ØLRi»R½®µ¶[aRP NRPVLRiV 1. ÊÁµj¶LRiVµôk¶©±s »yùÕêÁ 2. AÇص`¶ ª«sXµôðR¶V²R¶¬s Fsª«sLji¬s @LiÉØLRiV? 3. ª«sVx¤¦¦¦ª«sVøµ`¶ ÑÁ©«sõ 4. ª«sVx¤¦¦¦øµ`¶ BNS÷ÍÞ 1. A©«sLiµ`¶ 6. ®ªsVVµR¶ÉÓÁ ˳ØLRi»R½Çؼd½¸R¶V NSLiúlgi£qsNRPV FsLi»R½ª«sVLiµj¶ ®ªsWx¤¦¦¦©±s úxms¼½¬sµ³R¶VÌÁV ¥¦¦¦ÇÁLRiV @¸R¶WùLRiV? 2.µyµyËظº¶V 1. 44 ª«sVLiµj¶ xqs˳ÏÁVùÌÁV 2. 72 ª«sVLiµj¶ xqs˳ÏÁVùÌÁV ©_L][ÒÁ 3. 40 ª«sVLiµj¶ xqs˳ÏÁVùÌÁV 4. 92 ª«sVLiµj¶ xqs˳ÏÁVùÌÁV 7. ˳ØLRi»R½ Çؼd½¸R¶V NSLiúlgi£qsNRPV »]ÖÁ ª«sVz¤¦¦¦ÎØ @µ³R¶ùORPVLSÌÁV Fsª«sLRiV? 1. xqsL][ÑÁ¬ds©y¸R¶VV²R¶V 2. @¬sÕÁ|qsLiÉÞ 3. FsLi.ÕÁ. NSª«sW 4. LRiª«sWËØLiVV LRi©«s®²¶[ 8. ˳ØLRi»R½ Çؼd½¸R¶V NSLiúlgi£qsNRPV »]ÖÁ ˳ØLRi¼d½¸R¶V @LigS−dsV ¾»½gRi ª«sVz¤¦¦¦ÎØ @µ³R¶ùORPVLSÌÁV Fsª«sLRiV? 1. LRiª«sWËØLiVV LRi©«s®²¶[ 2. xqsL][ÑÁ¬ds©y¸R¶VV²R¶V 3. ª«sVµR¶©±s®ªsWx¤¦¦¦©±s 3. zqsxqsíL`i ¬s®ªs[µj¶»R½ 4. ª«sWLæRiL_ÉÞ ©¯[ÊÁVÍÞ ª«sWÌÁù 4. zmnsL][ÇÞuy ®ªsVx¤¦¦¦»y 9. G xqsLiª«s»R½=LRiLiÍÜ[ @¼½ªyµR¶VÌÁV, −sV»R½ªyµR¶VÌÁV −s²T¶F¡ ¸R¶WLRiV? 20. Fyª«sLíki @Li²`¶ @©±s úÕÁÉÓÁ£tsQ LRiWÍÞ BLi²T¶¸R¶W @®©s[ 1. 1906 ÍÜ[ 2. 1907 ÍÜ[ @¬sÕÁ|qsLiÉÞ xmsoxqsòNS¬sõ Fsª«sLRiV LRiÀÁLi¿yLRiV? 3. 1904 ÍÜ[ 4. 1905 ÍÜ[ 1. xqsVlLi[LiúµR¶©yµ³`¶ ÛËÁ©«sLêki 10. G xqsLiª«s»R½=LRiLiÍÜ[ ª«sV¥¦¦¦»yøgSLiµ³k¶ gSLRiV 2. LSÇÞ ÕÁ¥¦¦¦L`i ËÜ[£qs 3. ˳ØLRi»R½ Çؼd½¸R¶V NSLiúlgi£qsNRPV @µ³R¶ùORPQ»R½ µyµyËظº¶V ©_L][ÒÁ 4. ª«sV¥¦¦¦»yøgSLiµ³k¶ ª«sz¤¦¦¦Li¿yLRiV? 21. −sÇÁ¸R¶V©«sgRiLRi ryúª«sWÇØù¬sõ FsxmsöV²R¶V róyzmsLi¿yLRiV? 1. 1920 ÍÜ[ 2. 1924 ÍÜ[ 1. úNUP.aRP. 1340 2. úNUP.aRP. 1336 3. 1930 ÍÜ[ 4. 1927 ÍÜ[ 3. úNUP.aRP. 1342 4. úNUP.aRP. 1344 11. G xqsLiª«s»R½=LRiLiÍÜ[ −sV»R½ªyµR¶VÌÁV, @¼½ªyµR¶VÌÁV NRPÖÁaSLRiV? 22. xqsLigRiª«sV ª«sLiaRPLi NSÍجsõ gRiVLjiòLi¿RÁLi²T¶? 1. 1915 ÍÜ[ 2. 1918 ÍÜ[ 1. úNUP.ª«s. 1336c1485 2. úNUP.aRP. 1250c1260 3. 1916 ÍÜ[ 4. 1920 ÍÜ[ 3. úNUP.aRP. 1265c70 4. úNUP.aRP. 1270c75 12. ˳ØLRi»R½ Çؼd½¸R¶V NSLiúlgi£qsNRPV @µ³R¶ùORPQ»R½ ª«sz¤¦¦¦LiÀÁ©«s »]ÖÁ ¾»½ÌÁVgRiV ª«sùNTPò Fsª«sLRiV? 23. x¤¦¦¦Ljix¤¦¦¦LS¸R¶VÌÁ »R½Liú²T¶ }msLRiV G−sVÉÓÁ? 1. zms. A©«sLiµy¿yLRiVùÌÁV 2. úxmsNSaRPLi xmsLi»R½VÌÁV 1. xqsLigRiª«sVV²R¶V 2. µ_©¯[LS¸R¶V c 1 3. F~ÉíÓÁ úbdPLSª«sVVÌÁV 4. ¬dsÌÁLi xqsLiÒÁª«slLi²ïT¶ 3. úbdPNRPXxtsñQ®µ¶[ª«sLS¸R¶VÌÁV 4. ryÎÏÁVª«s ©«sLRizqsLix¤¦¦¦LS¸R¶VÌÁV 13. @¼½ªyµR¶ ¸R¶VVgS¬sõ gRiVLjiòLi¿RÁLi²T¶? 24. −sÇÁ¸R¶V©«sgRiLRi LSÇØù¬sõ FsLi»R½ ª«sVLiµj¶ ª«sLiaRPxqsVòÌÁV FyÖÁLi¿yLRiV? 1. 1905c1920 2. 1919c1931 1. ª«sVVgæRiVLRiV 2. ©«sÌÁVgRiVLRiV 3. 1902c1910 4. 1885c1905 3. HµR¶VgRiVLRiV 4. ALRiVgRiVLRiV 14. gSLiµ³k¶ ¸R¶VVgS¬sõ gRiVLjiòLi¿RÁLi²T¶? 25. xqsLigRiª«sV ª«sLiaRPxqsVòÌÁVÍÜ[ g]xmsöªy²R¶V Fsª«sLRiV? 1. 1920c1947 2. 1901c1910 1. ®µ¶[ª«sLS¸R¶V c 2 2. ®ªsVVµR¶ÉÓÁ x¤¦¦¦LRix¤¦¦¦LRi LS¸R¶VÌÁV 3. 1880c1890 4. 1850c1870 3. ÊÁVNRPäLS¸R¶VÌÁV c1 4. 2ª«s x¤¦¦¦Ljix¤¦¦¦LRiLS¸R¶VÌÁV 15. −sV»R½ªyµR¶ ¸R¶VVgS¬sõ gRiVLjiòLi¿RÁLi²T¶? 26. xqsLigRiª«sV ª«sLiaRPxqsVòÌÁÍÜ[ ÀÁª«sLji ªyLRiV Fsª«sLRiV? 1. 1885c1905 2. 1807c1830 1. 2ª«s −sLRiWFyORPQLS¸R¶VÌÁV 3. 1810c1830 4. 1801c1825 2. ®ªsVVµR¶ÉÓÁ x¤¦¦¦Ljix¤¦¦¦LRiLS¸R¶VÌÁV 16. C NTPLiµj¶ ªyLjiÍÜ[ −sV»R½ªyµR¶VÌÁ ©y¸R¶VNRPVÌÁ©«sV gRiVLjiòLi¿RÁLi²T¶? 3. ÊÁVNRPäLS¸R¶VÌÁV c1 4. lLiLi²][ x¤¦¦¦Ljix¤¦¦¦LRiLS¸R¶VÌÁV 1. g][FyÌÁNRPXxtsñQ g][ÅÁÛÍÁ[ 2. µyµyËظº¶V ©_L][ÒÁ 27. ®ªsVVµR¶ÉÓÁ x¤¦¦¦LRix¤¦¦¦LRiLS¸R¶VÌÁ NSÌÁLiÍÜ[ G ®µ¶[aS¬sNTP ¿ÁLiµj¶©«s
¸R¶WLiú¼½NRPV²R¶V −sÇÁ¸R¶V©«sgRiLRi LSÇØù¬sõ róyzmsLi¿y²R¶V? 1. ®ªsVVLSL][ 2. Aú}qsíÖÁ¸R¶W 3. úbdPÌÁLiNRP 4. Axmsç¬sróy©±s 28. C NTPLiµj¶ ªyLjiÍÜ[ ÊÁVNRPäLS¸R¶VÌÁV c1 NSÌÁLiÍÜ[¬s Aróy©«s NRPª«soÌÁV©«sV gRiVLjiòLi¿RÁLi²T¶? 1. ©y¿RÁ©«s r¡ª«sV©y´R¶V²R¶V 2. ry¸R¶V©«s 3. ª«sWµ³R¶ùª«so²R¶V 4. \|ms @¬sõ¸R¶VV
3. F¡»R½©«s 4. |msµôR¶©«s 36. ryÎÏÁVª«s ª«sLiaRPLiÍÜ[ g]xmsöLSÇÁÙ Fsª«sLRiV? 1. ©«sLRizqsLix¤¦¦¦LS¸R¶VÌÁV 2. ÊÁVNRPäLS¸R¶VÌÁV 3. ®ªsVVµR¶ÉÓÁ ®µ¶[ª«sLS¸R¶VÌÁV 4. lLiLi²][ x¤¦¦¦LRix¤¦¦¦LRiLS¸R¶VÌÁV 37. »R½VÎÏÁª«s ª«sLiaRPLi ¹¸¶VVNRPä NSÌÁLi Gµj¶? 1. úNUP.aRP. 1500c1502 2. úNUP.aRP. 1506c1576 3. úNUP.aRP. 1470c1495 4. úNUP.aRP. 1420c40 38. »R½VÎÏÁª«s ©y²R¶V @®©s[ úFyLi»R½Li G LSúxtsíLiÍÜ[ DLiµj¶? 1. »R½−sVÎÏÁ©y²R¶V 2. NRPLñSÈÁNRP 3. ª«sVµ³R¶ùúxms®µ¶[a`P 4. g][ªy 39. C NTPLiµj¶ ªyLjiÍÜ[ xqsLigRiª«sV ª«sLiaRPLi ¹¸¶VVNRPä LSÇÁÙÌÁ©«sV 29. ÊÁVNRPäLS¸R¶VÌÁV c1 G ª«sV»y¬sõ @ª«sÌÁLiÕ³ÁLi ¿yLRiV? gRiVLjiòLi¿RÁLi²T¶? 1. ËݵôðR¶ª«sV»y¬sõ 1. ÊÁVNRPä LS¸R¶VÌÁVc1 2. ®ªsVVµR¶ÉÓÁ ®µ¶[ª«sLS¸R¶VÌÁV 2. \ZaPª«sª«sV»y¬sõ 3. ®ªsVVµR¶ÉÓÁ x¤¦¦¦LRix¤¦¦¦LRiLS¸R¶VÌÁV 4. \|ms @¬sõ 3. \ÛÇÁ©«s ª«sV»y¬sõ 40. −sªyx¤¦¦¦ xms©«sVõ©«sV LRiµôR¶V ¿P[zqs©«s LSÇÁÙ Fsª«sLRiV? 4. \|ms 1. FyLRi©«sLRizqsLix¤¦¦¦§²R¶V 2. ÊÁVNRPäLS¸R¶VÌÁVc1 3. lLiLi²][ x¤¦¦¦Ljix¤¦¦¦LRiLS¸R¶VÌÁV 4. ®ªsVVµR¶ÉÓÁ ®µ¶[ª«sLS¸R¶VÌÁV 41. ˳ØLRi»R½®µ¶[aRPLiÍÜ[ róyzmsLiÀÁ©«s ®ªsVVµR¶ÉÓÁ @ßáV −sµR¶Vù»`½ ZNP[LiúµR¶Li Gµj¶? 1. ©«sN][LS 2. »yLSxmspL`i 3. \ZNPgS 4. NRPÍØùNRPäL`i 42. NRPÍØùNRPäL`i @ßáV −sµR¶Vù»`½ ZNP[LiúµR¶Li FsNRPä²R¶ D©«sõµj¶? 1. »R½−sVÎÏÁ©y²R¶V 2. ª«sV¥¦¦¦LSúxtsí 3. gRiVÇÁLS»`½ 4. LSÇÁróy©±s 43. ˳ØLRi»R½®µ¶[aRPLiÍÜ[ ®ªsVVµR¶ÉÓÁ ÇÁÌÁ −sµR¶Vù»`½ ZNP[LiúµR¶Li Gµj¶? @¬sõ¸R¶VV 1. ²yLêkiÖÁLig`i 2. NSLiVV©y 30. xqsLigRiª«sV ª«sLiaRPLiÍÜ[ G 3. Lji¥¦¦¦Li²`¶ 4. ª«sV¸R¶WLSOTPQ LSÇÁÙ FsNRPV䪫s ª«sVLiµj¶¬s 44. ÇÜ[g`i ÇÁÌÁFy»R½Li G ©«sµj¶\|ms ª«sVVzqsýLiÖdÁgRiV \|qs©«sùLiÍÜ[ D©«sõµj¶? ¬s¸R¶V−sVLi¿yLRiV? 1. aRPLSª«s¼½©«sµj¶ 2. aRPÊÁLji ©«sµj¶ 1. ®ªsVVµR¶ÉÓÁ ®µ¶[ª«sLS¸R¶VÌÁV 3. NS®ªs[Lji ©«sµj¶ 4. |ms©yõ©«sµj¶ 2. lLiLi²][ ®µ¶[ª«sLS¸R¶VÌÁV Fyª«sLíki @Li²`¶ @©±s úÕÁÉÓÁ£tsQ LRiWÍÞ BLi²T¶¸R¶W 45. ª«sV©«s®µ¶[aRPLiÍÜ[ ®ªsVVµR¶ÉÓÁ ˳ØLRiÇÁÌÁ 3. ÊÁVNRPäLS¸R¶VÌÁV c1 NRPLSøgSLRiLi FsNRPä²R¶ D©«sõµj¶? 4. lLiLi²][ x¤¦¦¦Ljix¤¦¦¦LRiLS¸R¶VÌÁV 1. ©«sLigRiÍÞ 2. ´yÍÞ 3. ÈÁWùÈÁVN][Lji©±s 4. »yÛÍÁ[èL`i 31. G LSÇÁÙ NSÌÁLiÍÜ[ @ÊôÁVÍÞ LRiÇØN`P @®©s[ FyLji= ¸R¶WLiú¼½ NRPV²R¶V −sÇÁ¸R¶V©«sgRiLS¬sõ xqsLiµR¶Lji+Li¿y²R¶V? 46. ª«sVßáVgRiWLRiV ˳ØLRiÇÁÌÁ NRPLSøgSLRiLi G ÑÁÍýØÍÜ[ DLiµj¶? 