HIGH RISE WOODEN BUILDINGS IN CONTEMPORARY ARCHITECTURE AAR4817 - Emissions as Design Drivers - Theory course Supervisor: Dr. Aoife Houlihan Wiberg Final Report
Faculty of Architecture and Fine Art Department of Architectural Design, History and Technology Marta Piñeiro Lago May 2017
ACKNOWLEDGEMENTS
I would like to express my special thanks and appreciation to Vegard Hjelden, construction leader of Veidekke Entreprenør in Trondheim. Thank you for your patience and detailed explanations, and for providing me with all the information that I needed to elaborate this small report. It would not have been possible without your help. Thank you as well to my professor Dr. Aoife Houlihan Wiberg for your guidance and support, and Marial Coral Ness, for being always willing to lend a helping hand. To Filippo Frontini, for providing me the tools that allowed me to calculate the timber structure, and to Hanne Bylemans for providing me the calculation tables for the hollow core concrete slab. Thank you to Pasi Aalto, who set the starting point of this research, and to Dave Collins, for his kindness and good vibes. Thank you to Jairo Rúa, for being the light in the dark, and to my friendly classmates -Irene Hutami, Nikita Chagger, Juanma Cruz...-, for your kind words during stressful moments. Last but not least, I would like to give a heartfelt thanks to every person who spent their time answering my emails. Thanks to Sepp Schilcher from the X-fix company, Kazunori Yamaguchi from OOPEAA, Julia Schemel and Thomas Hoepfner from NUR-HOLZ, Alice Moncaster from The Open University, Peter Feltendal from Helen&Hard, Jenn Zatser from Michael Green Architects, Tham & Videgård Arkitekter, Josefin Roos from C.F. Møller, Anne Lilienthal from Sit, Arnstein Olav from NTNU, and Mario Rando.
ABSTRACT
The continuous growth of the population and the need for new housing are global problems in the present times. In a global situation where 40% of the total CO2 emissions released to the atmosphere are due to the buildings sector, finding a way to build more sustainable is not a possibility, but an urgent need. Research on architecture and building engineering is rapidly moving towards the design of more energy efficient buildings and sustainable materials for construction. However, what if the more sustainable solution has always been in front of us? What if the sustainable material that we are looking for is the oldest material that has ever exist? Wood, due to its carbon sequestration capacity has been proved to be one of the more sustainable materials from all times, and high rise wooden buildings are not a dream anymore, but a feasible reality. This report aims to research on this new architectural typology, and to prove how much is possible to reduce the CO2 emissions due to materials by using this wonderful and natural resource on high rise buildings’ structure instead of more conventional structural solutions.
TABLE OF CONTENTS 1. INTRODUCTION
07
2. TECHNICAL BACKGROUND
13
3. AIM OF THE STUDY
21
4. CASE STUDY
25
5. RESULTS
38
6. CONCLUSIONS
40
7. DISCUSSION
41
8. FURTHER WORK
44
REFERENCES
45
APPENDIXES
59
Fig. 1: Empire State of Wood_MGA
1. INTRODUCTION Setting the scene. The history of high rise wooden buildings
According to Strelitz (2005), high rise buildings are defined as an architectural typology in which the dimension on its vertical axis -height- is dominant over the horizontal dimension.
China, the Yingxian Pagoda. Built in 1056 and with a total of 67.30 meter tall, this pagoda has survived several large earthquakes throughout the centuries.
Due to its minimum footprint and high compactness, high rise buildings may be considered as the optimal solution when it comes to areas with high population density. However, there is no international agreement on a minimum high for this architectural typology, as if a building might be considered or not a high rise depends on its urban context. For the case of Norway, buildings higher than six storeys may be considered high rise buildings in most of the cases.
However, China and Japan are not the only countries with a tall wood building heritage. Several countries around the world have a history of constructing these kind of superstructures. “According to UNESCO, stave churches constitute one of the most elaborate and technologically advanced types of wooden construction that existed in North-Western Europe during the Middle Ages” (n.d., cited in ARUP, 2014).
Nowadays, most of the high rise buildings that still stand in our cities’ skylines are built in steel or concrete. Nevertheless, due to the high environmental impact of these construction materials, the current tendency moves towards the development of more sustainable structural alternatives. That is the case of wood. Many people tend to think that high rise wooden buildings are a cutting-edge technology, and in many aspects they are. However, there is a world wide cultural heritage for the case of high wooden buildings that remains ignored. Tall wood buildings have existed for centuries. 1400 years ago tall pagodas in Japan and China were built up to nineteen storeys in wood. Many of them still stand today even in high seismic areas and wet climate environments. This is the case of Hōryū-ji Pagoda in Japan, one of the oldest buildings existing in the world. This beautiful pagoda built in 711 was inscribed in 1993 as a UNESCO World Heritage Site under the name Buddhist Monuments. Another example is the oldest existent fully wooden pagoda still standing in
Stave churches are medieval wooden Christian churches that were very common in this area of Europe. The name derives from their structural system of post and lintel, a type of timber framing where the load-bearing posts are called “stav” in Norwegian. Originally much more widespread, most of the surviving stave churches are in Norway. One of the oldest and finest remaining examples is the Urnes Stavkirke. Built around 1130, this church was partially constructed from elements of another church built on the site a century earlier. It consists entirely of wood, with large columns and arches supporting the structure. In 1979 it was included on the UNESCO World Heritage List as one of the two first Norwegian entries. Along with Asia and Europe, North America has its own history on tall wood buildings. From 1850’s to 1940’s, in Canada and the United States, tall timber structures were built using a new structural system called “brick and beam”. This system consists on a brick façade supported by a heavy solid wood internal structure. These “brick and beam” constructions were widely used during almost a century as it allowed large, open floor plans, very useful
High Rise Wooden Buildings in Contemporary Architecture_ Introduction
7
High Rise Wooden Buildings in Contemporary Architecture_ Introduction
8
Hōryū-ji Oldest Japanese Pagoda
711
1056 Yingxian Oldest Chinese Pagoda
The Great Chicago’s fire. Setting point for technical innovation in new structural systems in concrete and steel
Urnes Stavkirke Almost 900 years old stave church, Norway
1132
1850’s
1871
Canadian and U.E. “Brick and beam” structural system used until 1941 E.g. Toronto Carpet Factory 1899
1872 First patent of Glued laminated timber (glulam) by Otto Hetzer Weimar, Germany
Perry House Oldest timber construction in Australia “Brick and beam� system
1913
1970
Murray Grove First CLT building UK
2009 Cross laminated timber (CLT) Product idea development 1990_First panels Switzerland
Concrete Jointed Timber Frame. Hybrid system Timber Tower Research Project SOM
Finding the forest through the trees (FFTT) hybrid system MGA
2012
2013
Life Cycle Tower First building using hybrid timber-based system Autria
2014
Puukuokka Housing block has been completed Finland
2017
Wood Innovation Design Centre Combines glulam, CLT and SCL on its structure Canada
High Rise Wooden Buildings in Contemporary Architecture_ Introduction
9
High Rise Wooden Buildings in Contemporary Architecture_ Introduction
10
for offices and industrial facilities. This structural system was also exported to Australia later on, becoming very popular on the 1900’s. Nevertheless, with the creation of the National Building Code of Canada in 1941, several restrictions for the “brick and beam” structural system were implemented on the new regulations, which made this system obsolete and no longer used. There is another historical event that has a key role in the history of tall wood buildings. In 1871, big part of Chicago was reduced to ashes in what is known as The Great Chicago’s Fire. Due to the increment of prices after the fire and the need of maximizing the efficiency of the available terrain, this unfortunate event was the setting point for technical innovation in new concrete and steel based structural systems that would allow the buildings to go taller. Those new structural systems were exported lateron from there to all over the world, beginning the era of concrete and steel high rises. Nevertheless, structural timber materials were never completely forgotten. In 1972, just one year later of the great fire, the first patent of glued laminated timber was released in Germany. These wood based material, also called glulam, is a type of structural engineered wood product comprising a number of layers of dimensioned lumber bonded together with structural glue. The first industrial patented use was in Weimar, Germany, where Otto Hetzer set up a steam sawmill and carpentry business. Almost a hundred years later, in 1970, the product idea of cross laminated timber - also called CLT - was developed. Twenty years from then, the first CLT panel was produced in Switzerland, creating a new world of possibilities for high rise timber structures. Fig. 2: Murray Grove building. Waugh Thistleton Architects. London, U.k.
Almost twenty years later, in 2009, the first CLT building was completed. The Murray Grove, also known as the Stadhaus building, is set in the capital city of UK. This nine-story residential building was entirely constructed in a platform-framed CLT, with the exception of the ground floor, which is made of reinforced concrete. The construction of the Murray Grove set the point of inflexion for a remarkable new interest in timber superstructures. Nevertheless, every structural system has its limitations and, for the case of entirely based timber structures, the higher limit is on twenty storeys. This high limitations for structural security reasons created a new technical ambition in finding a solution for going taller. That is how hybrid systems became a cutting-edge structural technology. The first timber-concrete based hybrid system was developed by CREE company. According to Karacabeyli and Mohammad (2015), this new system called Life Cycle Tower -LCT- “has a potential heights of up to 30 storeys and floor spans of up to 9,4 meters. LCT involves the use of glulam beams and columns as the primary building material, with concrete used in prefabricated concrete-timber composite deck elements. All components are prefabricated to support modular installation”. In 2012, the first building using this hybrid timber-based system was built in Autria. The same year, The Skidmore, Owings & Merrill -SOM- architectural and engineering firm proposed a new hibrid system for a 42-storey high-rise. SOM published a report about this stuctural system one year later, in 2013, detailing the proposed system: a Concrete Jointed Timber Frame -CJTF-. Another option for these innovative structural solutions are timbersteel hybrid systems. According to Karacabeyli and Mohammad
(2015) “steel elements can be designed to provide ductility, high tensile capacity, and predictability, where required, while timber is used for weight reduction and high bearing capacity parallel to grain. Steel and timber working together is not new; many timber connections rely on steel to transfer loads from plates, bolts, screws, etc”. Finding the Forest Through the Trees -FFTT-, is a timber-steel hybrid concept by Michael Green Architecture and engineers Equilibrium Consulting designed for high-rises up to 30 storeys in height in high seismic regions. FFTT relies on a “strong column – weak beam” approach to building design, where the “weak beam” component is made of steel beams bolted to the Mass Timber panels in order to provide ductility in the system. This hybrid alternative was published in 2012 in 200-page thesis title The Case For Tall Wood Buildings. In October of 1014, the first building using glued laminated timber, cross laminated timber and structural composite lumber together on its structure was completed under the name of the Wood Innovation and Design Centre -WIDC-. It is a six-story building placed in Prince George, British Columbia, that almost 30 meters high. This building contains glulam columns and beams, CLT floors and shearwalls, and additional elements include laminated veneer lumber -LVL- and parallel strand lumber -PSL-. Overall, it seems clear that these innovative hybrid systems open a new world of possibilities in the future of high rise wooden counstructions. CF Møller architect, Ola Jonsson (2015), also believes wood is the future: “We have researched massive wood constructions for many years and strongly believe that it is the smartest way to build multi-storey buildings in Scandinavia.” The architect, who is currently working on a “woodscraper” that will be
High Rise Wooden Buildings in Contemporary Architecture_ Introduction
11
High Rise Wooden Buildings in Contemporary Architecture_ Introduction
12
placed in Stockholm, believes the biggest challenge to overcome is not the limits of the material, but the lack of experience within the construction industry.
A recent study by Perkins+Will -funded by British Columbia Forestry Innovation Investment and the Bi-national Softwood Lumber Council- (2015), indicated that “the key driver in Europe for tall wood construction has been the strong regulatory support for low carbon content materials, renewable resources and energy efficient construction. Such policies directly and indirectly encouraged tall wood and mass timber construction”. All in all, it can be clearly appreciated that the way we perceive and understand skyscrapers is being suffering the biggest change in the past 150 years. Nowadays, it is possible to think in a high rise building without automatically relating it with steel or concrete as the only alternatives to make this architectural typology feasible. We might be starting a new era in architecture’s history.
Fig. 3: Västerbroplan. CF Møller. Stockholm, Sweden.
2. TECHNICAL BACKGROUND Advantages and properties of wood
Renewable and recyclable According to Stora Enso (n.d.), “a sustainable tree plantation preserves native ecosystems, enhances local welfare and is financially profitable”. However, the environmental benefits of using timber are not straightforward. “With a current global situation where 80% of the total forest area is already affected by human activity, with more than a third of the remainder under immediate threat “(Fenning and Gershenzon, 2002), to farm trees in plantations composed of fast-growing elite genotypes becomes extremely important in terms of maintaining global sustainability on the natural environment. The re-establishment of the cut trees that is carried out in tree plantations is important not only to preserve the levels of CO2 on the atmosphere, but also for soil and water conservation reasons, as well as to preserve the local species and global biodiversity. Nowadays, The biggest part of wood used to produce new timber based materials -such as CLT or glulam-, comes from sustainable plantations. This industrialized timber products are specially appropriate for this kind of plantations as they are composed by layers of timber. Therefore, they do not require big solid pieces from old trees, instead, they can be produced from small young trees, which makes the cycle of planting, cutting down and re-planting shorter and more profitable. Furthermore, not only the process of extracting the material can be renewable. When it comes to the end of life of timber products, these can be either re-utilized in order to create new construction materials -such as OSB panels-, or be sent to a thermal plant in order to recycling it for generating process heat and electricity.
Raw material
Recycle
Manufacturing
Transportation
Use
Construction
Durable It has been already prove that timber constructions can last hundreds of years when is properly maintained. On the other hand, timber durability relies on the specie utilized and its physical properties, as well as on the natural or chemical treatments applied to protect this material from external and xylophagous agents. In general, species with a high heartwood content tents to last longer (Ödeen and Norén, 1999), while regarding the range of treatments, there are several options available on the market, each one appropriate for certain types of risk or exposures. Between those options we can find, from more superficial to deeper protections: brushing, spraying, short immersion, prolonged immersion, vacuum pressure treatments or thermo-treated wood (AITIM, n.d.).
High Rise Wooden Buildings in Contemporary Architecture_ Technical background
13
High Rise Wooden Buildings in Contemporary Architecture_ Technical background
14
The permanent or temporary exposure to external agents is a key factor when choosing the type of protection to be applied. From lower to higher, risk types for timber elements are classified in the following categories: class 1 -covered without contact with the ground-, class 2 -covered without contact with the ground and humidity risk-, class 3 -exterior element uncovered without contact with the ground-, class 4 -in contact with the ground or sweet water-, class 5 -in contact with salty water (AITIM, n.d.). This classification determines the risk of xylophagous agents attack depending on the degree of moisture that the wood can reach during its service life (less than 18%, occasionally more than 20%, often more than 20% and permanently more than 20%).
Great load bearing capacity As shown on the following tables, different structural timber materials available on the market have been prove to have great resistance values, specially when it comes to structural efforts such as bending, tension in plane and pressure in plane. Nevertheless, despite of the fact that timber based industrialize materials are proved to be more sustainable as construction material in terms of sustainable plantations and industrialized production, natural onepiece timber elements are more resistant in terms of load bearing capacity. Classification of wood species in softwood -C- or hardwood -D- relies on their physical structure and make up. Hardwood comes from angiosperm species -such as oak, maple, or walnut-, that are not monocots, while softwood comes from gymnosperm trees, usually evergreen conifers -like pine or spruce- (Diffen, n.d.). However, by classifying the wood on these two groups it is commonly thought
Solid wood resistance values (N/mm2) - Softwood C24
C27
C30
C35
C40
Bending
24
27
30
35
40
Tension in plane
14
16
18
21
24
Pressure in plane
21
22
23
25
26
Pressure normal to the plan
5,3
5,6
5,7
6,0
6,3
Shear from lateral force
2,5
2,8
3,0
3,4
3,8
Solid wood resistance values (N/mm2) - Hardwood D35
D40
C50
C60
C70
Bending
35
40
50
60
70
Tension in plane
21
24
30
36
42
Pressure in plane
25
26
29
32
34
Pressure normal to the plan
8,4
8,8
9,7
10,5
13,5
Shear from lateral force
3,4
3,8
4,6
5,3
6,0
Glued laminated timber resistance values (N/mm2) GL22
GL24
GL26
GL28
GL30
Bending
22
24
26
28
30
Tension in plane
14
15,5
16,5
17,5
18,5
Pressure in plane
21,5
23,5
24,5
25,5
26,5
Pressure normal to the plan
4,8
5,1
5,3
5,6
5,7
1,9
2,1
2,5
2,5
2,6
Shear from lateral force
that hardwoods are hard and durable in comparison to softwoods, which are expected to be soft and workable. Although this may be true in most of the cases, there are some exceptions to this assumption. This is the case of wood from yew trees — a softwood that is relatively hard — and wood from balsa trees — a hardwood that is softer than softwoods. On the contrary, as can be seen in the graph below, timber based materials do not behave in a great manner when it comes to large spans. For spans larger that 15 m, concrete elements can support up to 800 KN, while the maximum load that laminated timber elements can support is up to 100 KN. This means that for the same span, a bigger section on timber would be needed in order to resist the load, meaning a higher cost due to materials. This is the reason why in open plan designs, concrete is preferred over timber as structural material.
Cross laminated timber resistance values (N/mm2) BBS 125
BBS XL
Bending
18
24
Tension in plane
9,8
14
Pressure in plane
21
21
Pressure normal to the plan
2,5
2,5
Shear from lateral force
1
0,7
Fig. 4: Table from Derex Laminated Timber, n.d.
High Rise Wooden Buildings in Contemporary Architecture_ Technical background
15
High Rise Wooden Buildings in Contemporary Architecture_ Technical background
16
Stores carbon It is also well known that wood has a high carbon storage capacity. Trees, as other plants and organisms, have a unique ability to store carbon. Through a natural process widely known as photosynthesis, trees transform light energy into nutrients in a chemical process that takes carbon dioxide out of the atmosphere. They convert this pollutant gas into glucose and oxygen, just with the aid of water and solar light.
in timber products rather than increasing the CO2 levels on the atmosphere, contributing to climate change. Building long lasting, efficient and durable buildings may help reduce the amount of carbon dioxide in the atmosphere by using timber based materials. “A lot of people somehow imagine trees grow from the ground. They don’t, they grow from the air. They are congealed carbon dioxide and all of that carbon is stored in them” (Flannery, 2008 cited in Planet Ark, 2017).
