Vidyaprabha_22-10-2018

Page 1

˳ÏÁúµyúµj¶ N]»R½ògRiW®²¶Li ÑÁÍýØ @©«sõxmsolLi²ïT¶ ª«sVLi²R¶ÌÁ xmsLjiµ³j¶ÍÜ[¬s @ÊÁV÷gRiW®²¶Li úgSª«sVLiÍÜ[ J ryµ³y LRißá ª«sVµ³R¶ù »R½LRigRi¼½ \lLi»R½V NRPVÈÁVLiÊÁLiÍÜ[ Ç ¬søLiÀÁ Fs£mnsAL`iª¯[ xmnsÖÁ»yÌÁÍÜ[ LSúxtsíLiÍÜ[®©s[ úxms´R¶ª«sV róy©«sLiÍÜ[ ¬sÖÁÀÁ »R½©«sNRPV, »R½©«s úgSª«sW¬sNTP }msLRiV úxmsÆØù»R½ÌÁV ¾»½ÀÁè|msÉíØLRiV. @»R½®©s[ ÇÁÙÊÁV÷LRiV ®ªsLiNRPÛÉÁ[aRP*LRiLSª«so, ÇÁ¸R¶Vª«sVøÌÁ lLiLi²][ NRPVª«sWLRiV²R¶V ª«sVÛÍýÁ[aRP*LRiLSª«so. @ÍØlgi[ »R½©«s ÒÁ−s»R½ @LôðSLigji úaSª«sßÓá \|qs»R½Li Fs£mnsAL`iª¯[ Dµ][ùgRiLi ryµ³j¶Li¿P[LiµR¶VNRPV µ][x¤¦¦¦µR¶xms²ïy²R¶V.

16, 17˝À

|ü≥Tº<ä\‘√

HÓs¡y˚]q ø£\

m|òtÄsYy√ |òü*‘ê˝À¢ sêÁwüºkÕúsTT˝À Á|ü<∏äeT kÕúq+ uÛ≤s¡´uÛÑs¡Ô*<ä›]ø° ñ<√´>±\T.. Ä<äs¡Ù+>± ì*∫q j·TTe»+≥

PHYSICS IS UNDERSTANDING THE LAWS OF NATURE

D.VIKRAM, CEO NINE EDUCATION IIT ACACAMY, HYD

H√{Ï|òæπøwüHé

d”d”m˝Ÿ˝À

760

C≤Á>∑| ò” ` 8 13 ˝À

ñ<√´>±\T mdt◊ / ø±ìùdºãT˝Ÿ, ÄsY|”m|òt

s¡yêD≤ e´edüú

JEE MAIN 21 ˝À MODEL PAPER-2

22 ˝À

ôdŒwü˝Ÿ 20, 21˝À

\|¤¦¦¦ ÇÁLi£ms

¿P[¸R¶VLi²T¶ÍØ..

ø±ìùdºãT˝Ÿ |òæõø£˝Ÿ f…øÏïø˘ - 3

16,17˝À


12

Ä+Á<ÛäÁ|üuÛÑ

$<ë´Á|üuÛÑ ø£¬s+{Ÿ nô|ò’sY‡

H√øÏj·÷ Áu≤+&é n+u≤dæ&ÉsY>± Ä*j·÷ uÛÑ{Ÿ

úxmsNRPÉÓÁLiÀÁLiµj¶.

®ªsVV\ÛËÁÍÞ ¥¦¦¦ùLi²`¶|qsÉÞ= »R½¸R¶WLki NRPLi|ms¬ds ©¯[NTP¸R¶W úËØLi²`¶ @LiËØzqs²R¶L`igS ËØÖdÁª«so²`¶ ©«sÉÓÁ AÖÁ¸R¶W ˳ÏÁÉÞ ª«sùª«sx¤¦¦¦LjiLi¿RÁ©«sV©yõLRiV. C ®ªs[VLRiNRPV ˳ØLRi»`½ÍÜ[ ©¯[NTP¸R¶W Fn¡©«sý ²T¶\ÛÇÁ©±s, }qsÍÞ= ¬sLRi*z¤¦¦¦xqsVò©«sõ |¤¦¦¦¿`ÁFsLi²U¶ gý][ÊÁÍÞ BLi²T¶¸R¶W @Ní][ÊÁL`i 15©«s

Á|ü<ÛëqT\ eT÷´õj·÷ìøÏ X¯+≈£îkÕú|üq ®µ¶[aRP LSÇÁµ³y¬s ©«sWù²³T¶ÖýdÁÍÜ[¬s ¼d½©±s ª«sVWLjiò Fs}qsíÉÞ=ÍÜ[ ¬sLjiøLi¿RÁ©«sV©«sõ ˳ØLRi»R½ úxmsµ³y©«sª«sVLiú»R½VÌÁ ª«sVWùÑÁ¸R¶VLiNRPV ZNP[LiúµR¶ ª«sVLiú»R½VÌÁV ª«sV}¤¦¦¦a`P aRPLRiø, x¤¦¦¦Lôki£mszqsLig`i xmspLji @Ní][ÊÁL`i 15©«s aRPLiNRPVróyxms©«s ¿P[aSLRiV.

>√¢ã˝Ÿ m+bÕ¢j·TsY‡ ø£+ô|˙\ C≤_‘ê˝À m˝Ÿ n+&é {°

C≤rj·T+

A N D H b˛{° R A|üØP ø£å\ Á|Rü‘˚´ø£A+ B H A Á|üj·÷>¥sêCŸ>± n\Vü‰u≤<é ù|s¡Te÷s¡TŒ

n+‘·sê®rj·T+

D»R½òLRiúxms®µ¶[a`PÍÜ[¬s úxmsª«sVVÅÁ ©«sgRiLRi\®ªsV©«s @ÌÁ¥¦¦¦Ëص`¶ }msLRiV©«sV úxms¸R¶Wg`i LSÇÞgS ª«sWLSèLRiV. C ®ªs[VLRiNRPV A LSúxtísQ ZNP[ÕÁ®©sÉÞ ¬sLñRiLiVVLiÀÁLiµj¶. BNRPä²T¶ gRiLigSc¸R¶Vª«sVV©«s NRPÖÁ}qs xqsLigRiª«sV úFyLi»R½LiÍÜ[ @NRP÷L`i N][ÈÁ©«sV ¬sLjiøLi¿y²R¶V. AN][ÈÁNRPV, xmsLjixqsLRi úFyLi»y¬sNTP NRPÖÁzms BÍØx¤¦¦¦ÊÁVWËص`¶ @¬s }msLRiV |msÉíزR¶V. NRPVLi˳ÏÁ®ªs[VÎØ ÇÁLjilgi[ xqsLigRiª«sV úFyLi»y¬sõ úxms¸R¶Wg`i @®©s[ }msLRiV»][®©s[ BxmsöÉÓÁNUP zmsÌÁVxqsVò©yõLRiV.

Áô|’ed” j·÷CŸ d”Áø£d” |ü⁄düÔø±$wüÿs¡D ZNP[LiúµR¶ xqsª«sW¿yLRi NRP−sVxtsQ©«sL`i ª«sW²R¶Ë³ÏÁWztsQ úbdPµ³R¶L`i A¿yLRiVùÌÁ LRiÀÁLiÀÁ©«s ú\|msª«s{qs ¸R¶WÇÞ {qsúNRP{qs xmsoxqsòNRPLi©«sV ©«sWù²³T¶ÖýdÁÍÜ[ @Ní][ÊÁL`i 16©«s úF~|mnsxqsL`i D}msLiúµR¶ ÊÁOUPQ A−sxtsQäLjiLi¿yLRiV.

_*¶+>¥ @ ˝…>∑d” |ü⁄düÔø±$wüÿs¡D úxmsª«sVVÅÁ FyLjiúaS−sVNRP®ªs[»R½ò ²yNíRPL`i @©«sV®ªsWÌÁV LSª«sVNRPXxtsñQ ÊÁ¹¸¶WúgRi{mns ÕÁÖïÁLig`i G ÛÍÁgRi{qs xmsoxqsòNS¬sõ DxmsLSúxtsíxms¼½ FsLi. ®ªsLiNRP¸R¶Vù©y¸R¶VV²R¶V ¿Á®©s^õÍÜ[ C ®©sÌÁ 12©«s A−sxtsQäLjiLi¿yLRiV. xmsoxqsòNRP LRi¿RÁLiVV»R½ÌÁV −s.xmsÉíØÕ³ÁLSª±sV, AL`i. ®ªsWx¤¦¦¦©±sÌÁ©«sV ®ªsLiNRP¸R¶Vù @Õ³Á©«sLiµj¶Li¿yLRiV. ˳ØLRi¼d½¸R¶V xmsLjiúaRPª«sVÍÜ[ ¬sÇÁ\®ªsV©«s, g]xmsö ÒÁ−s»R½ ¿RÁLjiú»R½©«sV NRPÖÁgji©«s ª«sùNTPò LSª«sVNRPXxtsñQ @©yõLRiV. LSª«sVNRPXxtsñQ ª«sVLRißØ©«sLi»R½LRiLi xmsµR¶ø˳ÏÁWxtsQßãÞ xmsoLRiryäLRiLi ÌÁÕ³ÁLiÀÁLiµj¶.

Á|ü‹uÛ≤ |ü⁄s¡kÕÿsê\T Á|ü<ëq+

nyês¡T¶\T

ÛËÁ£qsí gý][ÊÁÍÞ FsLiFýy¸R¶VL`i= c 2018 ÇØÕÁ»yÍÜ[ ®µ¶[aRP ª«s°ÖÁNRP LRiLigRi xqsLixqsó ÍØlLi©±s= @Li²`¶ ÈÁWúËÜ[ (FsÍÞ @Li²`¶ ÉÔÁ) 22©«s róy©«sLiÍÜ[ ¬sÖÁÀÁLiµj¶. C ®ªs[VLRiNRPV úxmsxmsLi¿RÁªyùxmsòLigS D©«sõ 2000 NRPLi|ms¬dsÌÁ»][ LRiWF~Liµj¶LiÀÁ©«s ÇØÕÁ»y©«sV Fn¡L`÷= @Ní][ÊÁL`i 16©«s −s²R¶VµR¶ÌÁ ¿P[zq Liµj¶. C ÇØÕÁ»yÍÜ[ @®ªsVLjiNSNTP ¿ÁLiµj¶©«s @ÍØöéÛËÁÉÞ @úgRiróy©«sLi F~Liµj¶Liµj¶. @ÍØlgi[ \®ªsVúN][ry£mnsí róy©«sLi, AzmsÍÞ ª«sVW²][ róy©«sL, ªyÍïÞ ²T¶{qs= ©yÌÁVg][ róy©«sLi, @®ªsVÇØ©±s Hµ][ róy©«sLi µR¶NTPäLi¿RÁVNRPV©yõLiVV. C ÇØÕÁ»yÍÜ[¬s N]¬sõ ˳ØLRi»R½ NRPLi|ms¬dsÌÁV xqsLixqsó }msLRiV

róy©«sLi

ÒÁH{qs

106

HÉÔÁ{qs

108

|qsLiVVÍÞ

139

xqs©±sFnyLSø

172

|¤¦¦¦¿`Á²U¶Fs£mns{qsËØùLiN`P

183

H{qsH{qsH ËØùLiN`P

359

Fs£qsÕdÁH

381

H˚s¡+ »]–q Á|ü<˚X¯+ M&çjÓ÷ ∫Árø£s¡D ®©s[LRi −s¿yLRißá©«sV NRPLixmspùÈÁLkiNRPLjiLi¿P[ ¿RÁLRiùÍýÜ[ ˳ØgRiLigS ®µ¶[aRPLiÍÜ[¬s ALRiV úxmsµ³y©«s ©«sgRiLSÍýÜ[ ®©s[LRiLi ÇÁLjigji©«s úxms®µ¶[aS¬sõ −ds²T¶¸R¶WÍÜ[ ÀÁú¼d½NRPLjiLi¿RÁ²R¶Li »R½xmsö¬sxqsLji ¿P[¸R¶V©«sV©yõLRiV. ZNP[LiúµR¶ úxms˳ÏÁV»R½*Li xqsVú{msLiN][LíRiVNRPV @Ní][ÊÁL`i 16©«s ¾»½ÖÁzmsLiµj¶. ®ªsVVµR¶ÉÓÁ µR¶aRPÍÜ[ ˳ØgRiLigS ©«sWù²³T¶ÖýdÁ, ª«sVVLi\ÛËÁ, \|¤¦¦¦µR¶LSËص`¶, ÛËÁLigRiÎÏÁ¨LRiV, @x¤¦¦¦øµyËص`¶, ¿RÁLi²U¶gRi²³`¶ ©«sgRiLSÍýÜ[ C ¬sÊÁLiµ³R¶©«s©«sV @ª«sVÌÁV ¿P[¸R¶V©«sV©yõLRiV. »R½LS*¼½ µR¶aRPÍÜ[ ®µ¶[aRP ªyùxmsòLigS µk¶¬s¬s @ª«sVÌÁV ¿P[¸R¶V©«sV©yõLRiV.

◊sêdü eT+&É* mìïø£˝À¢ uÛ≤s¡‘Y ¬>\T|ü⁄ HNRPùLSÇÁùxqs−sV¼½ ª«sW©«sª«s x¤¦¦¦NRPVäÌÁ ª«sVLi²R¶ÖÁÍÜ[ xqs˳ÏÁù®µ¶[aSÌÁ FsLizmsNRP N][xqsLi C ®©sÌÁ 12©«s ÇÁLjigji©«s Fs¬sõNRPÍýÜ[ ˳ØLRi»`½ −sÇÁ¸R¶VLi ryµ³j¶LiÀÁLiµj¶. 2019 ÇÁ©«sª«sLji 1 ©«sVLiÀÁ ª«sVW®²¶[ÎÏÁþFyÈÁV ˳ØLRi»`½ HLSxqs ª«sW©«sª«s x¤¦¦¦NRPVäÌÁ ª«sVLi²R¶ÖÁÍÜ[ xqs˳ÏÁù®µ¶[aRPLigS DLi²R¶©«sVLiµj¶. xqs˳ÏÁù»R½*Li N][xqsLi Fs¬sõNRPÍýÜ[ −sÇÁ¸R¶VLi ryµ³j¶Li¿P[LiµR¶VNRPV 97 JÈýÁV @ª«sxqsLRiª«sVª«s*gS, Azqs¸R¶W xmszqszmnsN`P ZNP[ÈÁgjiLjiÍÜ[ ÊÁú|¤¦¦¦LiVV©±s, ÊÁLigýS®µ¶[a`P, zmnsÖÁ{msö©±s=, zmnsÑÁ ®µ¶[aSÌÁ»][ F¡ÉÔÁxms²T¶ ˳ØLRi»`½ 188 JÈýÁ»][ ˳ØLki −sÇÁ¸R¶W¬sõ @LiµR¶VNRPVLiµj¶. F¡ÉÔÁÍÜ[ FyÍæÜ©«sõ @¬sõ ®µ¶[aSÌÁNRP©yõ ˳ØLRi»`½ZNP[ @»R½ùµ³j¶NRP JÈýÁV xms²ïyLiVV. LRix¤¦¦¦xqsù xmsµôðR¶¼½ÍÜ[ JÉÓÁLig`i ÇÁLRigRigS ®ªsVV»R½òLi 18 ®µ¶[aSÌÁV HLSxqs ª«sW©«sª«s x¤¦¦¦NRPVäÌÁ ª«sVLi²R¶ÖÁÍÜ[ xqs˳ÏÁù»y*¬sNTP @ª«sxqsLRi\®ªsV©«s¬sõ JÈýÁV ryµ³j¶Li¿yLiVV.

k˛eTyês¡+ 22 nø√ºãsY 2018

cÕ+ô|òTÆ e÷düºsY‡ $CÒ‘· »ø√$#Y

k˛ŒsYº‡

uyLi\|mnsV ª«sWxqsíL`i= ÉÜ[Lkiõ xmsoLRiVxtsQVÌÁ zqsLigjiÍÞ= −sÛÇÁ[»R½gS |qsLji÷¸R¶WNTP ¿ÁLiµj¶©«s ©¯ªyN`P ÇÁN][−s¿`Á ¬sÖÁ¿y²R¶V. \¿Á©yÍÜ[¬s uyLi\|mnsVÍÜ[ @Ní][ÊÁL`i 14©«s \|mns©«sÍýÜ[ ÇÁN][−s¿`Á 6c3, 6c4»][ ËÜ[LSõ N]Lji¿`Á\|ms lgiÌÁVF~Liµy²R¶V. ª«sVL][\®ªsxmso xmsoLRiVxtsQVÌÁ ²R¶ÊÁVÍÞ= \|mns©«sÍýÜ[ ÌÁVNS£qs NRPVÊÁÉÞ, ª«sWlLi=ÍÜ[ −dsVÍÜ[ ÇÜ[²U¶ 6c4, 6c2»][ ÛÇÁ[−dsV ª«sVVúlLi[, úÊÁW©¯[ r¡L`i=\|ms ®©sgæji \ÛÉÁÉÓÁÍÞ r~Li»R½Li ¿P[xqsVNRPVLiµj¶.

uÛ≤s¡‘Y≈£î ¬s+&ÉT f…düTº\ dæØdt ®ªszqsíLi²U¶£qsc˳ØLRi»`½ÌÁ ª«sVµ³R¶ù ÇÁLjigji©«s lLiLi²R¶V ÛÉÁxqsíVÌÁ zqsLki£qs©«sV ˳ØLRi»`½ \ZNPª«sxqsLi ¿P[xqsVNRPVLiµj¶. \|¤¦¦¦µR¶LSËص`¶ DxmsöÍÞÍÜ[¬s LSÒÁª±sgSLiµ³k¶ @Li»R½LêS¼d½¸R¶V}qsí²T¶¸R¶VLi ÍÜ[ C®©sÌÁ 14©«s ÇÁLjigji©«s lLiLi²][ ÛÉÁxqsíVÍÜ[ ˳ØLRi»`½10−sZNPÈýÁ ¾»½[²y»][ ®ªszqsíLi²U¶£qs \|ms −sÇÁ¸R¶VLi ryµ³j¶LiÀÁLiµj¶. ˳ØLRi»`½ 2c0»][ zqsLki£qs©«sV r~Li»R½Li ¿P[xqsVNRPVLiµj¶.

eTT–dæq bÕsê Ädæj·÷ Áø°&É\T FyLS Azqs¸R¶W úNUP²R¶ÌÁV c 2018 ª«sVVgjiaSLiVV. BLi²][®©s[ztsQ¸R¶WÍÜ[¬s ÇÁNSLSòÍÜ[ C ®©sÌÁ 6 ©«sVLiÀÁ 13ª«sLRiNRPV ÇÁLjigji©«s CúNUP²R¶ÍýÜ[ ˳ØLRi»`½ ®ªsVV»R½òLi72 xms´R¶NSÌÁ »][ xmsÉíÓÁNRPÍÜ[ »]−sVøµ][ róy©«sLiÍÜ[ ¬sÖÁÀÁLiµj¶. 172 xms»R½NSÌÁ»][ \¿Á©y @úgRiróy ©«sLiÍÜ[ ¬sÖÁÀÁLiµj¶. 2014 úNUP²R¶ÍýÜ[ ˳ØLRi»`½ 33 (3 xqs*LñSÌÁV, 14 LRiÇÁ»yÌÁV, 16 NSLiryùÌÁV) xms»R½NSÌÁV ryµ³j¶LiÀÁLiµj¶. F¡ÉÔÁÌÁ ÀÁª«sLji L][ÇÁÙ ËØù²T¶øLiÈÁ©±s xmsoLRiVxtsQVÌÁ Fs£qsFsÍÞ 3 zqsLigjiÍÞ= \|mns©«sÍýÜ[ úxms®ªsWµ`¶ ˳ÏÁgRi»`½ 21c19, 15c21, 21c14»][ DNRPV©±s LRiV\ZNP©±s ²U¶ \|ms lgiÖÁÀÁ xqs*LñRi xms»R½NRPLi ryµ³j¶Li¿y²R¶V.

&É#Y zô|Hé $CÒ‘· kÂs¡uÛŸ es¡à ²R¶¿`Á Jxms©±s ª«sLRiÍïÞ ÈÁWL`i xqsWxmsL`i c 100 ÉÜ[Lkiõ −sÛÇÁ[»R½gS ˳ØLRi»R½ ËØù²T¶øLiÈÁ©±s }msý¸R¶VL`i r¢LRiË³Þ ª«sLRiø ¬sÖÁ¿y²R¶V. ®©sµR¶LýSLi²`¶=ÍÜ[ C ®©sÌÁ 14©«s ÇÁLjigji©«s \|mns©«sÍýÜ[ r¢LRiË³Þ 21c19, 21c13»][ ÇÁÚ©±s ®ªs ¿Áª±sV (ª«sVÛÍÁ[ztsQ¸R¶W)\|ms −sÇÁ¸R¶VLi ryµ³j¶Li¿y²R¶V. 86 GÎÏÁþ ¿RÁLjiú»R½ NRPÖÁgji©«s ²R¶¿`Á J|ms©±sÍÜ[ ¿yLizms¸R¶V©±sgS ¬sÖÁÀÁ©«s ©yÌÁVg][ ˳ØLRi¼d½¸R¶V }msý¸R¶VL`igS gRiVLjiòLixmso F~Liµy²R¶V.

Ädæj·÷ bÕsê Áø°&É˝À¢ uÛ≤s¡‘Y≈£î ◊<äT dü«sêí\T Azqs¸R¶W FyLS úNUP²R¶ÌÁV c 2018ÍÜ[ ˳ØLRi»`½ HµR¶V xqs*LñRi xms»R½NSÌÁ©«sV µR¶NTPäLi¿RÁVNRPV©«sõµj¶. BLi²][®©s[ztsQ¸R¶WÍÜ[¬s ÇÁNSLSòÍÜ[ C ®©sÌÁ 12©«s ÇÁLjigji©«s ª«sVz¤¦¦¦ÎÏÁÌÁ LSùzms²`¶ ¿Á£qs zms1 −s˳ØgRiLiÍÜ[ ZNP. ÛÇÁ¬sõ»R½»][ ª«sVV©«sVLRiVLig`i L][£qsÖÁLi²y\|ms −sÇÁ¸R¶VLi ryµ³j¶LiÀÁ ÊÁLigSLRiV xms»R½NRPLi lgiÌÁV¿RÁVNRPVLiµj¶. @ÍØlgi[ xmsoLRiVxtsQVÌÁ LSùzms²`¶ c6 ÕdÁ2/ÕdÁ3 −s˳ØgRiLiÍÜ[ NTPxtsQ©±s xmszqs²T¶ ryµ³j¶Li¿y²R¶V. ALiúµ³R¶úxms®µ¶[a`P ªyùxmsòLigS FsLizmsNRP ¿P[zqs©«s 7,010 ª«sVLiµj¶ −sµyùLóRiVÌÁNRPV G{ms ª«sVVÅÁùª«sVLiú¼½ ¿RÁLiúµR¶ËØÊÁV©y¸R¶VV²R¶V úxms˳ÏÁV»R½* úxms¼½Ë³Ø xmsoLRiryäLSÌÁ©«sV @Ní][ÊÁL`i 15©«s úxmsµy©«sLi ¿P[aSLRiV. úxmsNSaRPLi ÑÁÍýØ ILig][ÌÁVÍÜ[ ÇÁLjigji©«s NSLRiùúNRPª«sVLiÍÜ[ ª«sVVÅÁùª«sVLiú¼½ ª«sWÉýزR¶V»R½W .. úxms¼½Ë³ÏÁ xmsoLRiryäLSÌÁV @LiµR¶VNRPV©«sõ −sµyùLóRiVÌÁV úxms˳ÏÁV»R½* N]ÌÁVª«soÌÁV ryµ³j¶}qsò ªyLjiNTP G²yµj¶ @µR¶©«sxmso xqsLki*xqsV¬sÀÁè 61 GÎýÏÁ ª«sLRiNRPV Dµ][ùgRi @ª«sNSaRPLi NRPÖÁöryòª«sV©yõLRiV.

@|” eTVæ≤fi≤ ¬s’‘·T\≈£î C≤rj·T |ü⁄s¡kÕÿsê\T

sêÁcÕº\T

»j·TsêE≈£î düT<ë›\ C≤rj·T |ü⁄s¡kÕÿs¡+ úxmsÆØù»R½ úxmsÇØ gS¸R¶VNRPV²R¶V ÇÁ¸R¶VLSÇÁÙNRPV xqsVµôyÌÁ x¤¦¦¦©«sVª«sVLi»R½V c ÇØ©«sNRPª«sVøÌÁ Çؼd½¸R¶V xmsoLRiryäLRiLi ÌÁÕ³ÁLiÀÁLiµj¶. \|¤¦¦¦µR¶LSËص`¶ÍÜ[ C ®©sÌÁ 14©«s ÇÁLjigji©«s NSLRiùúNRPª«sVLiÍÜ[ ¾»½ÌÁLigSßá »yÇØ ª«sWÒÁ {qsöNRPL`i Fs£qs. ª«sVµ³R¶VxqsWµ³R¶©y¿yLji C @ªyLïRiV©«sV úxmsµy©«sLi ¿P[aSLRiV. úxms¼½NRPWÌÁ xmsLjizqsó»R½VÍýÜ[ úFyßØÌÁ©«sV xmsßáLigS |msÉíÓÁ ¾»½ÌÁLigSßá úxmsÇÁÌÁ©«sV \¿Á»R½©«sùLi ¿P[zqs©«s g]xmsö úxmsÇØNRP−s xqsVµôyÌÁ x¤¦¦¦©«sVª«sVLi»R½V.