1. lLiLi²][ ®µ¶[ª«sLS¸R¶VÌÁV 2. ÊÁVNRPäLS¸R¶VÌÁV 1. NRPLkiLi©«sgRiL`i 2. ÅÁª«sVøLi 3. ®ªsVVµR¶ÉÓÁ x¤¦¦¦Ljix¤¦¦¦LRiLS¸R¶VÌÁV 3. Aµj¶ÍØËص`¶ 4. ®ªsVµR¶N`P 4. lLiLi²][ x¤¦¦¦Ljix¤¦¦¦LRiLS¸R¶VÌÁV 32. C NTPLiµj¶ ªyÉÓÁÍÜ[ lLiLi²R¶ª«s ®µ¶[ª«sLS¸R¶VÌÁNRPV xqsLiÊÁLiµ³j¶LiÀÁ xqs\lLi©«s ªyÉÓÁ¬s gRiVLjiòLi¿RÁLi²T¶? 1. 2 2. 3 3. 1 4. 2 5. 1 1. B»R½¬s ¹¸¶VVNRPä ÕÁLRiVµR¶V gRiÇÁÛËÁ[Li»yNRPL`i - 6. 2 7. 2 8. 2 9. 2 10. 2 2. »yúª«sVaSxqs©«sLiÍÜ[ lLiLi²][ ®µ¶[ª«sLS¸R¶VÌÁ −sÇÁ¸R¶WÌÁ©«sV 11. 3 12. 1 13. 1 14. 1 -15. 1 −sª«sLjixqsVòLiµj¶ 16. 4 17. 4 - 18. 4 19. 2 20. 3-3. C¸R¶V©«s xqsLixqsäX»R½LiÍÜ[ ª«sVx¤¦¦¦©yÈÁNRP xqsVµ³y¬sµ³j¶, 21. 2 22. 1 23. 1 24. 2 25. 1 ª«sX¼½ò @®©s[ úgRiLi´yÌÁ©«sV LRiÀÁLi¿y²R¶V 4. \|ms @¬sõ¸R¶VV 26. 1 27. 1 28. 4 29. 2 30. 2 33. ryÎÏÁVª«s ª«sLiaRP róyxmsNRPV²R¶V Fsª«sLRiV? 1. ryÎÏÁVª«s x¤¦¦¦LigRi 2. −dsLRi©«sLRizqsLix¤¦¦¦§²R¶V 31. 1 32. 4 33. 1 34. 2 -35. 2 3. ÊÁVNRPäLS¸R¶VÌÁV c1 4. úbdPNRPXxtsñQ®µ¶[ª«sLS¸R¶VÌÁV 36. 1 37. 2 38. 2 39. 4 -40. 1 34. ªyßÓá ©yLSßÓá @¬s Fsª«sLRiV @©yõLRiV? 41. 2 42. 1 43. 1 44. 1 45. 1 1. úbdP©y´R¶V²R¶V 2. zmsÌýÁÌÁ ª«sVúLji zms©«s−dsLRi˳ÏÁúµR¶V²R¶V 46. 2 3. ©«s©«sõ¸R¶Vù 4. ¼½NRPä©«s 35. xmsµR¶NRP−s zms»yª«sVx¤¦¦¦§²T¶gS G NRP−s¬s zmsÌÁVryòLRiV? ∫Á‘· Äq+<é 1. »yÎÏÁþFyNRP ¼½ª«sVøNRPä d”ìj·TsYbòÕ´ø£©º ôd˝Ÿ q+: 9000073716 2. »yÎÏÁþFyNRP @©«sõª«sW¿yLRiVùÌÁV
mdt◊/ø±ìôdºãT˝Ÿ, ÄsY|”m|òt ôdŒwü˝Ÿ
düe÷<ÛëHê\T
20
Ä+Á<ÛäÁ|üuÛÑ
$<ë´Á|üuÛÑ
Directions Q Nos. 1-5 : Study the following information carefully and answer the questions given below. Following are the conditions for selecting Manager HR in an organisation. The candidate must i. be atleast 30 yr and not more than 35 yr as on 1.3.2012. ii. have scored atleast 60% marks in graduation in any discipline. iii. have scored atleast 65% marks in the post graduate Degree/Diploma in Personnel Management/HR. iv. have post qualification work experience of atleast 5 yr in the Personnel/HR Department of an organisation. v. have scored atleast 50% marks in the selection process. In the case of a candidate who satisfies all the above conditions except A. (ii) but has scored atleast 55% marks in graduation in any discipline and atleast 70% marks in post graduate Degree/Diploma in Personnel Management/HR, the case is to be referred to GM-HR. B. (iv) but has post qualification work experience of atleast 4 yr, out of which atleast 2 yr as Deputy Manager HR, the case is to be referred to President-HR. In each question below are given details of one candidate. You have to take one of the following courses of actions based on the information provided and the conditions and sub-conditions given above and mark the number of that course of action as your answer. You are not to assume anything other than the information provided in each question. All these cases are given to you as on 1.3.2012 Give Answer a. if the candidate is not to be selected b. if the data provided are not adequate to take a decision c. if the case is to be referred to President-HR d. if the case is to be referred to GM-HR e. if the candidate is to be selected 1. Rita Bhatt was born on 25th July 1978. She has scored 62% marks in graduation and 65% marks in post graduate Diploma in Management. She has been working for the past 6yr in the Personnel Department of an organisation after completing her post graduation. She has scored 55% marks in the selection process. 2. Ashok Pradhan was born on 8th August 1980. He has been working in the Personnel Department of an organisation for the past 4 yr after completing his post graduate Degree in Personnel Management with 67%. Out of his entire experience, he has been working for the past 2 yr as Deputy Manager-HR. He has scored 62% marks in graduation and 58% marks in the selection process. 3. Alok Verma was born on 4th March 1976. He has been working in the Personnel Department of an organisation for the past 6 yr after completing his post graduate Diploma in Personnel Management with 66% marks. He has scored 57% marks in the selection process and 63% marks in graduation. 4. Swapan Ghosh has been working in the Personnel Department of an organisation for the past 5 yr after completing his post graduate Degree in HR with 72% marks. He has scored 56% marks in graduation. He was born on 12th May 1977. He has scored 58% marks in the selection process. 5. Seema Behl has been working in the Personnel Department of an organisation for the past 7 yr after completing her post graduate Diploma in Personnel manage-
k˛eTyês¡+ 29 nø√ºãsY 2018
A N D H b˛{° R A|üØP ø£å\ Á|Rü‘˚´ø£A+ B H A
Reasoning
ment with 70% marks. She was born on 5th July 1979. She has scored 65% marks in graduation and 50% marks in the selection process. Directions Q Nos. 6-15 : Study the following information carefully and answer the questions given below. Following are the conditions for selecting Marketing Manager in an organisation. The candidate must i. Be a graduate in any discipline with atleast 55% marks. ii. Have a post graduate degree/diploma in Marketing Management with atleast 60% marks. iii. Have post qualification work experience of atleast 5 yr in the marketing division of an organisation. iv. Have secured atleast 45% marks in the selection examination. v. Have secured atleast 40% marks in the selection interview. In the case of a candidate who satisfies all the conditions expect A. at (iii) above, but
7. Navin Desai has secured 56% marks in B.A. He has been working in the marketing division of an organisation for the past 7 yr after completing his post graduate degree in marketing with 62% marks. He has secured 62% marks in the selection examination and 38% marks in the selection interview.