According to Flannery (2008, cited in Planet Ark, 2017), “In order to produce 1kg of timber, a tree consumes 1,47kg of CO2 and returns just over 1kg of oxygen into the atmosphere. When trees are harvested and used to make wood products, the carbon remains stored in the wood for the life of the product. 50% of the dry weight of wood is carbon”. One single tree can store up to 150Kg during its lifetime, just by the simple process of photosynthesis. In other words, applying this knowledge to the constructive sector, each cubic metre of timber used in construction is storing one tonne of CO2 (Green, 2013). If we compare this data with the emissions that concrete produces during its manufacturing, just 1Kg of this material releases to the atmosphere up to 334,7Kg (oekobaudat, n.d.), while the production of Portland cement -one of the most common components of concrete for construction- releases 1,04Kg per 1Kg of product produced (PCA, 2016). Given these points, is not difficult to deduce that, despite of the higher load bearing capacity of concrete, it is far more preferable - environmentally speaking-, to use a bigger amount of material in our buildings’ structure if that means having the carbon stored
Fig. 5: Chemical process of photosynthesis
Good for health and well being “Exposure to wooden furniture and fittings has real and measurable health and wellbeing benefits. These benefits are outlined in a report produced by Planet Ark’s Make it Wood campaign. The report titled ‘Wood - Housing, Health, Humanity’ examines the growing body of research showing the range of health and wellbeing benefits of living, working and learning in environments rich in wooden furnishing and fixtures” (Planet Ark, 2017).
Some of the findings of this report include that residents in aged care centres interact more with each other when surrounded by wood. Moreover, students in classrooms featured with more wood have lower heart rates and stress responses than students in classrooms featured with plastic and metal furnitures. On the other hand, two out of three workers prefer offices with wooden chairs, desks and blinds over the same office with those items made from plastic. “The studies examining the effects of wooden rooms and furnishings clearly prove that the presence of wood has positive psychological and physiological benefits that mimic the effect of spending time outside in nature. The feelings of natural warmth and comfort that wood elicits in people has the effect of lowering blood pressure and heart rates, reducing stress and anxiety and increasing positive social interactions� (Planet Ark, 2017). Furthermore, wood products within a room have also been shown to improve indoor air quality by compensating humidity levels.
Nowadays, the increase of knowledge about these benefits has resulted in a number of architects and designers creating designs for schools and health care facilities with significant amounts of visible wood, a great example of this fact is the award winning Dandenong Mental Health Centre. This new facilities has been carefully designed choosing timber elements, both new and recycled, to provide a warmth texture and a non-institutional feel to the building.
Fast an efficient to build with New mass timber construction components are typically precast off-site, which can be translated in a significant reduction in on-site construction time. For instance, a major advantage in using timber rather than wet pour concrete is the elimination of set and dry times, which reduce the construction schedule and allows other trades to begin work sooner.
Fig. 6: Time line of the construction of the Wood Innovation Design Centre. Michael Green Architects, 2014
High Rise Wooden Buildings in Contemporary Architecture_ Technical background
17
High Rise Wooden Buildings in Contemporary Architecture_ Technical background
18
This “dry construction� allows the building to take shape quickly with great accuracy. A clear example of this is the Wood Innovation Design Centre in British Columbia, Canada, design by Michael Green Architects and completed in 2014. The structure of this building is fabricated using glulam columns and beams, CLT floors and shear walls, and additional elements that include laminated veneer lumber -LVL- and parallel strand lumber -PSL-. The construction of this building started in fall of 2013 with the collocation of the elevator structural core made out of CLT,
followed by the setting in place of the glulam columns -continuous from ground floor to the roof-. The next step was to stabilize the columns with the glulam beams, further increasing this effect with the collocation of the CLT floor panels and follow by the setting in place of the main staircase made out of LVL. Lastly, the envelope of the building was constructed with LVL window mullions as the main material, and once the interior was protected from external agents, the interior finishes were completed. In less than a year, by spring of 2014, the WIDC was entirely completed. Lastly, another advantage of this building system is that the Building can be easily disassembled at the end of its functional life, and the wood products can be reused.
Natural insulator Due to air pockets within its cellular structure, wood is a natural and efficient insulator. It is 15 times better than masonry, 400 times better than steel, and 1.770 times better than aluminium (Planet Ark, 2017). In addition, lightweight wood framing methods, such as balloonframe, allow easy installation of additional fibre or foil insulation. As a result of this improved thermal performance, buildings designed with timber elements, in particular engineered timber such as CLT, Glulam and LVL require less energy demand, resulting in reduced energy consumption.
Fig. 7: Structural system of Wood Innovation Design Centre. Michael Green Architects, 2014
Furthermore, timber is hygroscopic,thus has the ability to exchange moisture with the surrounding air, which provides a buffer against short-term changes in humidity and temperature.
Behaviour in case of fire Wood is composed by carbon. Therefore, it is a combustible material and susceptible of being degraded by fire. Degradation occurs through chemical reactions -combustion- that gradually decrease its resistant section and can cause its total destruction depending on the duration of the fire exposure. The combustion of Wood is produced by combining, through the action of heat, its main components -carbon and hydrogen-, with oxygen to produce, respectively, carbon dioxide and water. Many of the materials commonly used in construction are not fuels -they do not contribute to the development of the fire-. However, none is totally fireproof. For instance, metal structures rapidly dilate and twist in a fire, causing the collapse of the building when it lose its strength. Reinforced concrete cracks with heat and even more when it cools quickly by the action of water from sprinklers. Although wood is a flammable material at relatively low temperatures in relation to those occurring in a fire, it is safer than people tent to believe. First of all, its low thermal conductivity causes the temperature to decrease towards the interior. On the one hand, the surface carbonization that is produced when wood burns prevents the outflow of gases and heat penetration and, being its thermal expansion negligible, it does not act on the structure and do not cause its deformation. According to AITIM -Spanish acronym for the Technical Investigation Association of Wood Industries- (n.d.), the action of fire on wood is evaluated with two basic parameters that rely on the material properties -reaction to fire- and structural capacity -fire resistance-.
Reaction to fire is the contribution that a material can make to fire and its development. It is a capacity index of the material in relation to the development of the fire. In short, it evaluates how a material behaves in front of the fire to determine whether the material is combustible or incombustible. The fire resistance of a constructive element is measured by the time the structural element is able to fulfil its structural function within the building. Depending on its properties, the element will be classified as fire stable, fire retardant or fire resistant. Generally speaking, timber should not be rejected as a constructive material due to fire behaviour reasons since, when compared to other materials, correctly used wood can offer adequate security conditions, within the economic considerations governing the construction.
High Rise Wooden Buildings in Contemporary Architecture_ Technical background
19
High Rise Wooden Buildings in Contemporary Architecture_ Technical background
20
New timber based materials: massive wood
Glued laminated timber Also called glulam, this timber based material is composed of several layers of lumber boards positioned based on their performance characteristics, bonded together with structural adhesives. The grain of all laminations runs parallel with the length of the member (University of North British Columbia, 2017). Its internal composition makes it very easy to create not only standard beams and columns with high load bearing capacity, but also curved elements with the same structural characteristics.
An example of this application is the structural roof of the Centre Pompidou-Metz in Metz, France. In 1942, A significant development in the glulam industry was release. A fully water-resistant phenol-resorcinol adhesive was introduce on the market, allowing glulam elements to be used today in exposed exterior environments without concern of its degradation.
Laminated veneer lumber Laminated veneer lumber, also called LVL, is a type of structural composite lumber -SCL-. LVL is produced by bonding thin wood veneers together using structural adhesives under heat and pressure and then sawn to desired dimensions. The wood grain of the veneers is oriented parallel to the length of the member (University of North British Columbia, 2017).
Cross laminated timber Fig. 8: Glued laminated timber beams
Fig. 10: Cross laminated timber panels
Fig. 9: Laminated veneer lumber panels
Also called CLT, this industrialized timber material is composed by several layers of lumber boards stacked in alternating directions oriented at right angles to one another and then glued to form structural panels with exceptional strength, dimensional stability, and rigidity. Those panels are Lightweight yet very strong, with superior acoustic, fire, seismic, and thermal performance (University of North British Columbia, 2017).
3. AIM OF THE STUDY
Nowadays, 50% of the global population lives in cities whereas the other half lives in rural environments. Nevertheless, the population is still growing and, every day, more people -specially young population- move from villages to cities looking for work opportunities. In 2050 it is expected that this situation will be reversed. According to FAO statistics -Food and Agriculture Organisation of the United Nations- (2016), in 25 years, 75% of the population will live in cities, while the rural population will be reduced to a 25%.
Rural population
person within those 3 billion will need a home. When thinking in such a large amount of people, a high density concept seems the proper solution architecturally speaking. It is widely known that, currently 40% of the CO2 emissions released to the atmosphere are due to the building industry. In the case of the United States of America, the third most populated country in the world just behind China and India (United Nations, 2015), 47% of the total emissions are due to this building activity, followed by the 33% of transportation and 19% of industry (Michael Green, 2013).
Urban population
2017
50%
2050
75%
Fig. 11: Statistical predictions of the global population according to FAO, n.d.
Furthermore, 100 billion people are currently homeless, and 1billion live in slums (United Nations for Human Rights, 2005). These people who have no home or live in precarious conditions have the right to have a dignified roof. Moreover, as previously mentioned, global population still growing every year at a vertiginous rhythm. According to the architect Michael Green (2013) in the next 20 years world population is expected to be increased in 3 billion, which represents the 40% of the current population, and every
3 billion people in the next 20 years
40%
of the current population Fig. 12: Global increase of population according to Michael Green, 2013
Cities, as we know them nowadays, are predominantly made from steel and concrete as the main structural and construction material. Nevertheless, from this 47% of emissions mentioned before in the US, a total of 8% is due to the concrete and steel industrial production -3% in the case of steel and 5% of concrete- (Michael Green, 2013), and the situation is similar for the rest of developed and in developing process cities in the world. Thus, it seems clear
21
High Rise Wooden Buildings in Contemporary Architecture_ Aim of the study
The role of high rise wooden building in contemporary society. Research question
High Rise Wooden Buildings in Contemporary Architecture_ Aim of the study
22
that the way architects and urban planers design and construct cities at the present has to change, as if this uncontrolled rhythm of emissions to the atmosphere continues, the effects they may have on the acceleration of climate change could become irreversible. In the case of China, the biggest pollutant country in the world, building sector is becoming the second largest carbon emitter (Eom et al., 2012; Lu et al., 2016; Oberheitmann, 2012; cited in Shen
40% 33% 19%
transportation
CO2emissions building industry
used on their construction. For instance, researchers in this field have already proved the trees carbon storage capacity -as mentioned before, one single tree can storage up to 150 Kg of CO2 during its life time-, which directly applied to the buildings industry means that every cubic meter of wood used for construction storage 1 tonne of CO2 during the material’s life cycle. As a matter of fact, the reduction on the CO2 emission due to materials in a high rise building can be specially noticed in the
5% concrete
industry
=
= 8% 3%
of the global greenhouse emissions
steel Fig. 13: CO2 emission in the US according to Michael Green, 2013
et al., 2016). In 2012, China building sector CO2 emissions raised up to 1600 million tonnes of carbon dioxide, 1200 million of them due to indirect emissions and 400 million tonnes to direct emission (International Energy Agency & Tsinghua University, 2015). On the other hand, not every data in the panorama of architecture and the global warming potential of its activity is discouraging. Nowadays, the research in this field is being oriented towards more energy efficient buildings design and more sustainable materials
150 Kg CO2 storage capacity
1 m3 wood
1 tonne CO2
Fig. 14: Wood CO2 storage capacity according to Michael Green, 2013
case of its structure, since it represents the biggest amount of materials within a building. This change can make a net difference of thousand of CO2 kg equivalents per structure built but, more precisely, how many thousands of kilograms are we talking about? As a conclusion, the question that this report aims to assess is: how much it is possible to reduce the CO2 emissions just by using timber elements instead of conventional structural systems?
Methodology
A2
A3
A4
A5
B1
B2
B3
B4
B5
C1
C2
C3
C4
D
Use
Maintenance (incl. transport)
Repair (incl. transport)
Replacement (incl. transport)
Refurbishment (incl. transport)
Deconstruction / demolition
Transport to end of life
Waste Processing
Disposal
Reuse / Recovery/Recycle or Exported energy / Potential
X
X
X
X
X
USE STAGE
RECYCLE
END OF LIFE
X
Fig. 15: System Boundary EN 15804:2012
High Rise Wooden Buildings in Contemporary Architecture_ Aim of the study
A1
Installation into building
A life cycle analysis will be carried out so as to asses the kilograms of carbon dioxide equivalents released to the atmosphere due to
PROCESS STAGE
Transport to building site
System boundary
PRODUCTION
Manufacturing
Once the case study has been selected, the second stage in this report’s development is the modelling of the building in order to extract numerical results. The modelling has been carried out in Revit -software for BIM (Building Information Modelling) developed by Autodesk- in combination with Microsoft Excel -software capable of creating and editing spreadsheets whose general uses are cellbased calculation, pivot tables, and various graphing tools-.
Due to the use of carbon sequestration method for the EPDs of timber elements -negative accounting for the carbon stored during the material’s life time-, the life cycle assessment carried out must take into consideration the end of life stage. Therefore, being only possible to equally compare the materials with the same available information for the phases on their EPD, the following boundary conditions will be applied to the LCA, according to the System Boundary EN 15804:2012.
Transport to Manufacturer
The selected case study figure among this year edition nominates -2017- of the prestigious Mies van der Rohe Award: the Moholt Timber Towers. The nomination of this building relies in more than aesthetic reasons. Due to its environmentally conscious design and sustainable construction materials, these buildings have allowed to reduce their environmental impact up to a 57% in comparison with more traditional building systems (Plataforma Arquitectura, 2017). Its location in the neighbourhood has been another influence factor when choosing this case study, since its proximity allows the author to check in detail its performing and constructive solutions.
the strural materials. In order to do so, the Environmental Product Declaration -EPD- for each material used in the building model will be needed. For the cases in which the company producing the material is known, it will be utilized its particular EPD, while for the case of local materials or with no specified producers, an equivalent material from the Ecoinvent library will be utilized.
Raw Material Supply
With the aim of answering the previous question in a precise manner, a reference building is needed. For this reason, a case study methodology has been chosen in order to develop this analysis. The selection of this reference case study allows to have real quantitative information as a base for research, which will be the setting point for a detailed quantitative comparative method. The selection of the case study is a key decision on the development of this report. For this reason, it has been carefully taken.
23
MATERIAL Concrete Steel CLT Self leveling concrete Vinyl flooring Prefabricated bathrooms (steel+concrete) Rockwool Linoleum flooring Gypsum/plasterboard Other
High Rise Wooden Buildings in Contemporary Architecture_ Aim of the study
24
Scope of the report As can be seen in the following graph, the biggest drivers for the CO2 emissions of the Moholt Timber Towers are the materials composing the structure. With this chart it has been prove that, for the case of high rise buildings, the selected materials for the structural design are the ones that are going to make the difference in the final LCA results. It can be seen that, even if the amount of concrete is much smaller than the CLT, the emissions due to this particular material are higher. For the reasons explained above, the scope of this report is set on the emissions due to the structural materials, as they represent the most significant amount of emission for the case of a high rise building. Therefore, only the structural elements have been modelled and taken into consideration on the LCA results.
TOTAL EMISSIONS 19,29 % 17,81 % 16,87 % 10,89 % 7,95 % 5,33 % 4,47 % 3,44 % 2,66 % 11,3 %
Percentage of CO2 emissions per material 11,3 19,29 2,66 3,44
Concrete Steel
4,47
CLT Self leveling concrete Vinyl flooring
5,33
Prefabricated bathrooms (steel+concrete) 17,81 7,95
Rockwool Linoleum flooring Gypsum/plasterboard Other
10,89 16,87
Scenarios Four different models have been developed corresponding to four different scenarios in order to compare different LCA results. These scenarios are based on the utilization of several structural systems of different materials. The first one will be the actual solution, while the other three are based on hypothetical structural alternatives. As all the towers have the same dimensions, distribution and structural system, only one of them will be modelled to obtain the numerical results. More precisely, the one modelled is the tower A. As mentioned previously, the first scenario is the tower A as it is currently built. Its structural system is composed of basement and
MATERIAL Concrete Steel CLT Self leveling concrete Vinyl flooring Prefabricated bathrooms (steel+concrete) Rockwool Linoleum flooring Gypsum/plasterboard Other
TOTAL EMISSIONS 19,29 % 17,81 % 16,87 % 10,89 % 7,95 % 5,33 % 4,47 % 3,44 % 2,66 % 11,3 %
Fig. 16: Percentage of emissions per material of Mofolt 50|50. Percentage of CO 2 emissions per material Veidekke Entreprenør AS 11,3 19,29
ground floor in a concrete structure with load bearing walls, solid concrete slabs and columns, while the rest of the floors -from 2nd to 9th- are made out of CLT load bearing panels, with the addition of three CLT beams which carry the load of the open floor plan common space. This structural system includes steel plates and screws for joining the CLT panels together, as well as bigger steel plates to absorb the shrinkage. The anchoring to the concrete structure is also made out of this material. The second scenario is completely opposite to the previous one. In a more traditional way, this structural system is completely made out of reinforced concrete. Therefore, the underground and first floor remain with the same structural system -increasing the dimensions of some of the load bearing walls to resist the extra weigh- while the rest of the floors will be switch into a concrete framing system of beams and columns which also include some load bearing walls to support the lateral forces of the wind and stabilize the central nucleus. On the third scenario, the underground and first floor are once again built in concrete, while, this time, the upper floors up to the roof will be made in a glulam framing system composed by beams and columns. This structural system will also maintain the CLT panels for the lift and stairs central nucleus in order to stabilize the building from lateral forces, while the connections between columns and beams will be made in traditional woodworking joints instead of steel plates and screws. As it is belief that the steel connections for the timber elements could be a significant driver for the emission, this fourth and last scenario aims to prove that out. Therefore, this structural system will be once again like the first one -two first floors in concrete and rest
of them in CLT load bearing panels- with a remarkable difference. This time, the joints between timber elements will be completely made out of timber in an innovative new structural system which will be detailed explained further on. However, not all the steel elements are possible to be replaced by wood. Consequently, the structural plates that absorb the shrinkage and the anchoring to the concrete structure will remained in steel.