ˇ&çXÊ b˛©düT n~Ûø±]øÏ nXÀø£#·Áø£ nyês¡T¶ ©«sNRP=ÍÞ=»][ F¡LS²R¶V»R½W −dsLRiª«sVLRißáLi F~Liµj¶©«s I²T¶aS F¡ÖdÁxqsV @µ³j¶NSLji úxms®ªsWµ`¶ NRPVª«sWL`i xqs»R½ö¼½NTP @a][NRP ¿RÁúNRP @ªyLïRiV ÌÁÕ³ÁLiÀÁLiµj¶. úxms®ªsWµ`¶ \®µ³¶LRiù ryx¤¦¦¦ryÌÁV gRiVLjiòxqsWò A¸R¶V©«sNRPV ª«sVLRißØ©«sLi»R½LRiLi @a][NRP¿RÁúNRP©«sV BxqsVò©«sõÈýÁV ZNP[LiúµR¶ x¤¦Ü[LiaSÅÁ @Ní][ÊÁL`i 14©«s ®ªsÌýÁ²T¶LiÀÁLiµj¶. |qsöxtsQÍÞ AxmslLi[xtsQ©±s= úgRiW£ms @zqs|qsíLiÉÞgS xms¬s¿P[zqs©«s xqs»R½ö¼½ 2008, zmnsúÊÁª«sLji 16©«s ÇÁLjigji©«s Fs©±sN_LiÈÁL`iÍÜ[ ª«sVLRißÓáLi¿yLRiV.

uÛ≤s¡‘· dü+‘·‹ e´øÏÔøÏ ◊Héd”ºHé Áô|’CŸ ˳ØLRi»R½ xqsLi»R½¼½ ª«sùNTPò úF~|mnsxqsL`i @˳ÏÁ¸º¶V @}tsíNRPL`iNRPV H©±s{qsí©±s ú\|msÇÞ c 2018 ÌÁÕ³ÁLiÀÁLiµj¶. @®ªsVLjiNRP©±s zmnsÑÁNRPÍÞ r~\|qsÉÔÁ @Ní][ÊÁL`i 15©«s úxmsNRPÉÓÁLiÀÁLiµj¶. 1974ÍÜ[ ¸R¶VW¬sª«sLji=ÉÔÁ A£mns ÀÁNSg][ ©«sVLiÀÁ {ms|¤¦¦¦¿`Á²U¶¬s xmspLjiò¿P[zqs©«s @˳ÏÁ¸º¶V.. ÌÁW£ms NS*LiÈÁª±sV úgS−sÉÔÁ úF¡úgSª±sV\|ms @®©s[NRP xmsLjia][µ³R¶©«sÌÁV ¿P[aSLRiV. úxmsxqsVò»R½Li zmnsÑÁN`P= úF~|mnsxqsL`igS, |ms¬s=ÛÍÁ[*¬s¸R¶W }qsíÉÞ ¸R¶VW¬sª«sLji=ÉÔÁÍÜ[ B¬szqsíÈÁWùÉÞ xmnsL`i úgS−sÛÉÁ[xtsQ©±s @Li²`¶ µj¶ NSr¡ø£qsNTP \®²¶lLiNíRPL`igS @˳ÏÁ¸º¶V xms¬s¿P[xqsVò©yõLRiV. @Ní][ÊÁL`i 23©«s ÇÁLRigRi©«sV©«sõ @ªyLïRiVÌÁ úxmsµy©¯[»R½=ª«sLiÍÜ[ @˳ÏÁ¸º¶VNRPV H©±s{qsí©±s ú\|msÇÞ c 2018»][ FyÈÁV xmsµj¶®ªs[ÌÁ ²yÌÁLýRi©«sV ©«sgRiµR¶V úF¡»y=x¤¦¦¦LigS @Liµj¶xqsVò©yõLRiV.

ª«sùª«sry¸R¶V LRiLigRiLiÍÜ[ LSßÓáxqsVò©«sõ ALiúµ³R¶úxms®µ¶[a`PNRPV ¿ÁLiµj¶©«s BµôR¶LRiV ª«sVz¤¦¦¦ÎØ \lLi»R½VÌÁNRPV Çؼd½¸R¶V xmsoLRiryäLSÌÁV ÌÁÕ³ÁLi¿yLiVV. C ®ªs[VLRiNRPV ª«sVz¤¦¦¦ÎØ NTPry©±s µj¶ªy£qs©«sV xmsoLRixqsäLjiLi¿RÁVNRPV¬s @Ní][ÊÁL`i 15©«s ZNP[LiúµR¶ ª«sùª«sry¸R¶V aSÅÁ ª«sVLiú¼½ LSµ³y®ªsWx¤¦¦¦©±s zqsLig`i C @ªyLïRiVÌÁ©«sV úxmsµ³y©«sLi ¿P[aSLRiV. ª«sLjirygRiVÍÜ[ ryLiZNP[¼½NRP»R½ xmsµôðR¶¼½¬s @ª«sVÌÁV ¿P[zqs ª«sVLiÀÁ xmnsÖÁ»yÌÁV ryµ³j¶LiÀÁ©«s NRPXuñy ÑÁÍýØNRPV ¿ÁLiµj¶©«s xmsµyøª«s¼½NTP, ®ªs[VÌÁV Çؼ½ Aª«soÌÁ»][ \®²¶Lji GLSöÈÁV ¿P[zqs©«s ®ªsLiNRPÈÁ xqs»R½ùªyßÓáNTP C xmsoLRiryäLSÌÁV ÌÁÕ³ÁLi¿yLiVV.

»&ÉÃs¡¢˝À &ûmdtm+ bÕ¢+≥T ª«sVx¤¦¦¦ÊÁWËÞ©«sgRiL`i ÑÁÍýØ ÇÁ²R¶èLýRi ª«sVLi²R¶ÌÁLiÍÜ[¬s F¡ÛÍÁ[xmsÖýÁ úgki©±s BLi²R¶úzqsí¸R¶VÍÞ FyL`iäÍÜ[ ²U¶Fs£qsFsLi xqsLixqsó »R½©«s lLiLi²][ FýyLiÈÁV©«sV @Ní][ÊÁL`i 15©«s úFyLRiLiÕ³ÁLiÀÁLiµj¶. ÇÁLi»R½Vª«soÌÁ F¡xtsQNS¥¦¦¦LRi −s˳ØgRiLiÍÜ[ úxmsxmsLi¿RÁªyùxmsòLigS }qsª«sÌÁLiµj¶xqsVò©«sõ ²U¶Fs£qsFsLi µyµyxmso 174 ®µ¶[aSÌÁÍÜ[ NSLRiùNRPÍØFyÌÁV rygjixqsVòLiµj¶. ª«sV¥¦¦¦LSúxtísQÍÜ[¬s @LiËØL`iÍÜ[ »]ÖÁ FýyLiÈÁV©«sV GLRiöÈÁV ¿P[zqs©«s C xqsLixqsó LRiW. 2 ®ªs[ÌÁ N][ÈýÁ ÈÁL][õª«sL`i ¿P[r¡òLiµj¶.

msTTsYb˛sYº πs&çjÓ÷ düØ«düT\T ÁbÕs¡+uÛÑ+ \|¤¦¦¦µR¶LSËص`¶ÍÜ[¬s LSÒÁª±sgSLiµ³k¶ @Li»R½LêS¼d½¸R¶VLi −sª«sW©yúaRP¸R¶VLiÍÜ[ −sVLjiè FsLiVVL`iF¡Lí`i lLi[²T¶¹¸¶W xqsLki*xqsVÌÁV úFyLRiLi˳ÏÁª«sV¸R¶WùLiVV. µR¶OTPQßá ˳ØLRi»R½®µ¶[aRPLiÍÜ[ »]ÖÁryLjigS FyùzqsLiÇÁL`i ú\|msª±sV úF¡úgSLi NTPLiµR¶ C lLi[²T¶¹¸¶W xqsLki*xqsVÌÁ©«sV ÒÁFsLiAL`i \|¤¦¦¦µR¶LSËص`¶ BLiÈÁlLi[õxtsQ©«sÍÞ FsLiVVL`iF¡Lí`i ÖÁ−sVÛÉÁ²`¶ C ®©sÌÁ 16©«s úFyLRiLiÕ³ÁLiÀÁLiµj¶. C xqsLki*xqsVÌÁ µy*LS ª«sVVLiµR¶VgS LjiNSLïRiV ¿P[zqs©«s ¾»½ÌÁVgRiV, z¤¦¦¦Liµk¶, BLigýji£tsQ FyÈÁÌÁ©«sV @Liµj¶Li¿RÁ©«sV©yõLRiV.


k˛eTyês¡+ 22 nø√ºãsY 2018

A N D H b˛{° R A|üØP R A B H A ø£å\ Á|ü‘˚´ø£+

j·T÷|”md”‡˝À 81 ñ<√´>±\≈£î H√{Ï|òæπøwüHé

¸R¶VW{msFs{qs=cZNP[LiúµR¶ xqsLki*xqsVÍýÜ[ 81 ÆØ×dÁÌÁV ¸R¶VW¬s¸R¶V©±s xmsÕýÁN`P xqsLki*£qs NRP−sVxtsQ©±s −s−sµ³R¶ ZNP[LiúµR¶ xqsLki*xqsVÍýÜ[ −s−sµ³R¶ −s˳ØgSÍýÜ[ ÆØ×dÁgS D©«sõ 91 F¡xqsíVÌÁ ˳ÏÁLkiòNTP µR¶LRiÆØxqsVòÌÁV N][LRiV»][Liµj¶. −s˳ØgSÌÁ ªyLki ÆØ×dÁÌÁV : @zqs|qsíLiÉÞ BLiÇÁ¬dsL`i, ²T¶xmspùÉÔÁ ALjiäÛÉÁNí`P, úzms¬s=xmsÍÞ ²T¶\ÛÇÁ©±s A{mnsxqsL`i, LjiúzmnsÑÁlLi[xtsQ©±s BLiÇÁ¬dsL`i, ²T¶xmspùÉÔÁ \®²¶lLiNíRPL`i, @²T¶xtsQ©«sÍÞ @zqs|qsíLiÉÞ \®²¶lLiNíRPL`i, ²T¶xmspùÉÔÁ \®²¶lLiNíRPL`i A£mns \®ªsV©±s= }qs{msí. @L>Ri»R½ : xqsLiÊÁLiµ³j¶»R½ úËØLi¿RÁVÍýÜ[ BLiÇÁ¬dsLjiLig`i ²T¶úgki, @©«sV˳ÏÁª«sLi. FsLizmsNRP : BLiÈÁLRiW*ù µy*LS. µR¶LRiÆØxqsVò −sµ³y©«sLi : A©±s\ÛÍÁ©±sÍÜ[ ÀÁª«sLji ¾»½[µk¶ : ©«sª«sLiÊÁL`i 1, 2018 ®ªsËÞ\|qsÉÞ : https://upsconline.nic.in

eTT+u…’ b˛sYº Á≥dtº˝À 30 U≤∞\T ª«sVVLi\ÛËÁ F¡Lí`i úÈÁ£qsí »y»yäÖÁNRP IxmsöLiµR¶ úFy¼½xmsµj¶NRP©«s 30 ©«sLji=Lig`i ú\ÛÉÁ¬ds, FnyLRiøzqs£qsí ú\ÛÉÁ¬ds ÆØ×dÁÌÁ ˳ÏÁLkiòNTP µR¶LRiÆØxqsVòÌÁV A¥¦¦¦*¬sr¡òLiµj¶. F¡xqsíVÌÁV : IxmsöLiµR¶ NSÌÁª«sùª«sµ³j¶ : 11 ®©sÌÁÌÁÌÁV 1. ©«sLji=Lig`i zqsxqsíL`i ú\ÛÉÁ¬ds : 25 @L>Ri»R½ : Fs£qsFs£qs{qs D¼d½òLñRi»R½»][ FyÈÁV ©«sL`i= @Li²`¶ −sV²`¶\®²¶ª±s=gS LjiÑÁú}qsíxtsQ©±s, G²yµj¶ xms¬s @©«sV˳ÏÁª«sLi DLi²yÖÁ. 2. FnyLRiøzqs£qsí ú\ÛÉÁ¬ds : 5 @L>Ri»R½ : Fs£qsFs£qs{qs D¼d½òLñRi»R½»][ FyÈÁV FnyLRiøzqs£qsígS LjiÑÁú}qsíxtsQ©±s, G²yµj¶ xms¬s @©«sV˳ÏÁª«sLi DLi²yÖÁ. ª«s¸R¶VxqsV : 20 c 30 GÎÏÁþ ª«sVµ³R¶ù DLi²yÖÁ. FsLizmsNRP : −sµyùL>Ri»R½ ª«sWLRiVäÌÁV, @©«sV˳ÏÁª«sLi Aµ³yLRiLigS. µR¶LRiÆØxqsVò −sµ³y©«sLi : A©±s\ÛÍÁ©±sÍÜ[ ÀÁª«sLji ¾»½[µk¶ : ©«sª«sLiÊÁL`i 5, 2018 ®ªsËÞ\|qsÉÞ : www.mumbaiport.gov.in

ámdt◊d”˝À¢ 771 b˛düTº\T ©«sWù²³T¶ÖýdÁÍÜ[¬s FsLiFýyLiVV£qs }qsíÉÞ B©«sW=lLi©±s= NSL]ölLi[xtsQ©±s ®µ¶[aRPªyùxmsòLigS −s−sµ³R¶ AxqsVxmsú»R½VÌÁV, ²T¶|qsö©«s=LkiÍýÜ[ ÆØ×dÁgS D©«sõ 771 B©«sW=lLi©±s= ®ªsV²T¶NRPÍÞ A{mnsxqsL`i c úlgi[²`¶ 2 ÆØ×dÁÌÁ ˳ÏÁLkiòNTP µR¶LRiÆØxqsVòÌÁV N][LRiV»][Liµj¶. −s˳ØgSÌÁ ªyLki F¡xqsíVÌÁV : ÇÁ©«sLRiÍÞ c 338, JÕdÁ{qs c 252, Fs{qs= c 122, Fs{qsí c 59 @L>Ri»R½ : BLi²T¶¸R¶V©±s ®ªsV²T¶NRPÍÞ N_¬s=ÍÞ ¸R¶WNí`P 1956 úxmsNSLRiLi ª«sVW²][ |tsQ²R¶WùÍÞ (FyLí`i c2), ®ªsVVµR¶ÉÓÁ/lLiLi²][ |tsQ²R¶WùÍýÜ[ ¿P[Ljiè©«s ®ªsV²T¶NRPÍÞ @L>Ri»R½/FsLiÕdÁÕdÁFs£qs ÛÍÁ[µy »R½»R½=ª«sW©«s xmsLkiORPQÍÜ[ D¼d½òLñRi»R½. L]ÛÉÁ[ÉÓÁLig`i BLiÈÁL`iõztsQ£ms, FsLi{qsH LjiÑÁú}qsíxtsQ©±s »R½xmsö¬sxqsLji. ª«s¸R¶VxqsV : ©«sª«sLiÊÁL`i 10, 2018 ©yÉÓÁNTP 30 GÎÏÁVþ −sVLi¿RÁNRPW²R¶µR¶V. LjiÇÁlLi[*xtsQ©±s @˳ÏÁùLóRiVÌÁNRPV xqs²R¶ÖÁLixmso DLiÈÁVLiµj¶. FsLizmsNRP : NRPLixmspùÈÁL`i ÛËÁ[£qsï LS»R½xmsLkiORPQ, BLiÈÁLRiWù* µy*LS. µR¶LRiÆØxqsVò −sµ³y©«sLi : A©±s\ÛÍÁ©±sÍÜ[ ÀÁª«sLji ¾»½[µk¶ : ©«sª«sLiÊÁL`i 10, 2018 ®ªsËÞ\|qsÉÞ : www.esic.nic.in

Ä+Á<ÛäÁ|ü<˚XŸ e´ekÕj·T e]‡{°˝À b˛düTº\T gRiVLiÈÁWLRiVÍÜ[¬s Fs¬dsêLRiLigS @úgjiNRPÌÁèLRiÍÞ ¸R¶VW¬sª«sLji=ÉÔÁÍÜ[ −s−sµ³R¶ −s˳ØgSÍýÜ[ ÆØ×dÁgS D©«sõ 142 ÉÔÁÀÁLig`i F¡xqsíVÌÁ ˳ÏÁLkiòNTP µR¶LRiÆØxqsVòÌÁV N][LRiV»][Liµj¶. F¡xqsíVÌÁ −sª«sLSÌÁV : @úgjiNRPÌÁèL`i, @úgjiNRPÌÁèL`i BLiÇÁ¬dsLjiLig`i @Li²`¶ ÛÉÁNSõÌÁÒÁ, x¤¦Ü[Li\|qs©±s=. úF~|mnsxqsL`i c4, @r¡zqs¹¸¶[VÉÞ úF~|mnsxqsL`i c 31, @zqs|qsíLiÉÞ úF~|mnsxqsL`i c 107. µR¶LRiÆØxqsVò −sµ³y©«sLi : A£mns\ÛÍÁ©±s µy*LS. µR¶LRiÆØxqsVò ÀÁª«sLji ¾»½[µk¶ : @Ní][ÊÁL`i 31, 2018 ®ªsËÞ\|qsÉÞ : www.angrau.ac.in

Ç+&√`{Ïu…≥Hé uÀs¡¶sY b˛©dt bò˛sY‡˝À ñ<√´>±\T

©«sWù²³T¶ÖýdÁÍÜ[¬s BLi²][cÉÓÁÛËÁÈÁ©±s ËÜ[LïRiL`i F¡ÖdÁ£qs Fn¡L`i=ÍÜ[ 185 NS¬s}qsíÊÁVÍÞ (¸R¶W¬sª«sVÍÞ úÉØ©±s=F¡Lí`i) F¡xqsíVÌÁ ˳ÏÁLkiòNTP µR¶LRiÆØxqsVòÌÁV N][LRiV»][Liµj¶. F¡xqsíVÌÁ −sª«sLSÌÁV : ®ªsVV»R½òLi 85 (xmsoLRiVxtsQVÌÁV c 72, ª«sVz¤¦¦¦ÎÏÁÌÁV c 13) @L>Ri»R½, ª«s¸R¶VxqsV : xqsLixqsó ¬sÊÁLiµ³R¶©«sÌÁ úxmsNSLRiLi. µR¶LRiÆØxqsVò −sµ³y©«sLi : A©±s\ÛÍÁ©±sÍÜ[. µR¶LRiÆØxqsVòNRPV ÀÁª«sLji ¾»½[µk¶ : ©«sª«sLiÊÁL`i 13, 2018 ®ªsËÞ\|qsÉÞ : https://itbpolice.nic.in

düMTsY˝À 28 Á≥sTT˙ b˛düTº\T ª«sVVLi\ÛËÁÍÜ[¬s BLi²T¶¸R¶V©±s B¬szqsíÈÁWùÉÞ A£ms ÛÉÁNSõÌÁÒÁ NSùLixms£qsÍÜ[ D©«sõ r~\|qsÉÔÁ xmnsL`i @xmsýLiVV²`¶ \®ªsVúN][®ªs[ª±s FsÌÁúNíS¬sN`P= BLiÑÁ¬dsLjiLig`i @Li²`¶ Lji|qsL`iè ÆØ×dÁgS D©«sõ úgS²R¶Vù¹¸¶[VÉÞ/ ²T¶F~ýª«sW @ú|msLiÉÔÁ£qs úÛÉÁLiVV¬ds F¡xqsíVÌÁ ˳ÏÁLkiòNTP @L>RiV\ÛÍÁ©«s @˳ÏÁùLóRiVÌÁ ©«sVLiÀÁ µR¶LRiÆØxqsVòÌÁ©«sV N][LRiV»][Liµj¶. F¡xqsíVÌÁ −sª«sLSÌÁV : úgS²R¶Vù¹¸¶[VÉÞ @ú|msLiÉÔÁ£qs úÛÉÁLiVV¬ds c 20 ²T¶Fý~ª«sW @ú|msLiÉÔÁ£qs úÛÉÁLiVV¬ds c 8 @L>Ri»R½ÌÁV : úgS²R¶Vù¹¸¶[VÉÞ @ú|msLiÉÔÁ£qsÌÁNRPV FsÌÁúNíS¬sN`P=, FsÌÁúNíS¬sN`P= @Li²`¶ ÛÉÁÖÁNRPª«sVWù¬sZNP[xtsQ©±s, ®ªsVNS¬sNRPÍÞ, NRPLixmspùÈÁL`i \|qs©±s=/ HÉÔÁ BLiÑÁ¬dsLjiLig`iÍÜ[ ÕdÁC /ÕdÁÛÉ N`P D¼d½òLñRi»R½. ²T¶Fý~ª«sW @ú|msLiÉÔÁ£qsÌÁNRPV FsÌÁúNíS¬sN`P=/ FsÌÁúNíS¬sN`P= @Li²`¶ NRPª«sVWù¬sZNP[xtsQ©±s, ZNP−sVNRPÍÞ BLiÑÁ¬dsLjiLig`iÍÜ[ ²T¶Fý~ª«sW D¼d½òLñRi»R½. ª«s¸R¶VxqsV= : 25 xqsLiª«s»R½=LSÌÁV −sVLi¿RÁLSµR¶V FsLizmsNRP : BLiÈÁLRiW*ù µy*LS.. µR¶LRiÆØxqsVò : A©±s\ÛÍÁ©±sÍÜ[ BLiÈÁLRiW*ù ¾»½[µj¶ : @Ní][ÊÁL`i 23, 24 ®ªsËÞ\|qsÉÞ : www.sameer.gov.in

ôVAMTu≤u≤ ø±´q‡sY ÄdüT|üÁ‹˝À 168 U≤∞\T ªyLRißØzqsÍÜ[¬s x¤¦Ü[−dsVËØËØ NSù©«s=L`i AxqsVxmsú¼½ÍÜ[ 168 ©y©±sc ®ªsV²T¶NRPÍÞ F¡xqsíVÌÁ ˳ÏÁLkiòNTP ÉØÉØ ®ªsV®ªsWLji¸R¶VÍÞ |qsLiÈÁL`i µR¶LRiÆØxqsVòÌÁV N][LRiV»][Liµj¶. F¡xqsíVÌÁV : \|qsLiÉÓÁzmnsN`P A{mnsxqsL`i, ®ªsV²T¶NRPÍÞ zmnsÑÁzqs£qsí, BLiÇÁ¬dsL`i, \|qsLiÉÓÁzmnsN`P @zqs|qsíLiÉÞ, ÛÉÁNUPõztsQ¸R¶V©±s, ©«sL`i=, |qsNRPWùLjiÉÔÁ @zqs|qsíLiÉÞ, NRPVN`P, @ÛÉÁLi®²¶LiÉÞ ª«sLiÉÓÁ F¡xqsíVÌÁV©yõLiVV. @L>Ri»R : F¡xqsíV©«sV ÊÁÉíÓÁ xmsµ][ »R½LRigRi¼½, xqsLiÊÁLiµ³j¶»R½ −s˳ØgRiLiÍÜ[ BLiÈÁL`i, ËØùÀÁÌÁL` ²T¶úgki, {msÒÁ, ²T¶Fý~ª«sW, ÒÁFs©±sFsLi, ª«sL`iä FsN`P={msLji¸R¶V©±s= DLi²yÖÁ. F¡xqsíV©«sV ÊÁÉíÓÁ ©¯[ÉÓÁzmnsZNP[xtsQ©±sÍÜ[ }msL]ä©«sõ −sµ³R¶LigS ª«s¸R¶VxqsV NRPÖÁgji

Ä+Á<ÛäÁ|üuÛÑ

$<ë´Á|üuÛÑ 13

H√{Ï|òæπøwüHé‡

d”d”m˝Ÿ˝À 760 ñ<√´>±\T N][ÍÞ BLi²T ¸R¶W ÖÁ−sVÛÉÁ²`¶ xmsLjiµj¶ÍÜ[¬s |qsLiúÈÁÍÞ N][ÍÞ{mnsÍïÞ= ÖÁ−sVÛÉÁ²`¶ÍÜ[ ÆØ×dÁgS D©«sõ @ú|msLiÉÓÁ£qsÌÁ N][xqsLi @L>RiV\ÛÍÁ©«s @˳ÏÁùLóRiVÌÁ ©«sVLiÀÁ µR LRiÆØxqsVòÌÁV N][LRiV»][Liµj¶. F¡xqsíVÌÁ −sª«sLSÌÁV : zmnsÈíÁL`i c 145, ®ªsÌïÁL`i c 75, FsÌÁúNUPíztsQ¸R¶V©±s c 180 ®ªsVNS¬sN`P AÉÜ[®ªsVV\ÛËÁÍÞ FsÌÁúNíS¬sN`P= c 75 ®ªsVNS¬sN`P Lji}msL`i @Li²`¶ ®ªsVLiVVLiÛÉÁ®©s©±s= A£mns |¤¦¦¦−ds ®ªsz¤¦¦¦NTPÍÞc 75, NRPLixmspùÈÁL`i AxmslLi[ÈÁL`i @Li²`¶ úF¡úgS−sVLig`i @zqs|qsíLiÉÞc 100 xmsLi£ms AxmslLi[ÈÁL`i NRPª±sV ®ªsVNS¬sN`P c 60 ®ªsVztsQ¬s£qsí c 25 ÈÁLRiõL`i c 25 @L>Ri»R½ : gRiVLjiòLixmso F~Liµj¶©«s ËÜ[LïRiV ©«sVLiÀÁ xmsµ][»R½LRigRi¼ »][ FyÈÁV Fs©±s{qs−dsÉÔÁ / Fs£qs{qs−dsÉÔÁ DLi²yÖÁ. FsLizmsNRP : LS»R½ xmsLkiORPQ/zqsäÍÞ ÛÉÁ£qsí/BLiÈÁLRiW*ù.. µR¶LRiÆØxqsVò : A©±s\ÛÍÁ©±sÍÜ[ ª«sVVLiµR¶VgS @|msý^ ¿P[xqsVNRPV¬s »R½LS*»R½ µR¶LRiÆØxqsVòNRPV xqsLiÊÁLiµ³j¶»R½ xmsú»yÌÁV ÇÁ»R½Â¿P[zqs ¥¦¦¦Lï`i NS{ms¬s F¡xqsíV µy*LS xmsLizmsLi¿yÖÁ. ÀÁª«sLji¾»½[µj¶ : @Ní][ÊÁL`i 19, 2018 µR¶LRiÆØxqsVò ¥¦¦¦Lï`i NS{msÌÁ©«sV xmsLixms²y¬sNTP ÀÁª«sLji¾»½[µj¶: @Ní][ÊÁL`i 26, 2018 ®ªsËÞ\|qsÉÞ : http://tmc.gov.in