has post qualification work experience of atleast 3 yr as Deputy Marketing Manager, the case is to be referred to GM Marketing. B. at (v) above, but has secured atleast 60% marks in the selection examination, the case is to be referred to VP Marketing. In each question below, details of one candidate are given. You have to take one of the following courses of actions based on the information provided and the conditions and sub-conditions given above and marks the number of that course of action as your answer. You are not to assume anything other than the information provided in each question. All these cases are given to you as on 01.05.2010. Give Answer a. if the candidate is to be selected b. if the candidate is not to be selected c. if the case is to be referred to GM Marketing d. if the case is to be referred to VP Marketing e. if the data provided are not adequate to take a decision
ing division of an organisation for the past 6 yr after completing his post graduation in marketing.
8. Sabina Handa has been working for the past 4 yr as Deputy Marketing Manager in an organisation after completing her post graduate diploma in Marketing Management with 65% marks. She has secured 45% marks in both selection examination and selection interview. She has also secured 58% marks in B.Com. 9. Manoj Malhotra has secured 65% marks in B.Sc. and 60% marks in post graduate degree in Marketing Management. He has also secured 50% marks in both selection examination and selection interview. He has been working in the market-
Course of Action
6. Nidhi Agarwal has secured 60% marks in the selection interview and 40% marks in the selection examination. She has been working in the marketing division of an organisation for the past 8 yr after completing her post graduate degree in Marketing Management with 65% marks. She has secured 59% marks in B.Sc.
10. Varsha Akolkar has secured 59% marks in B.A. She has secured 42% marks in the selection interview and 48% marks in the selection examination. She has been working in the Marketing division of an organisation for the past 7 yr after completing her post graduation in Marketing Management with 57% marks. 11. Utpal Goswami has been working in the marketing division of an organisation for the past 5 yr after completing his post graduate diploma in Marketing Management with 65% marks. He is a first class Science graduate with 60% marks. He has secured 45% marks in the selection examination and 40% marks in the selection interview. 12. Anindita Ghosh has been working for the past 8 yr in an organisation after completing her postgraduate degree in Marketing Management with 70% marks. She has secured 56% mraks in B.A. She has also secured 50% marks in the selection examination and 45% marks in the selection interview. 13. Samir Phukan has been working in the Marketing division of an organisation for the past 5 yr after completing his post graduate diploma in Management with
65% marks. He has secured 60% marks in B.Com. He has also secured 50% marks in both selection examination and selection interview. 14. Nimisha Patil has secured 59% marks in B.Com. She has also secured 50% marks in both selection examination and the selection interview. She has been working as Deputy Marketing Manager in an organisation for the past 3 yr after completing her post graduate degree in Marketing Management with 63% marks. 15. Sadashiv Ghatge has secured 60% marks in B.Com. He has been working for the past 5 yr in the Marketing division of an organisation after completing his post graduate degree in Marketing Management with 68% marks. He has secured 35% marks in the selection interview and 62% marks in the selection examination. Directions Q Nos. 16-20 : Study the following information carefully and answer the questions given below. Following are the conditions for selecting Senior Manager Credit in bank. The candidate must i. be a graduate in any discipline with atleast 60% marks. ii. have post qualification work experience of atleast 10 yr in the Advances Section of a bank. iii. be atleast 30 yr and not more than 40 yr as on 1.4.2010. iv. have secured atleast 40% marks in the group discussion. v. have secured atleast 50% marks in interview. In the case of a candidate who satisfies all the conditions except A. at (i) above but has secured atleast 50% marks in graduation and atleast 60% marks in post graduation in any discipline the case is to be referred to the General Manager Advances. B. at (ii) above but has total post qualification work experience of atleast 7 yr out of which atleast 3 yr as Manger Credit in a bank, the case is to be referred to Executive Director. In each question, below details of one candidate is given. You have to take one of the following courses of action based on the information provided and the conditions and sub-conditions given above and mark the number of that course of action as your answer. You are not to assume anything other than the information provided in each question All these cases, are given to you as on 01.04.2010. Give Answer a. if the case is to be referred to Executive Director b. if the case is to be referred to General Manager Advances c. if the data are inadequate to take a decision d. if the candidate is not to be selected e. if the candidate is to be selected 16. Prakash Gokhale was born on 4th August 1977. He has secured 65% marks in post graduation and 58% marks in graduation. He has been working for the past 10 yr in the Advances Department of a bank after completing his post graduation. He has secured 45% marks in the group discussion and 50% marks in the interview.