High Rise Wooden Buildings in Contemporary Architecture_ Aim of the study
25
4. CASE STUDY
High Rise Wooden Buildings in Contemporary Architecture_ Case Study
26
Moholt 50|50. The Moholt Timber Towers
Every two years, with the aim of acknowledge and reward quality architectural production in Europe, the European Union Prize for Contemporary Architecture – Mies van der Rohe Award, is granted to a contemporary building. This international prize helps not only as recognition, but also as inspiration for professionals on the field of architecture to development new ideas and technologies. This year, the Moholt 50|50, commonly known as Moholt Timber Towers, is nominated to receive this prestigious award. Design by the architectural office MDH Arkitekter with base in Oslo, and built by the contractor Veidekke Entreprenør AS of the Trondheim district, this innovative project, with a total surface of 21.700 m2, is at the moment the biggest CLT project built in Europe (Veidekke Entreprenør, 2017).
Fig. 17: Axonometrix of the CLT structure and interior distribution of Moholt 50|50
This project has not only been built trying to minimize the CO2 emissions due to materials, but it has also been carefully designed to minimize the emissions due to the use stage. The generous layers of isolation that covers not only the exterior envelope but almost every surface on this buildings, and the quality of the constructive designed in the encounters of the exterior windows and doors, makes this buildings extremely energy efficient. All this added to a sustainable system of energy production based on geothermal and solar energy sum to the district heating water system. As a result, all this decisions have allowed to reduced the global warming potential of this building up to a 57% in comparison with more traditional alternatives. The Moholt towers are part of a master plan of densification for a student village in Trondheim, Norway. The project uses the site of an old parking lot to create the new heart of the student community, which includes housing units, nursery, market and sports facilities.
Fig. 18: Aereal picture of Mholt 50|50. MDH Arkitekter , 2017
The five towers are 9-storey height, making a total of 28 meters. The basement and ground floor are made in cast in situ reinforced concrete. From the second to the ninth floor the whole structure is composed of prefabricated elements of cross laminated timber. The central spaces for elevators and stairs are also constructed in this timber panels. All of them, both inner and outer elements, are structural load bearing panels. As there is no producer within the Scandinavian Countries with such a large production of CLT, the material used in this project has been brought from Austria, which implies three times higher emissions due to transportation. However, even taking into account this fact, the total footprint of the Moholt towers is only about 380m2. According to the Veidekke construction leader Vegard Hjelden (2017), the CLT structure of each tower can be built in less than five weeks, and workers with breathing diseases needed less medication working with this material in comparison with more common structural alternatives. The original architectural proposal for the competition consisted on
Fig. 19: elevation of the towers of Moholt 50|50. MDH Arkitekter
Fig. 20: Situation plan of Moholt 50|50. MDH Arkitekter
High Rise Wooden Buildings in Contemporary Architecture_ Case Study
27
28
High Rise Wooden Buildings in Contemporary Architecture_ Case Study
this type of structural solution (Archdaily, 2017). CLT structures have the characteristics of shrinkage in tangential and radial direction. Therefore, the façade cladding system of the student towers, made of Kebony treated pine wood panels, is designed to give it a telescopic characteristic, which can absorb the shrinkage of the floor elements without creating tensions in the cladding (Archdaily, 2017).
Fig. 21: Picture of Moholt 50|50. MDH Arkitekter , 2017
towers built with conventional construction methods, a steel and concrete structure with a brick outer lining in order to harmonize with the existing housing buildings of the student village, with redbrick façades. However, with the aim of meeting the project’s ambitious energy and climatic objectives, the team investigated the possibility of convert the structure into a cross laminated timber construction. Besides, with their relatively short stretches and Y-shaped volumes, the towers were in many aspects optimum for
Fig. 22: Picture of Moholt 50|50. MDH Arkitekter , 2017
Consu Addres Addres Phone Fax e-mail Consu Addres Addres Phone Fax e-mail
Revit models for the different LCA scenarios
Consu Addres Addres Phone Fax e-mail Consu Addres Addres Phone Fax e-mail
29
No.
Consu Addres Addres Phone Fax e-mail Consu Addres Addres Phone Fax e-mail Consu Addres Addres Phone Fax e-mail Consu Addres Addres Phone Fax e-mail
1
1
3D Section
Consu Addres Addres Phone Fax e-mail
P 3
3D Section Copy 1
Project nu Date
No.
Fig. 23: Scenario 1& 4. CLT load bearing panels system
Fig. 24: Scenario 2. Concrete framing system
Fig. 25: Scenario 3. Glulam framing P system + CLT load bearing panels
3
Project nu Date
High Rise Wooden Buildings in Contemporary Architecture_ Case Study
Consu Addres Addres Phone Fax e-mail
High Rise Wooden Buildings in Contemporary Architecture_ Case Study
30
Scenario 1
As explained before, four different scenarios have been developed in order to test the carbon dioxide emission from different structural systems based on different materials. The first scenario corresponds to the actual constructive and structural solution for these innovative timber towers. The first two floors -one of them underground and the other above groundhave been solved with a reinforced concrete framing system and solid concrete slabs. The structural function of these two storeys is to carry the load from the timber structure of the floors above to the terrain. It is supposed that one single floor made out of reinforced concrete -the underground floor- would have been enough to accomplish the function of containing the terrain and act as a foundation -also solved with a cast in situ solid reinforced concrete
Fig. 26: Basement structure scenario 1
slab-. However, the first floor has probably also been built out of this material as a solution to hygrothermic reasons. Thus, this floor will avoid the humidity from the terrain to come inside the building, improving as a results the building’s energy efficiency. Regarding the upper floors, both walls and floors have been completely made out of CLT panels, with the exception of three big beams which function is to allow an open floor plan in the common areas. However, not all the CLT panels are strictly load bearing, some of them have the function of stabilizing the structure. In fact, only one of each two walls separating the students’ rooms has a load bearing function. Hence, there are several dimensions of CLT panels used in this project.
Fig. 27: First floor structure scenario 1
Fig. 28: 2nd to 9th floor structure scenario 1
31
Scenario 1 Emissions per material Scenario 2
Scenario 1 Emissions per material
Emis
[Kg CO2 eq] per material Kilograms of CO2 equivalents
900000,00
Emissions per material [Kg CO2 eq]
900000,00
800000,00
900000,00
800000,00
800000,00
700000,00
700000,00
600000,00
As can be clearly seen on the following graph, the drivers of the 500000,00 emissions are the production stage -A1 to A3- and the end of life -C1 400000,00 to C4, of which only C2 and C3 are included in this LCA-. It is seems also clear that the key phase on end of life stage regarding 300000,00 CO2 emissions is C3 -waste processing-, while C2 -transport to end 200000,00 of lifeis almost negligible. It fact, it is C3 phase what is making the different in this LCA.
600000,00
500000,00
500000,00
400000,00
On the other hand, as it was expectable, both CLT and concrete 0,00 are the main drivers of emissions regarding materials. Here, it can be -100000,00 clearly appreciated what was also showed on the chart facilitated by Veidekke Entreprenør: the kilograms of CO2 equivalents due to -200000,00 the use of concrete are considerably big in comparison with the total amount of concrete used in this structural system -since only -300000,00 two of the ten floors are built in this structural material-.
100000,00
600000,00
100000,00
-400000,00
Lastly, it seems also clear that the small amount of steel utilized in this -500000,00 project -6000Kg in total- is not a big driver on the global emissions. -600000,00 -700000,00
700000,00 600000,00 500000,00 400000,00 300000,00 200000,00
C2
C3
D
Concrete
195049,77
273,90
804,21
-13450,10
CLT
-638586,29
472,23
841515,74
-382024,80
steel
8160,00
14,88
0,00
-3528,00
Concrete
CLT
steel
200000,00
300000,00
100000,00
100000,00
200000,00
0,00
0,00
-100000,00
-100000,00
0,00
-200000,00
-200000,00
-100000,00
-300000,00
-300000,00
-200000,00
-400000,00
-400000,00
-400000,00
-500000,00
-500000,00
-600000,00 -500000,00
-600000,00
-300000,00
-700000,00 -600000,00
A1-A3
300000,00
400000,00
-700000,00
A1-A3
A1-A3
C2 Concrete
C2
C3
C3
CLT
D
D
-700000,00
steel
CastFig. in place concretescenario 349205,90 -24080,29per material on each 29: Results 1. Table490,37 and graph1439,81 of CO2 emissions Precast concrete 22928,55 243,00 0,00 -1274,79 phase Cast in place concrete
Precast concrete
High Rise Wooden Buildings in Contemporary Architecture_ Case Study
As structural load bearing walls, CLT panels of 120, 140 and 160 [Kg CO 2 eq] mm have been utilized depending on the area - 120mm on the 900000,00 rooms, and 140 or 160mm on the vertical communication nucleus and800000,00 central common space- while the flooring structure has been solved with 140mm thick CLT panels. Additional panels of 80mm thick700000,00 have been used as separation between dorms with an stiffening structural function.
A1-A3
Cast in place
High Rise Wooden Buildings in Contemporary Architecture_ Case Study
32
Scenario 2
Nowadays, most of the buildings in our cities are built out of concrete. For that reason, this second scenario aims to find out how much the CO2 emissions due to materials would have been increased if this building was one among many others on the city of Trondheim. It consist on a structural solution completely made out of reinforced concrete, composed by both, a framing system of beams and columns, and load bearing walls for lateral stability. In order to minimize as maximum as possible weigh and material -and consequently kilograms of CO2 equivalents- the floors’ structure have been made out of pre-cast hollow core concrete slabs when possible. Under those circumstances, the first two floors remain as the original solution, with an increase on the thickness of the perimeter retaining wall -from 250 to 450 mm-; while for the
Fig. 30: Basement structure scenario 1
upper floors a more efficient solution has been implemented. These upper floors take advantage of the small span between perimeter walls on each of the three wings that compose the Y-shape building in order to avoid as maximum as possible the use of extra columns and beams. Therefore, as this distance is less than 14m, a hollow core concrete slab of 265mm thick can be used from side to side, resting on the these load bearing perimeter walls that act, at the same time, stabilizing the building from lateral forces. The collocation of this hollow core concrete slab - running parallel to the longest direction- is not the common way to use this structural unidirectional system. However, due to the short spans present in this building, it is perfectly possible to be used in this way.
Fig. 31: First floor structure scenario 1
Fig. 32: 2nd to 9th floor structure scenario 1
33
Scenario 1 Scenario 2 Emissions per material
Scenario 2 Emissions per material
Emissions per material [Kg CO2 eq] This system allows the900000,00 walls where [Kg CO2 the eq] windows of the individual students’ rooms are located to be completely non-structural 800000,00 -except from the substructure that might be needed for carrying 900000,00 the load of the windows-. Therefore, the external envelope may be 700000,00 more energy efficient 800000,00 increasing the thickness of the isolation. The same may occur with 600000,00 the partitions between the students’ rooms.
[Kg CO2 eq] Kilograms of CO2 equivalents per material
800000,00 700000,00
700000,00
600000,00
500000,00in this particular case, there is a main Regarding the LCA results 600000,00 difference in relation to the previous scenario: in this case, emissions 400000,00 due to phase500000,00 C3 -waste processing- is almost negligible in the case of the concrete 300000,00 cast in situ and non-existent for the precast concrete. On 400000,00 the other hand, the potential for recycling the cast 200000,00 in place concrete -phase D- is making a small but yet noticeable 300000,00 difference of 20 tonnes of CO2 equivalent in the LCA results.
200000,00
500000,00 400000,00 300000,00 200000,00
100000,00
100000,00
As it might be expected, the emissions due to cast in place concrete 0,00 100000,00 have been increased from almost 200 tonnes of CO2 in scenario 1 to 350 tonnes of CO equivalent in the second scenario. However, 2 -100000,00 0,00 despite of the fact that the total cubic meters of precast concrete -200000,00 -100000,00 on the flooring system are almost the same than the total cubic meters of solid slab - 356 and 386 m3 respectively- the emissions due -200000,00 -300000,00 to precast concrete are not that high in comparison to the ones due to cast in-300000,00 situ concrete. -400000,00
-13450,10 -382024,80
steel
-3528,00
-100000,00 -200000,00 -300000,00 -400000,00
-400000,00 -500000,00
-500000,00
-500000,00 -600000,00
-600000,00
-600000,00 -700000,00 D
0,00
-700000,00
A1-A3
A1-A3
C2 Concrete
C2
C3
C3
D CLT
Cast in place concrete
349205,90
490,37
1439,81
-24080,29
Precast concrete
22928,55
243,00
0,00
-1274,79
Cast in place concrete
Precast concrete
D steel
-700000,00
A1-A3
C2
Cast in place concrete
C3
D
Precast concrete
Fig. 33: Results scenario 2. Table and graph of CO2 emissions per material on each phase
High Rise Wooden Buildings in Contemporary Architecture_ Case Study
900000,00
High Rise Wooden Buildings in Contemporary Architecture_ Case Study
34
Scenario 3
Scenario number three aims to find out whether a framing system made out of timber would actually have been worse or better than the load bearing panel system implemented on the final structural solution of the Moholt Timber Towers. Consequently, this third scenario has been designed following this framing system and its limitations. The main problematic with this kind of systems is that, for the case of high rise buildings, the bending moment on the base due to their height and the buckling may be quite hight. Therefore, a design completely based on a framing system with small section elements is not possible, since these kind of systems do not have enough stability.
Fig. 34: Basement structure scenario 1
A possible solution to this problematic would have been the use of high section elements -like in the case of the Bjergsted Financial Park in Stavanger designed by Helen & Hard-, or diagonal elements between columns for a better stabilization. Both options imply the use of a higher amount of material and the first one is not appropriated for such a compartmented floor plan designed with short spans. Another issue to take into account is that the structural design for high rise timber buildings usually includes a rigid nucleus to improve their stability. This fact can be clearly appreciated in the case of the structural designs for the Wood Innovation Design Centre -Fig. 6- or hybrid structural systems for high rise buildings like the ones proposed by Michael Green Architects, SOM or CREE -mentioned on the introduction of this report-.
Fig. 35: First floor structure scenario 1
Fig. 36: 2nd to 9th floor structure scenario 1
35
As a result, the final structural[Kg design CO2 eq] for this scenario is composed by two floors of concrete structure -as it is nowadays- and a framing 900000,00 system of glulam columns -130x230mm- and beams -130x330mm-. 800000,00 While the core of the building, where the staircase an elevator are located, remains in CLT panels, as well as the flooring structure, and 700000,00 some of the exterior walls in order to improve its lateral stability -as 600000,00 it has been explained before-. 500000,00
In an attempt to minimize the emissions due to the steel connections 400000,00elements, traditional woodworking joints have been used between instead. However, this fact does not imply a complete substitution 300000,00 of all the steel used in the structure, since some elements -like the 200000,00 plates that absorb the shrinkage and the anchoring to the concrete structure- are need to be made out of steel. 100000,00
As can 0,00 be seen in the following chart, the emissions due to the use of CLT are slightly reduced in comparison with scenario 1, as -100000,00 well as the ones produced by the use of steel -which are once again almost negligible-. Phases A1 to A3 -production stage- and -200000,00 D -recycling or energy production potential- are one more time -300000,00 drivers on the final CO2 emissions, while phase C2 is negligible. -400000,00
It can also be observed that emissions due to glulam structure are not-500000,00 very high, since the final amount of this material is quite small in comparison with CLT and concrete in the building’s structure. -600000,00 -700000,00
900000,00
900000,00
800000,00
800000,00
800000,00
700000,00
700000,00
600000,00
600000,00
500000,00
500000,00
400000,00
400000,00
300000,00
300000,00 200000,00 100000,00 0,00 -100000,00
[Kg CO2 eq]
700000,00 600000,00 500000,00 400000,00 300000,00 200000,00
200000,00
100000,00
100000,00
0,00
0,00
-100000,00
-100000,00
-200000,00
-200000,00
-300000,00
-200000,00 -300000,00 -400000,00 -500000,00 -600000,00
-400000,00
-300000,00
-500000,00
-400000,00
-600000,00
-500000,00
-700000,00 -600000,00
A1-A3
C2
C3
D
Concrete
195049,77
273,90
804,21
-13450,10
CLT
-426251,74
315,21
561705,69
-254998,80
Concrete
195049,77
273,90
Glulam
-38239,03
791,18
43434,23
-11192,52
CLT
-638586,29
472,23
2720,00
4,96
0,00
-1176,00
Steel
Concrete
CLT
Glulam
Steel
Emis
-700000,00
-700000,00 A1-A3
C2 A1-A3
C3 C2 804,21 Concrete CLT 841515,74
D C3 -13450,10 Glulam Steel -382024,80
D
Results scenario graph of CO emissions per material on each 2 Steel Fig. 37: 2720,00 4,963. Table and0,00 -1176,00 phase Concrete
CLT
Steel
High Rise Wooden Buildings in Contemporary Architecture_ Case Study
Scenario 3 Emissions per material
Scenario 3 Emissions per material Scenario 4of CO2[Kg CO2 eq] Kilograms equivalents per material Emissions per material 900000,00
A1-A3
C
High Rise Wooden Buildings in Contemporary Architecture_ Case Study
36
Scenario 4
The fourth and last scenario is the same structural system than the first one, with a significant difference. In this case, part of the steel joints have been replaced by timber elements. This alternative has been possible due to a new innovative system called X-fix, designed for the connection of CLT panels without the need of using steel screws.
This system is as easy to install as it is possible to see on the pictures.
This innovative solution inspired in traditional woodworking systems has been developed by a German company, and has been already tested in real buildings. It has two varieties: X-fix C and X-fix L. The first one, designed for connections in the same plane, has the equivalent strength to 12 steel screws of 6mm diameter and 120mm long or 24 of 6mm diameter and 80mm long. While the X-fix L has been desidned for connections in perpendicular angles.
Fig. 39: Basement structure scenario 1
Fig.40: First floor structure scenario 1
Fig. 38: Installation of the X-fix C system.
Fig. 41: 2nd to 9th floor structure scenario 1
900000,00
900000,00
700000,00 800000,00
800000,00
600000,00 700000,00
700000,00 600000,00 500000,00 400000,00 300000,00 200000,00
900000,00 800000,00 900000,00 700000,00 800000,00 600000,00 700000,00 500000,00 600000,00 400000,00 500000,00 300000,00 400000,00 200000,00 300000,00 100000,00 200000,00 0,00 100000,00 -100000,00 0,00 -200000,00 -100000,00 -300000,00 -200000,00 -400000,00 -300000,00 -500000,00 -400000,00 -600000,00 -500000,00 -700000,00 -600000,00
[Kg CO2 eq]
500000,00 600000,00 400000,00 500000,00 300000,00 400000,00 200000,00 300000,00 100000,00 200000,00
Fig. 42: Installation of the X-fix L system.