ôVAMTu≤u≤ ÄdüT|üÁ‹˝À eTs√ 18U≤∞\T ªyLRißØzqsÍÜ[¬s x¤¦Ü[−dsV ËØËØ NSù©«s=L`i AxqsVxmsú¼½ÍÜ[ 18 @zqs|qsíLiÉÞ úF~|mnsxqsL`i F¡xqsíVÌÁ ˳ÏÁLkiòNTP ÉØÉØ ®ªsV®ªsWLji¸R¶VÍÞ |qsLiÈÁL`i µR¶LRiÆØxqsVòÌÁV N][LRiV»][Liµj¶. −s˳ØgSÌÁV : ËÜ[©±s@Li²`¶ ry£mí ÉÓÁxtsQWù, \lgi©«sNSÌÁÒÁ, ¸R¶VWL][ @LiNSÌÁÒÁ, FýyzqsíN`P xqsLêRiLki, ®²¶LiÈÁÍÞ @Li²`¶ úF¡xqsòÉÓÁN`P xqsLêRiLki, lLi[²T¶¹¸¶[VxtsQ©±s@LiNSÌÁÒÁ, ®ªsV²T¶NRPÍÞ @LiNSÌÁÒÁ, {ms²T¶¸R¶WúÉÓÁN`P @LiNSÌÁÒÁ, ®ªsV²T¶NRPÍÞ @LiNSÌÁÒÁ(ËÜ[©±sª«sWL][), ®ªsV²T¶NRPÍÞ @LiNSÌÁÒÁ (@²R¶ÍíÞ ryÖÁ²`¶), ®ªsV²T¶NRPÍÞ @LiNSÌÁÒÁ (@²R¶ÍíÞ |¤¦¦¦¿`Á), |¤¦¦¦ª«sVÉÜ[Fy´yÌÁÒÁ, @©«s{qsóztsQ¸R¶WÌÁÒÁ, ÇÁ©«sLRiÍÞ ®ªsV²T¶zqs©±s, úÉØ©±s= xmnsQpùÇÁ©±s ®ªsV²T¶zqs©±s, ©«sWùNýTP¸R¶VL`i ®ªsV²T¶zqs©±s, lLi[²T¶¸R¶Wc ²R¶¸R¶WgRiõzqszqs, GÖÁ¹¸¶[VÉÓÁª±s ®ªsV²T¶zqs©±s. @L>Ri»R½ : xqsLiÊÁLiµ³j¶»R½ −s˳ØgSÍýÜ[ FsLiFs£qs, FsLi{qs|¤¦¦¦¿`Á, ²U¶FsLi, FsLi²U¶/²U¶Fs©±sÕdÁ, FsLi²U¶ D¼d½òLñRi»R½»][ FyÈÁV xms¬s @©«sV˳ÏÁª«sLi DLi²yÖÁ. FsLizmsNRP : LS»R½/\®©sxmsoßáù xmsLkiORPQÌÁV /BLiÈÁLRiW*ù Aµ³yLRiLigS µR¶LRiÆØxqsVò : A©±s\ÛÍÁ©±sÍÜ[ ª«sVVLiµR¶VgS @|msý^ ¿P[xqsVNRPV¬s »R½LS*»R½ ¥¦¦¦Lï`i NS{msNTP B»R½LRi xmsú»yÌÁV ÇÁ»R½Â¿P[zqs F¡xqsíVÍÜ[ xmsLiFyÖÁ. ÀÁª«sLji¾»½[µj¶ : @Ní][ÊÁL`i 19, 2018 ®ªsËÞ\|qsÉÞ : http://tmc.gov.in

¬s’{Ÿ‡˝À 40 ñ<√´>±\T

gRiVLRiVúgSª±sVÍÜ[¬s ˳ØLRi»R½ úxms˳ÏÁV»R½* LRiLigRi xqsLixqsó \lLiÉÞ= ÖÁ−sVÛÉÁ²`¶ 40 @zqs|qsíLiÉÞ ÍÜ[N][ \|msÌÁÉÞ, ÛÉÁNUPõztsQ¸R¶V©±s F¡xqsíVÌÁ ˳ÏÁLkiòNTP µR¶LRiÆØxqsVòÌÁV N][LRiV»][Liµj¶. F¡xqsíVÌÁ −sª«sLSÌÁV : @zqs|qsíLiÉÞ ÍÜ[N][\|msÌÁÉÞ c 20 ÛÉÁNUPõztsQ¸R¶V©±s úlgi[²`¶3c 20 @L>Ri»R½ : \lLiÛÍÁ[* @ú|msLiÉÓÁ£qs ÛÍÁ[µy ²U¶ÑÁÍÞ ®ªsVNS¬sN`P, ®ªsWÉØL`i ®ªsz¤¦¦¦NTPÍÞ, {¤¦¦¦ÉÞ BLiÑÁ©±s, LjiúzmnsÑÁlLi[xtsQ©±s @Li²`¶ G{qs ®ªsVNS¬sN`P, úÉØNíRPL`i ®ªsVNS¬sNTP úÛÉÁ[²`¶, FsÌÁúNíUPztsQ¸R¶V©±s/\®ªsL`i

©«sVLiÀÁ ®ªsVNS¬sN`P AÉÜ[®ªsVV\ÛËÁÍÞ FsÌÁúNíS¬sN`P=, ®ªsVNS¬sN`P, NRPLixmspùÈÁL`i AxmslLi[ÈÁL`i @Li²`¶ úF~úgS−sVLig`i @zqs|qsíLiÉÞ, zmnsÈíÁL`i, FsÌÁúNíUPztsQ¸R¶V©±s, xmsýLiÊÁL`i, ®ªsVztsQ¬s££qsí, ÈÁLRiõL`i úÛÉÁ[²R¶VÍýÜ[ HÉÔÁH D¼d½òLñRi»R½. ®ªsÌïÁL`i úÛÉÁ[²R¶VNRPV 8ª«s »R½LRigRi¼½»][FyÈÁV xqsLiÊÁLiµ³j¶»R½ úÛÉÁ[²R¶VÍÜ[ HÉÔÁH D¼d½òLñRi»R½. ª«s¸R¶VxqsV= : 2018 ©«sª«sLiÊÁL`i 15 ©yÉÓÁNTP 18 ©«sVLiÀÁ 30 GLi²ýR¶ ª«sVµ³R¶ù DLi²yÖÁ. (LjiÇÁlLi[*xtsQ©«sýV ª«sLjiòryòLiVV) FsLizmsNRP : @NRP²R¶−sVN`P ®ªsVLjiÉÞ, LS»R½xmsLkiORPQ µy*LS µR¶LRiÆØxqsVò : A©±s\ÛÍÁ©±sÍÜ[(¥¦¦¦Lï`iNS{ms¬s LjiÑÁxqsíL`i F¡xqsíV / {qsö²`¶ F¡xqsíV µy*LS xmsLiFyÖÁ) A©±s\ÛÍÁ©±s LjiÑÁú}qsíxtsQ©±s: @Ní][ÊÁL`i 29 ÀÁª«sLji¾»½[µj¶ : ©«sª«sLiÊÁL`i 15 ®ªsËÞ\|qsÉÞ : www.apprentices.gov.in ª«sWù©±s/®ªsVNS¬sN`P (lLi[²T¶¹¸¶W @Li²`¶ ÉÔÁ−ds)/ FsÌÁúNíS¬sN`P ®ªsVNS¬sN`P úÛÉÁ[²R¶VÍÜ[ HÉÔÁH D¼d½òLñRi»R½»][ FyÈÁV AlLi[ÎýÏÁ xms¬s @©«sV˳ÏÁª«sLi»][ FyÈÁV ¬sLôðjixtsíQ ®ªsV²T¶NRPÍÞ úxmsª«sWßØÌÁVLi²yÖÁ. @zqs|qsíLiÉÞ ÍÜ[N][ \|msÌÁÉÞNRPV ®ªsVNS¬sNRPÍÞ BLiÇÁ¬dsLjiLig`i/FsÌÁúNíTPNRPÍÞ BLiÇÁ¬dsLjiLig`i/AÉÜ[ ®ªsVV\ÛËÁÍÞ BLiÇÁ¬dsLjiLig`iÍÜ[ ²T¶Fý~ª«sW D¼d½òLñRi»R½»][ FyÈÁV ª«sVW®²¶[ÎýÏÁ ª«sL`iä FsN`P={msLji¸R¶V©±s=»][ FyÈÁV ¬slLôi[bP»R½ ®ªsV²T¶NRPÍÞ úxmsª«sWßØÌÁVLi²yÖÁ. ª«s¸R¶VxqsV : 2018, @Ní][ÊÁL`i 1 ©yÉÓÁNTP 40 GÎýÏÁV −sVLi¿RÁLSµR¶V FsLizmsNRP : LS»R½xmsLkiORPQ, −sµyùL>Ri»R½, @©«sV˳ÏÁª«sLi, ®ªsV²T¶NRPÍÞ FsgêS ª±sV Aµ³yLRiLigS xmsLkiORPQ¾»½[µj¶ : »R½*LRiÍÜ[ úxmsNRPÉÓÁryòLRiV. µR¶LRiÆØxqsVò : A©±s\ÛÍÁ©±sÍÜ[ ÀÁª«sLji¾»½[µj¶ : @Ní][ÊÁL`i 23, 2018 ®ªsËÞ\|qsÉÞ : http://rites.com

>√yê wæ|tj·÷sY¶ *$Tf…&é˝À 34 b˛düTº\T ˳ØLRi»R½ úxms˳ÏÁV»R½* LRiORPQßá ª«sVLiú¼½»R½* aSÅÁNRPV ¿ÁLiµj¶©«s g][ªy ztsQ£ms ¸R¶WLï`i {ms²R¶ÊýÁWù²U¶, Fs{qsí @˳ÏÁùLóRiVÌÁNRPV |qsöxtsQÍÞ LjiúNRPW ÉÞ®ªsVLiÉÞ ú\®²¶ª±s NTPLiµR¶ ®ªs[V®©s[ÇÞ®ªsVLiÉÞ ú\ÛÉÁ¬ds, ÇÁÚ¬s¸R¶VL`i B©±súxqsíNíRPL`i »R½µj¶ »R½LRi F¡xqsíVÌÁ ˳ÏÁLkiòNTP µR¶LRiÆØxqsVòÌÁV N][LRiV»][Liµj¶. F¡xqsíVÌÁ −sª«sLSÌÁV : ®ªs[V®©s[ÇÞ®ªsVLiÉÞ ú\ÛÉÁ¬dsc2, ÇÁÚ¬s¸R¶VL`i B©± úxqsíNíRPL`ic 1, NRPª«sVL<ji¸R¶VÍÞ @zqs|qsíLiÉÞc3, A{mns£qs @zqs|qsíLiÉÞc8, ¸R¶WLï`i @zqs|qsíLiÉÞc5, ÛÉÁÖÁFn¡©±s AxmslLi[ÈÁL`i c 1, rí¡L`i @zqs|qsíLiÉÞ c2, @©±szqsäÍïÞ1, @zqs|qsíLiÉÞ xqsWxmsLjiLiÛÉÁLi®²¶LiÉÞ c3, ÇÁÚ¬s¸R¶VL`i xqsWxmsL`i\®ªsÇÁL`i c1, ©«sLji=Lig`i @zqs|qsíLiÉÞc1, NSlLiöLiÈÁL`i c1, |msLiVVLiÈÁL`ic4, ®ªsz¤¦¦¦NRPÍÞ ú\®²¶ª«sL`ic 1 @L>Ri»R½ : ©¯[ÉÓÁzmnsZNP[xtsQ©±sÍÜ[ }msL]ä©«sõ −sµ³R¶LigS xqsLiÊÁLiµ³j¶»R½ DµyùgS¬sõ ÊÁÉíÓÁ Fs£qsFs£qs{qs, ú\®²¶−sLig`i \ÛÍÁ|qs©±s=, xqsLiÊÁLiµ³j¶»R½ −s˳ØgSÍýÜ[ ²T¶úgki FsLizmsNRP : ÕdÁC/ÕdÁÛÉÁN`P, ÕdÁ{qsG/úÛÉÁ[²`¶ ÛÉÁ£qsí/ úFyNíTPNRPÍÞ ÛÉÁ£qsí/BLiÈÁLRiW*ù.. µR¶LRiÆØxqsVò : A©±s\ÛÍÁ©±sÍÜ[ ª«sVVLiµR¶VgS µR¶LR ÆØxqsVò ¿P[xqsVNRPV¬s, µR¶LRiÆØxqsVòNRPV B»R½LRi xmsú»yÌÁV ÇÁ»R½Â¿P[zqs F¡xqsíV µy*LS ¥¦¦¦Lï`i NS{ms¬s xmsLiFyÖÁ. ÀÁª«sLji¾»½[µj¶ : ©«sª«sLiÊÁL`i 8, 2018 ¥¦¦¦Lï`i NS{ms xmsLixms²y¬sNTP ÀÁª«sLji¾»½[µj¶ : ©«sª«sLiÊÁL`i 18, 2018 ®ªsËÞ\|qsÉÞ : http://career.goashipyard.co.in


14

Ä+Á<ÛäÁ|üuÛÑ

$<ë´Á|üuÛÑ

1. ®ªsVVµR¶ÉÓÁ 15 xqsx¤¦¦¦ÇÁ xqsLiÅÁùÌÁ xmnsV©yÌÁ ®ªsVV»R½òLi FsLi»R½? 1. 15400 2. 14400 3. 16800 4. 13300 xqsWú»R½Li : ®ªsVVµR¶ÉÓÁ n xqsx¤¦¦¦ÇÁ xqsLiÅÁùÌÁ xmnsV©yÌÁ ®ªsVV»R½òLi = (n(n+1)/2)2 = n = 15 = 15(15+1)/2)2 = (15 ×16/2)2 = (15×8)2 = (120)2 = 14400 754

2. (6817)

©«sLiµR¶V INRPÈýÁ róy©«sLiLiÍÜ[ DLi®²¶[ @LiZNP

Gµj¶? 1. 8 2. 4 3. 2 4. 9 754 NSªyÖÁ=©«s @LiZNP = 7 ©«sLiµR¶V INRPÈýÁ róy©«sLiÍÜ[ @LiZNP 4 188

2

= (7 )

×7 = 1×49 = 49 :. INRPÈýÁ róy©«sLiÍÜ[ 9 @LiZNP @Li²R¶V©«sV. 2

2 2

7

2 2

3. a b4 + 2a b ª«sVLji¸R¶VV (ab) - 4a b ÌÁ gRi.ry.Ë³Ø 2 3 2. a b 1. ab 2 2

2 2

3. a b 4. a b 7 2 2 7 7 2 9 (ab) - 4a b = a b - 4a b __ i 2 2 5 5 7 = a b (a b -4b ) 2 4 2 2 2 2 2 a b + 2a b = a b (b +2) ___ ii 2 2 i, ii ÌÁ ©«sVLi²T¶ gRi.ry.Ë³Ø a b @gRiV©«sV

4. a + b = 17 ª«sVLji¸R¶VV a - b = 1 @LiVV©«s ab −sÌÁVª«s FsLi»R½? 1. 17 2. 18 3. 72 4. 21 2 2 (a + b) - (a-b) = 4ab 2

2

4 ba = ( a + b) - ( a - b) 2 2 = 17 - 1 = 289 -1 = 288 ab = 288/4 = 72

A N D H b˛{° R A|üØP ø£å\ Á|Rü‘˚´ø£A+ B H A

ns¡úyÓT{Ïø˘

= LRiW. 2,00,000- - 1,50,000 50,000 LRiW.ÌÁV

8. N]Li»R½ r~ª«sVVø ryµ³yLRißá ª«s²ïU¶ lLi[ÈÁV»][ 20 xqsLiª«s»R½=LSÌÁÍÜ[ ©yÌÁVgjiLi»R½ÌÁV @LiVV©«s A ª«s²ïU¶ lLi[ÈÁV FsLi»R½? 1. 10 aS»R½Li 2. 15 aS»R½Li 3. 20 aS»R½Li 4. 8 aS»R½Li T = 20 xqsLiª«s»R½=LSÌÁV @xqsÌÁV = p 20 xqsLiª«s»R½=LSÌÁÍÜ[ @xqsÌÁV = 4p S. I = 4p -p = 3p 3p = PTR/100 = P×R×20/100 3 = 20R/100 = R/S R = 15% Short cut : T = 20 n=4 R = 100 (n-1/T)=100(4-1)/20 = 15% 9. 10 ª«sVLiµj¶ ª«sùNRPVòÌÁV L][ÇÁÙNRPV 12 gRiLiÈÁÌÁ ¿]xmsöV©«s 20

Ëܪ«sVøÌÁ©«sV 12 L][ÇÁÙÌÁÍÜ[ »R½¸R¶WLRiV ¿P[¸R¶VgRiÌÁLRiV. @®µ¶[ −sµ³R¶LigS 24 ª«sVLiµj¶ ª«sùNRPVòÌÁV 32 Ëܪ«sVøÌÁ©«sV L][ÇÁÙNRPV 16 gRiLiÈÁÌÁ ¿]xmsöV©«s Fs¬sõ L][ÇÁÙÌÁÍÜ[ »R½¸R¶WLRiV ¿P[¸R¶VgRiÌÁLRiV? 1. 6 2. 8 3. 12 4. 14 M1 = 10, M2 = 24, D1 = 12, D2 = ? T1 = 12, T2 = 16, W1 = 20 ª«sVLji¸R¶VV W2 = 32 M1D1T1W2 = M2D2T2W1 10 ×12×12×32 = 24×D2×16×20 10 ×12×12×32 =12/2 = 6 L][ÇÁÙÌÁV D2 = 24×16×20

11. INRP \lLiÌÁV FnýyÉÞFnyLRiLiÍÜ[ ¬sÌÁÊÁ²T¶ D©«sõ ª«sùNTPò¬s 7|qsNRPLi²ýR¶ÍÜ[ ®ªsVV»R½òLi FnýyÉÞFnyLRiª±sV©«sV 28 |qsNRPLi²ýR¶ÍÜ[ µyÈÁV©«sV. FnýyÉÞFnyLRiª±sV 28 |qsNRPLi²ýR¶ÍÜ[ µyÈÁV©«sV. FnýyÉÞFnyLRiª±sV F~²R¶ª«so 330−dsV. @LiVV©«s¿][ \lLiÌÁV F~²R¶ª«so FsLi»R½? 1. 110 −dsV. ÌÁV 2. 80 −dsV.ÌÁV 3. 70 −dsV.ÌÁV 4. 120 −dsV.ÌÁV \lLiÌÁV F~²R¶ª«so x −dsV @LiVV©«s¿][ \lLiÌÁV ®ªs[gRiLi = x/7 −dsV/|qsLi. \lLiÌÁV ®ªs[gRiLi = x+330/28 −dsV/|qs. lLiLi²R¶V ®ªs[gSÌÁV xqsª«sW©«sLigS DLi²yÖÁ NRP©«sVNRP. x/7 = x+330/28 28x - 7x = 330 x = 7 × 330/21 = 110 −dsV.

12. IZNP[ aRPLiNRPVª«so ¹¸¶VVNRPä úxms¼½ ªyùryLóRiùLi ª«sVLji¸R¶VV Fs»R½Vò 20 aS»R½Li |msLjigji¾»½[, µy¬s xmnsV©«sxmsLjiª«sWßáLi FsLi»R½ aS»R½Li |msLRiVgRiV©«sV? 1. 72 aS»R½Li 2. 20 aS»R½Li 3. 60 aS»R½Li 4. 72.8 aS»R½Li |msLjigji©«s xmnsV©«s xmsLjiª«sWßá aS»R½Li = (3x+3x2/100 + x3/1002)% 3×20 +3×(20)2/100 + (20)3/1002 60+12+0.8 = 72.8%

13. INRP NSLRiV 840 NTP.−dsV. xqsª«sW©«s®ªs[gRiLi»][ úxms¸R¶WßÓáLi¿RÁV©«sV. NSLRiV ®ªs[gRiLi gRiLiÈÁNRPV 10 NTP.−dsV. @µ³j¶NRPLigS D©«sõ¿][ A µR¶WLRiLi úxms¸R¶WßÓáLi¿RÁVÈÁNRPV 2 gRiLiÈÁÌÁV »R½NRPV䪫s xmsÈíÁV©«sV. A NSLRiV »]ÌÁV»R½ ®ªs[gRiLi FsLi»R½? 1. 60 NTP.−dsV./gRiLi 2. 50 NTP.−dsV/gRiLi 3. 70 NTP.−dsV/gRiLi 4. 80 NTP.−dsV/gRiLi NSLRiV ®ªsVVµR¶ÉÓÁ ®ªs[gRiLi = x NTP.−dsV/gRiLi.

5. a = 3/2 @LiVV©«s 1 + a + 1 - a = ? 1. 2 - 3 2. 2 + 3 3. 3/2 4. 3 2 2 2 (1+a)+(1-a) +2 1-a = ( 1+a+ 1-a) ) 2 = 2 (1 + 1-a ) = 2 (1 + 1- 3/4) = 2(1+1/2) = 2 × 3/2 = 3 1+a + 1-a = 3 3

3

6. (a.8) - (6.8) 2 2 (9.8) + 9.8×6.8+6.8 1. 3 2. 2 3. 9.8 4. 6.8 3 3 2 2 a -b = (a-b)(a +ab+b ) 3 3 a -b = (a-b) 2 2 a +ab+b a = 9.8, b = 6.8 b - b = 9.8 - 6.8 = 3

7. INRP»R½©«sV 20 Aª«soÌÁ©«sV LRiW.2,00,000 ÌÁNRPV N]®©s©«sV. @LiµR¶VÍÜ[ 12 Aª«soÌÁ xqsLSxqsLji µ³R¶LRi LRiW.12500 @LiVV©«s −sVgjiÖÁ©«s Aª«soÌÁ xqsLSxqsLji µ³R¶LRi FsLi»R½? 1. LRiW.6000 2. LRiW.6250 3. LRiW.6500 4. LRiW.7000 12 Aª«soÌÁ ®ªsVV»R½òLi µ³R¶LRi = LRiW.12×12500 = LRiW. 1,50,000 −sVgjiÖÁ©«s Aª«soÌÁ ®ªsVV»R½òLi µ³R¶LRi

10. BµôR¶LRiV ª«sùNRPVòÌÁV LRiW.6000ÌÁNRPV INRP xms¬s ¿P[¸R¶VVÈÁNRPV

IxmsöVNRPV©yõLRiV. INRPLRiV A xms¬s¬s 6 L][ÇÁÙÌÁV ¿P[¸R¶VgRiÌÁ²R¶V. BLiN]NRP»R½©«sV 8 L][ÇÁÙÌÁÍÜ[ ¿P[¸R¶VgRiÌÁ²R¶V. INRP ËØÌÁV²R¶V xqs¥¦¦¦¸R¶VLi»][ −dsLjiµôR¶LRiV A xms¬s¬s 3 L][ÇÁÙÌÁÍÜ[ ª«sVVgji}qsò A ËØÌÁV²T¶NTP LSª«sÌÁzqs©«s ªyÉØ FsLi»R½? 1. LRiW.300 2. LRiW.225 3. LRiW.75 4. LRiW.100 ®ªsVVµR¶ÉÓÁ ª«sùNTPò 3L][ÇÁÙÌÁ xms¬s = 3/6 = 1/2 lLiLi²R¶ª«s ª«sùNTPò 3 L][ÇÁÙÌÁ xms¬s = 3/8 = 1/8 ªyLRiV ²R¶ÊÁV÷©«sV xmsLi¿RÁVN][ª«sÖÁ=©«s ¬sxtsQö¼½ò =1/2 : 3/8 : 1/8, = 4 : 3 : 1 :. ËØÌÁV¬s ˳ØgRiÌÁ = 1/8 × 600 = 75 LRiW.ÌÁV

840/x+10 = 840/x - 2 840/x - 840/x+10 = 2 8400 = 2x2 + 20x x2 + 10x - 4200 = 0 :. x = 60 NTP.−dsV/gRiLi.

düe÷<ÛëHê\T 1. 3 2. 4 -6. 3 7. 4 11. 3 12. 4

3. 3 8. 2 13. 3

4. 1 5. 3 9. 4 10. 1

C. Jayaprakash Reddy Senior Faculty prakashreddy336@gmail.com

k˛eTyês¡+ 22 nø√ºãsY 2018

RRB - Bits 1. The force by which a body is attracted to wards the centre of the earth is called1. Gravitational force 2. Mass 3. Momentum 4. Impulsive force 2. The maximum displacement of a vibrat ing body from its mean position is called1. Gyration 2. Wavelength 3. Amplitude 4. Impulse 3. The kinetic energy of a body depends upon1. Mass, gravity and height 2. Its mass alone 3. Its velocity alone 4. Both mass and velocity 4. A ball weighing 25 grams is thrown verti cally into the air. It takes 15 seconds to reach its highest point. How much time would it take to reach the ground from its highest point? 1. More data are required for calculation 2. Less than 15 seconds 3. More than 15 seconds 4. 15 seconds 5. The term 'Squirrel Cage is associatedwith 1. Pressure gauges 2. Internal combustion engines 3. Potentiometers 4. Electric motors 6. The phenomenon of increase in the tem perature of the earth's atmosphare due to absorption of the infra-red radiations re flected from the earth's surface is called1. Tsunami 2. Solar heating 3. Green-house effect 4. Seismic effect 7. Why is it recommended that people should not use charcoal or gas stoves in closed rooms? 1. The electrical wiring in the room may catch fire 2. The stoves will get extinguished 3. It can cause carbon monoxide poison ing 4. The stoves may burst 8. The most effective way to improve safety in a vast organisation like the Indian Railways is to 1. Ignore small acts of negligence by the staff 2. Carry out frequant checks 3. Educate the staff at all levels 4. Punish defaulting staff 9. A Swimmer finds it easier to swim in sea water than in plain water. Why? 1. Sea water has less contamination 2. Sea waves help a swimmer to swim 3. Sea water has higher density than plain water 4.Sea has a much higher volume of water 10. Humidity refers to1. Both temperature and moisture con tents of the air 2. Temperature of the air 3. Moisture content of the air 4. Presure of the air 11. Boyle's law states that1. Volume is directly proportional to temperature 2. Pressure is inversely proportional to temperature 3. Pressure is directly proportional to temperature 4. Presure is inversely proportional to valume 12. A stick is dipped in a vessel containing water. It appears bent due to the property of1. Reflection 2. Newton's Law of Motion 3. Refraction 4. Buoyancy 13. The planet farthest from the Sun is1. Pluto 2. Mercury 3. Jupiter 4. Neptune 14. As a train approaches us, the frequency or shrillness of its whistle increases. This phenomenon is explained by1. Big Bang Theory 2. Doppler Effect 3. Charles' Law 4. Archimedes Principle

düe÷<ÛëHê\T 1. 1 2. 3 3. 4 -6. 3 7. 3 8. 2 11.4 12. 3 13. 1

4. 4 5. 4 9. 4 10. 3 14. 2


k˛eTyês¡+ 22 nø√ºãsY 2018

A N D H b˛{° R A|üØP R A B H A ø£å\ Á|ü‘˚´ø£+ IBPS CLERK PRELIMS SPECIAL 1. Seven years ago, the ratio of the age of A to that of B, was 7: 9. C is 12 years older than A and 12 years younger than B. What is C's present age? a. 93 years b. 103 years c. 110 years d. 113 years e. 105 years

2. 24 women take 14 days to complete a piece of work which can be completed by 14 men in 12 days. 18 men started working and after 5 days, 10 men left and 8 women joined them. How many days will it take them to complete the remaining work? a. 14 days b. 5 days c. 91/2 days d. 61/2 days e. 2 1/8 days 3. Pavan can type 50 pages in 10 hours; he and Upendra together can type 400 pages in 50 hours. In what time can Upendra type 40 pages? a. 20 hours40min b. 13 hours c. 8 hours d. 50 hours e. 13hours 20 min 4. A certain sum in invested for T years. It amounts to Rs. 1584 at 10% per annum. But when invested at 4% per annum, it amounts to Rs. 792. Find the time (T). a. 45 years b. 60 years c. 50 years d. 40 years e. none of these

bers of type I to type II items produced by A is 9 : 10. Type I items produced by Company B is 175% of type I items produced by A. Total items (both I and II) produced by B is 150% of total items produced by A. The number of type I items produced by C is 20% more than the number of type II items produced by A. 11. What is the number of type II items produced by B? a. 9600 b. 10200 c. 14400 d. 12600 e. None

Ä+Á<ÛäÁ|üuÛÑ

21. What is the difference between the number of chairs on Wednesday and the number of chairs on Monday in both the stores together?