1. e 6. b 11. a
düe÷<ÛëHê\T
2. c 7. d 12. a 16. b
3. a 8. c 13. a
4. d 9. a 14. c
G. RAMAKRISHNA (Reasoning Faculty)
NANDYALA COACHING CENTER, Amerpet, Cell : 9247345095
5. e 10. b 15. d
k˛eTyês¡+ 29 nø√ºãsY 2018
A N D H b˛{° R A|üØP R A B H A ø£å\ Á|ü‘˚´ø£+
1. AúLó][F~²yÍÜ[ bPa][»yöµR¶NRP ÒÁ−s Gµj¶? ÇÁ. ®ªsVVÌÁr¡ä 3. ¿RÁLRiøaS*xqsúNTP¸R¶V ÇÁLRiVxmso ÒÁ−s Gµj¶? ÇÁ. ªy©«sFyª«sVV 3. xmsoxqsòNSNSLRi ®ªsVVxmsöÌÁV NRPÖÁgji©«s ÒÁ−s Gµj¶? ÇÁ. L]¸R¶Vù 4. xqsLRi*˳ÏÁORPQNRPVÌÁNRPV Dµyx¤¦¦¦LRißá....? ÇÁ. FsÌÁVgRiVÊÁLiÉÓÁ 5. ry*Ligjiª¯[LRi£qs @©«sgS®©s[−sV? ÇÁ. µ][ª«sV 6. FyÌÁNRPV úxmszqsµôðj¶ ¿ÁLiµj¶©«s ÛÇÁLki= G ®µ¶[aS¬sNTP ¿ÁLiµj¶©«sµj¶? ÇÁ. LRiuyù 7. FyxqsL`i ²]®ªsVVzqsíNS ®µ¶[¬s aSú{qsQò¸R¶V ©yª«sVLi? ÇÁ. zms¿RÁVèNRP 8. GNRP ˳ØLRiù»R½*Li ¿RÁWxmso ÒÁ−s Gµj¶? ÇÁ. Fyª«soLRiLi 9. \|msµR¶ª«s²R¶©«sV NRPµj¶ÛÍÁ[è G\ZNPNRP xmsOTPQ Gµj¶? ÇÁ. LSª«sVÀÁÌÁVNRP 10. FyNRPV²R¶V ÇÁLi»R½Vª«soÌÁÍÜ[ ª«sL<S¬sNTP ¿ÁLiµj¶©«s ÒÁª«soÌÁV G−s? ÇÁ. |msLigji*©±s 11. ÊÁx¤¦¦¦§ ˳ØLRiù»y*¬sõ ¿RÁWxmso xmsOTPQ Gµj¶? ÇÁ. |msLigji*©±s 12. ªyxqs©«s©«sV úgRiz¤¦¦¦Li¿RÁV G\ZNPNRP FsgRiVLRiÛÍÁ[¬s xmsOTPQ Gµj¶? ÇÁ. NTP−s 13. @xmsLjixmsNRP*bPaRPVª«so ÇÁ¬søLi¿RÁ²R¶Li GÒÁ−sÍÜ[ NRP©«s ÊÁ²R¶V»R½VLiµj¶? ÇÁ. NRPLigSLRiV 14. gRiVLiú²R¶ÉÓÁ −sxmsýª«sLi ®µ¶[¬s D»R½ö¼½òNTP.....? ÇÁ. ÊÁLigSÎصR¶LixmsÌÁV 15. x¤¦¦¦Lji»R½ −sxmsýª«sLi @®©s[ xmsµy¬sõ ®ªsVVµR¶ÈÁ Dxms¹¸¶WgjiLiÀÁ©«s Fs£qs. gSLi²`¶ G ®µ¶[aRPxqsVò²R¶V? ÇÁ. @®ªsVLjiNS 16. \|¤¦¦¦ú²][Fn¡ÕÁ¸R¶W ªyùµ³j¶NTP ÉÔÁNS©«sV NRP©«sVg]©«sõªyLRiV Fsª«sLRiV? ÇÁ. ÌÁWLiVVFyaRPèL`i 17. NS*ztsQ¸R¶WLRiäL`i @®©s[µj¶ G ˳ØuyxmsµR¶Li? ÇÁ. AúzmnsNS 18. aRPLkiLRi ÊÁLRiVª«soNRP©yõ 40aS»R½Li »R½NRPV䪫sD©«sõ¿][ A ªyùµ³j¶? ÇÁ. ª«sVµ³R¶V®ªs[Vx¤¦¦¦Li 19. Royal Disease ¬s G ªyùµ³R¶¬s @LiÉØLRiV? ÇÁ. z¤¦¦¦®ªsW{mnsÖÁ¸R¶W 20. F¡ÖÁ¹¸¶W ªyùNTP=©±s BLiÇÁORPQ©±s NRP©«sVg]©«sõµj¶ Fsª«sLRiV? ÇÁ. ÇÜ[©y£qsryÍÞä 21. AL][gRiùLi, µy¬sxqsLiLRiORPQßá gRiVLjiLiÀÁ ¾»½ÖÁ¸R¶VÛÇÁ[¸R¶VV aSúxqsòQLi? ÇÁ. \|¤¦¦¦ÑÁ©±s 22. gRiVLi®²¶ ©«sVLi²T¶ ª«sVWú»R½zmsLi²yÌÁNRPV LRiNSò¬sõ ¼d½xqsVN]¿P[è ©yÎÏÁLi Gµj¶? ÇÁ. ª«sXNRPäµ³R¶ª«sV¬s 23. @−dsVõztsQ¸R¶W ®µ¶[¬s ©«suíy¬sNTP xqsLiÊÁLiµ³j¶LiÀÁ©«sµj¶? ÇÁ. ÇìØxmsNRPaRPNTPòNTP 24. FszmsÛÍÁzqs= @©«sgS®©s[−sV? ÇÁ. ª«sVWLRièªyùµ³j¶ 25. \®ªsVúN][ÊÁ¸R¶WÌÁÒÁ G xmsµR¶Li? ÇÁ. úgkiNRPV xmsµR¶Li 26. \®ªs²R¶ÍÞ xmsLkiORPQ ®µ¶[¬s ¬sLôðSLRißáNRPV ªy²R¶V»yLRiV? ÇÁ. \ÛÉÁFnyLiVV²`¶NRPV 27. gýRiWN][ÇÞ + gRiÍØNíUPÇÞ = .....? ÇÁ. ÍØNí][ÇÞ 28. Blood Sugar @¬s ®µ¶[¬s¬s @LiÉØLRiV? ÇÁ. gýRiWN][ÇÞ ¬s 29. ª«sWLixqsLiÍÜ[ @µ³j¶NRPLigS gRiÌÁ ª«sVWÌÁNRPLi Gµj¶? ÇÁ. F¡ÉØztsQ¸R¶VLi 30. FyLSÇÁÙªyÌÁÒÁ ®µ¶[¬s @µ³R¶ù¸R¶V©«sLi?
Ä+Á<ÛäÁ|üuÛÑ
düJe ø£D≤ìï ø£qT>=qï~ mes¡T? ÇÁ. F¡Lji|mnsLS 31. \®ªsµR¶ùLRiLigRiLiÍÜ[ G ÒÁ−s¬s Dxms¹¸¶WgjiLiÀÁ ¿Á²R¶V LRiNSò¬sõ ¼d½zqs®ªs[ryòLRiV? ÇÁ. ÇÁÌÁgRi 32. ÇÁÌÁgRiÌÁV LRiNSò¬sõ {msÌÁVè©«sxmsöV²R¶V LRiNRPòLi gRi²ïR¶ NRPÈíÁNRPVLi²y ®µ¶[¬s¬s −s²R¶VµR¶ÌÁ ¿P[¸R¶VV©«sV? ÇÁ. z¤¦¦¦LRiV²T¶©±s 33. H£qsúNUPª±sV »R½¸R¶WLkiÍÜ[ }msýª«sL`igS ®µ¶[¬s¬s Dxms¹¸¶WgjiryòLRiV? ÇÁ. ªyLi²y 34. xqsÒÁª«s NRPßجsõ NRP©«sVg]©«sõµj¶ Fsª«sLRiV? ÇÁ. ÌÁV®ªs©±s x¤¦¦¦§N`P 35. ª«sXORPQ, ÇÁLi»R½Vª«soÌÁÍÜ[ DLi®²¶[ NRPßáLi Gµj¶? ÇÁ. \®ªsVÉÜ[NSLiú²T¶¸R¶W 36. NRPßá N]ÖÁ−sVgS ®µ¶[¬s¬s zmsÌÁVryòLRiV? ÇÁ. \®ªsVÉÜ[NSLiú²T¶¸R¶W©«sV 37. Kitchen of cell @¬s ®ªs[ÉÓÁ¬s @LiÉØLRiV? ÇÁ. x¤¦¦¦Lji»R½NRPßáLi 38. xqsóWÌÁNS¸R¶V»R½*Li gRiÌÁ ªyLjiNTP ª«sVVÅÁù A¥¦¦¦LRiLi? ÇÁ. @gSLjiNRP{qs 39. @LRiÉÓÁÍÜ[ aSÐdÁ¸R¶V úxms»R½Vù»R½ö¼½ò ®µ¶[¬sµy*LS ÇÁLRiVgRiV»R½VLiµj¶? ÇÁ. µR¶VLixmsNSLi²R¶Li 40. úÊÁ¹¸¶WzmnsÌýÁª±sVÍÜ[¬s ®ªsVVgæRiÌÁ©«sV Gª«sVLiÉØLRiV? ÇÁ. FszmszmnsÌýÁ£qs 41. AúLó][F¡²yNRPV ¿ÁLiµj¶©«s bPa][»yöµR¶NRP ÒÁ−s Gµj¶?