0,00 Regarding the LCA results for this scenario, the only dirrecence 100000,00 100000,00 regarding scenario 1 is the emissions due to the steel joints, which -100000,00 0,00 can be clearly seen0,00 on the table bellow that has been reduced from 8160 Kg CO-200000,00 equivalents in the case of scenario 1, to 2720 Kg 2 -100000,00 -100000,00 CO2 equivalents.
D -13450,10
-200000,00
-300000,00 -200000,00
-300000,00
-400000,00 -300000,00
-400000,00
-500000,00 -400000,00
-500000,00
-600000,00 -500000,00
-600000,00
-700000,00 -600000,00
-700000,00
-254998,80
Concrete
-11192,52
CLT
-1176,00
Steel
A1-A3 -700000,00 195049,77
-700000,00 A1-A3
C2
C3
C2
Concrete C3 CLT
Glulam D Steel
-638586,29
273,90 A1-A3 472,23
2720,00
4,96
804,21 C2 841515,74 Concrete CLT 0,00
-13450,10 C3 -382024,80 Glulam Steel -1176,00
Concrete
CLT
Steel
D
37
Scenario 4 Emissions per material [Kg CO2 eq]4 Scenario Emissions per material
Kilograms of CO[Kg equivalents per material 2 CO2 eq]
A1-A3
C2
C3
D
A1-A3
C2
C3
D
Concrete
CLT
Steel
D CLTof CO Steel emissions per material on each Fig. 43: Results scenario 4. TableConcrete and graph 2 phase
High Rise Wooden Buildings in Contemporary Architecture_ Case Study
Scenario 3 Emissions per material [Kg CO2 eq]3 Scenario 900000,00 ScenarioEmissions 4 per material [Kg CO2 eq] Emissions per material 800000,00
5. RESULTS 38
LCA comparison of CO2 emissions due to structural materials for the different scenarios Phase A1-A3 C2 As can be seen in C3 the following D
High Rise Wooden Buildings in Contemporary Architecture_ Results
Scenario 1 Scenario 2 Scenario 3 Scenario 4 -266721 -440816,52 -435376,52 372134,45 1385,25 751,08 761,00 733,37 605944,13 842319,95 842319,95 1439,81 graph, the emissions due to phase -399002,90 -25355,08 C3 -waste processing- are the most significant ones in -280817,42 all scenarios-396650,9
where wood represents a predominant material on the building’s structure. However, for the case of scenario 2, where reinforce Scenario 1 Scenario 2 Scenario 3 Scenario 4 concrete is the only material used in the structural system, phases Totals 348952,55 59790,96 5603,61 8701,53 A1to A3 -production stage- are the biggest emission drivers.
Scenario 3
800000,00 700000,00
400000,00 300000,00 200000,00 100000,00 0,00 -100000,00
180000,00
Scenario 2
900000,00
500000,00
It is also remarkable the difference between phases A1 to A3 130000,00 among the different scenarios. For the case of scenarios 1, 3 and 4, 80000,00 the total emissions are negative, fact that has its explanation in the high carbon storage30000,00 capacity of wood. Scenario 1
1000000,00
-200000,00 -300000,00 -400000,00 Scenario 4
Regarding phase D -recycling or energy production potential-, the emissions are also negative. This fact is explained due to the Scenario 2 Scenario 3 Scenario 4 consideration that the energy produced out of these materials at Differences 6 39 the production the end of their life or their recycling avoiding of -0,4
-500000,00
Phase A1-A3 C2 C3 D
-900000,00
Scenario 1 Scenario 2 -435376,52 372134,45 761,00 733,37 842319,95 1439,81 -399002,90 -25355,08
Scenario 3 -266721 1385,25 605944,13 -280817,42
Scenario 4 -440816,52 751,08 842319,95 -396650,9
[Kg CO2 eq] Kilograms of CO2 equivalents per phase
600000,00
This fact has its explanation on the way the material is processed Total emissions per scenario at the end of life stage. In the case of the CLT, it is sent to a thermal [Kg CO2 eq] power plant in order to produce thermal energy out of it. The chemical reaction of combustion when the wood is burned is 380000,00 the responsible factor of these high CO2 emissions. For the cases of concrete and glulam, 330000,00 the material is simply disassembled and recycled, therefore280000,00 these processes do not produce as much CO2 emissions as the combustion process. 230000,00
-20000,00
Total emissions per phase
-600000,00 -700000,00 -800000,00
-1000000,00
Total emissions Scenario 2 per phase Scenario 3
Scenario 1
A1-A3
[Kg CO2C2 eq]
C3
Scenario 4 D
Fig. 44: Table and graph of comparison of the total CO2 emissions per phase of the 1000000,00 life cycle assessment on each scenario
900000,00 800000,00
39 Material Scenario 1 Scenario 2 Scenario 3 Scenario 4 Concrete 182677,78 182677,78 182677,78 327055,79 CLT -119229,65 -178623,12 new materials and the increase in the use of new 0,00 resources are -178623,12 0,00production 1548,96 1548,96 4646,88 compensating the CO2 steel emissions released during the Precast concrete 21896,76 0,00 0,00 0,00 stage. Glulam 0,00 -5206,13 0,00 0,00
Total emissions per material
[Kg CO2 eq] Kilograms of CO2 equivalents per material 500000,00 450000,00
350000,00 300000,00 250000,00 200000,00
For the case of scenario 1, the total equivalent emissions due to the use of concrete are 180 tonnes of CO2, same amount that in the third and fourth scenario. While in the second one, the total equivalent emissions due to the use of this material rises up to 352 tonnes of CO2, almost the double than in the other scenarios where concrete has been substituted by timber.
150000,00 100000,00 50000,00 0,00 -50000,00
In this graph can be also seen very clearly the benefits of the use of wood mentioned before, since its carbon sequestration capacity is storing up to 180 tonnes of carbon dioxide in the case of scenarios 1 and 4, and up to 125 tonnes of CO2 for the case of scenario 3.
-100000,00 -150000,00 -200000,00 -250000,00 -300000,00 -350000,00
Material Concrete CLT steel Precast concrete Glulam
Scenario 1 Scenario 2 182677,78 327055,79 0,00 -178623,12 0,00 4646,88 21896,76 0,00 0,00 0,00
Scenario 3 182677,78 -119229,65 1548,96 0,00 -5206,13
Scenario 4 182677,78 -178623,12 1548,96 0,00 0,00
-400000,00 -450000,00 -500000,00
500000,00
Total emissions per material [Kg CO2 eq]
Scenario 1 Concrete
Scenario 2 CLT
steel
Scenario 3 Precast concrete
Scenario 4 Glulam
450000,00 Fig. 45: Table and graph of comparison of the total CO2 emissions per materials of each scenario
400000,00 350000,00
High Rise Wooden Buildings in Contemporary Architecture_ Results
400000,00
Regarding the emissions per material, in the next graph can be seen how the use of concrete is a key factor in the final results of the total kilograms of CO2 equivalents. No matter how small is the amount of concrete used that it is always going to be a high emissions driver.
6. CONCLUSSION
High Rise Wooden Buildings in Contemporary Architecture_ Conclusions
40
Analysing the results Phase Scenario 1 Scenario 2 Scenario 3 Scenario 4 A1-A3 -266721 -440816,52 -435376,52 372134,45 C2 1385,25 751,08 761,00 733,37 First of all, 842319,95 it has been mathematically proved that the selection C3 605944,13 842319,95 1439,81 of the structural materials has a direct consequence on the final D -396650,9 -399002,90 -25355,08 -280817,42 1000000,00 carbon dioxide emissions. Therefore, a conscious selection of the constructive system used in the building and its associated raw 900000,00 material must be present from the early stages of design. 800000,00 Scenario 1 Scenario 2 Scenario 3 Scenario 4 Totals It has been8701,53 348952,55 5603,61 observed that the use of 59790,96 concrete instead of timber as 700000,00 structural material has a direct impact on the final results of the LCA, increasing the total CO2 emissions released into the atmosphere up 600000,00 to 40 times more (Fig. 46) compared to scenario 1. This is due to 500000,00 Total emissions per scenario the fact that emission during the production stage -A1 to A3- are [Kg of COthis 2 eq] material, while the compensation 400000,00 notably high for the case of emissions in phase D -recycling or energy production potential- is 300000,00 not as high in comparison with the CLT. 380000,00 330000,00 It is a fact that it has been possible to improve the results from
scenario 1 up to a 0,004% in scenario 4 (Fi. 46) by substituting the 280000,00
Phase Scenario 1 per Scenario 2 Scenario 3 Scenario 4 Total emissions phase A1-A3 -266721 -440816,52 -435376,52 372134,45 [Kg CO2 eq] to scenario 1 are actually higher. This result is due to the way the C2 1385,25 751,08 761,00 733,37 material is used at the end of life stage - while in the case of the C3 605944,13 842319,95 842319,95 1439,81 CLT the material is burned to produce energy, the glulam is simply Drecycled and the -396650,9 -399002,90 -25355,08 -280817,42 end of its life-time-. Therefore, it can be concluded that when it comes to the end Scenario 1 out Scenario Scenario Scenario 4 of life, producing energy of the2 material is 3better than simple recycle it for the8701,53 case of timber based 59790,96 materials. On 5603,61 the other Totals 348952,55 hand, the utilization of concrete, even when using hollow core precast elements to reduce the amount of material utilized- always provokes much higher emissions than the use of timber as structural Total emissions per scenario element. [Kg CO2 eq] Total Kilograms of CO2 equivalents per scenario
Phase 180000,00 A1-A3 130000,00 80000,00 C2 On the other hand, despite of the fact that it has been actually -300000,00 80000,00 30000,00 possible to reduce the amount of timber used on the structure from -400000,00 C3 D30000,00 1061 m3 of CLT in scenario 1 to 769 m3 of glulam and CLT in scenario -20000,00 Scenario 1 Scenario 2 Scenario 3 Scenario 4 3 (see appendixes A and C), the results of scenario 3 compared -500000,00 -20000,00
Differences
Scenario 2 39
Scenario 3 6
Scenario 4 -0,4
-600000,00 -700000,00
Totals
-800000,00 Fig. 46: How much the CO2 emissions results have been improved or worsened compared to the baseline scenario -scenario 1-.
-1000000,00
Scenario 1 Scenario 2 -435376,52 372134,45 761,00 733,37 842319,95 1439,81 -399002,90 -25355,08 Scenario 1
Scenario 2
Scenario 3 -266721 1385,25 605944,13 -280817,42 Scenario 3
Scenario 4 -440816,52 751,08 842319,95 -396650,9 Scenario 4
Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 2 Scenario 3 Scenario 4 348952,55 59790,96 5603,61 8701,53 Differences 6 -0,4 39
Total emissions per scenario
Scenario 1
600000,00 500000,00 400000,00
0,00
Fig. 47: Final comparison. Total amount of CO2 per scenario
-900000,00
700000,00
100000,00
280000,00 230000,00
800000,00
200000,00
100000,00 330000,00
steel joints between timber elements by the innovative German 0,00 system for CLT panels called X-fix. Nevertheless, this improvement 180000,00 is almost negligible compared to the total CO2 emissions of theses -100000,00 scenarios. 130000,00 -200000,00
900000,00
300000,00
200000,00 380000,00
230000,00
1000000,00
Scenario 2
[Kg CO 3 ] Scenario2 eq
Scenario 4
-100000,00 -200000,00 -300000,00
1000000 -400000,00
900000 -500000,00
800000 -600000,00
-700000,00 700000
-800000,00 600000
-900000,00 500000
-1000000,00 400000
7. DISCUSSION An overall review of the accomplished work
Throughout the development of this report, it has been possible to prove that wood is always a better option compared to concrete when it comes to the selection of the structural material. Therefore, in a current global situation where “enough concrete constructions are built each year worldwide to exceed the height of Mount Everest” (SINTEF, 2016), it seems clear that a change in favour of this sustainable material is an urgent need.
It is important to highlight that some of the concrete parts of high rise buildings, such as the foundations, are not possible to be substituted by timber due to the physical properties and load bearing capacity of this material. For these cases where reinforced concrete is strictly needed, the use of this eco-cement for its production would be a good alternative to consider, since it allows to reduce the global warming potential of the material without loosing its physical properties.
The use of eco-cement for concrete production
It can also be highlighted that in many cases the use of concrete is preferred over timber due to its affordable price. Hence, when the EPD -Environmental Impact Declaration- of this new product under development becomes available, it would be interesting to compare the results of using this eco-cement for the production of a complete high rise structure versus a structure made in traditional reinforced concrete.
Nevertheless, as explained before, the research on the field of building engineering is rapidly moving towards the development of new alternatives to this common and cheap material that is the reinforced concrete. In fact, a more sustainable alternative is already been developed by the Norwegian institution for research and technology SINTEF. This eco-cement using burnt clay or Norwegian blue clay is already been proved in some pilot projects. Regarding this burnt clay cement alternative, SINTEF researcher Harald Justnes explains that “the manufacture of cement involves subjecting limestone to heat treatments in excess of 1450 degrees. This causes the rock to release CO2, which alone makes up about 60 % of the total emissions. The rest is derived from the fuel used to drive the process. This burnt clay is more eco-friendly because it doesn’t give off CO2 during heat treatment, other than those emissions resulting from the heating process. However, the volumes are much lower because the clay doesn’t need to be heated to more than between 600 and 800 degrees. Moreover, it’s possible to use bio-fuels, which reduce CO2 emissions even further” (SINTEF, 2016).
The role of steel in the current urban situation It is also important to consider that many of the high rise buildings in our cities are not made out of concrete, but they have steel structures instead. Hence, to find out what is the environmental impact of a steel structure for the case of a high rise building, the modelling of a similar case study may be also necessary. Steel has a very high load bearing capacity, so it is frequently preferred over concrete for the case of open floor plan designs. Besides, its potencial to be recycled at the end of life is also quite high. Consequently, it would be very interesting to test which is the difference of emissions between designing a high rise building made out of steel versus the same building made out of timber.
High Rise Wooden Buildings in Contemporary Architecture_ Discussion
41
42
High Rise Wooden Buildings in Contemporary Architecture_ Discussion
Going taller. The use of hybrid systems in high rise buildings In spite of the fact that timber structures have been proved to be the best sustainable alternative currently available on the market, structural systems made out of this material have their limitations. On the introduction of this report it was mentioned that some reseah on the field have already proved that for the case of buildings higher than 30 storeys, the implementation of an hybrid system is needed.
There are different available alternatives that have been already developed and tested when it comes to hybrid systems. Some of them are the timber-concrete hybrid system designed by CREE company, a system called Life Cycle Tower -LCT- with potential heights of up to 30 storeys; the also timber-concrete hybrid system proposed by Skidmore, Owings & Merrill -SOM- architectural and engineering for a 42-storey high-rise called Concrete Jointed Timber Frame -CJTF-; or Finding the Forest Through the Trees -FFTT-, a timber-steel hybrid concept by Michael Green Architecture and engineers Equilibrium Consulting designed for high-rises up to 30 storeys in height.
Fig. 48: Structural system up to 30 storeys using only timber developed by MGA, 2012. Available in the thesis The Case for Tall Wood Buildings.
Consequently, it would be very interesting to find out what is the equivalent amount of CO2 in kilograms resulting from the use of one of these hybrid systems compared to a structural system where only timber is used.
available at the moment for this product. However, it would be also very interesting testing how much this new panel system allows to reduce the CO2 emissions compared to a traditional CLT panels’ system.
New materials. CLT without glue
To sum up
In spite of the fact that CLT panels are already a very sustainable solution, a company from UK called NUR-HOLZ has recently developed and alternative to these conventional panels in which glue is not used. This new product, called NUR-HOLZ mass-timber panels (Fig. 48), uses instead timber screws for joining the layers of the mass-timber panels together (NUR-HOLZ, n.d.).
There are many possibilities regarding structural materials and systems currently available in the market or under experimental phase that would allow us to reduce even more the CO2 emissions in our projects. However, even if engineers and architects want to build as green as possible, only a few customers are willing to pay anything extra to achieve this purpose.
This new system has been already tested in several commercial and residential buildings in the UK. Unfortunately, there is no EPD
As Vegard Hjelden said, “we as a contractor in constant competition are dependent on ‘green’ materials being competitive with the standard products we usually use in terms of price and/or time”. So, as a conclusion, “everything is possible, but someone has to be willing to pay for it” (Vegard Hjelden, 2017).
Fig. 49: joining system of NUR-HOLZ mass-timber panels
High Rise Wooden Buildings in Contemporary Architecture_ Discussion
43
8. FURTHER WORK
High Rise Wooden Buildings in Contemporary Architecture_ Further Work
44
The role of high rise wooden buildings on tackling climate change
In this report has been possible to prove that wooden structures are the best solution for high rise buildings when it comes to the use of sustainable materials. However, the statement that high rise buildings are the best architectural typology in order to guarantee a sustainable growth in our cities is still open to discussion. Consequently, possible lines for further work in the field of high rise wooden buildings are the followings: • To compare the total footprint of a high density typology in wood versus a low density typology for housing the same amount of people (total footprint per person). • To compare the total Kg CO2 equivalents of a hybrid system using concrete or steel compared to an only timber structural system (maximum 30 storeys). • To analyse the possible reduction in CO2 emissions by using ecocement in concrete production versus the use of traditional concrete. • To analyse the possible reduction in CO2 emissions by using the NUR-HOLZ mass-timber panels instead of conventional CLT panels in the construction.
REFERENCES
AITIM, n.d. Informacion_general_77_proteccion.pdf ArchDaily, 2017. Moholt Timber Towers / MDH Arkitekter [WWW Document]. URLhttp://www.archdaily.com/803810/moholt-timbertowers-mdh-arkitekter (accessed 5.27.17). ArchDaily, 2017. Newly Discovered Molecular “Glue” May hold the Key to Strong Wooden Skyscrapers [WWW Document]. URL http://www.archdaily.com/802205/newly-discovered-molecularglue-may-hold-the-key-to-strong-wooden-skyscrapers (accessed 4.22.17). ArchDaily, 2016. The Compact Wooden City: A Life-Cycle Analysis of How Timber Could Help Combat Climate Change [WWW Document]. URL http://www.archdaily.com/788736/the-compactwooden-city-a-life-cycle-analysis-of-how-timber-could-helpcombat-climate-change (accessed 4.22.17). Bimobject.com, n.d. Cree Buildings System by Cree Building System [WWW Document]. BIMobject. URL http://bimobject.com/en/ cree-building/privatecloud/creebuildings (accessed 5.20.17). Bjergsted Financial Park, Stavanger | Projects [WWW Document], n.d. URL http://www.helenhard.no/projects/bjergsted_financial_ park_stavanger/ (accessed 5.5.17). BREEAM Awards, 2017. pdf Diffen, n.d. Hardwood vs Softwood - Difference and Comparison [WWW Document]. URL http://www.diffen.com/difference/ Hardwood_vs_Softwood (accessed 5.25.17).