9. In a stream running at 3kmph, a boat goes 52 km upstream and comes back to the starting point in 276 minutes. What is the speed of the boat in still water? a. 12kmph b. 14kmph c. 17kmph d. 22 kmph e. 23 kmph

27. I. 5x2 - 16x + 12 = 0 II. 3y2 + 5y - 12 = 0

29. I. x2 = 8649 II. y = (9105+304) 30. I. 9x - 5y = 21 II. 5x + 7y = 19 Directions 31-35 : What approximate value will come in the place of question mark (?) in the given questions? (You are not expected to calculate exact value) 31. (?)×479.87 ÷12.01 = 179 + 139.99 a. 36 b. 100 c. 64 d. 4 e. 16

12. What is the ratio of the number of type I items to the number of type II items produced by Company C? a. 2 : 3 b. 3 : 4 c. 4 : 5 d. 5 : 6 e. None of these 13. What is the average number of type I items produced by all three companies? a. 9650 b. 9800 c. 9960 d. 10200 e. None of these

QUANTITATIVE APTITUDE

32. 629 ÷ 9.02 - 139.996 ÷ 7.06 = ? a. 75 b. 35 c. 50 d. 65 e. 25 33. 45% of 401 ÷ 3 - ? = 6.022 a. 38 b. 52 c. 6 d. 24 e. 12 34. 55% of 259.96 - ? - 54 = 19 a. 80 b. 70 c. 73 d. 90 e. 78 2

35. 7 × 23.846 - ? = 18÷2+(4.06) ) a. 143 b. 163 c. 183 d.173 e. 181

6. The number of employees working in a company is increased by 35% and the wages per head are decreased by 35%. What is the percentage decrease in the total wages? a. 17% b. 15 2/3 % c. 221/4 % d. 121/4 % e.131/2 %

8. Two stations A and B are 265 km apart on a straight line. One train starts from A at 6 am and travels towards B at 30 km/h. Another train starts from B at 9am and travels towards A at a speed of 40 km/h. At what time will they meet? a. 10: 30 am b. 10: 05 am c. 11: 35 am d. 11: 30 am e. 12: 25 am

26. I. x2 - x - 56 = 0 II. 2y2 - 3y - 9 = 0

28. I. 4x2 + 4x - 24 = 0 II. 7y2 - 28y + 28 = 0

5. A bag contains 8 white balls, 13 black balls and 5 green balls. If two balls are drawn at random from the bag one after another without replacement, what is the probability that the first ball is white and the second ball is black? a. 3/26 b. 4/25 c. 6/25 d. 9/25 e. none of these

7. A vessel contains a mixture of liquid A and liquid B in the respective ratio of 5: 3. If 16 litres of mixture be taken out from the vessel and vessel be filled with liquid B, the ratio of liquid A and liquid B becomes 3 : 5. What was the initial quantity of liquid in the vessel? a. 35 litres b. 40 litres c. 45 litres d. 48 litres e. 50 litres

$<ë´Á|üuÛÑ 15

14. The number of type II items produced by C is what percentage of the total number of items produced by C? a. 80% b. 75% c. 60% d. 50% e. 40% 15. What is the difference between the total number of type II items and the total number of type I items produced by all three companies together? a. 2750 b. 2800 c. 3000 d. 3150 e. None of these Directions 16-20 : What will come in place of the question mark (?) in the given number series? 16. 369 380 402 435 ? 534 a. 452 b. 501 c. 528 d. 479 e. 494 17. 154 158 185 201 326 ? a. 424 b. 354 c. 362 d. 380 e. 398

10. Total cost price of 2 articles is Rs. 9000 one of them is sold at a profit of 24% and the other at a loss of 24%. The selling price of both the articles is same. Find the loss on both the articles a. Rs. 518.4 b. Rs.578.4 c. Rs.576.4 d. Rs.577 e. None of these

18. 3 27 189 945 ? 2835 a. 2835 b. 3780 c. 945 d. 1890 e. 4725

Direction 11-15 : Study the following information carefully and answer the given questions. Three companies - A, B, and C produce a particular item in two different types -I and II. Total number of items of both types produced by all three companies is 62000 and total items I and II produced by company A is 15200. The ratio of the num-

20. 2 7 26 101 400 ? a. 1595 b. 980 c. 1294 d. 896 e. 1080

19. 721 361 181 91 46 ? a. 22 b. 28 c. 18 d. 20.5 e. 23.5

Direction 21-25 : Study the following graph and answer the given questions. The line graph shows the number of chairs in two different stores in five different days.

a. 24 d. 30

b. 32 e. 20

c. 28

22. What is the ratio between the total number of chairs on Tuesday and Thursday together in Store A and the total number of chairs on same days in store B? a. 5:7 b. 4:5 c. 7:6 d. 7:8 e. 3:5 23. If the number of chairs in store A on Saturday is 25% of total number of chairs on Thursday, What is the average number of chairs in store A on Wednesday, Friday and Saturday together? a. 24 b. 36 c. 30 d. 38 e. 20 24. If the number of chairs sold in store A and B on Tuesday is 52 and 24 respectively, what is the number of unsold chairs in both the stores together? a. 12 b. 15 c. 16 d. 18 e. 20 25. The number of chairs in both the stores on Friday is approximately what percentage less than the number of chairs in both the stores on Wednesday? a. 12% b. 15% c. 16% d. 10% e. 11% Directions 26-30 : In the questions, two equations numbered I and II are given. You have to solve both the equations and mark the appropriate option. Give answer a. if x > y b. if x > y c. if x < y d. if x < y e. if x = y or relationship between x and y cannot be established.

36. Two containers A and B have same capacity. In container A petrol and diesel are in the ratio of 1:3 and this ratio is 1:4 for container B. Half of the quantity of container A is poured in the tank B and then same quantity of the resulting mixture in again poured back in container A. What is the ratio of petrol and diesel in the resulting mixture of container A? a. 6:25 b. 7:23 c. 8:27 d. 9:32 e. None of these 37. The ratio of area of a circle and a square is 9p : 16. If the total surface area of a cuboid whose height is 2 cm length and breadth are equal to the radius of the circle and side of the square respectively is 152 cm 2 .What is the sum of length of all the edges of the cuboid? a. 24 cm b. 34 cm c. 44 cm d. 54 cm e. 64 cm 38. A has some blue and some red sheet which are in the ratio 2:7. Each day, he uses 1 blue sheet and 3 red sheets. One day, he uses 3 red sheets and the last blue sheet, leaving with him 15 red sheets. The total number of sheets in the beginning was? a. 144 b. 135 c. 105 d. 155 e. None of these

1. b 6. d 11. b 16. d 21. b 26. e 31. c 36. b

düe÷<ÛëHê\T

2. d 7. b 12. a 17. c 22. c 27. e 32. c 37. e

3. e 8. d 13. b 18. a 23. d 28. d 33. b 38. b

4. c 9. e 14. c 19. e 24. e 29. c 34. b

Y. Srinivasa Rao Subject Expert Cell :

8498018293

5. b 10. a 15. e 20. a 25. c 30. a 35. b


ÊÁúµyúµj¶ N]»R½ògRiW®²¶Li ÑÁÍýØ @©«sõxmsolLi²ïT¶ ª«sVLi²R¶ÌÁ xmsLjiµ³j¶ÍÜ[¬s @ÊÁV÷gRiW®²¶Li úgSª«sVLiÍÜ[ J ryµ³y LRißá ª«sVµ³R¶ù »R½LRigRi¼½ \lLi»R½V NRPVÈÁVLiÊÁLiÍÜ[ Ç ¬søLiÀÁ Fs£mnsAL`iª¯[ xmnsÖÁ»yÌÁÍÜ[ LSúxtsíLiÍÜ[®©s[ úxms´R¶ª«sV róy©«sLiÍÜ[ ¬sÖÁÀÁ »R½©«sNRPV, »R½©«s úgSª«sW¬sNTP }msLRiV úxmsÆØù»R½ÌÁV ¾»½ÀÁè|msÉíØLRiV. @»R½®©s[ ÇÁÙÊÁV÷LRiV ®ªsLiNRPÛÉÁ[aRP*LRiLSª«so, ÇÁ¸R¶Vª«sVøÌÁ lLiLi²][ NRPVª«sWLRiV²R¶V ª«sVÛÍýÁ[aRP*LRiLSª«so. @¼½ ryµ³yLRißá \lLi»R½V NRPVÈÁVLiÊÁLiÍÜ[ ÇÁ¬søLiÀÁ FsLi»][ xmsÈíÁVµR¶ÌÁgS ¿RÁµj¶ªy²R¶V. ª«sVµ³R¶ùÍÜ[ Fs©¯[õ FsµR¶VLRiV ®µ¶ÊÁ÷ÌÁV »R½ÖÁgji©«sxmsöÉÓÁNUP G ª«sWú»R½Li ¿RÁÖÁLi¿RÁNRP A»R½ø −saS*xqsLi»][ ª«sVVLiµR¶VNRPV ®ªs×ýÁ @©«sVNRPV©«sõµj¶ ryµ³j¶Li¿y²R¶V. @ÍØlgi[ »R½©«s ÒÁ−s»R½ @LôðSLigji úaSª«sßÓá \|qs»R½Li Fs£mnsAL`iª¯[ \øå±´ìï kÕ~Û+#ê]˝≤... Dµ][ùgRiLi ryµ³j¶Li¿P[LiµR¶VNRPV úxms˳ÏÁV»R½* Dµ][ùgRiLi ¿P[¸R¶WÌÁ®©s[ ÊÁÌÁ\®ªsV©«ss AaRP¸R¶VL iµôR¶Lji¬ds 2014ÍÜ[ \|¤¦¦¦µR¶LS Ëص`¶ \®ªsxmsoNRPV ©«s²T¶zmµ][x¤¦¦¦µR¶xms²ïy²R¶V. −dsLjiµôR¶LjiNUP ªyLj sLiÀÁLiµj¶. \|¤¦¦¦µR¶LSËØ µ`¶ÍÜ[¬s ÀÁNRPä²R¶xmsÖýÁÍÜ[ zqsÉÔÁ 2013ÍÜ[ −sªyx¤¦¦¦\®ªsVLiµj¶. @LiVV¾»½[ |qsLiúÈÁÍÞ \ÛÍÁúÊÁLkiNTP µR¶gæRiLRiÍÜ[ INRP ÀÁ©«sõ gRiµj¶¬s @®µô¶NRPV BµôR¶LRiW D©«sõ»R½ Dµ][ùgRiLi ¼d½xqsVNRPV©yõLRiV. @LiVV¾»½[ F¡ÉÔÁ xmsLkiORPQNRPV zq ryµ³j¶Li¿yÌÁ®©s[ xmsÈíÁVµR¶ÌÁ»][ µôALôðR¶ª«ðjisNRV¹P¸ró¶[¡VùLiµRª«sV»R¶VNR½ PVxqsLj®ªisVÉÔF¡©«ÁLjsiLiµR¸R¶¶VÍÞV©«s N]©«L][ÇsÁÚVg][̵RÁV¶gæRiLR¿iP[ÍÜ[}qsLiµR¬s¶VNRzqsÉÔPV Á −sÇÁ¸R¶VLi ryµ³j¶Li¿yLRiV.

|ü≥Tº<ä\‘√ HÓs¡y˚]q ø£\

m|òtÄsYy√ |òü*‘ê˝À¢ sêÁwüºkÕúsTT˝À Á|ü<∏äeT kÕúq+ uÛ≤s¡´uÛÑs¡Ô*<ä›]ø° ñ<√´>±\T.. Ä<äs¡Ù+>± ì*∫q j·TTe»+≥ ≈£î≥T+ã düuÛÑT´\ düVü≤ø±s¡+‘√H˚... »yª«sVV ryµ³yLRißá \lLi»R½V NRPVÈÁVLiÊÁLi ©«sVLiÀÁ ª«s¿y誫sV¬s, ZNP[ª«sÌÁLi »R½©«s »R½Liú²T¶ ª«sWª«sVWÌÁV \lLi¾»½[©«s¬s, @©«sõ¸R¶Vù LRi®ªs[V£tsQ FsÌÁúNíTPztsQ¸R¶V©±sgS ÒÁª«s©«sLi rygjixqsWò »R½ª«sV ¿RÁµR¶Vª«soNRPV ®ªs©«sõLiÉÓÁ DLi²T¶ úF¡»R½=z¤¦¦¦Li¿RÁ²R¶Li ª«sÛÍýÁ[ C L][ÇÁÙ D©«sõ»R½ Dµ][ùgSÌÁV ryµ³j¶Li¿yª«sV©yõLRiV. @ÍØlgi[ ˳ØLRiù˳ÏÁLRiòÖÁµôR¶LRiW NRPW²y INRPLjiN]NR LRiV xqsx¤¦¦¦NRPLjiLi¿RÁVNRPVLiÈÁW ¾»½ÖÁzqs©«s ªyÉÓÁ¬s, ¾»½ÖÁ¸R¶V¬s ªyÉÓÁ¬s ¿RÁLjièLi¿RÁVNRPVLiÈÁW ª«sVVLiµR¶VNRPV ®ªsÎýØLRiV. ¸R¶VVª«s ÇÁLiÈÁ @ÊÁV÷gRiW®²¶[¬sZNP[ NSNRP LSúuíy¬sZNP[ AµR¶LRi+LigS ¬sÖÁÀÁLiµj¶. µk¶Li»][ @ÊÁV÷gRiW®²¶Li ªyxqsVÌÁV, ª«sVLi²R¶ÌÁ úxmsÇÁÌÁV x¤¦¦¦L<RiLi ª«sùNRPòLi ¿P[xqsVò©yõLRiV.

|qsLiúÈÁÍÞ \ÛÍÁúÊÁLkiNTP ®ªs×ýÁ F¡ÉÔÁ xmsLkiORPQÌÁ xmsoxqsòNSÌÁ©«sV ¿RÁµj¶®ªs[ ªyLRiV. @ÍØ ©yÌÁVgRiV xqsLiª«s»R½=LSÌÁV L][ÇÁÙNRPV 15 gRiLiÈÁÌÁ ¿]xmsöV©«s NRPxtsíQxms²ïyLRiV. C úNRPª«sVLiÍÜ[ 2016ÍÜ[ ÉÔÁFs£qs{msFs£qs{qs −s²R¶VµR¶ÌÁ ¿P[zqs©«s úgRiW£ms 2 xmsLkiORPQÍýÜ[ ª«sVÛÍýÁ[aRP*LRiLSª«so µR¶Lixms»R½VÖÁµôR¶LRiW −sÇÁ¸R¶VLi ryµ³j¶LiÀÁ 1:3 ¬sxtsQö¼½òÍÜ[ BLiÈÁLRiW*ùNRPV FsLizmsNRP¸R¶WùLRiV. A xmsLkiORPQ \|ms µyÅÁ\ÛÍÁ©«s ZNP[xqsV N][LíRiVÍÜ[ |msLi²T¶Lig`iÍÜ[ DLi²R¶ÈÁLi»][ xmnsÖÁ»yÌÁV −s²R¶VµR¶ÌÁ NSÛÍÁ[µR¶V. µk¶Li»][ ªyLRiV G ª«sWú»R½Li ¬sLRiV»y=x¤¦¦¦ xms²R¶NRPVLi²y xmsÈíÁVµR¶ÌÁ»][

PHYSICS IS UNDERSTANDING THE LAWS OF NATURE the velocity increses at 5m/s2 5m/s2 5m/s2 Physics is understanding the laws of nature and being in sync with it. anything the rate of 10 m/s in one second. 5m/s2 50m/s 45m/s 40m/s 35m/s we derive out of physics is to complement nature. When a student gets the real Now at t = 3sec, if the essence of the subject, one definitely starts enjoying it while learning otherwise, acceleration is reduced to m/s , the velocity int=0 t=1sec t=2sec t=3sec it remains tough, confusing and complicated thing. It becomes really interesting 5creases at the rate of 5 m/s in one second. and easy to learn physics when all the misconceptions are cleared off. So, for the now, at t = 3sec, if the acceleration is increased to �5m/s2�5m/s2�5m/s2�5m/s2 benefit of the students, I have taken up a few articles to explain students, the �50m/s2�55m/s2�60m/s2�65m/s2 10 m/s , the velocity decreases at the rate of 10 way to learn and understand physics properly. 2

2

Clearing off the misconcepttions in KINEMATICS: Understanding kinematics is the foundation to learn mechanics. Especially when it comes to exams like jee main / advanced. I have been observing so many students who tend to get misconceltions while trying to understand the basic concepts like velocity and acceleration. This article helps students to clear off the misconceptions. Let us first go through the definitions of velocity and acceleration. velocity: It is the rate of change of displacement with respect to time.

misconception: A particle moves in the direction of acceleration or net force. No, a particle may not move in the direction of acceleration or net force. A particle moves always in the direction of its velocity. When subjected to acceleration, the velocity changes (magnitude or direction or both) and that change decides the path of motion. this is the reason why earth does not fall in to the sun. Earths acceleration is towards the sun. And velocity is tangentical to the orbit.

other possible misconceptions

1. If acceleration increases, then the magnitude of velocity

m/s in one second. t=3sec t=4sec t=5sec t=6sec 10m/s2 10m/s2 10m/s2 10m/s2 increses. 2. If acceleration increases, Acceleration decreased 35m/s2 25m/s2 15m/s2 5m/s2 then the magnitude of velocity � � � after 3 seconds, but the � cannot decrease. magnitude of velgcity in3. If acceleration decreases, creased through out. it In the above case, the acthen the magnitude of velocity happenrd so because accelaration incresed after 3 decreases. celeration and velocity seconds, but the velocity 4. If acceleration decreases, are in same direction. As continued to decrease. then the magnitude of velgcity the acceleration deThe only reason for the cannot increase. creased, the rete of decrease of velocity is the The above four statements increase of velocity has direction of acceleration seems to be carrect. but, they decreased. Initially (first being opposite to that of are wrong. Let us take a very 3 seconds) velocity invelocity. basic example to clear the creased by 10 units every This proves why stateconfusion. For instance, consecond and later (next 3 ments 1 and 2 are wrong. sider a body moving with, seconds) velocity inthis is what happend in a consider a body moving with creased only by 5 units uniform circular motion. initial velocity of 20 m/s and every second. conclusion: no mater acacceleration 10 m/s2 , both This understanding clears celeration increases, pointing in the same direction. why statements 3 or 4 are concept: when acceleration is wrong. For instance, consider another body in the same direction as that moving with initial velocof velocity, the magnitude of ity of 50m/s and velocity increases without acceleration 5m/s2 in the changing the direction. It is opposite direction. similar to a case where you are running and some body concept: when accelerapushes you in the same dition is directed opposite to recton. Certaning you speed velocity, the magnitude of up.

�10m/s2�10m/s2�10m/s2�10m/s2 2

2

2

�20m/s �30m/s �40m/s �50m/s t=0

t=1sec

¿P[¸R¶VLi²T¶ÍØ..

ø±ìùdºãT˝Ÿ |òæõø£˝Ÿ f…øÏïø˘ - 3 |òæõø£˝Ÿ f…dtº áyÓ+{Ÿ‡˝À ˇø£{Ï nsTTq ôV’≤ »+|t #ê˝≤ ø°\ø£+. Bì˝À $»j·T+ kÕ~Û+#ê\+fÒ K∫Ñ·+>± f…øÏïø˘‡ bÕ{Ï+#ê*. u…©¢ »+|t ˝Ò<ë d”»sY »+|t @<Ó’Hê ˇø£ f…øÏïø˘ H˚ bòÕ˝À ø±yê*. ôV’≤ C…+|tqT düTHêj·÷dü+>± #˚j·T&ÜìøÏ düT\TyÓ’q f…øÏïø˘ @+{À ‘Ó\TdüT≈£î+<ë+.. ôV’≤ »+|t #˚j·T+&ç˝≤..

»R½ª«sV ¿RÁµR¶Vª«so©«sV N]©«srygjiLi¿yLRiV. ÉÔÁFs£qs{msFs£qs{qs ¬sLRi*z¤¦¦¦LiÀÁ©«s Fs£mnsAL`iª¯[ xmsLkiORPQ N][xqsLi xmsÈíÁVµR¶ÌÁ»][ úaRP−sVLiÀÁ ˳ØLRiù˳ÏÁLRiòÌÁV BµôR¶LRiW ª«s°ÐÁNRP xmsLkiORPQNRPV FsLizmsNRP¸R¶WùLRiV. BLiÈÁLRiW*ù©«sV −sÇÁ¸R¶Vª«sLi»R½LigS xmspLjiò ¿P[aSLRiV. 2018 @Ní][ÊÁL`i 6©«s −s²R¶VµR¶ÌÁ ¿P[zqs©«s xmnsÖÁ»yÌÁÍÜ[ ª«sVÛÍýÁ[aRP*LRiLSª«so 432ª«sWLRiVäÌÁ»][ }qsíÉÞ xmns£qsí LSùLiNRPV ryµ³j¶Li¿RÁgS @»R½¬s ˳ØLRiù úaSª«sßÓá 377ª«sWLRiVäÌÁV ryµ³j¶LiÀÁLiµj¶. BµôR¶LRiV FnylLi£qsí lLi[LiÇÞ A{mnsxqsLýRiVgS FsLizmsNRP¸R¶WùLRiV.

this physical quantity tells us how fast a particle is describing its motion Acceleration. It is the rate of change of velocity with respect to time. when velocity changes i.e , either the magnitude of velocity or the direction or both of them change, three is acceleration.

\|¤¦¦¦ ÇÁLi£ms

t=2sec

t=3sec

2

velocity decreases without changing the direction. It is similer to a case where you are running and some one pulls you. Certainly you slow down.