ÇÁ. ˳ØLRi»R½®µ¶[aRPLiÍÜ[ 50. N]LjiNTP ©«s−sVÛÍÁ[ ÒÁ−s Gµj¶? ÇÁ. Ëܵôj¶LiNRP 51. zqsÌÁ*L`i zmns£tsQ G ª«sLæS¬sNTP ¿ÁLiµj¶©«sµj¶? ÇÁ. ALôð][F~²y 52. xqsNRPZaP[LRiVNSÌÁÍÜ[ @¼½|msµôR¶ −s˳ØgRiLi Gµj¶? ÇÁ. ¿P[xmsÌÁV 53. ¿P[xmsÌÁ x¤¦¦¦XµR¶¸R¶W¬sõ Gª«sVLiÉØLRiV? ÇÁ. zqsLSx¤¦¦¦XµR¶¸R¶VLi 54. Fyª«sVVÌÁNRPV úxmszqsµôðj¶ ¿ÁLiµj¶©«s gRiLi²T¶ ®©s[xtsQ©«sÍÞ FyL`iä FsNRPä²R¶ DLiµj¶? ÇÁ. ª«sVúµyxqsV 55. |msL][ÉÓÁ²`¶ @®©s[ −sxtsQúgRiLi´R¶VÌÁV G NRPxmsöÍÜ[ DLiÉØLiVV? ÇÁ. g][µR¶VLRiV NRPxmsöÍÜ[ 56. xqsLkixqsXFyÌÁÍÜ[ bPa][»yöµR¶NRP ÒÁª«soÌÁV G−s? ÇÁ. LRiNRPòzmsLiÇÁLji 57. ÕÁ£qs zmns©yÍÞ.. G @LiÛÉÁ[ G−sVÉÓÁ? ÇÁ. xmnsQo²`¶ FyZNP[ÑÁLig`i ®ªsVÉÔÁLji¸R¶VÍÞ©«sV ®ªsVLRiVgRiVxmsLji¿RÁ²y¬sNTP ªy®²¶[ LRiry¸R¶V©«s xmsµyLóRiLi 58. xqsLixmsLRiäLi »R½LS*»R½ A²R¶ ÒÁ−s, ª«sVgRiÒÁ−s¬s ¿RÁLi}ms úxmsúNTP¸R¶V G ÒÁ−sÍÜ[ NRP©«sÊÁ²R¶V»R½VLiµj¶? ÇÁ. ryÛÍÁxmsoLRiVgRiV 59. gRiVLi®²¶ ©¯zmsö LSª«s²y¬sNTP NSLRißáLi G−sVÉÓÁ? ÇÁ. N]ª«so*aS»R½Li |msLRigRi²R¶Li, NRPL][©«sLji µ³R¶ª«sV¬sÍÜ[ LRiNRPòLi gRi²ïR¶NRPÈíÁ²R¶Li xqs\lLi©«s úNRPª«sVLiÍÜ[ @ª«sVLRiè²R¶Li,
mdt◊/ø±ìùdºãT˝Ÿ ôdŒwü˝Ÿ
ÌÁWLiVVFyaRPèL`i ÇÁ. ¾»½[ÌÁV, xms¿RÁèxmsoLRiVgRiVÌÁV (Fszmns²`¶, ú²][r¡zmnsÍØ) 42. ©«sª«sÇØ»R½ bPaRPVª«soÌÁÍÜ[ ªyùµ³j¶ ¬sL][µ³R¶NRP»R½ |msLi¿RÁ²y¬sNTP G FyÌÁV @»yùª«saRPùNRPLi? ÇÁ. Aª«soFyÌÁV 43. \®ªsVÉÜ[NSLiú²T¶¸R¶W©«sV Gª«sV¬s zmsÌÁVryòLRiV? ÇÁ. NRPßáN]ÖÁ−sV 44. ZNP[LiúµR¶NS¬sõ Gª«sV¬s zmsÌÁVryòLRiV? ÇÁ. NRPß᮪s[VµR¶xqsV= 45.ª«sVgRiNRPxmsöÍÜ[ ALi|msýNRP=Lki®ªsVV»R½òÌÁV ®ªs[¬sNTP xqs¥¦¦¦¸R¶Vxms²R¶V»yLiVV ÇÁ. úxms»R½Vù»R½ö¼½òNTP 46. gRiV²ïT¶ Fyª«sVVÌÁV @¬s ®ªs[ÉÓÁ©«sLiÉØLRiV? ÇÁ. zqszqsÖÁ¸R¶V©±s= 47. F~ÌÁVxqsVÌÁV NRPÖÁgji©«s D˳ÏÁ¸R¶V¿RÁLRi ÒÁ−s Gµj¶? ÇÁ. BNTPò¹¸¶Wzmns£tsQ 48. Fyª«sVV NSÈÁV®ªs[zqs©«sxmsöV²R¶V ¸R¶VV ANSLRiLi NSÈÁV DLiÛÉÁ[ @µj¶....? ÇÁ. −sxtsQLRiz¤¦¦¦»R½ xqsLRiöLi @¬s @LóRiLi 49. NSùÉÞzmns£tsQ G ®µ¶[aRPLiÍÜ[ ¬s}tsQµ³j¶Li¿yLRiV?
ÇÜ[©y£qsryÍÞä LRiNRPò©yÎØÌÁV NRPVLiÀÁLi¿RÁVNRPV F¡ª«s²R¶Li 60. BLi²T¶¸R¶WÍÜ[¬s ¿RÁÌýÁÉÓÁ úFyLi»yÌÁÍÜ[ G ¿P[xmsÌÁ©«sV FsNRPV䪫sgS |msLi¿RÁV»yLi? ÇÁ. NSÉýØ, úÉÝÉÞ 61. −sxtsQªy¸R¶VVª«soÌÁV −s²R¶VµR¶\ÛÍÁ©«sxmsöV²R¶V 40 ¬s−sVuyÌÁ FyÈÁV EzmsLji¬s ÕÁgRixmsÛÉíÁ[ ÒÁ−s Gµj¶? ÇÁ. Ëܵôj¶LiNRP 62. ˳ØLRi»R½ úxms˳ÏÁV»R½*Li N]Li»R½NSÌÁLi úNTP»R½Li \®ªsÉÞ gRiW²`¶=. \ÛÍÁ|qs©±s=©«sV »]ÌÁgjiLiÀÁLiµj¶. \®ªsÉÞ gRiW²`¶= @LiÛÉÁ[ G−sVÉÓÁ? ÇÁ. FyÌÁV ª«sVLji¸R¶VV FyÌÁ D»R½ö»R½VòÌÁV 63.LRiNRPòLiÍÜ[ gýRiWN][ÇÞróyLiVV¬s ryµ³yLRißáLigSFsÍØ ¾»½ÌÁVxmso»yLRiV ÇÁ. −sVÖýÁúgSLi xmnsL`i ²T¶{qs ÖdÁÈÁL`i 64. xqsª«sV −s˳ÏÁÇÁ©«s Fs¬sõ ¬s−sVuyÌÁÍÜ[ xmspLjiò @ª«so»R½VLiµj¶? ÇÁ. 40 c 60 ¬s−sVuyÌÁV 65. »R½ÌÁ ¾»½gji©y INRP ªyLRiLi L][ÇÁÙÌÁV úÊÁ»R½NRPgRiÌÁ ÒÁ−s Gµj¶? ÇÁ. Ëܵôj¶LiNRP 66. Lki©«sÍÞ úgRiLi´R¶VÌÁV ®ªs[ÉÓÁ −sxqsLêRiNSª«s¸R¶VªyÌÁV? ÇÁ. ª«sVLiÀÁ ¬dsÉÓÁ ¿P[xmsÌÁV
$<ë´Á|üuÛÑ 21
67. ª«sW©«sª«so¬sÍÜ[ EzmsLji¼½»R½VòÌÁ ryª«sVLóRiùLi? ÇÁ. 5800 −sVÖýdÁ ÖdÁÈÁLýRiV 68. Fs©y−sVÍÞ ª«sVLRiÎØ, ª«sVLRiÎØ GLRiö²R¶V ÇÁLi»R½Vª«so Gµj¶? ÇÁ. FsÌÁVNRP 69. ª«sW©«sª«s x¤¦¦¦XµR¶¸R¶W¬sõ NRPxmsöV»R½W DLiÛÉÁ[ 2 F~LRiÌÁ©«sV Gª«sVLiÉØLRiV? ÇÁ. x¤¦¦¦XµR¶¸R¶Wª«sLRißá NRPVx¤¦¦¦LRiLi 70. úxms¼½ ÇÁ©«sNSÌÁ (Anitigens) ª«sVVÅÁù −sµ³j¶? ÇÁ. úxms¼½ LRiORPQNSÌÁ©«sV D»R½ö¼½ò¬s ú}mslLi[zmsLi¿RÁ²R¶Li 71. @LiÈÁV NRPÈíÁÊÁ²T¶©«s ®©s[ÌÁÍÜ[ |msLRiVgRiV»R½V©«sõ ®ªsVVNRPä©«sV Gª«sVLiÉØLRiV? ÇÁ. ríyN`P 72. »R½NRPV䪫s