Dezeen, 2015. Architects embrace “the beginning of the timber age” [WWW Document]. URL https://www.dezeen.com/2015/11/09/ cross-laminated-timber-construction-architecture-timber-age/ (accessed 4.22.17). Doggerel, 2014. A short history of tall wood buildings [online] URL https://doggerel.no/ (accessed 4.22.17). Dwell, n.d. A 40-Story Skyscraper Built of Wood May Not Be Far from Reality [WWW Document]. URL https://www.dwell.com/article/a40-story-skyscraper-built-of-wood-may-not-be-far-from-reality/ (accessed 4.22.17). Finansparken, n.d. Hjem 2 [WWW Document]. URL http://www. finansparken.no/ (accessed 5.5.17). Hooper, 2015. Innovative Detail: Wood Innovation and Design Centre [WWW Document]. Architect. URL http://www.architectmagazine. com/technology/detail/innovative-detail-wood-innovation-anddesign-centre_o (accessed 5.15.17). Issuu, n.d. Catálogo Vigas Laminadas Encoladas GLULAM Lignum [WWW Document]. URL https://issuu.com/grupobcconsulting/ docs/catalogo_vigas_laminadas_glulam_cam (accessed 4.23.17). J.M.C.O., 2003. 1 Billion Live In Slums [WWW Document]. URL http://www.cbsnews.com/news/1-billion-live-in-slums/ (accessed 4.23.17). Kenneth Koo, 2013. A Study on Historical Tall Wood Buildings in Toronto and Vancouver. pdf.
High Rise Wooden Buildings in Contemporary Architecture_ References
45
46
High Rise Wooden Buildings in Contemporary Architecture_ References
Life Cycle Hub, n.d. [WWW Document] URL http://www.lifecyclehub. com/ (accessed 5.20.17). M.G. Architecture © Copyright, 2017. MICHAEL GREEN ARCHITECTURE [WWW Document]. MICHAEL GREEN ARCHITECTURE. URL http:// mg-architecture.ca/ (accessed 4.22.17). Midroc, n.d. Sweden’s largest newly constructed building made of wood! [WWW Document]. URL http://mpd.midroc.se/en/aboutmpd/references/limnologen (accessed 4.22.17). NUR-HOLZ, 2014. Bright Forest Limited. NUR-HOLZ Haus – Vollholzhäuser: gesund und nachhaltig [WWW Document], n.d. URL http://www.enthammer.at/nur-holz-haus-planen-bauen.html (accessed 5.15.17).
URL https://www.researchgate.net/publication/257623197_CO2emission_reduction_in_China’s_residential_building_sector_ and_contribution_to_the_national_climate_change_mitigation_ targets_in_2020 (accessed 5.26.17). Research Gate, n.d. Interpretive Structural Modeling based factor analysis on the implementation of Emission Trading System in the Chinese building sector [WWW Document]. URL https://www. researchgate.net/publication/301249827_Interpretive_Structural_ Modeling_based_factor_analysis_on_the_implementation_ of_Emission_Trading_System_in_the_Chinese_building_sector (accessed 5.26.17).
Planet Ark, 2015. Wood-Housing, Health, Humanity Report. pdf
Research Gate, n.d. Measuring embodied carbon dioxide equivalent of buildings: A review and critique of current industry practice [WWW Document]. URL https://www.researchgate.net/ publication/313567670_Measuring_embodied_carbon_dioxide_ equivalent_of_buildings_A_review_and_critique_of_current_ industry_practice (accessed 5.16.17).
Ramage, M.H. et al., 2017. The wood from the trees: The use of timber in construction. Renewable and Sustainable Energy Reviews 68, Part 1. pdf
Resilient Wood, n.d. Tamedia Headquarters [WWW Document]. URL http://resilientwood.tumblr.com/post/129800466182/tamediaheadquarters (accessed 5.5.17).
Research Gate, n.d. Circular economy for the built environment: A research framework [WWW Document]. URL https://www. researchgate.net/publication/312803919_Circular_economy_for_ the_built_environment_A_research_framework (accessed 5.16.17).
Scribd, 2014. Tall-Wood-CEU. pdf
Research Gate, n.d. CO2-emission reduction in China’s residential building sector and contribution to the national climate change mitigation targets in 2020 [WWW Document].
SOM, 2013. Timber Tower Research Project [WWW Document]. URL http://www.som.com/ideas/research/timber_tower_research_ project (accessed 4.22.17).
PCA, n.d. Portland cement EPD. pdf
SFPE, n.d. High-Rise Timber Buildings [WWW Document] URL http:// www.sfpe.org/?page=2014_Q3_1 (accessed 4.22.17).
Stora Enso, n.d. Sustainable tree plantations [WWW Document]. URL http://www.storaenso.com/rethink/responsibility/forest-andland-use/sustainable-tree-plantations (accessed 5.23.17). Strelitz, Ziona et al., 2005. Tall buildings a strategic design guide. The British Council for Offices and RIBA Publishing. pdf Swissinfo, n.d. Europe’s oldest wooden house still going strong [WWW Document]. URL https://www.swissinfo.ch/eng/europe-soldest-wooden-house-still-going-strong/ (accessed 4.23.17). Tall_Wood. pdf The Wooden High-Rise Is Inevitable [WWW Document], n.d. Tommaso Scalet, n.d. Bachelor Thesis. pdf Inverse, n.d. URL https://www.inverse.com/article/14951-woodskyscrapers-are-the-gorgeous-world-saving-future-of-urbanskylines (accessed 4.22.17). Trada, n.d. Murray Grove Case Study. pdf U.N.N.S., 2015. UN News - UN projects world population to reach 8.5 billion by 2030, driven by growth in developing countries [WWW Document]. UN News Service Section. URL http://www.un.org/ apps/news/story.asp?NewsID=51526#.WP0LlYnyhE4 (accessed 4.23.17). University of Northern British Columbia, n.d. Construction of the Wood Innovation & Design Centre [WWW Document]. URL http:// www.unbc.ca/engineering-graduate-program/constructionwood-innovation-design-centre (accessed 4.22.17).
WCMS, n.d. The Benefits of Using Wood [WWW Document]. URL http://makeitwood.org/benefits-of-wood/ (accessed 4.22.17a). Derix, n.d. Wood as material | Load-Bearing-Capacity: Laminated timber compared to concrete [WWW Document]. URL http://www. derix.de/en/baustoff_holz/holz-ist-natur/lastpotenzialvergleich (accessed 5.24.17). Woods, S., 2016. A History of Wood from the Stone Age to the 21st Century [WWW Document]. EcoBuilding Pulse. URL http://www. ecobuildingpulse.com/products/a-history-of-wood_o (accessed 4.22.17). X-fix, n.d. X-fix C / X-fix L Holz-Holz Verbinder fĂźr BSP / CLT / X-LAM. pdf X_LAM, n.d. Tech_Brochure_Nov_23. pdf York Heritage, n.d. Toronto Carpet Factory [WWW Document]URL http://www.yorkheritage.com/the-properties/liberty-village-area/ toronto-carpet-factory.html (accessed 4.22.17). WPP, 2015. Key Findings. pdf, n.d.
High Rise Wooden Buildings in Contemporary Architecture_ References
47
APPENDICES 48
Appendix A. Scenario 1_Materials take off and their GWP
High Rise Wooden Buildings in Contemporary Architecture_ Appendices
Materials Take Off Scenario 1 Wall Material Takeoff Material
2
Concrete, Cast-in-Place Convetional CLT panels
Area (m ) 794 4594
Volume (m³) 181,36 539,12
Density (KN/m³) Density (Kg/m³) 23,6 491,65
Mass (Kg) 436299,29 265058,35
Floor Material Takeoff Material Concrete - Cast-in-Place Conventional CLT panels
Area (m2) 1257 3630
Volume (m³) 385,68 508,13
Density (KN/m³) Density (Kg/m³) 23,6 491,65
Mass (Kg) 927833,64 249822,11
Area (m2) 158 213
Volume (m³) 15,72 13,93 0,76433121
Density (KN/m³) Density (Kg/m³) 23,6 491,65 7850
Mass (Kg) 37817,74 6848,68 6000
Structural elements
Material Concrete beams and columns CLT beams Steel joints
49
Construction
SCENARIO 1
End of life
Reuse/Recyling potential
A1-A3 60701,19 -324426,24
A4 2684,13 -
A5 244,84 -
C1 547,71 -
C2 85,24 239,91
C3 250,28 427522,16
C4 0,00
D -4185,79 -194083,20
Floor Material Takeoff GWP A1-A3 129087,10 Concrete [kg CO2 equiv.] -305777,39 CLT [kg CO2 equiv.]
A4 5708,06 -
A5 520,67 -
C1 1164,75 -
C2 181,27 226,12
C3 532,24 402947,09
C4 0,00
D -8901,49 -182926,80
Other structural elements GWP A1-A3 5261,48 Concrete [kg CO2 equiv.] -8382,66 CLT [kg CO2 equiv.] 8160,00 Steel [kg CO2 equiv.]
A4 232,66 525,60
A5 21,22 14,82
C1 47,47 54,96
C2 7,39 6,20 14,88
C3 21,69 11046,49 0,00
C4 0,00 4,10
D -362,82 -5014,80 -3528,00
C2 273,90 472,23 14,88
C3 804,21 841515,74 0,00
TOTALS Concrete CLT steel
Material Concrete CLT
A1-A3 195049,77 -638586,29 8160,00
Scenario 1 182677,78 -178623,12
Phase A1-A3 C2
Scenario 1 -435376,52 761,00
D -13450,10 -382024,80 -3528,00
High Rise Wooden Buildings in Contemporary Architecture_ Appendices
Wall Material Takeoff GWP Concrete [kg CO2 equiv.] CLT [kg CO2 equiv.]
Production
50
Appendix B. Scenario 2_Materials take off and their GWP
High Rise Wooden Buildings in Contemporary Architecture_ Appendices
Materials Take Off Scenario 2 Wall Material Takeoff 2
Area (m ) 2513
Volume (m³) Density (KN/m³) Density (Kg/m³) Mass (Kg) 601,07 23,6 1445999,18
Material Biridectional cast-in-Place concrete slab Precast Hollow core concrete slab
Area (m2) 1257 2713
Volume (m³) Density (KN/m³) Density (Kg/m³) Mass (Kg) 385,68 23,6 927833,64 356,31 275 97985,25
Structural elements Material Concrete columns Concrete beams
Area (m2) 251 532
Volume (m³) Density (KN/m³) Density (Kg/m³) 21,02 23,6 35,57 23,6 -
Material
Concrete, Cast-in-Place
Floor Material Takeoff
Mass (Kg) 50567,99 85571,05
51
Wall Material Takeoff Concrete (cast in place) Concrete (precast)
Construction
SCENARIO 2
End of life
Reuse/Recyling potential
GWP [kg CO2 equiv.] [kg CO2 equiv.]
A1-A3 201178,13 0,00
A4 8895,84 0,00
A5 811,44 0,00
C1 1815,23 0,00
C2 282,50 0,00
C3 829,48 0,00
C4 0,00
D -13872,70 0,00
GWP [kg CO2 equiv.] [kg CO2 equiv.]
A1-A3 129087,10 22928,55
A4 5708,06 8583,51
A5 520,67 358,63
C1 1164,75 897,54
C2 181,27 243,00
C3 532,24 0,00
C4 141,10
D -8901,49 -1274,79
GWP [kg CO2 equiv.] [kg CO2 equiv.]
A1-A3 7035,39 11905,28
A4 311,10 526,44
A5 28,38 48,02
C1 63,48 107,42
C2 9,88 16,72
C3 29,01 49,09
C4 -
D -485,14 -820,96
TOTALS Cast in place concrete Precast concrete
A1-A3 349205,90 22928,55
C2 490,37 243,00
C3 1439,81 0,00
Material Cast in place concrete Precast concrete
Scenario 2 327055,79 21896,76
Floor Material Takeoff Concrete (cast in place) Concrete (precast)
Other structural elements Concrete beams Concrete columns
Phase A1-A3 C2 C3 D
Scenario 2 372134,45 733,37 1439,81 -25355,08
D -24080,29 -1274,79
High Rise Wooden Buildings in Contemporary Architecture_ Appendices
Production
52
Appendix C. Scenario 3_ Materials take off and their GWP
High Rise Wooden Buildings in Contemporary Architecture_ Appendices
Materials Take Off Scenario 3 Wall Material Takeoff Material
Concrete, Cast-in-Place Convetional CLT panels
2 Area (m ) Volume (m³) Density (KN/m³) Density (Kg/m³) 794 181,36 23,6 1565 200,2 491,65
Mass (Kg) 436299,29 98428,33
Floor Material Takeoff Material Concrete - Cast-in-Place Conventional CLT panels
Area (m2) Volume (m³) Density (KN/m³) Density (Kg/m³) 1257 385,68 23,6 6452 508,13 491,65
Mass (Kg) 927833,64 249822,11
Structural elements Material Concrete beams and columns Glulam beams and columns Steel joints
Area (m2) Volume (m³) Density (KN/m³) Density (Kg/m³) 158 15,72 23,6 1355 60,72 491,65 0,25 7850
Mass (Kg) 37817,74 29852,99 2000
Total CLT
708,33
Wall Material Takeoff GWP Concrete [kg CO2 equiv.] CLT [kg CO2 equiv.]
Production
Construction
SCENARIO 3
End of life
Reuse/Recyling potential
A1-A3 60701,19 -120474,35
A4 2684,13 -
A5 244,84 -
C1 547,71 -
C2 85,24 89,09
C3 250,28 158758,60
C4 0,00
D -4185,79 -72072,00
GWP Concrete [kg CO2 equiv.] CLT [kg CO2 equiv.]
A1-A3 129087,10 -305777,39
A4 5708,06 -
A5 520,67 -
C1 1164,75 -
C2 181,27 226,12
C3 532,24 402947,09
C4 0,00
D -8901,49 -182926,80
Other structural elements GWP Concrete [kg CO2 equiv.] Glulam [kg CO2 equiv.] Steel [kg CO2 equiv.]
A1-A3 5261,48 -38239,03 2720,00
A4 232,66 1032,85 175,20
A5 21,22 566,52 4,94
C1 47,47 0,71 18,32
C2 7,39 791,18 4,96
C3 21,69 43434,23 0,00
C4 4294,73 1,37
D -362,82 -11192,52 -1176,00
C2 273,90 315,21 791,18 4,96
C3 804,21 561705,69 43434,23 0,00
Floor Material Takeoff
TOTALS Concrete CLT Glulam Steel
A1-A3 195049,77 -426251,74 -38239,03 2720,00
D -13450,10 -254998,80 -11192,52 -1176,00
High Rise Wooden Buildings in Contemporary Architecture_ Appendices
53
54
Appendix D. Scenario 4_ Materials take off and their GWP
High Rise Wooden Buildings in Contemporary Architecture_ Appendices
Materials Take Off Scenario 4 Wall Material Takeoff Material
Concrete, Cast-in-Place Convetional CLT panels
2 Area (m ) Volume (m³) Density (KN/m³) Density (Kg/m³) Mass (Kg) 794 181,36 23,6 436299,29 4594 539,12 491,65 265058,35
Floor Material Takeoff Material Concrete - Cast-in-Place Conventional CLT panels
Area (m2) Volume (m³) Density (KN/m³) Density (Kg/m³) Mass (Kg) 1257 385,68 23,6 927833,64 3630 508,13 491,65 249822,11
Structural elements Material Concrete beams and columns CLT beams Steel joints
Area (m2) Volume (m³) Density (KN/m³) Density (Kg/m³) Mass (Kg) 158 15,72 23,6 37817,74 213 13,93 491,65 6848,68 0,25477707 7850 2000
Production
Wall Material Takeoff GWP Concrete [kg CO2 equiv.] CLT [kg CO2 equiv.]
Construction
SCENARIO 4
End of life
Reuse/Recyling potential
A1-A3 60701,19 -324426,24
A4 2684,13 -
A5 244,84 -
C1 547,71 -
C2 85,24 239,91
C3 250,28 427522,16
C4 0,00
D -4185,79 -194083,20
A1-A3 129087,10 -305777,39
A4 5708,06 -
A5 520,67 -
C1 1164,75 -
C2 181,27 226,12
C3 532,24 402947,09
C4 0,00
D -8901,49 -182926,80
A1-A3 5261,48 -8382,66 2720,00
A4 232,66 175,20
A5 21,22 4,94
C1 47,47 18,32
C2 7,39 6,20 4,96
C3 21,69 11046,49 0,00
C4 0,00 1,37
D -362,82 -5014,80 -1176,00
C2 273,90 472,23 4,96
C3 804,21 841515,74 0,00
Floor Material Takeoff GWP Concrete [kg CO2 equiv.] CLT [kg CO2 equiv.]
Other structural elements GWP Concrete [kg CO2 equiv.] CLT [kg CO2 equiv.] Steel [kg CO2 equiv.]
TOTALS Concrete CLT Steel
A1-A3 195049,77 -638586,29 2720,00
Material Concrete CLT
Scenario 4 182677,78 -178623,12
Phase A1-A3 C2
Scenario 4 -440816,52 751,08
D -13450,10 -382024,80 -1176,00
High Rise Wooden Buildings in Contemporary Architecture_ Appendices
55
High Rise Wooden Buildings in Contemporary Architecture_ Appendices
56
Appendix E. GWP -global warming potential- of the different materials used
Material Concrete (cast in place) CLT panels (conventional) Steel joints Hollow core concrete slabs (precast) Glue Laminated Timber NUR-HOLZ Panles (without glue)
Declared unit [1m³] [1m³] [Kg] [1tonne=1000Kg] [1m³]
Production GWP [kg CO2 equiv.] [kg CO2 equiv.] [kg CO2 equiv.] [kg CO2 equiv.] [kg CO2 equiv.]
A1 -731,00 -
A2 7,23 -
A3 122,00 -
EPD A1-A3 334,70 -601,77 1,36 234,00 -629,76
Construction A4 A5 14,80 1,35 0,09 0,00 87,60 3,66 17,01 9,33
C1 3,02 0,01 9,16 0,01
End of life C2 C3 0,47 1,38 0,45 793,00 0,00 0,00 2,48 0,00 13,03 715,32
C4 0,00 0,00 1,44 70,73
Reuse/Recyling potential D -23,08 -360,00 -0,59 -20,01 -184,33
The previous GWP factor have been obtained from the Ecoinvent database except for the CLT panels - which corresponds to the prduct X-lam from the Austrian company KLH-, and the hollow core concrete slab -extracted from EPD-norge from the company Skonto Prefab-.