Ä+Á<ÛäÁ|üuÛÑ

NS¬s}qsíÊÁVÍÞ zmnsÑÁNRPÍÞ ÛÉÁ£qsíÍÜ[¬s HµR¶V C®ªsLiÉÞ=ÍÜ[ ª«sVW²T¶LiÉÓÁ¬s »R½xmsö¬sxqsLjigS ¿P[¸R¶WÖÁ. @LiµR¶VNRPV Gª«sVW²T¶LiÉÓÁ¬s ¿P[zqs©y xqsLjiF¡»R½VLiµR¶¬s ˳Ø−sLi¿RÁNRPW²R¶µR¶V. ®ªsVV»R½òLi @LiVVµj¶LiÉÓÁ¬s NS*ÖÁ\|mns @¹¸¶[VùÍØ −dsVLRiV »R½¸R¶WLRiªy*ÖÁ. @xmsöV®²¶[ −dsVLRiV INRP ®ªs[ÎÏÁ F~LRiFyÈÁV©«sV G\®µ¶©y »R½xmsöVgS ¿P[zqs©y −sVgjiÖÁ©«s−s FsÍØgRiW NS*ÖÁ\|mns @ª«so»yLRiV. úFyNíUPxqsVÍÜ[ ª«sWú»R½Li úxms¼d½ C®ªsLiÉÞ©«sV »R½xmsö¬s xqsLjigS ¿P[}qsÍØ úFyNíUPxqsV ¿P[¸R¶WÖÁ=Li®µ¶[. C ®©s[xmsµ³R¶ùLiÍÜ[ \|¤¦¦¦ ÇÁLi£ms ¿P[¸R¶WÌÁLiÛÉÁ[ FsÍØLiÉÓÁ ÛÉÁNTPõN`P= FyÉÓÁLi¿yÍÜ[ ¾»½ÌÁVxqsVNRPVLiµyLi..

xmsLkiORPQÍÜ[ ª«sVW²R¶V @ª«sNSaSÌÁV DLiÉØLiVV.

#êHé‡ rdüTø√ø£+&ç ®ªsVVµR¶ÉÓÁ úxms¸R¶V»R½õLiÍÜ[®©s[ −dsVLRiV µR¶WZNP[ÍØ úFyNíUPxqsV ÍÜ[®©s[ »R½¸R¶WLRiªy*ÖÁ. G\®µ¶©y BÊÁ÷LiµR¶VÌÁV ª«sÀÁè©y NRP¬dsxqsLi lLiL ²R¶ª«sryLji @©yõ ÉØlLæiÉÞ Lki¿`Á @ª«s*Li²T¶. @Li¾»½[ NS¬s ÀÁª«sLji ¿y©±s= ª«sLRiNRPW DLiµj¶ÛÍÁ[ @¬s ˳Ø−sLi¿RÁNRPLi²T¶. INRP ®ªs[ÎÏÁ ÀÁª«sLji ¿y©±s= −sxmnsÌÁª«sVLiVV¾»½[...? @LiµR¶VNRP¬s ¿y©±s= ¼d½xqsVN][NRPLi²T¶. D®ªsV©±s=NTP \|¤¦¦¦ ÇÁLi£ms DLi²R¶µR¶V. xmsoLRiVxtsQ @˳ÏÁùLóRiVÌÁNRPV NS*ÖÁ\|mnsLiVVLig`i ª«s¿P[èzqs 1.20 |qsLiÉÔÁ−dsVÈÁLýRiV

$<ë´Á|üuÛÑ b˛{° |üØø£å\ Á|ü‘˚´ø£+ k˛eTyês¡+

22 nø√ºãsY 2018

16 17

ù|J\T

xmsª«sL`i ÛÍÁg`i ÛÍÁ£mnsí ÛÍÁg`i DLiÈÁVLiµj¶. µk¶¬sÍÜ[ »R½NRPV䪫s ²T¶|qsí©±s= ¼d½xqsVN][ª«s¿RÁVè. »R½NRPV䪫s |qsí£ms=ÍÜ[®©s[ Lki¿`Á @ª«s*ª«s¿RÁVè. 45 ²T¶úgk ÌÁ ¸R¶WLigjiÍÞ ª«sÀÁè ª«sV©«s ¿P[¼½¬s FsÍÞ }tsQ£msÍÜ[ |msÈíÁVNRPV¬s INRP ª«sWLRiVä¬s NTPLiµR¶ |msÈíÁVN][ªyÖÁ. A FyLiVVLiÉÞ ª«sµôR¶ ú|mszqs=Lig`i FyLiVVLiÉÞ |msÈíÁVN][ªyÖÁ. ÛÍÁ£mnsí ÛÍÁ[µy \lLiÉÞ G\®µ¶©y xmsª«sL`i FyLiVVLiÉÞ |msÈíÁVN][ª«s¿RÁVè. ryµ³y LRißáLigS Fsª«s\lLi©y ÛÍÁ£mnsí ÛÍÁg`i©«sV xmsª«sL`i ÛÍÁg`igS Dxms¹¸¶WgjixqsVòLiÉØLRiV.

d”»sY »+|t ª«sVVLiµR¶VgS 45 ²T¶úgki£qs ©«sVLiÀÁ LRi©«sõ£ms ¿P[xqsVN][ªyÖÁ. ÛÍÁ£mnsí \|qs²`¶ ©«sVLiÀÁ LRi©±s ¿P[xqsVNRPV®©s[ ÈÁxmsöV²R¶V ËزU¶ µR¶gæRiLRigS ª«s¿P[è

concept: when acceleration is rpendicular to velocity, the magni tude of velocity remai ns constant, but the di rection alone hanges. decreses or remains constant, it is only the direction of acceleration with respect to velocity, that decides whether the magnitude of velocity increses, decreses or remains or remains constant. When accelaration is directed obliquely with velocity, it can be resolved into into two components. One along velocity and other perpendicular to velocity. In such a case, both magnitude and direction of velocity change. For example, a non uniform circular motion or a projects motion. D. VIKRAM, CEO NINE EDUCATION IIT ACADEMY CELL - 9866889904

düT\uÛÑ‘·s¡yÓTÆq »+|ü⁄H˚ m+#·Tø√yê* úFyNíUPxqsV xqsª«sV¸R¶VLiÍÜ[ @˳ÏÁùLóRiVÌÁV xqsVÌÁ˳ÏÁ»R½LRi\®ªsV©«s Fs»R½VòÌÁ©«sV FsLizmsNRP ¿P[xqsVNRPV¬s úFyNíUPxqsV©«sV ®ªsVVµR¶ÌÁV |msÉíØÖÁ. @Li¾»½[NS¬s ®©s[LRiVgS ¬slLôi[bPLiÀÁ©«s Fs»R½Vò©«sV µR¶WNRP²R¶Li ¿P[¸R¶VNRPW²R¶µR¶V. ÍØLig`i ÇÁLi£ms úFyNíUPxqsVÍÜ[ −dsVLRiV µR¶WZNP[ µR¶WLRiLi\|ms NRPW²y Aµ³yLRixms²T¶ DLiÈÁVLiµj¶. @˳ÏÁùLóRiVÌÁV xmsµj¶ ©«sVLiÀÁ 12 −dsVÈÁLýRi µR¶WLS¬sõ FsLi¿RÁVNRPV¬s @NRPä²R¶ ©«sVLiÀÁ ¬slLôi[bP»R½ Fs»R½VòNRPV µR¶WNRP²R¶Li ¿P[¸R¶WÖÁ.

DLiÈÁVLiµj¶. µk¶¬s¬s \®²¶lLiNíRPVgS ¿P[¸R¶VNRPVLi²y N]Li»R½ úFyNíUPxqsV ¿P[¸R¶WÖÁ. C \|¤¦¦¦ ÛÇÁLi£ms¬s ®ªsVLiVV©±sgS @®´ý¶ÉÞ= ËØgS ¿P[xqsVòLiÉØLRiV. −dsVLRiV NRPW²y @®´ý¶ÉÞ=ÍØ ËØgS úFyNíUPxqsV ¿P[¸R¶WÖÁ. µk¶¬sÍÜ[ lLiLi²R¶V LRiNSÌÁ ÇÁLi£msÌÁV LiDÉØLiVV. @−s 1. {qsÇÁL`i ÇÁLi£ms 2. ÛËÁÖýdÁ ÇÁLi£ms C lLiLi²R¶V xmsµôR¶»R½VÍýÜ[®©s[ ¿P[¸R¶WÖÁ. @LiÛÉÁ[ ÛËÁÖýdÁ NS¬s zqsÇÁL`i NS¬s ¿P[¸R¶WÖÁ. ÛÍÁ[µR¶LiÛÉÁ[ ú}qsí¸R¶VÉÞgS ¿P[}qsò NS*ÖÁ\|mns @ª«sª«s¿RÁVè. NS¬s ®ªsVLjiÉÞ ª«sWLRiVäÌÁV LSª«so. @LiµR¶VNRP¬s ÛËÁÖýdÁ NS¬ds {qsÇÁL`i ÇÁLi£ms NS¬ ¿P[¸R¶V²R¶Li D»R½òª«sVLi.

ÛËÁÖýdÁ L][ÍÞ:

ª«sLRiNRPV 45 ²T¶úgkiÍÜ[®©s[ LRi©±s@£ms ¼d½xqsVN][ªyÖÁ. ËزU¶ F¡ÑÁxtsQ©±s µR¶gæRiLRigS ª«sÀÁè©«s »R½LS*»R½ FyLýRiÍÞgS @ªy*ÖÁ. ËزU¶ µR¶gæRiLRigS ª«s¿P[èLi»R½ª«sLRiNRPV úxqsíLiVVÉÞgS DLi²yÖÁ. ÇÁLizmsLig`i @®©s[µj¶ \lLiÉÞ ÛÍÁg`i»][ ¿P[xqsWò ËزU¶¬s FsÍÞ}tsQ£msÍÜ[ DLi®²¶[ÍØ ¿RÁWxqsVN][ªyÖÁ. ÍØLi²T¶Lig`i NRPW²y ÇØúgRi»R½ògS ¿P[¸R¶WÖÁ. Íت«sogS D©«sõ ªyÎýÏÁV ÛËÁÖýdÁ ÇÁLi£ms ¿P[}qsò ª«sVLiÀÁµj¶. {qsÇÁL`i ÇÁLi£ms©«sV ËØgS úFyNíUP£qs ¿P[¸R¶WÖÁ. ÛÍÁ[µR¶LiÛÉÁ[ ©«sxtsíQF¡¹¸¶[V úxmsª«sWµR¶Li DLiµj¶. c NRPª«sVÍÞ, zmnsÑÁNRPÍÞ N][¿`Á LSª«sVxmsö @NS²R¶−sV |qsÍÞ c 9704736037


18

Ä+Á<ÛäÁ|üuÛÑ

$<ë´Á|üuÛÑ

Main Directions

There are four main directions 1. East 2. West 3. North 4. South Note 1. Angle between two main directions is 90 . 2. We can take the direction in any manner but West is always opposite to East and North is always opposite to South. Subdirections/Cardinal Directions A direction between two main or prime directions is known as a subdirection/cardinal direction. There are four subdirection as given below 1. North - East (NE) 2. South - East (SE) 3. South - West (SW) 4. North-West(NW) Note 1. The angle between any two adjacent subdirections is 90 . 2. Angle formed between a prime direction and a subdirection is 45 . Now, following conclusions can be drawn for taking a turn in a particular direction.

Concept of Shadow Direction before taking the turn

Direction in which the person or vehicle will be moving after taking the turn Right

Left

(i)

North

East

West

(ii)

South

West

East

(iii)

East

South

North

(iv)

West

North

South

(v)

North-West

North-East South-West

(vi)

South-West

North-West South-East

(vii) South-East

South-West North-East

(viii) North-East

South-East North-West

A N D H b˛{° R A|üØP ø£å\ Á|Rü‘˚´ø£A+ B H A

Direction Test

Point L is 5 m to the North of K.

3. Which of the following represents the direction of point G with respect to point J? a. South-East b. North-West c. South-West d. South e. North-East 4. How far and in which direction is point E from point L? a. 5 m, South b. 3 m, East c. 234 m, North d. 3 m, West e. 5 m,North Directions Q. Nos. 5-6 : Read the following given information carefully and answer the given questions. Point N is 8 m to the West of point O. Point P is 4 m to the South of point O. Point Q is 4 m to the East of point P. Point R is 6 m to the North of point Q. Point S is 8 m to the West of point R. Point T is 2 m to the South of point S. 5. How far and in which direction is point T from point N? a. 4 m to the East b. 8 m to the West c. 4 m to the West d. 8 m to the East e. 6 m to the South

9. If a person walks in a straight line for 8m towards West from point R. which of the following points would he cross the first? a. V b. Q c. T d. S e. Cannot be determined 10. Which of the following points are in a straight line? a. P, R, V b. S, T, Q c. P, T, V d. V, T, R e. S, V, T 11. W walked 40m toward West, took a left turn and walked 30m. He then took a right turn and walked 20m. He again took a right turn and walked 30m. How far was he from the starting point? a. 70 m b. 60 m c. 90 m d. Cannot be determined e. None of these Directions Q. Nos. 12-13 : Study the following information and answer the given que stions.Point B is 12m South of point A. Point C is 24m East of point B. Point D is 8m South of point C. Point D is 12m East of point E and F is 8 m North of point E. 12. If a man has to travel to point E from

2. A person starts walking from his home towards his friends place. He walks for 25 m towards West. He takes a 90 right turn and walks for 20 m. He again takes a 90 right turn and walks for 10 m. He then walks for another 10 m after taking a 90 left turn. Turning 90 towards his right, he walks for 15 m to reach his friend's place. How far and in which direction is the friend's place from his home? a. 30 m towards East b. 30 m towards North c. 40 m towards South d.30 m towards South e. 40 m towards North Directions Q. Nos. 3-4 : Study the following information and answer the given questions. Point F is 10 m to the South of E. Point G is 3 m to the East of F. Point H is 5 m to the South of G. Point I is 6 m to the West of H. Point J is 10 m to the North of I. Point K is 6 m to the East of J.

17. Mohan walked 25m towards South, took a right turn and walked 15m. He then to ok a left turn and walked 25m. Which direction is he now from his starting point? a. South - East b. South c. South - West d. North - West e. None of these 18. Prabir started walking towards South. He took a right turn after walking 10m. He again took a left turn after walking 20m. Which direction is he facing now? a. South b. North c. West d. East e. Cannot be determined Directions Q. Nos. 19-22 : The following qu estions are based on the diagram given below showing four persons stationed at the four corners of a square piece of plot as shown. 19. 'A' starts crossing the field diagonally. After walking half the distance, he turns right, walks some distance and turns left. Which direction is 'A' facing now? A D w s

n e

C

B

a. North-East b. North-West c. South-East d. South-West e. None of these 20. From the original position. D and Bmove one and a half length of sides, clockwise and anti-clockwise respectively. Which one of the following statements is true? a. B and D are both at the mid-point between A and C. b. D is at the mid-point between A and C, and B is at the corner originally occupied by C.

c. B is at the mid-point between original position of A and Dand D is at the mid-p oint between original position of B andC. d. B is at the mid-point between A and C, and D is at the mid-point between original position of B and C. e. None of the above.

In the morning, when the sun rises in the East, the shadow of any person or object is in the west direction. Similarly, in the evening, when the sun sets in the West, the shadow of a person or an object is towards the East. Type 1 : Identification of Direction and Distance 1. Point A is 30 m to the South of point B. Point C is 20 m to the East of point A. Point D is 15 m to the South of point of C. Point D is exactly midway between points E and F in such a manner that point E, D and F form a horizontal straight line of 40 m. Point E is to West of point D. How far and in which direction is point E from point B? a. 45 m towards South b. 25 m towardsSouth c. 30 m towards West d. 35 m towards North e. 45 m towards North

k˛eTyês¡+ 22 nø√ºãsY 2018

6. Point R is 10m North of point A. Point K is exactly in the middle of the points R and A. Point N is 7m East of point A. Point M is 7m East of Point K. Point S is 6m North of point M. What is the distance between points S and N? a. 13 m b. 16 m c. 11 m d. 12 m e. None of these Directions Q. Nos. 7-8 : Study the following information and answer the given questions. Point A is 5m towards the West of point B. Point C is 2m towards the North of point B. Point D is 3m toward the East of point C. Point E is 2m towards the South of point D. 7. If a person walks 2m towards the North from point A, takes a right turn and continues to walk, which of the following pointsz would he reach the first? a. D b. B c. E d. C e. Cannot be determined 8. Which of the following points are in a straight line? a. ABE b. DCA c. CED d. BDA e. ACE Directions Q. Nos. 9-10 : Study the following information and answer the given questions. Point P is 9m towards the East of point Q. Point R is 5m towards the South of point P. Point S is 3m towards the West of point R. Point T is 5m towards the North of point S. Point V is 7m towards the South of point S.

point A (through these points by the shortest distance), which of the following points will he pass through first? a. Point C b. Point D c. Point F d. Point B e. None of these 13. If a man is standing facing North at point C, how far and in which direction is point F? a. 12 m West b. 24 m East c.12 m East d. 24 m West e. None of the above 14. P walked 20m towards North, took a left turn and walked 10m, then took a right turn and walked 20m, again took a right turn and walked 10m. How far is he from his starting point? a. 50 m b. 60 m c. 40 m d. Cannot be determined e. None of these 15. Nidhi walks 5km towards the North, takes a right turn and walks 10km. She now takes a left turn and walks 5 km. She finally takes another left turn and walks 10km. Towards which of the following directions is she walking now? a. East b. South c. North d. West e. None of these 16. Kunal walked 10m, towards the East, turned right and walked another 15m. He then turns left and walks 3m. He finally takes a left turn after walking 6m. Which direction is he facing now? a. East b. North c. West d. South e. South - West

21. From the original position given in figure above, A and B move one arm length clockwise and cross over to the corners diagonally opposite. C and D move one arm length anti-clockwise and cross over the corner diagonally opposite. The original configuration A, D, B, C has now changed to a. CBDA b. BDAC c. DACB d. BCAD e. None of these 22. From the positions in original figure 'A' and 'C' move diagonally to opposite corners and then one side each clockwise an d anti-clockwise repectively. 'D' and 'B' move two sides each clockwise and anticlock wise, respectively. Where is A' now a. At the North East Corner b. At the North-West Corner c. At the South-West Corner d. At the South-East Corner e. None of the above

düe÷<ÛëHê\T 1. a

2. b

3. a

4. d

5. a

6. c

7. d

8. a

9. d

10. e

11. b

12. d

13. a

14. c

15. d

16. b

17. c

18. a

19. sa

20. c

21.a

22. d G. RAMAKRISHNA (Reasoning Faculty)

NANDYALA COACHING CENTER, Amerpet, Cell : 9247345095


k˛eTyês¡+ 22 nø√ºãsY 2018

A N D H b˛{° R A|üØP R A B H A ø£å\ Á|ü‘˚´ø£+ JEE MAIN MODEL PAPER-I PHYSICS 37. The time period of oscillation of simple l pendulum is given by t = 2 g where length “l” is 100 cm and is known to have 1 mm accuracy. The time period is 2 sec. The time(T) of 100 oscillations is measured by a stop watch of least count 0.1 sec. The percentage error in measurement of g is 1. 0.1 % 2. 0.2 % 3. 0.8 % 4. 1 % 38. In a cylinder piston arrangement, air is under a pressure P1. A soap bubble of radiusr lies inside the cylinder. Soap bubble has surface tension T. The radius of bubble is to be reduced to half. Find the pressure P2 to which air should be compressed isothermally 1. P1 + 4T/r 2. 4P1 + 12/r 3. 8P1 + 24T/r 4. P1 + 2T/r 39. For a person with normal hearing the faintest sound that can be heard at a frequency of 400Hz has a pressure amplitude of -5 about 6.0×10 atm. Calculate the corresponding intensity in w/m2 . Take speed of sound in air as 344 -3 m/s and density of-2air 1.2 kg/m3 1. 4.4×10-4 w/m2 2. 4.4×10-1 w/m2 3. 4.4×10 w/m2 4. 4.4×10 w/m2 40. A point charge q is placed inside a neutral conducting spherical shell of inner radius 2R and outer radius 3R at a distance of R from the centre of the shell. The electric potential at the centre of shell will be 1/4 0 times 1. q/2R 2. 4q/3R 3. 5q/6R 4. 2q/3R 41. A fish rising vertically up towards the surface of water with speed 3 ms-1 observes a bird diving vertically down towards it with speed 9 ms-1. The actual velocity of bird is (Given water = 4/3) 1. 4.5 ms-1 3. 3.0 ms-1

2. 5.4 ms-1 4. 3.4 ms-1

42. A substance of mass m kg requires a power input of ‘P’ watts to remain in the molten state at its melting point. When the power is turned off the sample completely solidifies in time ‘t’ sec. What is the latent heat of fusion of the substance? 1. Pm/t 2. Pt/m 3. m/Pt 4. t/Pm 43. Two converging lenses with focal lengths f and 2f are positioned at a distance 3f apart. A parallel beam of light is incident on the lens with focal length f. If d is the incident beam width, what is the width of the emerging beam? 1. d/2 2. d 3. 2d 4. 4d 44. A point P moves in counter-clock wise direction on a circular path as shown in below mentioned figure. The movement of “P” is such that it swee ps out a length s = t3 +5, where’s’ is in metre and ‘t’ is in seconds. The radius of the path is 20 m. The magnitude acceleration of ‘P’ at t = 2 s is nearly: 1. 14ms-2 2. 13ms2 3. 12ms2 4. 7.2ms2 45. A coil having 100 turns and area of 0.001 m2 is free to rotate about an axis; the coil is placed with its plane perpendicular to magnetic field of 1.0 Wb/m2. If the coil is rotated rapidly through an angle of 1800, how much

charge will flow through the coil ? The resistance of the coil is 10 1. 0.02 coulomb 2. 0.04 coulomb 3. 0.08 coulomb 4. 0.07 coulomb

c

>∑‘· dü+∫ø£ ‘·s¡TyêsTT

46. A man weighing twice as much as a boy and the man takes half time as much time as the boy takes to climb a particular height. What is the ratio of power spent by the man to the power spent by the boy? 1. 4 : 1 2. 1 : 2 3. 5 : 7 4. 2 : 3 47. ‘n’ identical light bulbs, each designed to draw P power from a certain voltage supply are joined in series and that combination is connected across that supply. The power consumed by one bulb in the combination will be 1. nP 2. P 3. P/n 4. P/n2

Ä+Á<ÛäÁ|üuÛÑ

velocity of light, c = 3×108 m/ s, the photoelectric current liberated is -6 -7 1. 1.836×10-5 amp 2. 1.836×10-4 amp 3. 1.836×10 amp 4. 1.836×10 amp

53. The following figure shows a logic gate circuit with two inputs A and B and output C. The voltage waveform of A, B and C are as shown in second figure below:

The logic circuit gate is : 1. OR gate 2. AND gate 3. NAND gate 4. NOR gate

$<ë´Á|üuÛÑ 19

given) 1. 4 m/s 2. 2 m/s 3. 3 2m/s 4. 100/3 m/s

power (in watts)

4 2 10

in m

x

59. To decrease the cutoff wavelength of continuous X-rays by 25%, the potential difference across X-ray tube 1. must be increased by 100%/3 2. must be decreased by 100%/3 3. must be increased by 25% 4. must be decreased by 25% 60. In the circuit when switch S1 is closed and S2 is open, the ideal voltmeter shows a reading 18V. When switch S2 is closed and S1 is open, the reading of voltmeter 24V. When S1 and S2 both are closed the voltmeter reading will be

48. A continuous flow water heater (geyser) has an electrical power rating is 2 kW and efficiency of conversion of electrical power into heat is 80%. If water is flowing through the device at the rate of 100cc/sec, O and the inlet temperature is 10 C, the outlet temperature will be O O 1. 12.2 C 2. 13.8OC O 3. 20 C 4. 16.5 C 49. A ball of mass m is thrown upwards with a velocity v. If air exerts an average resisting force F, the velocity with which the ball returns to the thrower is mg F 1. v mg+F 2. v mg+F 3. v mg - F 4. v mg+F mg + F mg 50. The figure shows a conducting wire wou nd in a helical shape so as to form a spring. The bottom end of the wire barely touches the mercury (a good electrical conductor). After the switch is closed, current in the circuit causes the light to glow. The bulb will 1. Glow continually with constant intensity 2. Glow briefly and then stop 3. Repeatedly turn on and off like an indica tor of a car 4. Glow continually with decreasing in tensity 51. The reading corresponding to zener diode are given below in the table. From given table, determine the reverse breakdown voltage of the zener diode. Forward bias V (volt)

i (mA)

Reverse bias V (volt) i (mA)

0.5

5

0.5

2.0

0.7

20

1.0

2.0

0.8

40

3.0

2.0

1.0

250

5.0

2.0

5.5

100.0

5.5

120.0

1. It is lying between 1.0 V to 5.0 V 2. 1.0 V 3. greater than 5V, but less than or equal to 5.5 V 4. <0.5V to > 1.5 V 52. OneO milliwatt of light of wavelength 4560A is incident on a cesium surface of work function1.9eV . Given that quantum efficiency of photoelectric emission is 0.5%, -34 Planck’s constant, h = 6.62×10 J - sec and

54. If two electric charges q and - 2q are placed at distances 6a apart, then the locus of point in the plane of charges, where the field potential is zero, is (Assume that charge q is at origin) 1. x2+2y2 - 4ax -12a2 = 0 2. 2x2 + y2 + 4ax - 12a2 = 0 3. x2 + y2 + 4ax - 12a2 = 0 4. x2 + y2 + 8ax + 12a2 = 0 55. The time constant of the given circuit is 1. 3RC/5 2. 6RC/5 3. 5RC/6 4. 7RC/3 56. The ratio of the KE and PE possessed by a body executing SHM when it is at a distance of 1/n of its amplitude from the mean position is 1. n2 2. 1/n2 3. n2 +1 4. n2 -1 57. For the arrangement shown in the figure let ‘a’ and T be the magnitude of acceleration of the blocks and tension in the string respectively. The string and the pulley are frictionless and massless. Which of the graphs show the correct relationship between ‘a’ and T for the system in which sum of the two masses m1 and m2 is constant. T T

T

T 3.

a2

a2 2.

1.

1/a2 4.