NSÌÁLiÍÜ[ ®ªs[ÌÁ xqsLiÅÁùÍÜ[ ®ªsVVNRPäÌÁ©«sV |msLi¿RÁV xmsµôðR¶¼½¬s Gª«sVLiÉØLRiV? ÇÁ. ÉÓÁxmnsWùNRPÌÁèL`i 73. ®ªsVVNRPäÌÁÍÜ[ NRPßá−s˳ÏÁÇÁ©«s xqsª«sV¸R¶VLiÍÜ[ GLRiö²T¶ ª«sVLRiÎØ @µR¶XaRPùª«sV¹¸¶[Vù ˳ØgRiLi Gµj¶? ÇÁ. |qsLiúÉÓÁ¹¸¶WÍÞ 74. ª«sW©«sª«s ÒÁ−s»R½ ¿RÁúNRPLiÍÜ[¬s µR¶aRPÌÁV Fs¬sõ? @−s G−s? ÇÁ. bPaRPVµR¶aRPcËØÌÁùµR¶aRPcª«s¹¸¶WÇÁ©«s µR¶aRPcN_ª«sWLRi µR¶aRP 75. xmnsÌÁµk¶NRPLRißáLi ¿ÁLiµj¶©«s ú{qsQò ÕdÁÇÁNRPßá ZNP[Liúµy¬sõ Gª«sVLiÉØLRiV. ÇÁ. xqsLi¸R¶VVNRPò ÕdÁÇÁLi 76. zmsLi²y¬sNTP ¿RÁVÈíÁW »R½©«sLigRiÈÁ »y®©s[ |msLRiVgRiV »R½*¿RÁLi? ÇÁ. DÌÁ÷Li 77. zmsLi²y¬sNTP ¸R¶WLiú¼½NRP @xmnsW»yÌÁ ©«sVLi²T¶ LRiORPQßá NRPÖÁöLi¿RÁV©«sµj¶ Gµj¶? ÇÁ. DÌÁ÷NRP úµR¶ª«sLi 78. xmsouyöÌÁÍÜ[ ª«sLiµR¶ù»R½*Li NRPÌÁVgRiÛÇÁ[¸R¶VV ª«sVWÌÁNRPLi Gµj¶? ÇÁ. ª«sWLigRi¬ds£qs 79. ryµ³yLRißáLigS xmsoxtsQöLiÍÜ[¬s @Li²yaRP¸R¶VLiÍÜ[ Fs¬sõ gRiµR¶VÌÁV DLiÉØLiVV? ÇÁ. ©yÌÁVgRiV 80. xmsouyöxqs©«sLi \|ms Fs¬sõ ª«sÌÁ¸R¶WÌÁÍÜ[ xmsoxtsQö ˳ØgSÌÁV @ª«sVLji DLiÉØLiVV? ÇÁ. ©yÌÁVgRiV ˳ØgSÌÁV 81. NRPWÇØ ANSLRixmso ËÜ[©«sV xmsú»yÌÁV NRPÖÁgji©«s NUPÈÁNS¥¦¦¦LRi ®ªsVVNRPä Gµj¶? ÇÁ. ®©szmsLi´R¶£qs 82. zmnsLigRiL`i −sVÛÍýÁÉÞ @¬s ®µ¶[¬s¬s @LiÉØLRiV? ÇÁ. LSgRiVÌÁV 83. FsLi²T¶©«s úFyLi»yÍýÜ[ |msLRigRi²y¬sNTP @ÌÁªyÈÁV xms²T¶©«s ®ªsVVNRPäÌÁ©«sV Gª«sVLiÉØLRiV? ÇÁ. lgêiÍÜ[\|mnsÉÞ= 84. −s»R½ò©yÌÁ©«sV FsÍØLiÉÓÁ zqsó¼½ÍÜ[ ˳ÏÁúµR¶xmsLRi¿RÁª«s¿RÁVè? ÇÁ. ®ªs[²T¶gS ª«sVLji¸R¶VV F~²T¶gS D©«sõ zqsó¼½ÍÜ[ 85. Fy¬ds¸R¶WÌÁ LSßÓá @¬s ®µ¶[¬s¬s @LiÉØLRiV? ÇÁ. @ÌýÁLi 86. xmsLSùª«sLRißá ª«sùª«sxqsó©«sV NRPVµj¶LiÀÁ Aª«sLRißá ª«sùª«sxqsógS }msLRiV |msÉíÓÁ©«sµj¶ Fsª«sLRiV? ÇÁ. ÉØ©±s}qsý 87. Aª«sLRißá ª«sùª«sxqsó xmsµy¬sõ Dxms¹¸¶WgjiLiÀÁ©«s Fs.ÑÁ. ÉØ©±s}qsý G −s˳ØgS¬sNTP ¿RÁLiµj¶©«s aSúxqsòQ®ªs[»R½ò? ÇÁ. ª«sXORPQ Aª«sLRißá 88. úxmsxmsLi¿RÁ xmsoÌÁVÌÁ ÇÁ©y˳ØÍÜ[ µyµyxmso FsLi»R½aS»R½Li xmsoÌÁVÌÁV ˳ØLRi»R½®µ¶[aRPLiÍÜ[ D©yõLiVV? ÇÁ. 65 aS»R½Li 89. \ÛÉÁgRiL`iúFyÛÇÁNíRPV©«sV ˳ØLRi»R½®µ¶[aRPLiÍÜ[ FsxmsöV²R¶V úFyLRiLiÕ³ÁLi¿yLRiV. ÇÁ. 1972 ÍÜ[ 90. G µR¶aRPÍÜ[ ANRPÖÁ FsNRPV䪫sgS DLiÈÁVLiµj¶? ÇÁ. N_ª«sWLRi µR¶aRPÍÜ[
P. Ravindra
(Msc, Med, Ma Lit) Ananthapuram Cell : 7799043773
�
˳ØLRi»R½®µ¶[aRPLiÍÜ[ aRPNTPò ª«s©«sLRiVÌÁ©«sV Fs¬sõLRiNSÌÁVgS −s˳ÏÁÑÁLi¿RÁª«s¿RÁVè? c 2LRiNSÌÁV 1. ryLiúxmsµy¸R¶V aRPNTPò ª«s©«sLRiVÌÁV 2. ryLiúxmsµy¹¸¶[V»R½LRi aRPNTPò ª«s©«sLRiVÌÁV
kÕ+Á|ü<ëj·T X¯øÏÔ eqs¡T\T »R½LjigjiF¡¹¸¶[V aRPNTPò ª«s©«sLRiVÌÁV @¬s ®ªs[ÉÓÁ¬s @LiÉØLRiV? c ryLiúxmsµy¸R¶V aRPNTPò ª«s©«sLRiVÌÁV � ryLiúxmsµy¸R¶V aRPNTPò ª«s©«sLRiVÛÍÁ[−s? c ËÜgæRiV, |msúÉÜ[ÖÁ¸R¶VLi, xqsx¤¦¦¦ÇÁ ªy¸R¶VVª«so, @ßáV−sµR¶Vù»`½NRPV xqsLiÊÁLiµ³j¶LiÀÁ©«s ¸R¶VVlLi[¬s¸R¶VLi ´][Lji¸R¶VLi, xmsýpÉÜ[¬s¸R¶VLi.. �
<∏äs¡à˝Ÿ $<äT´‘Y �
22
Ä+Á<ÛäÁ|üuÛÑ
X¯øÏÔ eqs¡T\T
uÛ≤s¡‘· <˚X¯+˝Àì nÁ˝≤ºyÓT>± |üesY bÕ¢+{Ÿ‡ LSúxtísQLi ª«sVµ³R¶ùúxms®µ¶[a`P gRiVÇÁLS»`½ ª«sV¥¦¦¦LSúxtísQ NRPLñSÈÁNRP I²T¶aS G{ms
¸R¶VWFsª±sV{ms{ms ¿RÁ¼d½ò£qsgRi²³`¶, xqsxqs©±s ª«sVVLiúµy gjiLSù µyúµj¶ BËÞ ©«sµk¶ÍÜ[¸R¶V NRPXxtsñQxmsÈÁõLi
úxmsxmsLi¿RÁLi ®ªsVV»R½òLi −dsVµR¶ G
A Nb˛{° D H|üØRø£Aå\ Á|Pü‘R˚´ø£A+ B H A
$<ë´Á|üuÛÑ
»]ÖÁ @ßáV−sµR¶Vù»`½ ZNP[LiúµR¶Li Gµj¶? c »yLSxmspL`i @ÉØ−sVN`P xmsª«sL`i }qsíxtsQ©±s (ÉÓÁ.Fs.zms.Fs£qs) � »yLSxmspL`i @ÉØ−sVN`P xmsª«sL`i }qsíxtsQ©±sÍÜ[ GLSöÈÁV ¿P[¸R¶VÊÁ²T¶©«s »]ÖÁ Lji¸R¶WNíRPL`i ? c @xms=LRi