Appendix F. Original plans of Moholt 50|50. Veidekke Entreprenør AS
VEGGTYPER
MV160
160mm massivtrevegg.
9
MV140 140mm massivtrevegg.
Snitt DD2 1/50 8 -0 A-TA- 2101
MV120 120mm massivtrevegg. 2750
Prosjekt
Tegn nr.
Moholt Studenthus TÅRN A
A-TA- 1100 -U
MASSIVTREVEGGER
I
MV100
100mm massivtrevegg.
NB! ALLE MASSIVTRE ELEMENTSKJØTER I YTTERVEGG TEIPES! ALLE MÅL KONTROLLMÅLES PÅ BYGGEPLASS!
MERKNAD: KONSTRUKSJON AV BETONG I UNDERETASJE OG 1.ETASJE; SE RIB-TEGNINGER FOR MÅLSETTING.
MV80
7
80mm massivtrevegg.
MV40
5000
57
Avslutning trappeskive i trapperom, rekkverk 9. etasje. 40mm massivtrevegg.
PÅFORINGER PÅ MASSIVTRE 6010
6
massivtre på denne siden 5000
massivtre på denne siden
PF02
massivtre på denne siden
PF03
H 3+
5
A050
Teknisk rom 93.7 m²
050
I
massivtre på denne siden
6010
E
PF08
3650 7670
EI60
ID09-V EI 60-Sa ID A031.2
020
Boder 79.2 m²
2385
Innervegg sjakter hybel og vindfang. 70mm isolert stålstenderverk 2x 13mm gips.
IV03
15
Snitt CC 1/50 A-TA- 2102 -0
12
3450
13
9
IV04
11
20
160
Stålstender 70mm over badekabiner, kledd med sammenhengende 13mm gips fra bunn badekabin til tak.
C 1200
20
ID09-V EI 60-Sa ID A031.3
1200
EI60 Innervegg sjakter med brannkrav EI60. 2x 13mm gips, 70mm stålstenderverk, 2x 13mm gips.
16
8 10 20
A020
031
14
1180
052
SKJEMA INTERIØR TRAPP A-TA-4060-0 2560 20
IV05 EI30
Innervegg mellom inngang og trapperom 1.etasje. 13mm gips, isolert stålstenderverk 70mm, 13mm gips.
20
50
YD04-H EI 60-Sa ID A532.1
Snitt CC 1/50 A-TA- 2102 -0
Hovedtavle 4.2 m²
A031
Korridor 15.3 m²
17
7
1020
051
A052
2665
A051
Datarom 8.0 m²
5 6
IV01 170
18
4
3045
2665
IV03 EI60
70
70
IV03 EI60 1595
70
PF10
Påforing på BK type 1, 1s 2 og 3. 13mm gips.
INNERVEGGER
19
2 3
2425
ID12-H EI 60-Sa ID A030.2 170 910
5000
1
IV03 EI60
ID11-V EI 60-CSa ID A030.1
090
IV03 EI60
13650
1765
A030
Trapperom 18.0 m²
MV100
G
Brannmaling på eksponert massivtre på innside trapperom.
PÅFORINGER
1805
5315
ID11-V EI 60-CSa ID A053
YD04-H EI 60-Sa ID A432.1
1660
DETALJ
EI60
Brannmaling D
A-TA- 5030 -U
Påforing på massivtre i fellesareal og vindfang. 13mm gips, 2x 15mm branngips.
Påforing på massivtre i heissjakt. Oppfyller brannkrav EI60 sammen med tilliggende massivtrevegg. 13mm gips.
053
04-H YD 60-Sa EI 32.1 A2 ID
PF04
Rw 52dB Påforing på massivtre mellom hybler. Frittstående (10mm) stålstenderverk 70mm, isolert 50mm, 13mm gips, 15mm branngips.
massivtre på denne siden
SKJEMA INTERIØR BODER A-TA-4070-U
Bøttekott 10.6 m²
H
Påforing på massivtre hybel yttervegg, akse I, 6, B. Frittstående (10mm) stålstenderverk 70mm, isolert 50mm, 13mm gips, 15mm branngips.
PF06
1340
A053
EI30 / Rw 45dB Påforing på massivtre mellom hybel og korridor, akse B, 3+, H. Frittstående (10mm) stålstenderverk 70mm, isolert 50mm,13mm gips.
massivtre på denne siden
6010
04-H YD 60-Sa EI 32.1 A3 ID
PF01
Påforing på massivtre yttervegg hybel, akse A, 5, I. Frittstående (10mm) stålstenderverk 70mm, isolert 50mm, 13mm gips.
ID09-V EI 60-Sa ID A021.5
IV13 5000
Innervegg.13mm gips, stålstenderverk 70mm, 13mm gips.
IV15
R´w 48dB
B+
ID09-H EI 60-Sa ID A031.1
A021
Boder 121.2 m² 1660
021
SKJEMA INTERIØR BODER A-TA-4070-U
Innervegg med lydkrav i legesenter 1.etg. 2x13mm gips, stålstenderverk 70mm, isolert 50mm, 2x13mm gips.
B
ID11-V EI 60-CSa ID A032.2
032
Lager i P-kjeller
7670
MR MR
IR
MR
06.08.15
IR
NZ
12.06.15
IR
MR
Dato
Tegn.
Kontr.
ARK
MDH arkitekter SA
Storgata 37a 0182 Oslo
LARK
MASU planning ASP
Struenseegade 15 1th DK-2200 København-N
RIB
Høyer Finseth AS
Engebrets vei 5 0275 Oslo
Vintervoll AS
Ingvald Ystgaards veg 23 7047 Trondheim
Teknisk ventilasjon AS
Industriveien 39a 7080 Heimdal
RIBr
Rambøll Norge AS
Mellomila 79 7493 Trondheim
IV17
RIA
Brekke og Strand AS
Klæbuveien 196b 7037 Trondheim
Innervegg med lydkrav i legesenter 1.etg. 2x13mm gips, stålstenderverk 70mm, isolert 50mm, 13mm gips, 12mm x-finer.
RØR
K. Lund AS
Pb. 2433 Sluppen 7005 Trondheim
IV21
Inngang fra P-kjeller
Innervegg.13mm gips, stålstenderverk 70mm, 12mm x-finer, 13mm gips.
Nedkjørsel til P-kjeller
ID11-V EI 60-CSa ID A033
B
6010
6010
YTTERVEGGER
A
YV01 200mm Flexsystemplate, 36x98mm vertikallekt. Horisontal lekt ulike bredder.Vertikal skråstilt trekledning 123mm
A033 Lager 8.1 m²
033
Snitt AA 1/50 A-TA- 2100 -0
Oppdatert romnummerering Oppdatert id-nummer på dører i kjeller og rømningsdør 2-9etg Kjeller: oppdatert dører, Snitt DD: detaljhenvisning, 2-9etg: type rømningsdør Oppdat. skjema- + detaljhenv. Oppdat. dørtyper i kjeller +1etg. Kjeller: boder, plass.p-kjeller, målsetting, dørinfo. 1.etg: dørinfo+type, YD info, GV01, inngangsdør + matte plass., himling inngang, målsetting. 2-9etg: dørtype VF. Takplan: gesims. Fasader: YD info, brannkrav kledningstype 7. Snitt: P-kjeller info, himling inngang, gesims. 1 Detalj-nummerering endret, veggtype YV05 og YV06, skjemahenvisning heis. 2-9etg: PF10 fjernet rundt BK Type 3, målsetting sjakter i hybler, sikringsskap og luke i VF. 1etg: gipsvegger flyttet, mattestørrelse- og plassering, fotskraperister og takoverbygg sekundærinnganger. Kjeller: slagretning dør. Rev. Beskrivelse
RIV
R´w 48dB
ID27-H EI 60-CSa ID A032.1
A032
Vindfang 4.6 m²
HN IR
27.11.15
2
RIE
R´w 34dB
B
22.04.16 04.12.15
3
Innervegg med lydkrav i legesenter 1.etg. 13mm gips, stålstenderverk 70mm, isolert 50mm, 13mm gips.
IV16
120 boder
5 4
E
D
Snitt AA 1/50 A-TA- 2100 -0
C
YV02
N
EI60
A
Yttervegg med brannkrav EI60. Når yttervegg ligger utenpå betongvegg taes brannkravet opp i betongen. 200mm Flexsystemplate, 36x98mm vertikallekt. Horisontal lekt ulike bredder. Vertikal skråstilt trekledning 123mm
A
5000
5000
2750
5450
Tiltakshaver
5
YV03 EI60
12750
1
2
3
Yttervegg med brannkrav EI60, hovedinngang. Brannkravet taes opp i tilliggende betongvegg. 200mm Flexsystemplate, 36x98mm vertikallekt. Horisontal lekt. Vertikal trekledning 123mm
4
YV04
Studentsamskipnaden i Trondheim Postboks 2460 7005 Trondheim Totalentreprenør
Veidekke Entreprenør AS - Trondheim Vegamot 8 7048 Trondheim
Yttervegg hovedinngang. 2x 13mm gips, 48mm isolert stenderverk, dampsperre, 198mm isolert stenderverk, 9mm GU.
Arkitekt
YV05
Prosjekt
Gnr. / Bnr.
Moholt Studenthus
54 / 53
MDH ARKITEKTER SA Storgata 37A 0182 Oslo
office@mdh.no tlf: 48 34 60 30
Snitt DD1 1/50 A-TA- 2101 -0
N
Yttervegg hovedinngang over glassvegg. 2x 13mm gips,48mm isolert stenderverk, dampsperre, 198mm isolert stenderverk, 9mm GU, 12x48mm vertikallekt, 36mm horisontallekt, 20mm vertikal trekledning.
YV06 Sokkelvegg på betong. Grunnmursplate, 150 mm isopor, 23mm vertikallekt, 8mm fibersementplate.
Prosjektnr.
030
Almenning 1-5 Fase
Tegnet av
Kontroll
Arbeidstegninger
IR
NZ
Tittel
Målestokk A0:
Kjelleretasje
Tegn nr.
A-TA- 1100 -U
1:50
Dato
Revisjon
29.05.15
5
High Rise Wooden Buildings in Contemporary Architecture_ Appendices
0 1275
VEGGTYPER
Prosjekt
Tegn nr.
Moholt Studenthus TÅRN A
A-TA- 1101 -1
MASSIVTREVEGGER MV160
160mm massivtrevegg.
MV140
Snitt DD2 1/50 A-TA- 2101 -0
9
ALLE MÅL KONTROLLMÅLES PÅ BYGGEPLASS!
MV120
MERKNAD:
MV100
100mm massivtrevegg.
1420
GU 12.6 m²
Lege III 14.6 m²
1230
70
V11 /Rw+Ctr = 26dB 2420 x 1420 ID A161.1
V10-V /Rw+Ctr = 26dB 2420 x 1420 ID A161.2
V10-V /Rw+Ctr = 26dB 2420 x 1420 ID A162.1 1420
1420
1140
5000
PF10 IV04 400 160 70
70
1420
bh. 300
V10-V /Rw+Ctr = 26dB 2420 x 1420 ID A150
5000
1140
13650 1420
V10-V /Rw+Ctr = 26dB 2420 x 1420 ID A158.3
A-TA- 5020 -1
IV05
Snitt CC 1/50 A-TA- 2102 -0
EI30
Innervegg mellom inngang og trapperom 1.etasje. 13mm gips, isolert stålstenderverk 70mm, 13mm gips.
C
1140
IV15 R`w48dB
IV13 IV15
1420
R´w 48dB Innervegg med lydkrav i legesenter 1.etg. 2x13mm gips, stålstenderverk 70mm, isolert 50mm, 2x13mm gips.
IV16
5000
1140
3745
R´w 34dB Innervegg med lydkrav i legesenter 1.etg. 13mm gips, stålstenderverk 70mm, isolert 50mm, 13mm gips.
IV17
R´w 48dB Innervegg med lydkrav i legesenter 1.etg. 2x13mm gips, stålstenderverk 70mm, isolert 50mm, 13mm gips, 12mm x-finer.
365
1020
2550
162
Sekundærinngang legesenter C+ 116500
2155
MR
IR
MR
28.08.15
IR
MR
06.08.15
IR
NZ
12.06.15
IR
MR
Dato
Tegn.
Kontr.
ARK
MDH arkitekter SA
Storgata 37a 0182 Oslo
LARK
MASU planning ASP
Struenseegade 15 1th DK-2200 København-N
RIB
Høyer Finseth AS
Engebrets vei 5 0275 Oslo
RIE
Vintervoll AS
Ingvald Ystgaards veg 23 7047 Trondheim
RIV
Teknisk ventilasjon AS
Industriveien 39a 7080 Heimdal
RIBr
Rambøll Norge AS
Mellomila 79 7493 Trondheim
RIA
Brekke og Strand AS
Klæbuveien 196b 7037 Trondheim
RØR
K. Lund AS
Pb. 2433 Sluppen 7005 Trondheim
B E
A
D C
x-finer på denne siden
10
2855
bh. 300
bh. 300
YV01
V10-V /Rw+Ctr = 26dB 2420 x 1420 ID A163
V11 /Rw+Ctr = 26dB 2420 x 1420 ID A162.2
1140
1420
Tiltakshaver
YV03
A
1140
1420
725
EI60
Yttervegg med brannkrav EI60, hovedinngang. Brannkravet taes opp i tilliggende betongvegg. 200mm Flexsystemplate, 36x98mm vertikallekt. Horisontal lekt. Vertikal trekledning 123mm
5
2750
5450
12750
3
N
Yttervegg med brannkrav EI60. Når yttervegg ligger utenpå betongvegg taes brannkravet opp i betongen. 200mm Flexsystemplate, 36x98mm vertikallekt. Horisontal lekt ulike bredder. Vertikal skråstilt trekledning 123mm
Snitt AA 1/50 A-TA- 2100 -0
5000
2
MR
IR
07.09.15
EI60
IV21
YV04
1
IR
11.09.15
YV02
IV13
163
MR
01.10.15
200mm Flexsystemplate, 36x98mm vertikallekt. Horisontal lekt ulike bredder.Vertikal skråstilt trekledning 123mm
A-TA-5039-1
YV01
MR MR MR
IR
YTTERVEGGER
A-TA- 5038 -1 DETALJ
2865
HN IR IR
16.10.15
YV01
3285
505
Oppdatert romnummerering Detaljhenvisninger 1-9etg:Plassering sprinkler i systemhimling, skjemahenvisninger. Snitt CC: høyde inngang. IV08 utgår i tårn A. IV17 endret, IV21 opprettet. Innkassing av rør i A151. 6 Innkassing av rør i entré, endret skjemahenvisninger, beskrivelse plassering lampe i himling i A158. 5 1etg: skjemahenv. lukebeskrivelse, fotskraperister, himling legesenter. 9etg: endret vegg. 4 1.etg: detaljhenvisninger, flyttet vegg i legesenter, ny dørtype i datarom 3 Detaljhenvisninger. YV06 endret. 1.etg: plan legesenter, størrelse fotskraperister, dør + romnavn bod/båre, nye veggtyper. Fasader: fjernet nedre securoventil. 2 Oppdat. skjema- + detaljhenv. Oppdat. dørtyper i kjeller +1etg. Kjeller: boder, plass.p-kjeller, målsetting, dørinfo. 1.etg: dørinfo+type, YD info, GV01, inngangsdør + matte plass., himling inngang, målsetting. 2-9etg: dørtype VF. Takplan: gesims. Fasader: YD info, brannkrav kledningstype 7. Snitt: P-kjeller info, himling inngang, gesims. 1 Detalj-nummerering endret, veggtype YV05 og YV06, skjemahenvisning heis. 2-9etg: PF10 fjernet rundt BK Type 3, målsetting sjakter i hybler, sikringsskap og luke i VF. 1etg: gipsvegger flyttet, mattestørrelse- og plassering, fotskraperister og takoverbygg sekundærinnganger. Kjeller: slagretning dør. Rev. Beskrivelse
Innervegg.13mm gips, stålstenderverk 70mm, 12mm x-finer, 13mm gips.
DETALJ
A162
Laboratorium 31.5 m²
22.04.16 29.01.16 10.11.15
7
6010
70
10 9 8
IV21
B
YV01
5845
1835 EKG 4.9 m²
3650 1140
2045
DETALJ
1420
Korridor 46.3 m²
2010
70
A163
3165
1585 1050 475
A134
Stålstender 70mm over badekabiner, kledd med sammenhengende 13mm gips fra bunn badekabin til tak.
A158
IV15 R`w48dB
YD02-H ID A020.2
3230 70 2475
x-finer på denne siden
10
?
3085
Akutt/ Skifterom 21.2 m²
IV13
70
ID15-H ID A134.3
1960
1010 230
495
1675 1010
ID30-H ID A132.2 645
143
70
ID29-H ID A143
Garderobe 4.0 m²
500
ID14-V /R`w 38dB ID A134.4
IV17 R`w48dB
570
bh. 300
1010
IV15 R`w48dB
70 315
1150
1395
70
1010
ID17-S ID A163
1010 bh. 300
1140
2005
70 2475 2140
bh. 300
1625 bh. 300
144
2585
SKJEMA RIST A-TA-4162-1
1345
1010
2155
5010
IV21
bh. 300
1420
135
1265
340
70
IV15 R`w48dB
161
1010
IV13 490
2415
Personalrom 13.1 m²
ID17-S ID A162.2
IV15 R`w48dB
ID29-V ID A160
410
V10-W 2020 1310 x 2020 ID A159
IV13
2005 Urinavlukke
IV13
1010
IV15 R`w48dB bh. 1100
625
70
Data 3.0 m²
655
ID14-V /R`w 38dB ID A162.1
1435 70 70
3150 70 SKJEMA INTERIØR RESEPSJON A-TA-4042-1 A-TA-4043-1
55 70
IV13
SKJEMA INTERIØR KJØKKEN A-TA-4041-1
1725
A160
2475
1815
70
1010
PF10 IV04
70
70
IV04 345 70
1785
70 IV04 IV13
640 70 15
bh. 300
A144
HC-dusj + WC 5.0 m²
1075 IV13
IV04
Innervegg.13mm gips, stålstenderverk 70mm, 13mm gips.
V10-V /Rw+Ctr = 26dB 2420 x 1420 ID A158.2
2305
70
EI60 Innervegg sjakter med brannkrav EI60. 2x 13mm gips, 70mm stålstenderverk, 2x 13mm gips.