1. 14.4V

2. 20.6V

3. 24.2V 4. 10.8V

MATHEMATICS 61. The number of ways in which nine boys & five girls can be arranged in two vans each having numbered seat, three in the front and five at the back such that at least four girls always sit together is 1. 11P9 5! 46 2. 11P9 .5! 3. 11P9 6! .2 4. 10P9 5!.38 62. A bag contains a large number of white and black marbles in equal proportions. Two samples of 5 marbles are selected (with replacement) at random. The probability that the first sample contains exactly 1 black marble, and the second sample contains exactly 3 black marbles, is 1. 25/512 2. 15/32 3. 15/1024 4. 35/256

düe÷<ÛëHê\T 37. 2

38. 3

39. 2

40. 3

41. 1

42. 2

43. 3

44. 1

45. 1

46. 1

47. 4

48. 2

49. 3

50. 3

51. 3

52. 1

53. 2

54. 3

55. 2

56. 4

57. 2

58. 1

59. 1

60. 1

61. 1

62. 1 1/a2

58. A particle A of mass 10/7 kg is moving in the positive direction of x-axis. Its initial position is x = 0& initial velocity is 1 m/s. The velocity at x = 10 is: (use the graph

Seetharamaiah

Chairman Impulse Educational Institutions Cell : 9848743658

‘·s¡TyêsTT uÛ≤>∑+ e#˚à dü+∫ø£˝À


20

Ä+Á<ÛäÁ|üuÛÑ

$<ë´Á|üuÛÑ

A N D H b˛{° R A|üØP ø£å\ Á|Rü‘˚´ø£A+ B H A

Ä]úø£ ô|s¡T>∑T<ä\ πs≥TqT <˚ì‘√ ø=\TkÕÔs¡T?

BÉÔÁª«sÌÁ NSÌÁLiÍÜ[ Dµ][ùgRi ¬s¸R¶Wª«sVNRP xmsLkiORPQ\ÛÍÁ©«s úgRiW£ms c1, úgRiW£ms c2, úgRiW£ms c3 ÍØLiÉÓÁ ªyÉÓÁÍÜ[ −sÇÁ¸R¶VLi ryµ³j¶Li¿yÌÁLiÛÉÁ[ úxms¼½INRPäLRiW xqsÛËêÁNíRPV ª«sWú»R½®ªs[V NSNRPVLi²y µy¬sNTP xqsLiÊÁLiµ³j¶LiÀÁ©«s ª«s°ÖÁNRP @LiaSÌÁ©«sV NRPW²y NýRPVxmsòLigS ¿RÁµR¶ªyÖÁ. BLiµR¶VÍÜ[ BLi²T¶¸R¶V©±s FsNS©«s−sV ¿yÍØ NUPÌÁNRP Fyú»R½ ª«sz¤¦¦¦xqsVòLiµj¶. 1. ˳ØLRi»R½ Çؼd½¸R¶V ª«sW©«sª«s @Õ³Áª«sXµôðj¶ ¬s®ªs[µj¶NRP 2001 úxmsNSLRiLi ALiúµ³R¶úxms®µ¶[a`P ¹¸¶VVNRPä ª«sW©«sª«s @Õ³Áª«sXµôj¶ xqsWÀÁNRP −sÌÁVª«s? 1. ˳ØLRi»R½®µ¶[aRPxmso −sÌÁVª«s NRP©yõ »R½NRPV䪫s 2. ˳ØLRi»R½®µ¶[aRP −sÌÁVª«sNRPV xqsª«sW©«sLi 3. ˳ØLRi»`½ |¤¦¦¦¿`Á.²T¶.H xqsWÀÁNRP −sÌÁVª«sÍÜ[ 1/4ª«s ˳ØgRiLi 4. ˳ØLRi»R½®µ¶[aRPxmso −sÌÁVª«sNRP©yõ @µ³j¶NRPLi 2. Çؼd½¸R¶V ª«sùª«sry¸R¶V NRP−dsVxtsQ©±s úxmsNSLRiLi ª«sùª«sry¸R¶V LRiLigRiLiÍÜ[ Dµ][ùgji»R½ NRPÖÁgji©«s xqsLi˳ت«sù»R½ @µ³j¶NRP˳ØgRiLi? 1. NS¸R¶V µ³y©yùÌÁÍÜ[ NRPÌÁµR¶V 2. Dµy*©«s NRPXztsQ xmsLiÈÁÌÁÍÜ[ NRPÌÁµR¶V 3. ©«sW®©s gjiLiÇÁÌÁÍÜ[ NRPÌÁµR¶V 4. xmsxmsöV xmsLiÈÁÌÁÍÜ[ NRPÌÁµR¶V 3. úgSª«sV úFyLi»yÌÁNRPV úxms˳ÏÁV»R½* }qsª«sÌÁ úxms¹¸¶WÇÁ©yÌÁ©«sV @¼½ xqs−dsVxmsLigS @Liµj¶Li¿P[ xms´R¶NRPLi Gµj¶? 1. LSÒÁª±s BLiÈÁL`i®©sÉÞ úgSª«sV xms´R¶NRPLi 2. B c }qsªy ZNP[LiúµyÌÁV 3. ÇÁª«sx¤¦¦¦L`iÍØÍÞ ÇìØ©«s ZNP[LiúµyÌÁV 4. G−ds NSª«so 4. ¸R¶VV.Fs©±s.²T¶.zms ªyLRiV ¬sLjiøxqsVò©«sõ ª«sW©«sª«s @Õ³Áª«sXµôðj¶ xqsWÀÁNRÍÜ[ »R½ÌÁxqsLji Aµy¸R¶W¬sõ ÛÍÁ[NRPäÍÜ[NTP µk¶¬s¬s ¼d½xqsVNRPVLiÉØLRiV? 1. xqsóWÌÁ ®µ¶[bdP¸R¶V D»R½ö¼½ò »R½ÌÁxqsLji Aµy¸R¶W¬sõ @®ªsVLjiNS ²yÌÁLýRiÍÜ[ ª«sWlLiäÉÞ ª«sWLRiNRP lLi[ÈÁV úxmsNSLRiLi 2. ¬sNRPLRi Çؼd½¸R¶V D»R½ö¼½ò »R½ÌÁxqsLji Aµy¸R¶VLi 3. xqsóWÌÁ ®µ¶[bdP¸R¶V D»R½ö¼½ò »R½ÌÁxqsLji Aµy¸R¶VLi 4. xqsóWÌÁ ®µ¶[bdP¸R¶V D»R½ö¼½ò »R½ÌÁxqsLji Aµy¸R¶W¬sõ @®ªsVLjiNS ²yÌÁLýRiÍÜ[ N]©«sgRiÌÁ r󡪫sV»R½ xqsª«sW©«s»R½*Li úxmsNSLRiLi 5. Çؼd½¸R¶V Aµy¸R¶V @Li¿RÁ©yÌÁÍÜ[ ²yee −s.ZNP.AL`i.−s. LSª±s Dxms¹¸¶WgjiLiÀÁ©«s xmsµôðR¶¼½...? 1. gRißÓáLi¿RÁV xmsµôðR¶¼½ 2. Aµy¸R¶V D»R½ö¼½ò xmsµôðR¶¼½ 3. Aµy¸R¶V xmsµôðR¶¼½ 4. D»R½ö¼½ò xmsµôðR¶¼½ 6. |qsLiúÈÁÍÞ ríyÉÓÁzqsíNRPÍÞ ALæRi\®©sÛÇÁ[xtsQ©±s ({qs.Fs£qs.J) G ²T¶FyLíRiV®ªsVLiÉÞ NTPLiµR¶ xms¬s ¿P[xqsVòLiµj¶? 1. ²T¶FyLýRiV®ªsVLiÉÞ A£mns ríyÉÓÁzqsíN`P= 2. ²T¶FyLí`i ®ªsVLiÉÞ A£mns lLi−s©«sWù 3. ²T¶FyLí`i ®ªsVLiÉÞ A£mns ÊÁ®²ê¶ÉÞ 4. Gµk¶ NSµR¶V 7. xqsóWÌÁ Çؼd½¸R¶V D»R½ö¼½ò (ÒÁ.Fs©±s.zms)NTP xqsóWÌÁ ®µ¶[bdP¸R¶V D»R½ö¼½òNTP (ÒÁ.²U¶.{ms)NTP ª«sVµ³R¶ùgRiÌÁ ª«sù»yùxqsLi ®µ¶[¬sNTP xqsª«sW©«sLi? 1. xqsóWÌÁ −s®µ¶[bdP |msÈíÁVÊÁ²R¶VÌÁV 2. ¬sNRPLRi FsgRiVª«sV»R½VÌÁV 3. −s®µ¶[aSÌÁ ©«sVLiÀÁ ª«s¿P[è ¬sNRPLRi NSLRiNSÌÁ Aµy¸R¶VLi 4. ¬sNRPLRi −s®µ¶[bdP |msÈíÁVÊÁ²R¶VÌÁV 8. ALójiNRP ª«sùª«sxqsó D»yöµR¶©y aRPNTPòNTP ªyxqsòª«s\®ªsV©«s gkiÈÁVLSLiVV Gµj¶? 1. ¬sNRPLRi Çؼd½¸R¶V D»R½ö¼½ò (Fs©±s.Fs©±s.zms) 2. ¬sNRPLRi ®µ¶[bdP¸R¶V D»R½ö¼½ò (Fs©±s.²T¶.zms) 3. xqsóWÌÁ Çؼd½¸R¶V D»R½ö¼½ò (ÒÁ.²U¶.zms) 4. xqsóWÌÁ ®µ¶[bdP¸R¶V D»R½ö¼½ò (ÒÁ.²U¶.{ms) 9. ª«sWlLiäÉÞ µ³R¶LRiÍýÜ[ Fs©±s.Fs©±s.zmsNTP D»R½ö¼½ò NSLRiNSÌÁ µR¶Xuíyù Fs©±s.Fs©±s.zmsNTP gRiÌÁ ¾»½[²y µk¶¬sNTP xqsª«sW©«sLi? 1. xqsÕÁ=²U¶ÌÁ©«sV −sV©«s¥¦¦¦LiVVLiÀÁ©«s xmsL][ORPQ xms©«sVõÌÁV 2. ª«sù¸R¶WL>Ri Aµy¸R¶VLi 3. úxms»R½ùORPQ xms©«sVõÌÁV xmsý£qs ÊÁµj¶ÖdÁ ÅÁLRiVèÌÁV 4. ª«sùztsíQ Aµy¸R¶VLi c xmsLiÀÁ|msÈíÁ¬s ÍØ˳ØÌÁV 10. INRP ®µ¶[aRPLiÍÜ[¬s D©«sõ»R½ ÒÁª«s©«s úxmsª«sWßØÌÁ©«sV G −sµ³R¶LigS ¾»½ÌÁVxmso»yLRiV? 1. }msµR¶LjiNRP ¬sxtsQö¼½ò 2. »R½ÌÁxqsLji Aµy¸R¶VLi 3. Çؼd½¸R¶V Aµy¸R¶VLi 4. ¬sLRiVµ][ùgRi lLi[ÈÁV 11. NTPLiµj¶ ªyÉÓÁÍÜ[ G ®µ¶[aSÌÁV @µ³j¶NRP »R½ÌÁxqsLji Aµy¸R¶V ª«sXµôðj¶lLi[ÈÁV©«sV ryµ³j¶xqsVò©«sõ−s? 1. ÒÁ.²U¶.zms ª«sXµôðj¶lLi[ÈÁV 6% ÇÁ©yË³Ø ª«sXµôðj¶ lLi[ÈÁV 3.5% 2. ÒÁ.²U¶.zms ª«sXµôðj¶lLi[ÈÁV 4% ÇÁ©yË³Ø ª«sXµôðj¶ lLi[ÈÁV 3% 3. ÒÁ.²U¶.zms ª«sXµôðj¶lLi[ÈÁV 7% ÇÁ©yË³Ø ª«sXµôðj¶ lLi[ÈÁV 5% 4. ÒÁ.²U¶.zms ª«sXµôðj¶lLi[ÈÁV 5% ÇÁ©yË³Ø ª«sXµôðj¶ lLi[ÈÁV 2% 12. ALójiNRP |msLRiVgRiVµR¶ÌÁ lLi[ÈÁV©«sV ®µ¶[¬s»][ N]ÌÁVryòLRiV? 1. Çؼd½¸R¶V Aµy¸R¶VLi 2. »R½ÌÁxqsLji Aµy¸R¶VLi 3. FyLjiúaS−sVNRP @Õ³Áª«sXµôðj¶ 4. }msµR¶LjiNRP róyLiVV¬s @µ³j¶gRi−sVLiÀÁ©«s úxmsÇÁÌÁ xqsLiÅÁù

13. Çؼd½¸R¶V Aµy¸R¶V ÛÍÁNTPäLixmsoÍÜ[ ª«sù¸R¶WL>Ri Aµy¸R¶VLi @LiÛÉÁ[ G−sV? 1. ÒÁ.Fs©±s.zms + ¬sNRPLRi −s®µ¶[bdP NSLRiNRP Aµy¸R¶VLi + ÊÁµj¶ÖdÁ ¿ÁÖýÁLixmsoÌÁV c xms©«sVõÌÁV c xmsLiÀÁ|msÈíÁÊÁ²R¶¬s ÍØ˳ØÌÁV 2. ÒÁ.²U¶.zms + ¬sNRPLRi −s®µ¶[bdP NSLRiNRP Aµy¸R¶VLi + ÊÁµj¶ÖdÁ ¿ÁÖýÁLixmsoÌÁV c xms©«sVõÌÁV + xmsLiÀÁ|msÈíÁÊÁ²R¶¬s ÍØ˳ØÌÁV 3. ÒÁ.Fs©±s.zms + ¬sNRPLRi −s®µ¶[bdP NSLRiNRP Aµy¸R¶VLi + ÊÁµj¶ÖdÁ ¿ÁÖýÁLixmsoÌÁV c xms©«sVõÌÁV + xmsLiÀÁ|msÈíÁÊÁ²R¶¬s ÍØ˳ØÌÁV 4. ÒÁ.²U¶.{ms + ¬sNRPLRi −s®µ¶[bdP NSLRiNRP Aµy¸R¶VLi + ÊÁµj¶ÖdÁ ¿ÁÖýÁLixmsoÌÁV c xms©«sVõÌÁV c xmsLiÀÁ|msÈíÁÊÁ²R¶¬s ÍØ˳ØÌÁV 14. ALiúµ³R¶ LSúuíy¬sNTP xqsLiÊÁLiµ³j¶LiÀÁ ®ªsVVµR¶ÉÓÁ úxmsßØ×ÁNS |msÈíÁVÊÁ²T¶ FsLi»R½? 1. 68.23 N][ÈýÁV 2. 64.23 N][ÈýÁV 3. 70.28 N][ÈýÁV 4. 69.25 N][ÈýÁV 15. ALiúµ³R¶úxms®µ¶[a`PNRPV xqsLiÊÁLiµ³j¶LiÀÁ 5ª«s ALójiNRP gRißá©«s »R½Vµj¶ gRißØLiNSÌÁ©«sV FsxmsöV²R¶V −s²R¶VµR¶ÌÁ ¿P[zqsLiµj¶? 1. 28 ²T¶|qsLiÊÁL`i 2004 2. 28 |qs|msíLiÊÁL`i 2005 3. 28 ²T¶|qsLiÊÁL`i 2007 4. 28 ²T¶|qsLiÊÁL`i 2006 16. ª«sV©«s ®µ¶[aRPLiÍÜ[ G NRP−dsVxtsQ©±s ¹¸¶VVNRPä zqsFyLRiV=ÌÁ ®ªs[VLRiNRPV xqsx¤¦¦¦NSLRi ª«sùª«sry¸R¶W¬sõ úxms¼½Fyµj¶Li¿yLRiV? 1. xmsÉíØÕ³Á 2. xmsÛÉÁ[ÍÞ 3. LS¸R¶VÍÞ 4. LSª±sV}qs 17. AxmslLi[xtsQ©±s ÊÁLæS @®©s[µj¶ G LSúxtsíLiÍÜ[¬s N_ÌÁVµyLýRiNRPV xqsLiÊÁLiµ³j¶LiÀÁLiµj¶? 1. ÛËÁLigSÍÞ 2. ILjiry=

gRiLiÍÜ[ FsNRPV䪫sgS ª«sXµôðj¶¬s ©«s®ªsWµR¶V ¿P[zqs©«s DxmsLRiLigRiLi Gµj¶? 1. LRiªyßØ LRiLigRiLi 2. ËØùLiNTPLig`i LRiLigRiLi 3. xqsª«sW¿yLRi LRiLigRiLi 4. ¬sLSøßá LRiLigRiLi 25. 1969ÍÜ[ ¬sLRiVµ][ùgji»R½ @Li¿RÁ©yÌÁNRPV C NTPLiµj¶ NRP−sVÉÔÁ¬s ¬s¸R¶V−sVLi¿yLRiV? 1. ˳ÏÁgRiª«s¼½ 2. FsLi.FsÍÞ. µR¶Li»`½ªyÍØ 3. ©«sLRizqsLix¤¦¦¦©±s 4. µR¶Li®²¶[NRPL`i ª«sVLji¸R¶VV LRi´`¶ 26. úµR¶ª¯[ùÌÁ÷ßá NSÌÁLiÍÜ[ AL`i.ÕdÁ.H {qs.AL`i.AL`i©«sV....? 1. »R½gæjixqsVòLiµj¶ 2. ¬sÌÁNRP²R¶gS DLi¿RÁV»R½VLiµj¶ 3. |msLi¿RÁV»R½VLiµj¶ 4. Gµk¶NSµR¶V 27. ALójiNRP xqsLixqsäLRißáÌÁÍÜ[ ˳ØgRiLigS ú\|ms®ªs[ÈÁV LRiLigS¬sõ úF¡»R½=z¤¦¦¦xqsWò LRiWF~Liµj¶Li¿RÁÊÁ®²¶[ xqsW¿RÁ©y»R½øNRP úxmsßØ×ÁNRP©«sV GLRiNRPLigS }msL]äLiÉØLRiV? 1. ZNP[Liúµk¶¸R¶V úxmsßØ×ÁNRP 2. ¬sLRiLi»R½LRi úxmsßØ×ÁNRP 3. ¬slLôi[aS»R½øNRP úxmsßØ×ÁNRP 4. ª«sWlLiäÉÞ úxmsßØ×ÁNRP 28. ˳ØLRi»R½®µ¶[aRPLiÍÜ[ G¹¸¶[V úxmsßØ×ÁNRPÌÁV µk¶LçRiµR¶Lji+ úxmsßØ×ÁNRPÌÁVgS LRiWF~Liµj¶Li¿RÁÊÁ²ïyLiVV? 1. 8 ª«sVLji¸R¶VV 9ª«s 2. 3 ª«sVLji¸R¶VV 7ª«s 3. 2 ª«sVLji¸R¶VV 4ª«s 4. 4 ª«sVLji¸R¶VV 6ª«s 29. ˳ØLRi»R½®µ¶[aRP xmsÈíÁßá úFyLi»yÌÁÍÜ[ @µ³j¶NRPLigS D©«sõ ¬sLRiVµ][ùgji»R½...? 1. úxms¿RÁèé©«sõ 2. ryLiZNP[¼½NRP 3. FyLjiúaS−sVNRP 4. −sµyùª«sLi»R½VÌÁ 30. µk¶LçRiNSÌÁLiÍÜ[ ªyxqsòª«s »R½ÌÁxqsLji Aµy¸R¶VLi |msLRiVgRiV µR¶ÌÁ©«sV xqsWÀÁ}qsò @®µ¶[ ALójiNSÕ³Áª«sXµôðj¶ @¬s −sª«sLjiLiÀÁ©«s ªyLRiV

Ç+&çj·THé mø±qMT

mdt◊/ø±ìôùdºãT˝Ÿ, ÄsY|”m|òt ôdŒwü˝Ÿ 3. ª«sVµ³R¶ùúxms®µ¶[a`P 4. ALiúµ³R¶ úxms®µ¶[a`P 18. NRPª«sWLi²`¶ GLji¸R¶W ®²¶ª«sÌÁ£ms ®ªsVLiÉÞ ²T¶FyLí`i ®ªsVLiÉÞ©«sV FsxmsöV²R¶V róyzmsLi¿yLRiV? 1. 1977ÍÜ[ 2. 1972ÍÜ[ 3. 1974ÍÜ[ 4. 1976ÍÜ[ 19. 5ª«s xmsLi¿RÁª«sL<Ri úxmsßØ×ÁNRP ®µ¶[¬sNTP @µ³j¶NRP úFyµ³y©«sù»R½©«sV BÀÁèLiµj¶? 1. ª«sùª«sry¸R¶VLi c −sµR¶Vù¿RÁèéNTPò 2. }msµR¶LjiNRP ¬sLRiWøÌÁ©«s c ry*ª«sÌÁLiÊÁ©«s 3. ¬dsÉÓÁFyLRiVµR¶ÌÁ c ˳ØLki xmsLjiúaRPª«sVÌÁV 4. xmsLjiúaRPª«sVÌÁV c ª«sùª«sry¸R¶VLi 20. ˳ÏÁWryLRi xmsLjiLRiORPQßá ®ªsVÈíÁ úFyLi»R½ @Õ³Áª«sXµôðj¶ xms©«sVÌÁNRPV úFyµ³y©«sù»R½¬sÀÁè©«s xmsLi¿RÁª«sL<Ri úxmsßØ×ÁNRP Gµj¶?

1. 7ª«s úxmsßØ×ÁNRP 2. 4ª«s úxmsßØ×ÁNRP 3. 5ª«s úxmsßØ×ÁNRP 4. 6ª«s úxmsßØ×ÁNRP 21. INRP ª«sùNTPò »R½©«s D»yöµR¶NRP aRPNTPò NRPLiÛÉÁ[ »R½NRPV䪫sróyLiVV xms©«sVÌÁÍÜ[ xms¬s ¿P[¸R¶V²y¬sõ Gª«sVLiÉØLRiV? 1. úxms¿RÁèé©«sõ ¬sLRiVµ][ùgji»R½ 2. @ÌÁö Dµ][ùgji»R½ 3. ¿RÁúNUP¸R¶V Dµ][ùgji»R½ 4. ÊÁVV»R½V xqsLiÊÁLiµ³R¶ ¬sLRiVµ][ùgji»R½ 22. xqsª«sVúgRi xmsLiÈÁÌÁ Õ³dÁª«sW xms´R¶NS¬sõ G xqsLiª«s»R½=LRiLiÍÜ[ úxms®ªs[aRP|msÉíØLRiV? 1. 1985 ÍÜ[ 2. 1984 ÍÜ[ 3. 1982 ÍÜ[ 4. 1986 ÍÜ[ 23. 2011c12 ZNP[LiúµR¶ ÊÁ®²ê¶ÉÞ úxmsNSLRiLi ÒÁ.²U¶.{msÍÜ[ −s»R½ò ÍÜ[ÈÁV...? 1. 4.6% 2. 4.3% 3. 3.4% 4. 6.4% 24. ALójiNRP xqsLixqsäLRißáÌÁ NSÌÁLiÍÜ[ ALiúµ³R¶úxms®µ¶[a`PÍÜ[ }qsª«sÌÁ LRiLi-

Fsª«sLRiV? 1. ËØÍíÞ−s©±s 2. NSLRiÍÞ ª«sWL`iä= 3. A²R¶ª±sVzqsø»`½ 4. lgiLSÍïÞ ®ªs[V¸R¶VL`i 31. ËØLiÛËÁ[Fýy©±s¬s FsLi»R½ª«sVLiµj¶ ªyùFyLRi®ªs[»R½òÌÁV NRPÖÁzqs 1943ÍÜ[ LRiWF~Liµj¶Li¿yLRiV? 1. 15 ª«sVLiµj¶ 2. 8 ª«sVLiµj¶ 3. 10 ª«sVLiµj¶ 4. 12 ª«sVLiµj¶ 32. G xms©«sVõ ª«sÌýÁ Aµy¸R¶V @xqsª«sW©«s»R½ÌÁV |msLRiVgRiV»yLiVV? 1. xmsoL][gS−sV xms©«sVõ 2. @©«sVFy»R½xmso xms©«sVõ 3. xqsLixmsµR¶ xms©«sVõ 4. ¼½L][gS−sV xms©«sVõ 33. ª«sV©«s®µ¶[aRP xqsóWÌÁ ®µ¶[bdP¸R¶V D»R½ö¼½òÍÜ[ xms©«sVõÌÁ ªyÉØ? 1. úNRPª«sVLigS |msLRiVgRiV»][Liµj¶ 2. OUPQßáróyLiVVÍÜ[ DLiµj¶

3. »R½gæRiV»][Liµj¶ 4. úNRPª«sVLigS »R½gæRiV»][Liµj¶ 34. H.²T¶.ÕÁ.H FsxmsöÉÓÁ ©«sVLi²T¶ xqs*»R½Liú»R½ úxms¼½xms¼½ò gRiÌÁ xqsLixqsógS @ª«s»R½LjiLiÀÁLiµj¶? 1. 1970 2. 1967 3. 1976 4. 1973 35. ˳ÏÁWxqsLixqsäLRißáÌÁV ˳ØLRi»R½ LSÇØùLigRiLiÍÜ[¬s G |tsQ²R¶WùÍÞÍÜ[ ¿P[LSèLRiV? 1. 8ª«s |tsQ²R¶WùÍÞ 2. 9ª«s |tsQ²R¶WùÍÞ 3. 10ª«s |tsQ²R¶WùÍÞ 4. 7ª«s |tsQ²R¶WùÍÞ 36. ryFnyò FsxmsöÉÓÁ ©«sVLi²T¶ @ª«sVÍýÜ[NTP ª«sÀÁèLiµj¶? 1. 2005 2. 2002 3. 2000 4. 2004 37. LSúxtsíLiÍÜ[ ª«sVÖídÁxmsLRiö£qs x¤¦ÝzqsLig`i xqslLi[* xms´R¶NRPLi G ª«sVLiú¼½»R½*aSÅÁ Aµ³R¶*LRiùLiÍÜ[ ©«s²R¶VxqsVòLiµj¶?