1962ÍÜ[ ˳ØLRi»`½ »]ÖÁ ˳ØLRiÇÁÌÁ NRPLSøgSLS¬sõ FsNRPä²R¶ GLSöÈÁV ¿P[zqsLiµj¶? c ©«sLigRiÍÞ (xmsLiÇØËÞ)ÍÜ[ � ¾»½ÌÁLigSßáÍÜ[ ˳ØLRiÇÁÌÁ NRPLSø gSLRiLi FsNRPä²R¶ DLiµj¶? c ª«sVßáVgRiWLRiV, ÅÁª«sVøLi �
C≤Á>∑|ò”- 9 LSúuíyQÛÍÁ[−s? c z¤¦¦¦ª«sW¿RÁÍÞ úxms®µ¶[a`P, D»R½òLSLi¿RÁÍÞ, zqsNTPäLi, ®ªs[VxmnsWÌÁ¸R¶V, ©ygSÍØLi²`¶ � 1902ÍÜ[ ˳ØLRi»`½ »]ÖÁ ÇÁÌ −sµR¶Vù»`½ úFyÛÇÁNíRPV©«sV FsNRPä²R¶ úFyLRiLiÕ³ÁLiÀÁLiµj¶? c NRPLSõÈÁNRPÍÜ[¬s bPª«sxqsª«sVVúµR¶Li ª«sµôR¶ � ˳ØLRi»R½ úxms˳ÏÁV»R½*Li ®©s[xtsQ©«sÍÞ \|¤¦¦¦²R¶ÍÞ xmsª«sL`i NSL][ölLi[xtsQ©±s©«sV FsxmsöV²R¶V úFyLRiLiÕ³ÁLiÀÁLiµj¶? c 1975ÍÜ[
n\\ $<äT´‘Y ˳ØLRi»`½ÍÜ[ »]ÖÁ @ÌÁÌÁ −sµR¶Vù»`½ ZNP[Liúµy¬sõ FsNRPä²R¶ GLSöÈÁV ¿P[aSLRiV? c ZNP[LRiÎÏÁÍÜ[¬s −sÑÁLiÇÁLi ª«sµôR¶ � @ÌÁÌÁ −sµR¶Vù»`½ N][xqsLi úxms˳ÏÁV»R½*Li gRiVLjiòLiÀÁ©«s lLiLi²R¶ª«s úFyLi»R½Li? c @Li²R¶ª«sW©±s ¬sN][ËØL`i µk¶ª«soÌÁV
k˛eTyês¡+ 29 nø√ºãsY 2018 �
c �
c
�
c
�
c
|üeq $<äT´‘Y ÁbÕ+‘ê\T gRiVÇÁLS»`½ cÍØLiËØ »R½−sVÎÏÁ©y²R¶VcN][¸R¶VLiÊÁ»R½WòL`i G{ms c LSª«sVgjiLji I²T¶aSc xmspLji
�
‘·s¡+>∑ $<äT´‘Y ˳ØLRi»`½ÍÜ[ »]ÖÁ »R½LRiLigRi −sµR¶Vù»`½ ZNP[Liúµy¬sõ FsNRPä²R¶ GLSöÈÁV ¿P[aSLRiV? c gRiVÇÁLS»`½ÍÜ[¬s NSLi²ýyÍÜ[ � úxms˳ÏÁV»R½*Li BÉÔÁª«sÌÁ gRiVLjiòLiÀÁ©«s 2ª«s »R½LRiLigRi −sµR¶Vù»`½ @©«sVNRPWÌÁ úFyLi»R½Li? c I²T¶aS (µR¶VLæS µR¶Vªy¬súZNP[N`P) �
c �
c �
c �
c
−sµR¶Vù»`½©«sV FsNRPV䪫sgS −s¬s¹¸¶W gjixqsVò©yõLRiV? ´R¶LRiøÍÞ −sµR¶Vù»`½©«sV ˳ØLRi»R½®µ¶[aRPLiÍÜ[ ´R¶LRiøÍÞ −sµR¶Vù »`½©«sV FsNRPV䪫sgS D»R½ö¼½ò ¿P[}qs LSúuyíÌÁV G−s? ª«sV¥¦¦¦LSúxtísQ, gRiVÇÁLS»`½, G{ms 1975ÍÜ[ ˳ØLRi»R½ úxms˳ÏÁV»R½*Li ´R¶LRiøÍÞ −sµR¶Vù»`½ @Õ³Áª«sXµôðj¶N][xqsLi róyzmsLiÀÁ©«s xqsLixqsó Gµj¶? Fs©±sÉÔÁ{ms{qs ®ªsLiVVù ®ªsVgSªyÈýÁ NRPLiÛÉÁ[ FsNRPVä ª«s D»R½ö¼½ò ryª«sVLóRiùLi NRPÖÁgji©«s ´R¶LRiøÍÞ −sµR¶Vù»`½ ZNP[Liúµy¬sõ Gª«sVLiÉØLRiV? xqsWxmsL`i ´R¶LRiøÍÞ xmsª«sL`i }qsíxtsQ©±s=
uÛ≤s¡‘·<˚X¯+˝Àì dü÷|üsY <∏äs¡à˝Ÿ |üesY ùdºwüHé‡ LSúxtísQLi Fs£qsÉÔÁ{msFs£qs }msLRiV D»R½òLRiúxms®µ¶[a`P µyúµj¶, ELi¿RÁ¥¦¦¦L`i, zqsLiúg_ÖÁ, Lji¥¦¦¦Li²`¶ ª«sVµ³R¶ùúxms®µ¶[a`P −sL µ³yù¿RÁÍÞc 1, −sLiµyù¿RÁÍÞ c 2 ¿RÁ¼d½ò£qsxmnsV²`¶ N][LS÷ G{ms zqsLi¥¦¦¦úµj¶ ÉÔÁFs£qs LSª«sVgRiVLi²R¶Li ZNP[LRiÎÏÁ NS¸R¶VLiNRPVÎÏÁLi ÕÁ¥¦¦¦L`i NRPx¤¦¦¦ÍÞgSª±s ®ªs£qsí ÛËÁLigSÍÞ xmnsLRiNSä I²T¶aS »yÛÍÁ[èLRiV
düVü≤» yêj·TT πø+Á<ë\T ˳ØLRi»R½®µ¶[aRPLiÍÜ[ ª«sVVÅÁù\®ªsV©«s xqsx¤¦¦¦ÇÁªy¸R¶VV D»R½ö¼½ò ZNP[LiúµyÌÁV G−s? c 1. LSÇÁróy©±sc ALiÉØ 2. gRiVÇÁLS»`½c NRPªy£qs, gSLiµ³yLRi 3. D»R½òLRi úxms®µ¶[a`P c µyúµj¶, ELi¿RÁ¥¦¦¦L`i, KLji¸R¶W 4. ILjiry=c »yÛÍÁ[èLRiV 5. G{msÍÜ[ c −sÛÇêÁ[aRP*LRiLi (xmsbP誫sV g][µyªyLji) 6. ALiúµ³R¶úxms®µ¶[a`Pc Ò gRiVLRiVFy²R¶V (»R½WLRiöV g][µyª«sLji)
�
kÕ+Á|ü<ëj˚T‘·s¡ X¯øÏÔ eqs¡T\T 1. ÇÁÌÁ −sµR¶Vù»`½ 2. »R½LRiLigRi −sµR¶Vù»`½ 3. xmsª«s©«s −sµR¶Vù»`½ 4. @ÌÁÌÁ −sµR¶Vù»`½ 5. JxtsQ©±s ´R¶LRiøÍÞ Fs©«sLêki 6. ˳ÏÁW»yxms −sµR¶Vù»`½ 7. ÊÁ¹¸¶WgSù£qs Aµ³yLji»R½ −sµR¶Vù»`½ 8. r¢LRi −sµR¶Vù»`½
nDT$<äT´‘Y πø+Á<ë\T LSúxtísQLi 1. ª«sV¥¦¦¦LSúxtísQ 2. NRPLSõÈÁNRP 3. »R½−sVÎÏÁ©y²R¶V 4. D»R½òLRiúxms®µ¶[a`P 5. LSÇÁróy©±s 6. gRiVÇÁLS»`½
ZNP[LiúµR¶Li »yLSxmspL`i \ZNPgS NRPÌÁöNRPLi ©«sL][LS LSª«s»`½Ë³ÏÁÉíØ NRPúNRPFyLRi
|üeq $<äT´‘Y 1986ÍÜ[ xmsª«s©«s −sµR¶Vù»`½ N][xqsLi G LSúxtísQLiÍÜ[ xmsLjia][µ³R¶©«sÌÁV ÇÁLjigSLiVV? c gRiVÇÁLS»`½ � ˳ØLRi»`½ÍÜ[ róyzmsLiÀÁ©«s »]ÖÁ xmsª«s©«s −sµR¶Vù»`½ ZNP[LiúµR¶Li ? c ª«sWLi²R¶−s �
�
c �
c �
c �
c