70
SKJEMA TOALETT LEGESENTER HC-dusj A-TA-4140-1 1930
IV13
70
PF10
570
70
1890
1295
IV15 R`w48dB Hette for avsug
160
70
IV15 R`w48dB
70
2735
70
1805
3155
bh. 300
V11 /Rw+Ctr = 26dB 2420 x 1420 ID A161.3
A159
Resepsjon 9.6 m²
Luke for urinprøver 400x400mm UK:1100
PF10
A
365
400 300
IV04
IV16 R`w34dB
4595
159
135
A161
400
1060
70 2560
YD01-HV ID A020.3
70
Entre IV15 4.5 m² R`w48dB
1805
1100
PF10
A135
SKJEMA RIST A-TA-4161-1
DETALJ
IV12
ID18-H /R`w 33dB ID A140 1010
PF10
1535
bh. 300
IV15 R`w48dB
1805
A-TA- 5026 -1
HC-WC 5.9 m²
70
IV16 R`w34dB
Betalingsautomat
1010 ID31-V /R`w 38dB ID A132.3
IV04
A140
1420
3155
3155 980 245 70 70 1315 70 475 2620
IV13
1580
910 ID28-V ID A146
bh. 300
70
V10-V /Rw+Ctr = 26dB 2420 x 1420 ID A151
100
ID14-H /R`w 38dB ID A151 1860 70
435
140
IV15 R`w48dB
1465
V11 /Rw+Ctr = 26dB 2420 x 1420 ID A132
1660
132
ID32-HV ID A131.4
YV01
1390
3495
3480
Venterom 27.8 m²
IV13
DETALJ
7670
SKJEMA TOALETT LEGESENTER HC A-TA-4124-1
A132
2500
A-TA-5061-1
6010
1010 70
146
V10-V /Rw+Ctr = 26dB 2420 x 1420 ID A158.1
OP C A B R IG T R Y H
OY C A B R IG R P T H
3245
830
DETALJ
3580
375 280 70 PF10
IV17 R`w48dB
Garderobe 3.2 m²
A143
B+
IKKE SOLAVSKJERMING PÅ DENNE FASADEN
IV04 70
1845
20
70
YV02 EI60
Snitt AA 1/50 A-TA- 2100 -0
SKJEMA INTERIØR TRAPP A-TA-4060-0 2560 20
1180
1255
20
360
70
IV13
1550
IV03
5110
11
Innervegg sjakter hybel og vindfang. 70mm isolert stålstenderverk 2x 13mm gips.
x-finer på denne siden
x-finer på denne siden
12
YV01
IV15 R`w48dB
2290
13
8 9
1175
680
7
DETALJ
INNERVEGGER
D
150
A146
IV13
PF10
Påforing på BK type 1, 1s 2 og 3. 13mm gips.
Lege I 17.5 m²
250
14
A-TA- 5040 -1 4360
15
10
141
A150
1580
16
Brannmaling på eksponert massivtre på innside trapperom.
IV01
ID14-H /R`w 38dB ID A158
17
4
910 ID16-V ID A134.2
18
3
6
EL-skap 4.5 m²
850
6425
Inngang legesenter C+ 116500
20
400
2470 1010
YV04
19
5
ID13-H EI 60-Sa ID A131.3
DETALJ A-TA- 5064 -1
1
A-TE-5006-1
A-TA- 5060 -1
1200
2
DETALJ (TÅRN E)
B
190
160 20
4980
DETALJ A-TA- 5011 -1
475
Snitt CC 1/50 A-TA- 2102 -0
Trapperom 16.0 m²
1200
1295
200 20
EI60
PÅFORINGER
5390
70
1265
Påforing på massivtre i fellesareal og vindfang. 13mm gips, 2x 15mm branngips.
Påforing på massivtre i heissjakt. Oppfyller brannkrav EI60 sammen med tilliggende massivtrevegg. 13mm gips.
PF10
1750 A-TA- 5040 -1
70
70
IV15 R`w48dB
A-TA- 5031 -1
A141
SKJEMA RIST A-TA-4160-1
A130
DETALJ
Rw 52dB Påforing på massivtre mellom hybler. Frittstående (10mm) stålstenderverk 70mm, isolert 50mm, 13mm gips, 15mm branngips.
EI60
IV15 R`w48dB
IV04 265 70
715
DETALJ
1565
IV03 EI60 1620
130
IV03 EI60
DETALJ
1010
70
A-TA- 5040 -1
IV03 EI60
A-TA-5016-1 YV03 EI60
PF08
Påforing på massivtre hybel yttervegg, akse I, 6, B. Frittstående (10mm) stålstenderverk 70mm, isolert 50mm, 13mm gips, 15mm branngips.
Brannmaling
IV04
1365
1190 Entré 31.1 m²
GV01 SKJEMA GLASSVEGG A-TA-4170-1
Inngang bolig C+ 116500
PF06
massivtre på denne siden
151
IV04
DETALJ
142
70
125
A-TE-5006-1
G
YV03 EI60
A142
A131
1510
300 bh.
1660
1420
V11= 26dB tr +C 1420 /Rw 20 x 55.1 24 A1 ID
N DE SA FA
DETALJ
IV04 480
ID07-HV E 30-CSa ID A131.1
1140
A-TA- 5010 -1
SKJEMA INTERIØR ENTRÉ A-TA-4040-1
IV01
Bod/Båreoppbev. 3.1 m²
DETALJ
IV15 R`w48dB
805
Lege II 17.7 m²
70
A-TA- 5064 -1
A-TA-5016-1 SKJEMA FASADE INNGANGSPARTI A-TA-4100-1
massivtre på denne siden
5725
400
DETALJ
70
A151
70
2030
500 1010
2255
4090
70
ID13-V EI 60-Sa ID A131.2
156
1270
IV03 EI60
6010
DETALJ
E
134
3415
DETALJ (TÅRN E)
A134
Korridor 46.3 m²
70
3930
YV02 EI60
DETALJ A-TA- 5062 -1
480
1565
YV01
H
880
1520
2465
155
PF10
GU 8.4 m²
PF04
A-TA-5063-1
YD03-H EI 60-Sa ID A020.1
ID14-V /R`w 38dB ID A150 1850
IV15 R`w48dB 2010
A156
1020
750
2125
IV04
A155
-H 1 ID15134. A ID 1010
1245
PF10
Lege V 13.8 m²
280
70
300 bh.
1420
7670
NE EN ÅD GP MIN JER SK AV OL ES IKK
-V dB V10 = 26 tr +C 1420 /Rw 20 x 55.2 24 A1 ID
6010
1140
IV15 R`w48dB
IV13
70
IV04 ? 1525
148
IV13
945
455
-V ID1438dB /R`w A155 ID 1835
70
3415
IV15 R`w48dB
1555
70
330
70
3+
PF02
EI30 / Rw 45dB Påforing på massivtre mellom hybel og korridor, akse B, 3+, H. Frittstående (10mm) stålstenderverk 70mm, isolert 50mm,13mm gips.
massivtre på denne siden
5 SKJEMA FASADE BRANNTRAPP A-TA-4110-1
A148
PF10 ID /R`w 14-V ID A138dB 56
H
Bøttekott IV04 2.0 m²
70
700
70
3220
300 bh.
1420
V11= 26dB tr +C 1420 /Rw 20 x 54.3 24 A1 ID
IV15 R`w48dB
315
2170
70
200
1005
1825
1010
IV15 R`w48dB
IV15 R`w48dB
965
1010
1010
70
1980
-V ID1438dB /R`w A152 ID
-V 1880 ID1438dB /R`w A154 ID
154
3050
1835
Lege IV 15.5 m²
660
IV15 R`w48dB
Påforing på massivtre yttervegg hybel, akse A, 5, I. Frittstående (10mm) stålstenderverk 70mm, isolert 50mm, 13mm gips.
PF03
2555
70
-H 3395 ID1438dB /R`w A153 ID
3220
A154
PF01
massivtre på denne siden
152
153
IV15 R`w48dB
4925
YV02 EI60
A152
A153
70
massivtre på denne siden
6010
IV15 R`w48dB
70
300 bh.
I
4625
PF10
300 bh.
-V dB V10 = 26 tr +C 1420 /Rw 20 x 54.2 24 A1 ID
3220
1420 365
300 bh.
V11= 26dB tr +C 1420 /Rw 20 x 54.1 24 A1 ID
1140
70
5035
1420
5000
massivtre på denne siden
2555
PF10
300 bh.
3200
6
YV01
V11= 26dB tr +C 1420 /Rw 20 x 53.2 24 A1 ID
1140
Avslutning trappeskive i trapperom, rekkverk 9. etasje. 40mm massivtrevegg.
300 bh.
-V dB V10 = 26 tr +C 1420 /Rw 20 x 53.1 24 A1 ID
1140
MV40
PÅFORINGER PÅ MASSIVTRE
1765
5000
I
-V dB V10 = 26 tr +C 1420 /Rw 20 x 52 24 A1 ID
2385
0 1275
1420
High Rise Wooden Buildings in Contemporary Architecture_ Appendices
80mm massivtrevegg.
725
1420 1140
7
KONSTRUKSJON AV BETONG I UNDERETASJE OG 1.ETASJE; SE RIB-TEGNINGER FOR MÅLSETTING.
MV80 2750
58
ALLE MASSIVTRE ELEMENTSKJØTER I YTTERVEGG TEIPES!
140mm massivtrevegg.
120mm massivtrevegg.
8
NB!
Yttervegg hovedinngang. 2x 13mm gips, 48mm isolert stenderverk, dampsperre, 198mm isolert stenderverk, 9mm GU.
4
Studentsamskipnaden i Trondheim Postboks 2460 7005 Trondheim Totalentreprenør
Veidekke Entreprenør AS - Trondheim Vegamot 8 7048 Trondheim Arkitekt
MDH ARKITEKTER SA Storgata 37A 0182 Oslo
office@mdh.no tlf: 48 34 60 30
Snitt DD1 1/50 A-TA- 2101 -0
N
YV05
Prosjekt
Gnr. / Bnr.
Yttervegg hovedinngang over glassvegg. 2x 13mm gips,48mm isolert stenderverk, dampsperre, 198mm isolert stenderverk, 9mm GU, 12x48mm vertikallekt, 36mm horisontallekt, 20mm vertikal trekledning.
Moholt Studenthus
54 / 53
YV06 Sokkelvegg på betong. Grunnmursplate, 150 mm isopor, 23mm vertikallekt, 8mm fibersementplate.
Prosjektnr.
030
Almenning 1-5 Fase
Tegnet av
Kontroll
Arbeidstegninger
IR
MR
Tittel
Målestokk A0:
Plan 1. etasje
Tegn nr.
A-TA- 1101 -1
1:50
Dato
Revisjon
29.05.15
10
VEGGTYPER
Prosjekt
Tegn nr.
Moholt Studenthus TÅRN A
A-TA- 1102 -2
MASSIVTREVEGGER MV160
160mm massivtrevegg.
MV140 140mm massivtrevegg.
NB! ALLE MASSIVTRE ELEMENTSKJØTER I YTTERVEGG TEIPES! ALLE MÅL KONTROLLMÅLES PÅ BYGGEPLASS!
MV120 120mm massivtrevegg.
Snitt DD2 1/50 A-TA- 2101 -0 9
MV100
100mm massivtrevegg.
MV80 80mm massivtrevegg.
8
1320
C-H dB V01tr = 3220 +C 13 /Rw 70 x 5 20 ID20 450 bh.
260200
MV80
MV120
bh. 450
PF01
bh. 450
875
V01A-V /Rw+Ctr = 26dB 2070 x 1320 ID215
V01A-H /Rw+Ctr = 26dB 2070 x 1320 ID214
1320
1240
1240
1660
980
1225 3650
1320
V01B-H /Rw+Ctr = 27dB 2070 x 1320 ID206
bh. 450
3390
1240
30
1320
V01A-H /Rw+Ctr = 26dB 2070 x 1320 ID207
bh. 450
2400
1240 5000 13650
1320
V01A-V /Rw+Ctr = 26dB 2070 x 1320 ID208
2380
bh. 450
1265
1525
1115
875
20 20
840
1240
1115
5910
200
DETALJ
1240
2230
1240 5000
MR
IR
MR
06.08.15
IR
NZ
01.07.15
IR
MR
12.06.15
IR
MR
Dato
Tegn.
Kontr.
Storgata 37a 0182 Oslo
MASU planning ASP
Struenseegade 15 1th DK-2200 København-N
Høyer Finseth AS
Engebrets vei 5 0275 Oslo
RIE
Vintervoll AS
Ingvald Ystgaards veg 23 7047 Trondheim
Innervegg med lydkrav i legesenter 1.etg. 13mm gips, stålstenderverk 70mm, isolert 50mm, 13mm gips.
RIV
Teknisk ventilasjon AS
Industriveien 39a 7080 Heimdal
RIBr
Rambøll Norge AS
Mellomila 79 7493 Trondheim
IV17
RIA
Brekke og Strand AS
Klæbuveien 196b 7037 Trondheim
Innervegg med lydkrav i legesenter 1.etg. 2x13mm gips, stålstenderverk 70mm, isolert 50mm, 13mm gips, 12mm x-finer.
RØR
K. Lund AS
Pb. 2433 Sluppen 7005 Trondheim
Innervegg.13mm gips, stålstenderverk 70mm, 12mm x-finer, 13mm gips.
B
B
YTTERVEGGER
A
YV01 200mm Flexsystemplate, 36x98mm vertikallekt. Horisontal lekt ulike bredder.Vertikal skråstilt trekledning 123mm
E
D
20
YV01
3660
PF01
bh. 450
PF01
Yttervegg med brannkrav EI60. Når yttervegg ligger utenpå betongvegg taes brannkravet opp i betongen. 200mm Flexsystemplate, 36x98mm vertikallekt. Horisontal lekt ulike bredder. Vertikal skråstilt trekledning 123mm
Tiltakshaver
200
bh. 450
YV03 EI60
Yttervegg med brannkrav EI60, hovedinngang. Brannkravet taes opp i tilliggende betongvegg. 200mm Flexsystemplate, 36x98mm vertikallekt. Horisontal lekt. Vertikal trekledning 123mm
V01A-V /Rw+Ctr = 26dB 2070 x 1320 ID211
1320
1240
1320
315
2750
3
5450
4
N
EI60
Snitt AA 1/50 A-TA- 2100 -0
2510
C
YV02
6010
5910
PF04 Rw=52dB
5000
2
MR MR
IR
21.09.15
IV21
MV120
YV01
YV04
12750
1
Oppdatert romnummerering Oppdatert id-nummer på dører i kjeller og rømningsdør 2-9etg Kjeller: oppdatert dører, Snitt DD: detaljhenvisning, 2-9etg: type rømningsdør Plan 2-9etg: Dørtype BK2, fjernet EL-luke ved besøkstoalett. 3 Oppdat. skjema- + detaljhenv. Oppdat. dørtyper i kjeller +1etg. Kjeller: boder, plass.p-kjeller, målsetting, dørinfo. 1.etg: dørinfo+type, YD info, GV01, inngangsdør + matte plass., himling inngang, målsetting. 2-9etg: dørtype VF. Takplan: gesims. Fasader: YD info, brannkrav kledningstype 7. Snitt: P-kjeller info, himling inngang, gesims. 2 Fasader: kledning like bredder, beskrivelse type kledning. Planer: Inspeksjonsluke sjakt korridor, inspeksjonsdør i VF, fjernet PF10 og PF07 i sjakt VF. PF07 utgår. Snitt og himling: Fjernet himling i trapperom, himling ved yttervegg i hybler endret høyde over FG. 1 Detalj-nummerering endret, veggtype YV05 og YV06, skjemahenvisning heis. 2-9etg: PF10 fjernet rundt BK Type 3, målsetting sjakter i hybler, sikringsskap og luke i VF. 1etg: gipsvegger flyttet, mattestørrelse- og plassering, fotskraperister og takoverbygg sekundærinnganger. Kjeller: slagretning dør. Rev. Beskrivelse
MDH arkitekter SA
R´w 48dB
A-TA- 5005 -0
IV01
SKJEMA INTERIØR TYPISK HYBEL A-TA-4010-0
V01A-H /Rw+Ctr = 26dB 2070 x 1320 ID212
1320
5000
HN IR
27.11.15
4
RIB
R´w 34dB
1320
V01A-V /Rw+Ctr = 26dB 2070 x 1320 ID210
bh. 450
2420
PF01
PF03
MV100
A210
SKJEMA INTERIØR Hybel TYPISK HYBEL 13.3 m² A-TA-4010-0 210
22.04.16 04.12.15
5
LARK
Innervegg med lydkrav i legesenter 1.etg. 2x13mm gips, stålstenderverk 70mm, isolert 50mm, 2x13mm gips.
865
840
1115
3330
7 6
ARK
R´w 48dB
1320
V01A-H /Rw+Ctr = 26dB 2070 x 1320 ID209
bh. 450
2380
1245
1505
1115
875
20 20
IV15
3660
1285
ID01-V EI 30-Sa /R`w 43dB ID A210.1
MV80
IV01
Innervegg.13mm gips, stålstenderverk 70mm, 13mm gips.
IV16
3660
20
920
ID05-H ID A211.2
ID05-V ID A212.2
PF10
Innervegg mellom inngang og trapperom 1.etasje. 13mm gips, isolert stålstenderverk 70mm, 13mm gips.
IV13
A V01A-V /Rw+Ctr = 26dB 2070 x 1320 ID213
1320
EI30
C
PF01
PF04 3330Rw=52dB
IV01
IV05 Snitt CC 1/50 A-TA- 2102 -0
211
3330
3660
3330
MV120
2790
75
1890
3520
295
20 2230
2230 3330 3660
209
Stålstender 70mm over badekabiner, kledd med sammenhengende 13mm gips fra bunn badekabin til tak.
PF01
PF04 Rw=52dB
SKJEMA INTERIØR TYPISK HYBEL A209 SPEILVENDT Hybel A-TA-4011-0 13.4 m²
IV04
Hybel 13.6 m²
2400
PF01
IV03
EI60 Innervegg sjakter med brannkrav EI60. 2x 13mm gips, 70mm stålstenderverk, 2x 13mm gips.
840
A211
PF04 Rw=52dB
bh. 450
208
MV100
200
YV01
1115
1670
SKJEMA INTERIØR TYPISK HYBEL SPEILVENDT A-TA-4011-0
2400
PF01
A212 212
PF04 Rw=52dB
2380
A-TA- 5022 -0
3330
IV01
Innervegg sjakter hybel og vindfang. 70mm isolert stålstenderverk 2x 13mm gips.