k˛eTyês¡+ 22 nø√ºãsY 2018

1. AL][gRiù 2. −sµR¶ù 3. lLi®ªs©«sWù 4. ALójiNRP 38. ËØùLiNRPVÌÁ\|ms ryª«sWÑÁNRP ¬s¸R¶VLiú»R½ßá −sµ³j¶LiÀÁ @ª«sVÌÁV ¿P[¸R¶VVÈÁNRPV úxms˳ÏÁV»R½*Li....©«sV ®©sÌÁN]ÖÁöLiµj¶? 1. Çؼd½¸R¶V xmsLRixms¼½ ª«sVLi²R¶ÖÁ 2. µR¶*LiµR¶* ª«s²ïU¶lLi[ÈÁV 3. ÖdÁÇÞ ËØùLiN`P xms´R¶NRPLi 4. úFyµ³y©«sù»y LRiLigRi¿RÁÈÁíLi 39. ª«sW©«sªyÕ³Áª«sXµôðj¶ xqsWÀÁNRP LRiWxmsbPÖÁögS }msLRiV F~Liµj¶©«s ª«sVx¤¦¦¦ÊÁWËÞcDÍÞcx¤¦¦¦N`P G ®µ¶[aS¬sNTP ¿ÁLiµj¶©«sªyLRiV? 1. LRiuyù 2. FyNTPróy©±s 3. @®ªsVLjiNS 4. úFy©±s= 40. Theory of Economic development úgRiLi´R¶NRPLRiò Fsª«sLRiV? 1. −sVLiÉÞ 2. ÛËÁLiÑÁª«sV©±s x¤¦¦¦gki£qs 3. ÇØLæRi©±s xqs©±s 4. xtsQVLi{msÈÁL`i 41. xmsLRiVlgi¾»½[ò úµR¶ª¯[ùÌÁ÷ßáLiÍÜ[, úµR¶ª¯[ùÌÁ÷ßáLi lLi[ÈÁV ..... ©«sVLi²T¶.... ª«sLRiNRPV DLiÈÁVLiµj¶? 1. 4% ©«sVLiÀÁ 7% ª«sLRiNRPV 2. 3% ©«sVLiÀÁ 6%ª«sLRiNRPV 3. 6% ©«sVLiÀÁ 10%ª«sLRiNRPV 4. 4%©«sVLiÀÁ 5%ª«sLRiNRPV 42. ª«sxqsVòª«so −sÌÁVª«s©«sV @©«sVxqsLjiLiÀÁ xms©«sVõ −sµ³j¶}qsò µy¬s¬s Gª«sVLiÉØLRiV? 1. úxms»R½ùORPQ xms©«sVõ 2. ¼½L][gS−sV xms©«sVõ 3. ®ªsW²`¶ªyùÉÞ 4. ª«sVWÍØù©«sVgRi»R½\®ªsV©«s xms©«sVõ 43. úaS−sVNRPVÌÁV INRP xmsLjiúaRPª«sV ©«sVLi²T¶ ª«sVL][ xmsLjiúaRPª«sVNRPV ª«sWlLi[ NSÌÁLiÍÜ[ GLRiö®²¶[ ¬sLRiVµ][ùgji»R½©«sV Gª«sVLiÉØLRiV? 1. ¿RÁúNUP¸R¶V ¬sLRiVµ][ùgji»R½ 2. úxms¿RÁèé©«sõ ¬sLRiVµ][ùgji»R½ 3. ÊÁVV»R½V xqsLiÊÁLiµ³R¶ ¬sLRiVµ][ùgji»R½ 4. úzmsORPQ©«s©±s FsLiFýyLiVV®ªsVLiÉÞ 44. úxmsxmsLi¿RÁ |msÈíÁVÊÁ²T¶ ¬s®ªs[µj¶NRPc2008 úxmsNSLRiLi −s®µ¶[bdP |msÈíÁVÊÁ²R¶VÌÁ©«sV ANRPL<jiLi¿RÁ²R¶LiÍÜ[ ˳ØLRi»R½®µ¶[aRP róy©«sLi? 1. 2 2. 1 3. 3 4. 4 45. @²R¶ª«soÌÁ @Õ³Áª«sXµôðj¶\ZNP 6ª«s úxmsßØ×ÁNRPÍÜ[ ZNP[ÉØLiVVLiÀÁ©«s ®ªsVV»R½òLi .... N][ÈýÁV? 1. 490 N][ÈýÁV 2. 690 N][ÈýÁV 3. 290 N][ÈýÁV 4. 390 N][ÈýÁV 46. ˳ØLRi»R½®µ¶[aRP xmsLi¿RÁª«sL<Ri úxmsßØ×ÁNRP ryµ³j¶LiÀÁ©«s @¼½»R½NRPV䪫s ÌÁORPQùLi Gµj¶? 1. }msµR¶LjiNRP ¬sLRiWøÌÁ©«s 2. @LiµR¶LjiNUP −sµR¶ù 3. ª«s°ÖÁNRP NUPÌÁNRP xmsLjiúaRPª«sVÌÁ @Õ³Áª«sXµôðj¶ 4. xqsLixmsµR¶ Aµy¸R¶WÌÁÍÜ[ @Li»R½LSÌÁV »R½gæjiLi¿RÁ²R¶Li 47. 2004ÍÜ[ ˳ÏÁW xqsLixqsäLRißáÌÁ NRP−sVÉÔÁ Fsª«sLji @µ³R¶ùORPQ»R½©«s GLSö\ÛÉÁLiµj¶? 1. ÇÁ¸R¶V¼d½ËÜ[}qs 2. −s. LSª«sWLSª«so 3. N][®©s[LRiV LRiLigSLSª«so 4. ÇÁzqsí£qs ¿RÁLiúµR¶ZaP[ÅÁL`i 48. 1853ÍÜ[ ËÜLiËØLiVV ©«sVLiÀÁ µ³y®©s[ ª«sLRiNRPV \lLiÌÁV ª«sWLæS¬sõ G NRPLi|ms¬ds xmspLjiò ¿P[zqsLiµj¶? 1. ª«sVúµyxqsV \lLiÌÁV NRPLi|ms¬ds 2. »R½WLRiöV BLi²T¶¸R¶W \lLiÌÁV NRPLi|ms¬ds 3. NRPÌÁNRP»yò \lLiÌÁV NRPLi|ms¬ds 4. |ms¬s©«sV=ÌÁL`i \lLiÌÁV NRPLi|ms¬ds 49. xqs*ÌÁöNSÍجsNTP LjiÇÁLRiV* ËØùLiNRPV ªyßÓáÇÁù ËØùLiNRPVÌÁNRPV B¿P[è ¬sµ³R¶VÌÁ\|ms ª«sxqsWÌÁV ¿P[}qs ª«s²ïU¶ lLi[ÈÁV©«sV.... @LiÉØLRiV? 1. Ljiª«sL`i= lLiF¡lLi[ÈÁV 2. lLiF¡lLi[ÈÁV 3. ËØùLiNRPV lLi[ÈÁV 4. ©«sgRiµR¶V ¬sÌÁ*ÌÁ ¬sxtsQö¼½ò 50. NTPLiµj¶ ªyÉÓÁÍÜ[ ¬sLRiVµ][ùgS¬sõ @Li¿RÁ©y®ªs[¸R¶VVÈÁNRPV xqs\lLi©«s ˳ت«s©«s? 1. L][ÇÁÙªyLji ¬sLRiVµ][ùgji»R½ 2. @ÌÁö Dµ][ùgji»R½ 3. xmspLñRi Dµ][ùgji»R½ 4. ªyLRiLi ªyLji ¬sLRiVµ][ùgji»R½

1. 3 -6. 2 11. 2 16. 4 21. 3 26. 1 31. 1 36. 1 41. 1 46. 2

düe÷<ÛëHê\T

2. 2 3. 1 4. 1 7. 2 8. 4 9. 3 12. 3 13. 4 14. 3 17. 1 - 18. 4 19. 1 22. 2 23. 4 24. 3 27. 2 28. 3 29. 2 32. 4 33. 1 34. 4 37. 2 38. 3 39. 3 42. 2 43. 4 44. 2 47. 3 48. 3 49. 4

Dr.M.Reddi Ramu

Associate professor Academic Coordinator Kuppam Engineering College Cell: 08897892659

5. 3 10. 1 -15. 2 20. 1 25. 4 30. 4 35. 4 40. 1 45. 3 50. 3


k˛eTyês¡+ 22 nø√ºãsY 2018

A N D H b˛{° R A|üØP R A B H A ø£å\ Á|ü‘˚´ø£+

1. @ORPQLSxqsù»R½©«sV gRiVLjiòLi¿RÁ²y¬sNTP C NTPLiµj¶ ªyÉÓÁÍÜ[ xqs\lLi©«sµj¶ gRiVLjiòLi¿RÁLi²T¶? 1. ª«s¸R¶VxqsV= 7xqsLi.ÌÁ \|ms©«s DLi²yÖÁ 2. ¿RÁµR¶ª«s²R¶Li LSªyÖÁ 3. LS¸R¶V²R¶Li LSªyÖÁ 4. \|ms @¬sõ¸R¶VV 2. úxmsxqsVò»R½Li ˳ØLRi»R½®µ¶[aRPLi 2011 ÇÁ©y˳ØÍÜ[ @ORPQLSxqsù»R½ lLi[ÈÁV FsLi»R½aS»R½Li? 1. 72.98aS»R½Li 2. 73.97aS»R½Li 3. 70.14aS»R½Li 4. 71.11aS»R½Li 3. 2011 ÇÁ©yË³Ø ÛÍÁNRPäÌÁ úxmsNSLRiLi xmsoLRiVxtsQVÌÁ @ORPQLSxqsù»R½ lLi[ÈÁV FsLi»R½aS»R½Li? 1. 80.88 aS»R½Li 2. 90.11 aS»R½Li 3. 97.6 aSª«s»R½Li 4. 64.88 aS»R½Li 4. 2011 ÇÁ©yË³Ø ÛÍÁNRPäÌÁ úxmsNSLRiLi ˳ØLRi»R½®µ¶[aRP ú{qsQòÌÁ @ORPQLS xqsù»R½ aS»R½Li FsLi»R½? 1. 64.63 aS»R½Li 2. 60.14 aS»R½Li 3. 68.66 aS»R½Li 4. 68.19 aS»R½Li 5. ˳ØLRi»R½®µ¶[aRPLiÍÜ[ 2011 ÇÁ©yË³Ø ÛÍÁNRPäÌÁ úxmsNSLRiLi xmsÈíÁßá @ORPQLSxqsù»R½ aS»R½Li FsLi»R½? 1. 84.17 aS»R½Li 2. 80.00 aS»R½Li 3. 78.19 aS»R½Li 4. 75.16 aS»R½Li 6. ˳ØLRi»R½®µ¶[aRPLiÍÜ[ 2011 ÇÁ©yË³Ø ÛÍÁNRPäÌÁ úxmsNSLRiLi úgS−dsVßá ÇÁ©yË³Ø @ORPQLSxqsù»R½ aS»R½Li FsLi»R½? 1. 67.8 aS»R½Li 2. 60.14 aS»R½Li 3. 62.17 aS»R½Li 4. 61.11 aS»R½Li 7. 2011 úxmsNSLRiLi @µ³j¶NRP @ORPQLSxqsù»R½ aS»R½Li gRiÌÁ LSúuíyÌÁ©«sV gRiVLjiòLi¿RÁLi²T¶? 1. ZNP[LRiÎÏÁ 2. −sVÇÜ[LSLi 3. g][ªy 4. \|ms @¬sõ¸R¶VV 8. 2011 ÇÁ©yË³Ø ÛÍÁNRPäÌÁ úxmsNSLRiLi úgS−dsVßá @ORPQLSxqsù»R½ aS»R½Li FsNRPV䪫sgS D©«sõ LSúxtsíLi Gµj¶? 1. ZNP[LRiÎÏÁ 2. ÕdÁ¥¦¦¦L`i 3. ¿RÁLi²³U¶gRiL`i 4. xmsbP誫sVÛËÁLigSÍÞ 9. 2011 ÇÁ©yË³Ø ÛÍÁNRPäÌÁ úxmsNSLRiLi ú{qsQò, xmsoLRiVxtsQVÌÁ ÇÁ©yË³Ø FsNRPV䪫sgS D©«sõ LSúuíy¬sõ gRiVLjiòLi¿RÁLi²T¶? 1. ZNP[LRiÎÏÁ 2. ALiúµ³R¶úxms®µ¶[a`P 3. g][ªy 4. ¾»½ÌÁLigSßá 10. 2011 ÇÁ©yË³Ø ÛÍÁNRPäÌÁ úxmsNSLRiLi xmsÈíÁßá ÇÁ©yË³Ø FsLi»R½aS»R½Li? 1. 36.12 aS»R½Li 2. 31.2 aS»R½Li 3. 37.12 aS»R½Li 4. 40.12 aS»R½Li 11. úxmsxqsVò»R½Li ˳ØLRi»R½®µ¶[aRPLiÍÜ[ úgS−dsVßá ÇÁ©yË³Ø aS»R½Li FsLi»R½? 1. 60.14 aS»R½Li 2. 68.85 aS»R½Li 3. 59.14 aS»R½Li 4. 65.16 aS»R½Li 12. C NTPLiµj¶ ªyÉÓÁÍÜ[ xmsÈíÁßáLi ÌÁOSQùÌÁ©«sV gRiVLjiòLi¿RÁLi²T¶? 1. INRP ¿RÁµR¶LRixmso NTP.−dsV. 400 ª«sVLiµj¶ ¬sª«szqsLi¿yÖÁ 2. ÇÁ©yË³Ø 5000 ª«sVLiµj¶ DLi²yÖÁ 3. 75 aS»R½Li ª«sVLiµj¶ ª«sùª«sry¹¸¶[V»R½LRi LRiLigSÌÁÍÜ[ xms¬s¿P[¸R¶WÖÁ 4. \|ms @¬sõ¸R¶VV 13. ®ªsVúÉÜ[ ©«sgRiLRiLiÍÜ[ FsLi»R½ª«sVLiµj¶ ÇÁ©yË³Ø DLi²yÖÁ? 1. 10c50 ÌÁORPQÌÁ ÇÁ©yË³Ø 2. 1c2 ÌÁORPQÌÁ ÇÁ©yË³Ø 3. 2c3 ÌÁORPQÌÁ ÇÁ©yË³Ø 4. 3c4 ÌÁORPQÌÁ ÇÁ©yË³Ø 14. úgSª«sWÌÁV FsNRPV䪫sgS D©«sõ LSúxtsíQLi Gµj¶? 1. D»R½òLRiúxms®µ¶[a`P 2. ª«sV¥¦¦¦LSúxtsí 3. ©«sWù²³T¶ÖýdÁ 4. »R½−sVÎÏÁ©y²R¶V 15. z¤¦¦¦LiµR¶W úxmsÇÁÌÁ ÇÁ©yË³Ø @µ³j¶NRPLigS D©«sõ LSúxtsíLi Gµj¶? 1. ª«sVµ³R¶ùúxms®µ¶[a`P 2. D»R½òLRiúxms®µ¶[a`P 3. g][ªy 4. zqsNTPäLi 16. z¤¦¦¦LiµR¶W ÇÁ©yË³Ø »R½NRPV䪫sgS D©«sõ LSúxtsíLi Gµj¶? 1. −sVÇÜ[LSLi 2. ALiúµ³R¶úxms®µ¶[a`P 3. »R½−sVÎÏÁ©y²R¶V 4. ¾»½ÌÁLigSßá 17. ËݵôðR¶VÌÁV @µ³j¶NRPLigS gRiÌÁ LSúxtsíLi Gµj¶?

Ä+Á<ÛäÁ|üuÛÑ

2e Vü≤]‘· $|ü¢yêìøÏ |æ\T|ü⁄ì∫Ã+~ mes¡T? 1. ª«sV¥¦¦¦LSúxtsíQ 2. ÕdÁ¥¦¦¦L`i 3. D»R½òLRiúxms®µ¶[a`P 4. g][ªy 18. C NTPLiµj¶ ªyÉÓÁÍÜ[ |tsQ²R¶WùÍïÞ ¾»½gRiÌÁV @µ³j¶NRPLigS gRiÌÁ LSúuíyÌÁ©«sV gRiVLjiòLi¿RÁLi²T¶? 1. ª«sVµ³R¶ùúxms®µ¶[a`P 2. ª«sV¥¦¦¦LSúxtsí 3. ILjiry= 4. \|ms @¬sõ¸R¶VV 19. C NTPLiµj¶ ªyÉÓÁÍÜ[ |tsQ²R¶WùÍÞ NRPVÍØÌÁV @µ³j¶NRPLigS gRiÌÁ LSúuíyÌÁ©«sV gRiVLjiòLi¿RÁLi²T¶? 1. xmsbP誫sVÛËÁLigSÍÞ 2. D»R½òLRiúxms®µ¶[a`P 3. ÕdÁ¥¦¦¦L`i 4. \|ms @¬sõ¸R¶VV 20. ˳ØLRi»R½®µ¶[aRPLiÍÜ[ 2011 ÇÁ©yË³Ø ÛÍÁNRPäÌÁ úxmsNSLRiLi G ª«s¸R¶V xqsV D©«sõªyLRiV FsNRPV䪫sgS D©yõLRiV? 1. 0c4 ª«s¸R¶VxqsV 2. 15c59 ª«s¸R¶VxqsV 3. 5c9 ª«s¸R¶VxqsV 4. 10c14 ª«s¸R¶VxqsV 21. 2011 ÇÁ©yË³Ø úxmsNSLRiLi ú{qsQò, xmsoLRiVxtsQ ¬sxtsQö¼½ò FsLi»R½? 1. 943 ª«sVLiµj¶ 2. 988 ª«sVLiµj¶ 3. 920 ª«sVLiµj¶ 4. 913 ª«sVLiµj¶ 22. 2011 ÇÁ©yË³Ø úxmsNSLRiLi ú{qsQò, xmsoLRiVxtsQ ¬sxtsQö¼½ò FsNRPV䪫sgS D©«sõ ZNP[LiúµR¶ FyÖÁ»R½ úFyLi»R½Li Gµj¶? 1. FyLi²³T¶Â¿P[èéLji 2. ¿RÁLi²³U¶gRiL`i 3. ª«sVµ³R¶ùúxms®µ¶[a`P 4. ©«sWù²³T¶ÖýdÁ 23. ˳ØLRi»R½®µ¶[aRPLi ¹¸¶VVNRPä 2011 ÇÁ©yË³Ø ÛÍÁNRPäÌÁ úxmsNSLRiLi »R½NRPV䪫s ú{qsQò, xmsoLRiVxtsQ ¬sxtsQö¼½ò gRiÌÁ LSúxtsíLi Gµj¶? 1. ALiúµ³R¶úxms®µ¶[a`P 2. x¤¦¦¦LSù©y 3. ÕdÁ¥¦¦¦L`i 4. ÌÁORPQµk¶*µk¶ª«soÌÁV

3. @Li²R¶ª«sW©±s ¬sN][ËØL`i 4. NSª«sV©±s ÇÁª«sVWø 27. úxmsxmsLi¿RÁLiÍÜ[ @µ³j¶NRP ÇÁ©«sryLiúµR¶»R½ gRiÌÁ ®µ¶[aRPLi Gµj¶? 1. ®©s[FyÍÞ 2. ÊÁLigýS®µ¶[a`P 3. úbdPÌÁLiNRP 4. ˳ÏÁWÉØ©±s 28. ÇÁ©yË³Ø ÛÍÁNRPäÌÁV G ÇØÕÁ»yÍÜ[ D©«sõ−s? 1. ZNP[LiúµR¶ ÇØÕÁ»yÍÜ[ 2. LSúxtsí ÇØÕÁ»yÍÜ[ 3. Dª«sVø²T¶ ÇØÕÁ»yÍÜ[ 4. \|ms G−dsNSª«so 29. @µ³j¶NRP ÇÁ©yË³Ø gRiÌÁ ÑÁÍýØ Gµj¶? 1. ´y©±s 2. \|¤¦¦¦µR¶LSËص`¶ 3. N][ÍÞNRP»yò 4. ÊÁÎØþLji 30. 2ª«s x¤¦¦¦Lji»R½ −sxmsýªy¬sNTP zmsÌÁVxmso¬sÀÁèLiµj¶ Fsª«sLRiV? 1. ©«slLi[LiúµR¶®ªsWµk¶ 2. ª«sV©¯[øx¤¦¦¦©±szqsLig`i 3. ©«sLji=Lix¤¦¦¦©±s 4. FsLi.Fs£qs. ry*−sV©y´R¶©±s 31. C NTPLiµj¶ ªyÉÓÁÍÜ[ |msúÉÜ[ÖÁ¸R¶VLi aRPVµôðj¶ ¿P[¸R¶V²R¶Li ª«sÌýÁ ÌÁÕ³ÁLi¿RÁV ªyÉÓÁ¬s gRiVLjiòLi¿RÁLi²T¶? 1. úgkiÇÞ 2. FsÍÞ.zms.ÑÁ. BLiµ³R¶©«sLi 3. ²U¶ÑÁÍÞ 4. \|ms @¬sõ¸R¶VV 32. ÊÁ¹¸¶WgSù£qsÍÜ[ FsNRPV䪫s Gµj¶ DLiÈÁVLiµj¶? 1. −dsV®´¶[©±s 2. NSLRi÷©±s\®²¶AZNP^=²`¶ 3. ANTP=ÇÁ©±s 4. NSLRi÷©±s®ªsW©yZNP^=²`¶ 33. ª«sLiÈÁgSù£qsÍÜ[ G ªy¸R¶VVª«so FsNRPV䪫sgS DLiÈÁVLiµj¶? 1. ÊÁWùÉØ©±s 2. NSLRi÷©±s 3. NSLRi÷©±s®ªsW©yZNP^=²`¶ 4. B´R¶ÖdÁ©±s 34. C NTPLiµj¶ ªyÉÓÁÍÜ[ xqsx¤¦¦¦ÇÁ FyÖÁx¤¦¦¦NRPVäÌÁ©«sV gRiVLjiòLi¿RÁLi²T¶?

mdt◊/ø±ìôdºãT˝Ÿ, ÄsY|”m|òt ôdŒwü˝Ÿ

$<ë´Á|üuÛÑ 21

1. ÊÁµôR¶NRPLi 2. −sNSLRiLi 3. »R½ÌÁ©¯zmsö 4. \|ms @¬sõ¸R¶VV 39. {qsxqsLi (ÛÍÁ²`¶) ª«sÌýÁ NRPÖÁlgi[ ªyùµ³R¶VÌÁ©«sV gRiVLjiòLi¿RÁLi²T¶? 1. LRiNRPò{¤¦¦¦©«s»R½ 2. ª«sVWú»R½ zmsLi²yÌÁ ªyùµ³R¶VÌÁV 3. ª«sW©«szqsNRP ªyùµ³R¶VÌÁV 4. \|ms @¬sõ¸R¶VV 40. JÇÜ[©±s F~LRi ª«sÌýÁ ª«s¿RÁVè ªyùµ³R¶VÌÁ©«sV gRiVLjiòLi¿RÁLi²T¶? 1. NRPLiÉÓÁ ªyùµ³R¶VÌÁV 2. ¿RÁLRiø ªyùµ³R¶VÌÁV 3. 1ª«sVLji¸R¶VV2 xqs\lLi©«s−s 4. gRiVLi®²¶ ©¯zmsö 41. FyµR¶LRixqsLi (®ªsVLRiWäùLji) ª«sÌýÁ ª«s¿RÁVè ªyùµ³R¶VÌÁV gRiVLjiòLi¿RÁLi²T¶? 1. −sV¬sª«sWÉØ 2. aS*xqsN][xqs ªyùµ³R¶VÌÁV 3. ®ªsVµR¶²R¶V ®µ¶ÊÁ÷¼½©«s²R¶Li 4. \|ms @¬sõ¸R¶VV 42. C NTPLiµj¶ ªyÉÓÁÍÜ[ Fý¡\lLi²`¶ ¬dsÉÓÁ¬s aRPVµôðj¶ ¿P[¸R¶V²y¬sNTP Dxms¹¸¶WgjiLi¿P[ xmsµôðR¶¼½ Gµj¶? 2. NEEM 1. NEERI 3. NAM