nÁ˝≤ºyÓT>± |üesY ÁbÕC…≈£îº\T 4®ªs[ÌÁ ®ªsVgSªyÉÞÌÁ NRPLiÛÉÁ[ FsNRPV䪫s −sµR¶Vù»`½ ryª«sVLóRiùLi NRPÖÁgji©«s −sµR¶Vù»`½ ZNP[LiúµyÌÁ©«sV Gª«sVLiÉØLRiV? c @úÍíØ ®ªsVgS xmsª«sL`i FýyLiÉÞ=
�
c
c �
úxmsxmsLi¿RÁLiÍÜ[ @ßáV−sµR¶Vù»`½©«sV FsNRPV䪫sgS »R½¸R¶WLRiV ¿P[xqsVò©«sõ ®µ¶[aRPLi Gµj¶? úFny©±s= úFny©±s= ®ªsVV»R½òLi @ßáV −sµR¶Vù»`½ÍÜ[ FsLi»R½ aS»R½Li D»R½ö¼½ò ¿P[r¡òLiµj¶? 70 aS»R½Li úxmsxmsLi¿RÁ @ßáV−sµR¶Vù»`½ÍÜ[ ˳ØLRi»`½ »R½¸R¶WLRiV ¿P[xqsVò©«sõ @ßáV−sµR¶Vù»`½ aS»R½Li FsLi»R½? 3 aS»R½Li ˳ØLRi»R½®µ¶[aRPLiÍÜ[ ©«sWùNýTP¸R¶VL`i úF¡úgSLi FsxmsöV²R¶V úFyLRiLi˳ÏÁLi @LiVVLiµj¶? 1940ÍÜ[ ÉØÉØ @ÉØ−sVN`P Lji|qsL`iè NRP−sVxtsQ©±s FsxmsöV²R¶V GLSöÈÁLiVVLiµj¶? 1967ÍÜ[ ÉØÉØ @ÉØ−sVN`P Lji|q L`iè xqsÌÁ¥¦¦¦ »][ FsNRPä²R¶ ËØL`iä©«sV GLSöÈÁV ¿P[aSLRiV? ª«sV¥¦¦¦LSúxtísQÍÜ[¬s úÉØLiÛËÁ[ÍÜ[ 1969ÍÜ[ ˳ØLRi»`½ÍÜ[ GLSö\ÛÉÁ©«s
uÛÑ÷‘ê|ü $<äT´‘Y @gjiõ xmsLRi*»R½Li GµR¶aRPÍÜ[ ˳ÏÁW @Li»R½LS÷égRiLi ©«sVLiÀÁ ®ªs[²T¶ªy¸R¶VVª«soÌÁV ÊÁ¸R¶VÉÓÁN]ryòLiVV? c {msý¬s¸R¶VL`i µR¶aRPÍÜ[ � »]ÖÁ ˳ÏÁW»yxms −sµR¶Vù»`½ ZNP[LiúµR¶Li ? c ª«sVßÓáNRPLRißãÞÍÜ[ róyzmsLi¿yLRiV � ˳ÏÁW»yxms −sµR¶Vù»`½NRPV @ª«sNSaRPLi D©«sõ lLiLi²][ úFyLi»R½Li ? c ÇÁª«sVWø NSbdPøL`iÍÜ[¬s xmsogSÍÜ[¸R¶V �
kÂs¡X¯øÏÔ Ë³ØLRi»`½ÍÜ[ »]ÖÁ r¢LRiaRPNTPò ZNP[Liúµy ¬sõ FsNRPä²R¶ GLRiöÈÁV ¿P[aSLRiV? c ¸R¶VW{msÍÜ[¬s NRPÎØùßãÞxmspL`iÍÜ[ � ˳ØLRi»`½ÍÜ[ @¼½|msµôR¶ r¢LRiaRPNTPò ZNP[Liúµy¬sõ FsNRPä²R¶ GLSöÈÁV ¿P[aSLRiV? c gRiVÇÁLS»`½ÍÜ[¬s ˳ÏÁVÇÞÍÜ[ � ˳ØLRi»`½ÍÜ[ xmspLjiògS r¢LRiaRPNTPò ¿P[»R½ −sµR¶Vùµk¶NRPLjiLi¿RÁÊÁ²T¶©«s úgSª«sVLi ? c ¿][gýSry¸º¶V (ÇÁª«sVWøNSbdPøL`i) �
ãjÓ÷ >±´dt
nDT$<äT´‘Y
�
�
úxmsxqsVò»R½Li ˳ØLRi»`½ÍÜ[¬s ALRiV @ßáV−sµR¶Vù»`½ ZNP[LiúµyÌÁÍÜ[ Fs¬sõ Lji¸R¶WNíRPLýRiV xms¬s¿P[xqsVò©yõLiVV? c 17 Lji¸R¶WNíRPLýRiV
�
˳ØLRi»R½ ®µ¶[aRPLiÍÜ[ @¼½ FsNRPV䪫s gSÖÁ ª«sVLRiÌÁV©«sõ úFyLi»R½Li? ª«sVVFyöLi²R¶ÍÞ |msLRiVLigRiV²T¶, »R½−sVÎÏÁ©y²R¶V ª«sVVFyöLi²R¶ÍÞ úFyLi»y¬sõ @®ªsV LjiNSÍÜ[¬s G úFyLi»R½Li»][ F¡ÌÁVryòLRiV? NSÖÁFn¡Ljiõ¸R¶W ªyßÓáÇÁùLki¼½ÍÜ[ xmsª«s©«s −sµR¶Vù»`½ D»R½ö¼½ò ¿P[xqsVò©«sõ úFyLi»R½Li? ª«sV¥¦¦¦LSúxtísQÍÜ[¬s xqs»yLS ˳ØLRi»`½ÍÜ[ xmsª«s©«s −sµR¶Vù»`½©«sV FsNRPV䪫sgS Dxms¹¸¶WgjiLi¿RÁVNRPVLi ÈÁV©«sõ úFyLi»R½Li? NRPLSõÈÁNRP ÍÜ[¬s ÇÜ[gjiª«sVÈíÁ
˳ØLRi»`½ÍÜ[ »]ÖÁ ÊÁ¹¸¶WgSù£qs ZNP[Liúµy¬sõ G LSúxtsíQLiÍÜ[ GLSöÈÁV ¿P[aSLRiV? c xmsLiÇØËÞÍÜ[ � úxmsxqsVò»R½Li ˳ØLRi»`½ÍÜ[ ®µ¶[¬s¬s Dxms ¹¸¶WgjiLiÀÁ FsNRPV䪫sgS ÊÁ¹¸¶W gSù£qs©«sV »R½¸R¶WLRiV ¿P[xqsVò©yõLRiV? c ÊÁgS|qs � ÊÁgS|qs @LiÛÉÁ[? c ¿RÁZNPäLRi NRPLSøgSLRiLiÍÜ[ ÌÁÕ³ÁLi¿P[ ª«sùLóRi xmsµyLóRiLi �
nDT$<äT´‘Y πø+Á<ä+
kÂs¡X¯øÏÔ Ë³ØLRi»R½®µ¶[aRPLi @ßáV−sµR¶Vù»`½ D»R½ö¼½òÍÜ[ úxmsxmsLi¿RÁLiÍÜ[ Fs©«sõª«s róy©«sLiÍÜ[ DLiµj¶? c 6ª«s róy©«sLiÍÜ[
�
uÛ≤s¡»\+
˳ØLRiÇÁÍجsõ ®µ¶[¬sÍÜ[ Dxms¹¸¶WgjiryòLRiV? c @ßáVLji¸R¶WNíRPL`iÍÜ[ −sV»R½NSLjigS
�
»\$<äT´‘Y ˳ØLRi»R½®µ¶[aRPLiÍÜ[ ÇÁÌÁ−sµR¶Vù»`½ D»yöµR¶©«sNRPV @ª«sNSaRPLi D©«sõ úxmsµ³y©«s\®ªsV©«s úFyLi»yÌÁV G−s? c z¤¦¦¦ª«sWÌÁ¸R¶WÌÁV, xm bP誫sVNRP©«sVª«sV ÌÁV, úÊÁx¤¦¦¦øxmsoú»R½, zqsLiµ³R¶V, gRiLigS ©«sµR¶VÌÁV � ˳ØLRi»R½®µ¶[aRPLiÍÜ[ xmspLjiògS ÇÁÌÁ−s µR¶Vù»`½\|ms Aµ³yLRixms²T¶©«s �
|üeq $<äT´‘Y ñ‘·Œ‹Ô #˚düTÔqï yÓTT<ä{Ï 5 <˚XÊ\T 1ª«s róy©«sLic ÇÁLRiø¬ds 2ª«s róy©«sLic ¸R¶VWFs£qsG 3ª«s róy©«sLic ®²¶©yøL`iä 4ª«sróy©«sLic |qsöLiVV©±s 5ª«s róy©«sLic BLi²T¶¸R¶W
d”ôV≤#Y. ø£fi≤´DY #·Áø£e]Ô &Ó’¬sø£ºsY sê´+ø˘ |òüdtº nø±&ÉMT, ~˝ŸdüTUŸq>∑sY
ôd˝Ÿ`8121111303