4. NEAR

43. ªy»yª«sLRißá {ms²R¶©y¬sõ ®µ¶[¬s»][ N]ÌÁVryòLRiV? 1. ˳ØLRi−sV¼½ 2. @−dsVøÈÁLRiV 3. zqsög][ø−dsVÈÁL`i 4. \lLi©±saSÇÞ 44. ˳ÏÁW−sV\|ms @»R½ùµ³j¶NRP ªy»yª«sLRißá {ms²R¶©«sLi G úxms®µ¶[aRPLiÍÜ[ ©«s®ªsWµR¶V @ª«so»R½VLiµj¶? 1. @gSÉØ 2. ÉÜ[NTP¹¸¶W 3. ®©s[FyÍÞ 4. BLi²][[®©s[ztsQ¸R¶W 45. C NTPLiµj¶ ªyÉÓÁÍÜ[ xmsª«s©yÌÁ ª«sLækiNRPLRißá©«sV gRiVLjiòLi¿RÁLi²T¶? 1. úxmsxmsLi¿RÁ xmsª«s©yÌÁV 2. róy¬sNRP xmsª«s©yÌÁV 3. ÊÁVV»R½V xqsLiÊÁLiµ³R¶ xmsª«s©yÌÁV 4. \|ms @¬sõ¸R¶VV 46. úxmsxmsLi¿RÁ xmsª«s©yÌÁV Fs¬sõ LRiNSÌÁV? 1. 2 LRiNSÌÁV 2. 3 LRiNSÌÁV 3. 4 LRiNSÌÁV 4. 6 LRiNSÌÁV 47. @¼½|msµôR¶ ª«sVLji¸R¶VV ÍÜ[\¾»½©«s ª«sV¥¦¦¦xqsª«sVVúµR¶Li Gµj¶? 1. z¤¦¦¦LiµR¶W ª«sV¥¦¦¦xqsª«sVVúµR¶Li 2. ALjiäÉÓÁN`P ª«sV¥¦¦¦xqsª«sVVúµR¶Li 3. xmszqszmnsN`P ª«sV¥¦¦¦xqsª«sVVúµR¶Li 4. @ÉýØLiÉÓÁN`P ª«sV¥¦¦¦xqsª«sVVúµR¶Li 48. FsLi ANSLRiLiÍÜ[ D©«sõ ª«sV¥¦¦¦xqsª«sVVúµR¶Li Gµj¶? 1. z¤¦¦¦LiµR¶W ª«sV¥¦¦¦xqsª«sVVúµR¶Li 2. ALjiäÉÓÁN`P ª«sV¥¦¦¦ xqsª«sVVúµR¶Li 3. @ÉýØLiÉÓÁN`P ª«sV¥¦¦¦xqsª«sVVúµR¶Li 4. xmszqszmnsN`P ª«sV¥¦¦¦xqsª«sVVúµR¶Li 49. C NTPLiµj¶ ªyÉÓÁÍÜ[ xqsª«sVVúµR¶ ¬dsÉÓÁ ¿RÁÌÁ©yÌÁ©«sV gRiVLjiòLi¿RÁLi²T¶? 1. úxmsªy¥¦¦¦ÌÁV 2. F¡ÈÁVFyÈÁVÌÁV 3. »R½LRiLigSÌÁV 4. \|ms @¬sõ¸R¶VV

düe÷<ÛëHê\T 24. C NTPLiµj¶ ªyÉÓÁÍÜ[ ÇÁ©«sryLiúµR¶»R½ xqsWú»y¬sõ gRiVLjiòLi¿RÁLi²T¶? ®ªsVV»R½òLi ÇÁ©yË³Ø 1. ÇÁ©«sryLiúµR¶»R½ = ®ªsVV»R½òLi −s{qsòLñRiLi ®ªsVV»R½òLi −s{qsòLñRiLi 2. ÇÁ©«sryLiúµR¶»R½ = ®ªsVV»R½òLi ÇÁ©yË³Ø ÇÁ©«sryLiúµR¶»R½ 3. ®ªsVV»R½òLi −s{qsòLñRiLi = ®ªsVV»R½òLi ÇÁ©yË³Ø »R½NRPV䪫s −s{qsòLñRiLi 4. ÇÁ©«sryLiúµR¶»R½ = FsNRPV䪫s ÇÁ©yË³Ø 25. @µ³j¶NRP ÀÁ©«sõzmsÌýÁÌÁV D©«sõ LSúuíyÌÁ©«sV gRiVLjiòLi¿RÁLi²T¶? 1. D»R½òLRiúxms®µ¶[a`P 2. ª«sV¥¦¦¦LSúxtsí 3. ª«sVµ³R¶ùúxms®µ¶[a`P 4. \|ms @¬sõ¸R¶VV 26. @µ³j¶NRP ÀÁ©«sõzmsÌýÁÌÁV D©«sõ ÇÁ©yË³Ø gRiÌÁ ZNP[LiúµR¶ FyÖÁ»R½ úFyLi»R½Li Gµj¶? 1. ²³T¶ÖýdÁ 2. ÌÁORPQµk¶ª«soÌÁV

1. xmsÈíÁV 2. D¬sõ 3. xqsx¤¦¦¦ÇÁ LRiÊÁ÷LRiV 4. \|ms @¬sõ¸R¶VV 35. C NTPLiµj¶ ªyÉÓÁÍÜ[ NRPXú¼½ª«sV FyÖÁx¤¦¦¦NRPVäÌÁ©«sV gRiVLjiòLi¿RÁLi²T¶? 1. ÉÔÁFýy©±s 2. lLi[¸R¶W©±s 3. ®²¶úNS©±s 4. \|ms @¬sõ¸R¶VV 36. G −sVúaRPª«sW¬sõ ªyÈÁL`igSù£qs @LiÉØLRiV? 1. \|¤¦¦¦ú²][ÇÁ©±s ªy¸R¶VVª«so 2. NSLRi÷©±s®ªsW©yZNP^=²`¶ ªy¸R¶VVª«so 3. 1 ª«sVLji¸R¶VV 2 xqs\lLi©«s−s 4. 1 ª«sVLji¸R¶VV 2 xqs\lLi©«s−s NSª«so 37. gýRiWN][ÇÞ ZNP[ÌÁLkiÌÁ −sÌÁVª«s FsLi»R½? 1. 3.18 NTP.ZNP[ÌÁLkiÌÁV 2. 1.47 NTP.ZNP[ÌÁLkiÌÁV 3. 2.15 NTP. ZNP[ÌÁLkiÌÁV 4. 1.47 NTP.ZNP[ÌÁLkiÌÁV 38. NSLRi÷©±s\®²¶AZNP^=²`¶ ª«sÌýÁ NRPÖÁgji©«s ªyùµ³R¶VÌÁ©«sV gRiVLjiòLi¿RÁLi²T¶?

1. 4

2. 1

3. 1

4. 1

5. 1

- 6. 1

7. 4

8. 1

9. 1

10. 2

11. 2 12. 4

13. 1

14. 1

-15. 2

16. 1 17. 1 -

18. 4

19. 4

20. 2--

21. 1 22. 1

23. 1

24. 1

25. 4

26. 1 27. 2

28. 1

29. 1

30. 2

31. 1 32. 1

33. 1

34. 4

-35. 4

36. 3 37. 1

38. 4

39. 4

-40. 3

41. 4 42. 1

43. 1

44. 1

45. 4

46. 2 47. 3

48. 1

49. 4

∫Á‘· Äq+<é d”ìj·TsYbòÕ´ø£©º

ôd˝Ÿ q+: 9000073716


c

c

c

c

c

c

c

22

˳ØLRi»R½ LRiªyßØ ª«sùª«sxqsó©«sV úxmsµ³y©«sL gS Fs¬sõ LRiNSÌÁVgS −s˳ÏÁÑÁLi¿RÁª«s¿RÁVè? 4 LRiNSÌÁV 1. L][²ïR¶V LRiªyßØ 2. \lLiÛÍÁ[* LRiªyßØ 3. ÇÁÌÁ LRiªyßØ 4. ªy¸R¶VV LRiªyßØ Ë³ØLRi»R½®µ¶[aRPLiÍÜ[ FsNRPV䪫s ª«sVLiµj¶ Dxms¹¸¶WgjiLi¿P[ LRiªyßØ ª«sùª«sxqsó Gµj¶? L][²ïR¶V LRiªyßØ @µ³j¶NRP Aµy¸R¶VLi ª«s¿P[è LRiªyßØ ª«sùª«sxqsó Gµj¶? \lLiÛÍÁ[* LRiªyßØ @¼½ »R½NRPV䪫s ÅÁLRiVè»][ ¬sLRi*z¤¦¦¦xqsVò©«sõ LRiªyßØ Gµj¶? ÇÁÌÁ LRiªyßØ @¼½ FsNRPV䪫s ÅÁLRiVè @LiVV©«s LRiªyßØ ª«sùª«sxqsó Gµj¶? ªy¸R¶VV LRiªyßØ @»R½ùLi»R½ ®©sª«sVø\®µ¶©«s LRiªyßØ ª«sùª« xqsógS ®µ¶[¬sNTP }msLRiV? ÇÁÌÁ LRiªyßØ @»R½ùLi»R½ ®ªs[gRi\®ªsV©«s LRiªyßØ ª«sùª« xqsó Gµj¶? ªy¸R¶VV LRiªyßØ

Ä+Á<ÛäÁ|üuÛÑ

$<ë´Á|üuÛÑ 1. 2. 3. 4.

c

c

c

c

úxmsxmsLi¿RÁLiÍÜ[ LRix¤¦¦¦µyLRiVÌÁ F~²R¶ª«so xmsLRiLigS ˳ØLRi¼d½¸R¶V LRix¤¦¦¦µyLRiVÌÁV Gróy©«sLiÍÜ[ D©yõLiVV? ®ªsVVµR¶ÉÓÁ róy©«sLiÍÜ[ ˳ØLRi»R½®µ¶[aRPLiÍÜ[ ®ªsVVÈíÁ ®ªsVVµR¶ÉÓÁryLjigS LRix¤¦¦¦µyLji¬s ¬sLjiøLiÀÁ©«sµj¶? @a][NRPV²R¶V ÑÁ.ÉÔÁ L][²`¶ @¬s G LRix¤¦¦¦µyLjiNTP }msLRiV? 16ª«s aS»y ÊôÁLiÍÜ[ }tsQL<S |msuyª«sL`i ©«sVLiÀÁ ²³T¶ÖýdÁ −dsVµR¶VgS N][ÍÞNRP»y ª«sLRiNRPV ¬sLjiøLiÀÁ©«s LRix¤¦¦¦µyLji 1943ÍÜ[ ©yg`i xmspL`i Fýy©±s úxmsNSLRiLi ˳ØLRi»`½ÍÜ[¬s LRix¤¦¦¦µyLRiVÌÁ©«sV Fs¬sõ −sµ³yÌÁVgS ª«sLækiNRPLjiLi¿yLRiV? ©yÌÁVgRiV −sµ³yÌÁVgS 1. Çؼd½¸R¶V LRix¤¦¦¦µyLRiVÌÁV 2. LSúxtísQ LRix¤¦¦¦µyLRiVÌÁV 3. ÑÁÍýØ LRix¤¦¦¦µyLRiVÌÁV 4. úgSª«sV LRix¤¦¦¦µyLRiVÌÁV

C≤rj·T s¡Vü≤<ës¡T\T �

c

c

c

C≤Á>∑|ò”- 8

H˚wüq˝Ÿ ôV’≤y˚ n<∏ë]{° Ä|òt Ç+&çj·÷ c c c c

c c

c

1998ÍÜ[ Fs©±s|¤¦¦¦¿` GH L][²ýR¶ @Õ³Áª«sXµôðj¶ N][xqsLi GLSöÈÁV ¿P[¸R¶VÊÁ²T¶Liµj¶. Fs©±s|¤¦¦¦¿`ÁGH Fs©±s|¤¦¦¦¿`Á²U¶{ms @®©s[ xms´R¶NRPL úFyLRiLiÕ³ÁLiÀÁLiµj¶. Fs©±s|¤¦¦¦¿`ÁGH 7 µR¶aRPÌÁ©«sV xmspLjiò ¿P[zqsLiµj¶. Fs©±s|¤¦¦¦¿`Á²U¶{ms }mnsÇÞ 1ÍÜ[ ˳ØgRiLigS xqs*LñRi ¿RÁ»R½VLRiV÷ÑÁ xms´R¶NS¬sõ úxmsµ³y©«s ©«sgRiLSÌÁ©«sV NRPÌÁ}msLiµR¶VNRPV úFyLRiLiÕ³ÁLi¿yLRiV. }mnsÇÞ 2ÍÜ[ NSLji²yL`i= ¬sLSøßáLi úxms¼½Fyµj¶Li¿yLRiV. @−s ©yL`iò r¢»`½ NSLji²yL`i=, C£qsí ®ªs£qsí NSLji²yL`i= ©yL`iò r¢»`½ NSLji²yL`i úbdP©«sgRiL`i ©«sVLiÀÁ NRP©yùNRPVª«sWLji ª«sLRiNRPV 4000NTP.−dsVÌÁV ¬sLjiøLi¿yLRiV. C£qsí ®ªs£qsí NSLji²yL`i©«sV gRiVÇÁLS»`½ÍÜ[¬s F¡L`i ÊÁLiµR¶L`i, @ry=LiÍÜ[¬s zqsÍØèL`i©«sV NRPÌÁVxmso»R½VLiµj¶. µk¶¬s F~²R¶ª«so 3300 NTP.−dsV Fs©±s|¤¦¦¦¿`Á²U¶{ms 7ª«s µR¶aRPÍÜ[ ˳ØgRiLigS LjiLig`i L][²`¶=, |mnsý^ Jª«sL`i=, úÕÁN`P=ÌÁ ¬sLSøßáLi ÇÁLRiVgRiV»R½VLiµj¶.

¬s’˝Ò« sêyêD≤ �

c

˳ØLRi»`½ÍÜ[ \lLiÛÍÁ[*\ÛÍÁ©«sý©«sV Fs¬sõ −sµ³yÌÁVgS ª«sLækiNRPLjiLi¿RÁª«s¿RÁVè? 4 −sµ³yÌÁVgS

c µk¶¬s¬s 1960ÍÜ[ úFyLRiLiÕ³ÁLi¿yLRiV. c úFyLRiLi˳ÏÁLiÍÜ[ C xqsLixqsó 2 úFyÛÇÁNíRPVÌÁ©«sV ÇÁª«sVWø NSbdPøL`iÍÜ[ úFyLRiLiÕ³ÁLiÀÁLiµj¶. @−s 1. ÈÁxqsäL`i 2. ÕÁ¸R¶WNS©±s c úxmsxqsVò»R½Li ÈÁxqsäL`i }msLRiV©«sV ª«sLRiòN`PgS ª«sWLSèLRiV. c C xqsLixqsó ¿RÁLi²U¶xmnsV²`¶ ©«sVLiÀÁ ª«sV©yÖdÁ −dsVµR¶VgS ÛÍÁ[ ª«sLRiNRPV LRix¤¦¦¦µyLji ¬sLjiøLiÀÁLiµj¶. Bµj¶ ˳ØLRi»`½ÍÜ[®©s[ @»R½ùLi»R½ Fs»R½òLiVV©«s L][²ïR¶V ª«sWLæRiLi. � ˳ØLRi»`½ÍÜ[®©s[ @»R½ùLi»R½ Fs»R½òLiVV©«s úFyLi»R½LiÍÜ[ D©«sõ xqsWxmsL`i ®©s[xtsQ©«sÍÞ \|¤¦¦¦®ªs[ Gµj¶? c ª«sVLi²T¶ ©«sVLiÀÁ ËØLSÌÁ¿yÌÁ � ˳ØLRi»R½ ®µ¶[aRPLiÍÜ[ LSúxtsíQ LRix¤¦¦¦µyLRiVÌÁV FsLi»R½ aS»R½Li D©yõLiVV? c 5.46 aS»R½Li � FsNRPV䪫sgS LSúxtísQ LRix¤¦¦¦µyLRiVÌÁV FsNRPä²R¶ D©yõLiVV? c ª«sV¥¦¦¦LSúxtísQ � ÑÁÍýØ LRix¤¦¦¦µyLRiVÌÁV FsLi»R½ aS»R½Li D©yõLiVV? c 31.74 aS»R½Li � ÑÁÍýØ LRix¤¦¦¦µyLRiVÌÁV FsNRPV䪫sgS G LSúxtísQLiÍÜ[ D©yõLiVV? c ª«sV¥¦¦¦LSúxtsíQ � úgSª«sV LRix¤¦¦¦µyLRiVÌÁV ®µ¶[aRPLiÍÜ[ FsLi»R½ aS»R½Li AúNRP−sVL ¿yLiVV? c 40 aS»R½Li � úgSª«sV LRix¤¦¦¦µyLRiVÌÁV FsNRPV䪫sgS FsNRPä²R¶ D©yõLiVV? c D»R½òLRiúxms®µ¶[a`P � úgSª«sV LRix¤¦¦¦µyLRiVÌÁ @Õ³Áª«sXµôðj¶N][xqsLi ˳ØLRi»R½ úxms˳ÏÁV»R½*Li ¿P[xmsÉíÓÁ©«s xms´R¶NRPLi Gµj¶? c ˳ØLRi»`½ ¬sLSøßãÞ � 2000ÍÜ[ ª«sLiµR¶ aS»R½Li ZNP[LiúµR¶ ¬sµ³R¶VÌÁ»][ úFyLRiLiÕ³ÁLiÀÁ©«s xms´R¶NRPLi ? c úxmsµ³y©«s ª«sVLiú¼½ úgSª±sV xqs²R¶N`P ¹¸¶WÇÁ©«s � L][²ýR¶ ryLiúµR¶»R½ FsNRPV䪫so©«sõ LSúxtísQLi

Gµj¶? g][ªy L][²ýR¶ ryLiúµR¶»R½ »R½NRPV䪫so©«sõ LSúxtísQLi

gRiW²R¶cNRPLSõÈÁNRP ËÜ[LïRiL`i (427.9 NTP.−dsV) Fs©±s|¤¦¦¦¿`Ác 363: zqsL]Li¿yc ALRiWøL`i (90 NTP.−dsV)

s¡yêD≤ e´edüú c

c

˳ØLRi»R½ ®µ¶[aRPLiÍÜ[ Çؼd½¸R¶V LRix¤¦¦¦µyLRiVÌÁ aS»R½Li? 2 aS»R½Li ˳ØLRi»R½ úxms˳ÏÁV»R½*Li L][²ýR¶ @Õ³Áª«sXµôðj¶ N][xqsLi G xqsLixqsóÌÁ©«sV GLSöÈÁV ¿P[zqsLiµj¶? |qsLiúÈÁÍÞ xmsÕýÁN`P ª«sL`iä= ²T¶FyLíRiV®ªsVLiÉÞ, ®©s[xtsQ©«sÍÞ \|¤¦¦¦ ®ªs[ @´yLjiÉÔÁ A£mns BLi²T¶¸R¶W..

úËز`¶lgi[ÇÞ c 1.67 −dsV −dsVÈÁL`i lgi[ÇÞ c 1−dsV ©yL][lgi[ÇÞ c 0.76 −dsV xqsWxmsL`i ©y©¯[lgi[ÇÞ c 0.61 −dsV

uÀs¡¶sY s√&é Äs¡ZHÓ’CÒwüHé

s√&ÉT¶ s¡yêD≤ �

A Nb˛{° D H|üØRø£Aå\ Á|Pü‘R˚´ø£A+ B H A

k˛eTyês¡+ 22 nø√ºãsY 2018

c

c

Gµj¶? ÇÁª«sVWø NSbdPøL`i ˳ØLRi»`½ÍÜ[ »]ÖÁ AÉÜ[®ªsVV\ÛËÁÍÞ xmsLjiúaRPª«sV FsNRPä²R¶ róyzmsLi¿yLRiV? ª«sVVLiÊÁLiVVÍÜ[ ÈÁV −dsÌÁL`i ª«sWlLiäÉÞÍÜ[ \¿Á©y »R½LS*»R½ úxmsxmsLi¿RÁLiÍÜ[ ˳ØLRi»R½®µ¶[aRPLi Fs©¯[õ róy©«sLi?

Fs©±s|¤¦¦¦¿`Ác 563: ÇÁgji»yùÌÁcNRPLkiLi©«sgRiL`icª«sLRiLigRiÍÞcÅÁª«sVøLi (248.80 NTP.−dsV) Fs©±s|¤¦¦¦¿`Á 65: xmspâßác\|¤¦¦¦µR¶LSËص`¶cxqsWLSù}msÉÞc−sÇÁ¸R¶V ªy²R¶ (276.80 NTP.−dsV) Fs©±s|¤¦¦¦¿`Á 365: ©«súZNP[NRPÍÞc»R½VLigRi»R½VLjiòcª«sVx¤¦¦¦ÊÁWËØËص`¶ c ª«sVÌýÁLixmsÖýÁL][²`¶ (187 NTP.−dsV)

2ª«s róy©«sLi

Fs©±s|¤¦¦¦¿`Á 365ÕÁ: xqsWLSù}msÉÞc¼½LRiVª«sVÌÁgjiLjicÇÁ©«sgSLiczq µôðj¶}msÈÁczqsLjizqsÌýÁ (184NTP.−dsV) Fs©±s|¤¦¦¦¿`Á 365 ÕÁÕÁ: ¬s¸R¶VL`i xqsWLSù}msÉÞc®ªsW¾»½[, ÅÁª«sVøLi,\®ªsLS, xqs»R½VòxmsÖýÁ, @aRP*LSª«so}msÈÁc G{ms ËÜ[LïRiL`i (168 NTP.−dsV) Fs©±s|¤¦¦¦¿`Á 565: ©«sNTPlLi[NRPÍÞc©ygSLêRiV©«s rygRiL`i L][²`¶ (86.10 NTP.−dsV) Fs©±s|¤¦¦¦¿`Á 765: \|¤¦¦¦µR¶LSËص`¶c@ª«sVLigRiÍÞcNRPÌÁ*NRPVLjiòc@¿RÁèLi}msÈÁcG{ms ËÜ[LïRiL`i (186.80 NTP.−dsV) Fs©±s|¤¦¦¦¿`Á 150: NRPÌÁÊÁVLæjic¸R¶WµR¶gjiLjicúNTPuíy L][²`¶ (12.24 NTP.−dsV) Fs©±s|¤¦¦¦¿`Á 167: x¤¦¦¦úgRiLkicLS¸º¶V¿RÁWL`icª«sVx¤¦¦¦ÊÁWËÞ©«sgRiL`icÇÁ ²R¶èLýRi L][²` c −sVLSùgRiW²R¶cN][µy²R¶ (311.90 NTP.−dsV) Fs©±s|¤¦¦¦¿`Á 353zqs: zqsL]Li¿yc A»R½øNRPWL`iL][²`¶ (99.2 NTP.−dsV) Fs©±s|¤¦¦¦¿`Á 365Fs: N][µy²R¶c ÅÁª«sVøLicNRPVLRi−s L][²`¶ (76 NTP.−dsV) Fs©±s|¤¦¦¦¿`Á 353ÕÁ: @µj¶ÍØËص`¶cÛËÁÍØcªy©y=µj¶ L][²`¶(33 NTP.−dsV) Fs©±s|¤¦¦¦¿`Á 765²T¶: \|¤¦¦¦µR¶LSËص`¶c©«sLS=xmspL`i, LSª±sVxmspL`ic®ªsVµR¶N`P (54 NTP.−dsV) Fs©±s|¤¦¦¦¿`Á 161FsFs: ¬s¸R¶VL`i xqsLigSlLi²ïT¶, ©«sLS= xmspL`i, »R½WúFy©±s, gRiÛÇÁ[*ÍÞ, ÇÁgRi®µ¶[ª±sxmspL`i, ˳ÏÁVª«s©«sgjiLji ÇÁLiORPQ©±s(¿_ÈÁVxmsöÍÞ µR¶gæRiLRic 157.50 NTP.−dsV) Fs©±s|¤¦¦¦¿`Á 161ÕÁÕÁ: ¬s¸R¶VL`i ª«sVµR¶WõL`icr~©yÍØ, »y²T¶ z¤¦¦¦|msöLæS, ÖÁLiÊÁWL`i, zqsL`ixmspL`i, N][ÈÁgjiLji, LRiVúµR¶WL`ic¬s¸R¶VL`i ËÜ[µ³R¶©±s ÇÁLiORPQ©±s

‘Ó\+>±D qT+∫ yÓfi‚¢ C≤rj·T s¡Vü≤<ës¡T\T Fs©±s|¤¦¦¦¿`Ác 30: −sÇÁ¸R¶Vªy²R¶cÇÁgRiµR¶ÍÞxmspL`i (100NTP.−dsV) Fs©±s|¤¦¦¦¿`Á c44: ©ygRixmspL`ic\|¤¦¦¦µR¶LSËص`¶cÛËÁLigRiVÎÏÁ¨L`i (512.65 NTP.−dsV) Fs©±s|¤¦¦¦¿`Ác 61: ª«sV¥¦¦¦LSúxtísQ ËÜ[LïRiL`ic¬sLRiøÍÞ, ÅÁ©yxmspL`i, ª«sVÍýØxmspLRiª±sV, LSLiVVNRPÍÞ, ÇÁgji»yùÌÁ ¬s¸R¶VL`i (57.30 NTP.−dsV) Fs©±s|¤¦¦¦¿`Ác 161: xqsLigSlLi²ïT¶c ¾»½ÌÁLigSßácª«sV¥¦¦¦LSúxtísQ ËÜ[LïRiL`i (140.50 NTP.−dsV) Fs©±s|¤¦¦¦¿`Ác161ÕÁ: ¬s¸R¶VL`i ¬sÇت±sV}msÉÞc ª«sVWµR¶VgRiVLiÈÁÍÞ, ©yLS¸R¶VßãÞ ÛÆÁ[²`¶, ª«sV©«sWL`i, ÛËÁÍýØxmspL`i, xmsÍÞNRPVLjiò, BúÊÁ{¤¦¦¦LixmspL`i, @»R½WõL`i, µR¶xmspöL`i, ¾»½ÌÁLigSßá/NRPLSõÈÁNRP ËÜ[LïRiL`i(60 NTP.−dsV) Fs©±s|¤¦¦¦¿`Á 63: ÇÁgRiµR¶ÍÞxmspL`i L][²`¶c¬sÇت±sVËص`¶cËÜ[µR¶©±scª«sV¥¦¦¦LSúxtsí ËÜ[LïRiL`i (264.50 NTP.−dsV) Fs©±s|¤¦¦¦¿`Á 163: ¿RÁ¼d½ò£qsgRi²³`¶ ËÜ[LïRiL`ic ª«sLRiLigRiÍÞcÇÁ©«sgSLic \|¤¦¦¦µR¶LSËص`¶cª«sV®©sõ-

d”ôV≤#Y. ø£fi≤´DY #·Áø£e]Ô &Ó’¬sø£ºsY sê´+ø˘ |òüdtº nø±&ÉMT, ~˝ŸdüTUŸq>∑sY

ÑÁ.ÉÔÁ L][²`¶ ( }tsQL<S |msuyª«sL`i ©«sVLiÀÁ ²³T¶ÖýdÁ −dsVµR¶VgS N][ÍÞNRP»y ª«sLRiNRPV ¬sLjiøLiÀÁ©«s LRix¤¦¦¦µyLji)

ôd˝Ÿ`8121111303


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.