IV01 1525
IV01
MV80
3660
3330
3330 3660
PF04 Rw=52dB
ID05-H ID A210.2
BK type 1 I
IV01 875
YV01 DETALJ
MV80
IV01 SKJEMA INTERIØR A208 TYPISK HYBEL Hybel A-TA-4010-0 13.1 m²
IV01
PF01
PF04 Rw=52dB 3330 3660
PF02 EI30 / Rw=45dB
1375
Hybel 13.5 m²
SKJEMA INTERIØR TYPISK HYBEL A-TA-4010-0
995
Påforing på BK type 1, 1s 2 og 3. 13mm gips.
D
PF10 1265
213
SKJEMA INTERIØR TYPISK HYBEL SPEILVENDT A-TA-4011-0
2420
1115
IV01
PF02 EI30 / Rw=45dB
211 B
Hybel 13.2 m²
214
PF03
20 20
840
A213
Hybel 13.4 m²
215
PF01
1115
1560 5910
A214
MV120
5910
6130
6010
1505
IV01
920
PF10
1265
2230
210 B
ID01-V EI 30-Sa /R`w 43dB ID A211.1
IV01
2230
BK type 1 I
212 B
IV01
875
350
ID01-H EI 30-Sa /R`w 43dB ID A212.1
PF10 1245
IV01 840
IV01
SKJEMA INTERIØR TYPISK HYBEL A-TA-4010-0
BK type 1 M
5910
1115
IV04
920
PF02 EI30 / Rw=45dB
BK type 1 I
ID05-H ID A213.2
ID05-V ID A214.2
2230
2230
20 20
IV01 1580
MV120
PF02 EI30 / Rw=45dB
213 B
Hybel 13.3 m²
200
2810
PF10 1115
A-TA- 5043 -0
920
ID01-V EI 30-Sa /R`w 43dB ID A213.1
214 B
PF10 1285
A215
350
ID01-H EI 30-Sa /R`w 43dB ID A214.1
209 B
20
1560
1540
BK type 1 M
PF10 2800
DETALJ
20
20
20
920
PF02 EI30 / Rw=45dB
BK type 1 I
ID05-H ID A215.2 YV01
A
805
BK type 1 M
EL-luke 300x300 OK luke til FG: 300
MV120
205
MV140 bh. 50
MV120
2790
PF02 EI30 / Rw=45dB
215 B
Snitt AA 1/50 A-TA- 2100 -0
1450
ID04-V ID A232.2
PF10
INNERVEGGER
5910
ID05-V ID A209.2 PF10
PF02 EI30 / Rw=45dB
1930 1565 Bøttekott
1300
920
ID01-V EI 30-Sa /R`w 43dB ID A215.1
2330
PF06
UK himling: 2750mm
295
221
20
207
5910
1580
ID01-H EI 30-Sa /R`w 43dB ID A209.1
1660
70
IV04
20
HC-WC 5m²
Brannmaling på eksponert massivtre på innside trapperom.
MV140
A-TA- 5043 -0
BK type 3
A-TA- 5042 -0
IV01
1245
920
DETALJ
Brannmaling EI60 2600
MV160
5910
1715 1420
1660
B
DETALJ A-TA- 5042 -0
4035
V05-V /Rw+Ctr = 26dB 2470 x 1420 ID232.2
IKKE SOLAVSKJERMING PÅ DENNE FASADEN
B+
DETALJ
SKJEMA INTERIØR TYPISK HYBEL SPEILVENDT A207 A-TA-4011-0 Hybel 13.5 m²
3660
1540
ID01-H EI 30-Sa /R`w 43dB ID A207.1
ID05-H PF10 ID A208.2
Brannskap 800x800 OK skap til FG: 1850
A-TA- 5042 -0
1700
2445 2790
1615
8345
208 B
10
4860
bh. 50
2230
BK type 1 I
11
DETALJ
DETALJ
A-TA- 5065 -0 2230
EI60
PÅFORINGER
MV140
IV01
Påforing på massivtre i fellesareal og vindfang. 13mm gips, 2x 15mm branngips.
Påforing på massivtre i heissjakt. Oppfyller brannkrav EI60 sammen med tilliggende massivtrevegg. 13mm gips.
E
PF01
IV01
PF02 EI30 / Rw=45dB
Brannmaling EI60
PF01
PF10
Rw 52dB Påforing på massivtre mellom hybler. Frittstående (10mm) stålstenderverk 70mm, isolert 50mm, 13mm gips, 15mm branngips.
Brannmaling
5910
ID05-V ID A207.2
ID01-V EI 30-Sa /R`w 43dB ID A208.1
12
MV140
7530
2410
1020
ID02-H EI 30-Sa /R`w 43dB ID A206.1
1545 13
5415
14
6
9
20
SKJEMA INTERIØR TRAPP A-TA-4060-0
V06-H /Rw+Ctr = 26dB 2470 x 1920 ID220.1
2525
920
MV120
20
MV100
15
5
8
207 B
20
16
4
PF06
200
PF04 Rw=52dB 3030 3255
370
MV120
SKJEMA INTERIØR FELLES KJØKKEN A-TA-4030-0 A-TA-4031-0 A-TA-4032-0
220
1540
230
40 MV1
Fellesareal 56.3 m²
SKJEMA INTERIØR HC-HYBEL A-TA-4012-0
IV01
DETALJ A-TA- 5035 -0
PF02 EI30 / Rw=45dB
17
3
7
20
2385
MV120
1200
2120
291
PF08
Påforing på massivtre hybel yttervegg, akse I, 6, B. Frittstående (10mm) stålstenderverk 70mm, isolert 50mm, 13mm gips, 15mm branngips.
EI60
206
2610
BK type 1 M
160
1
A220
DETALJ
1200
MV140
min.300
290
20
2
PF01
A-TA- 5004 -0
A230
Trapperom 13.9 m²
1415
ID19-V EI 60-Sa ID A231
ID03-H EI 60-CSa ID A230
195
PF06
massivtre på denne siden
A206
IV01
206 B
200
HC-hybel 18.7 m²
PF10
BK type 2
1200 380 Brannmaling Brannmaling EI60 EI60
20
-V dB V06 = 26 tr +C 1920 /Rw 70 x 0.2 24 22 ID 1920
50 bh.
720
EL-/kjøkken sjakt
A-TA- 5024 -0
ID06-V ID A206.2
45
PF08 EI60
1595
4125
PF10
1565
1920
1020
IV03 EI60
5800
200
08-H YD 60-Sa.3 EI 32 A2 ID
330
IV03 EI60
Snitt CC 1/50 A-TA- 2102 -0
480
4805
PF06
massivtre på denne siden
20
3840
A-TA- 5042 -0
DETALJ
1725
MV120
PF06
365
N DE SA FA G
2230
-V 2 ID05205. A ID UK himling: 2200mm SKJEMA INTERIØR VINDFANG A-TA-4020-0
DETALJ
PF08 EI60
780
PF01
5910
min.500
5910
-H 2 ID05204. A ID
200
A-TA- 5042 -0
60 MV1 2080
5910
50 bh.
1660
-H dB V05 = 26 tr +C 1420 /Rw 70 x 2.1 24 23 ID 1420
H
UK himling: 2750mm
MV120
PF01 905
IV01
VF 10.8 m²
DETALJ
PF02 EI30 / Rw=45dB
PF08 EI60
Vent.sjakt
A231
YV02 EI60
A-TA- 5006 -0
PF08 EI60
DETALJ A-TA- 5041 -0
PF06
5
1540
PF06
20 MV1
295
4425
735
PF04
6010
DETALJ A-TA- 5003 -0
MV140
DETALJ
2020
920
bh. 450 620
UK himling: 2200mm
A-TA- 5041 -0
1505
1700
2790
PF01
200
DETALJ
20
-H a ID01 30-S EI 43dB .1 /R`wA201 ID
20
201 B
PF02 EI30 / Rw=45dB
YV01
A232
Korridor 59.7 m²
2810
3+
V07 EI60/Rw+Ctr = 26dB 1670 x 620 ID232.3
350
20 MV1
920
920
1555
PF02
EI30 / Rw 45dB Påforing på massivtre mellom hybel og korridor, akse B, 3+, H. Frittstående (10mm) stålstenderverk 70mm, isolert 50mm,13mm gips.
massivtre på denne siden
PF02 EI30 / Rw=45dB
920
Påforing på massivtre yttervegg hybel, akse A, 5, I. Frittstående (10mm) stålstenderverk 70mm, isolert 50mm, 13mm gips.
PF03
H
205 B
920
203 B
1540
BK type 1 M
204 B
A-TA- 5032 -0
BK type 1 M
PF01
massivtre på denne siden
DETALJ A-TA-5033-1 DETALJ
-H a ID01 30-S EI 43dB .1 /R`wA205 ID
-V a ID01 30-S EI 43dB .1 /R`wA204 ID
BK type 1 I
350
20
NE EN ÅD GP MIN JER SK AV OL ES IKK
-V 2 ID05201. A ID
PF02 EI30 / Rw=45dB
20 1115
20
2230
202 B
1265
PF02 EI30 / Rw=45dB
PF02 EI30 / Rw=45dB
YV02 EI60
840
IV01
PF10
BK type 1 M
-H a ID01 30-S EI 43dB .1 /R`wA203 ID
-V a ID01 30-S EI 43dB .1 /R`wA202 ID
BK type 1 I
1670
1525
2230
2230
6010
6130
1285 PF10
2230
20
IV01
205
1375 PF10
IV01
1115
20
20
1115
-V 2 ID05203. A ID
20
3660
3330
1115
3660
IV01
PF10 -H 2 ID05202. A ID
5910
1580
IV01
1265PF10 1245
1115
840
203
1560
1505
IV01
840
IV01
5910
202
875
A201 201
5910
Hybel 13.4 m²
204
IV01
PF01
A205
Hybel 13.6 m²
Hybel 13.5 m²
875
A203
PF04 Rw=52dB
A204 PF04 Rw=52dB
Hybel IV01 13.2 m²
A202 PF04 Rw=52dB IV01
PF03 Hybel 13.3 m²
PF04 Rw=52dB
SKJEMA INTERIØR TYPISK HYBEL A-TA-4010-0
3660
3330
3330 3660
20 MV1
SKJEMA INTERIØR TYPISK HYBEL SPEILVENDT A-TA-4011-0
I
SKJEMA INTERIØR TYPISK HYBEL SPEILVENDT A-TA-4011-0
2380
80 MV
200
PF01
200
2420
SKJEMA INTERIØR TYPISK HYBEL A-TA-4010-0
2400
3330
PF01
450 bh.
PF01
20 MV1
450 bh.
C-H dB V01tr = 3220 +C 13 /Rw 70 x 1 20 ID20
6010
1240
1320
massivtre på denne siden
3660
450 bh.
2510
SKJEMA INTERIØR TYPISK HYBEL SPEILVENDT A-TA-4011-0
2400
80 MV
5000
YV01
C-V dB V01tr = 32 +C 1320 /Rw 70 x 2 20 ID20
PF01
3330
1320
875
450 bh.
00 MV1
PF01
20 MV1
1320
C-H dB V01tr = 3220 +C 13 /Rw 70 x 3 20 ID20
1240
massivtre på denne siden
200
MV120
C-V dB V01tr = 32 +C 1320 /Rw 70 x 4 20 ID20
1240
20 MV1
1320 5000
0 1275
59
PÅFORINGER PÅ MASSIVTRE
920
1240
7
Avslutning trappeskive i trapperom, rekkverk 9. etasje. 40mm massivtrevegg.
I
5
Studentsamskipnaden i Trondheim Postboks 2460 7005 Trondheim Totalentreprenør
Veidekke Entreprenør AS - Trondheim Vegamot 8 7048 Trondheim
Yttervegg hovedinngang. 2x 13mm gips, 48mm isolert stenderverk, dampsperre, 198mm isolert stenderverk, 9mm GU.
Arkitekt
YV05
Prosjekt
Gnr. / Bnr.
Moholt Studenthus
54 / 53
MDH ARKITEKTER SA Storgata 37A 0182 Oslo
office@mdh.no tlf: 48 34 60 30
Snitt DD1 1/50 A-TA- 2101 -0
N
Yttervegg hovedinngang over glassvegg. 2x 13mm gips,48mm isolert stenderverk, dampsperre, 198mm isolert stenderverk, 9mm GU, 12x48mm vertikallekt, 36mm horisontallekt, 20mm vertikal trekledning.
YV06 Sokkelvegg på betong. Grunnmursplate, 150 mm isopor, 23mm vertikallekt, 8mm fibersementplate.
Prosjektnr.
030
Almenning 1-5 Fase
Tegnet av
Kontroll
Arbeidstegninger
IR
MR
Tittel
Målestokk A0:
Plan 2. etasje
Tegn nr.
A-TA- 1102 -2
1:50
Dato
Revisjon
29.05.15
7
High Rise Wooden Buildings in Contemporary Architecture_ Appendices
2750
6
MV40
315
Prosjekt
Moholt Studenthus TÅRN A
VEGGTYPER
Tegn nr.
A-TA- 2100 -0
MASSIVTREVEGGER MV160
160mm massivtrevegg.
MV140 140mm massivtrevegg.
NB! ALLE MASSIVTRE ELEMENTSKJØTER I YTTERVEGG TEIPES! ALLE MÅL KONTROLLMÅLES PÅ BYGGEPLASS!
Gesims C+ 144500.0
MV120 120mm massivtrevegg.
10. Takplan 27720/ 144220.0
MV100 115
260
100mm massivtrevegg.
MD110
MV80 3520
260
2960
2040
massivtre på denne siden
450
massivtre på denne siden
2960
MV100
260 2040
massivtre på denne siden
PF06
massivtre på denne siden
PF08
2960
260 2040
EI60
EI60 Brannmaling på eksponert massivtre på innside trapperom.
PÅFORINGER PÅ BADEKABINER
28000
2960
MV120
Påforing på massivtre i fellesareal og vindfang. 13mm gips, 2x 15mm branngips.
Brannmaling
6. Etasje
260 2040
Rw 52dB Påforing på massivtre mellom hybler. Frittstående (10mm) stålstenderverk 70mm, isolert 50mm, 13mm gips, 15mm branngips.
Påforing på massivtre i heissjakt. Oppfyller brannkrav EI60 sammen med tilliggende massivtrevegg. 13mm gips.
A-TA- 5002 -0
450
70 115
MV80
2820
2635
MV120
MV80
MV120
PF03
Påforing på massivtre hybel yttervegg, akse I, 6, B. Frittstående (10mm) stålstenderverk 70mm, isolert 50mm, 13mm gips, 15mm branngips.
PF04
15320/ 131820.0
MV120
PF02
EI30 / Rw 45dB Påforing på massivtre mellom hybel og korridor, akse B, 3+, H. Frittstående (10mm) stålstenderverk 70mm, isolert 50mm,13mm gips.
massivtre på denne siden
7. Etasje 18280/ 134780.0
MV100
115
MV80
2820
2635
MV100
MV80
MV100
MV100
massivtre på denne siden
DETALJ
MD140
PF01
Påforing på massivtre yttervegg hybel, akse A, 5, I. Frittstående (10mm) stålstenderverk 70mm, isolert 50mm, 13mm gips.
8. Etasje
450
115
MV80
2820
2635 70
MV100
MV80
MV100
MV100 MD140
EKSISTERENDE TERRENG
PÅFORINGER PÅ MASSIVTRE
9. Etasje 24200/ 140700.0
MV100
115
MV80
2820
2635 70
MV100
MV80
MV100
MV100
Avslutning trappeskive i trapperom, rekkverk 9. etasje. 40mm massivtrevegg.
21240/ 137740.0
MD140
PF10
450
260
115
2960
2040
IV03
EI60 Innervegg sjakter med brannkrav EI60. 2x 13mm gips, 70mm stålstenderverk, 2x 13mm gips.
450
MV80
2635
2820
IV01 Innervegg sjakter hybel og vindfang. 70mm isolert stålstenderverk 2x 13mm gips.
70
MV120
MV80
MV120
MV120
INNERVEGGER
5. Etasje 12360/ 128860.0
MV120
70
Påforing på BK type 1, 1s 2 og 3. 13mm gips.
MD140
4. Etasje
EI30
2960
MV120
260 2040
IV05 Innervegg mellom inngang og trapperom 1.etasje. 13mm gips, isolert stålstenderverk 70mm, 13mm gips.
450
115
MV80
2820
2635 70
MV120
MV80
MV120
MV120
Stålstender 70mm over badekabiner, kledd med sammenhengende 13mm gips fra bunn badekabin til tak.
IV06
3. Etasje
Lydkrav
6440/ 122940.0
YTTERVEGGER 2960
2040
MV120
115
Oppdat. skjema- + detaljhenv. Oppdat. dørtyper i kjeller +1etg. Kjeller: boder, plass.p-kjeller, målsetting, dørinfo. 1.etg: dørinfo+type, YD info, GV01, inngangsdør + matte plass., himling inngang, målsetting. 2-9etg: dørtype VF. Takplan: gesims. Fasader: YD info, brannkrav kledningstype 7. Snitt: P-kjeller info, himling inngang, gesims.
06.08.15
IR
1
Fasader: kledning like bredder, beskrivelse type kledning. Planer: Inspeksjonsluke sjakt korridor, inspeksjonsdør i VF, fjernet PF10 og PF07 i sjakt VF. PF07 utgår. Snitt og himling: Fjernet himling i trapperom, himling ved yttervegg i hybler endret høyde over FG.
01.07.15
IR
MR
Rev.
Beskrivelse
Dato
Tegn.
Kontr.
ARK
MDH arkitekter SA
Storgata 37a 0182 Oslo
LARK
MASU planning ASP
Struenseegade 15 1th DK-2200 København-N
RIB
Høyer Finseth AS
Engebrets vei 5 0275 Oslo
RIE
Vintervoll AS
Ingvald Ystgaards veg 23 7047 Trondheim
RIV
Teknisk ventilasjon AS
Industriveien 39a 7080 Heimdal
RIBr
Rambøll Norge AS
Mellomila 79 7493 Trondheim
RIA
Brekke og Strand AS
Klæbuveien 196b 7037 Trondheim
RØR
K. Lund AS
Pb. 2433 Sluppen 7005 Trondheim
200mm Flexsystemplate, 36x98mm vertikallekt. Horisontal lekt ulike bredder.Vertikal skråstilt trekledning 123mm
2. Etasje
B
3480/ 119980.0
A
490
YV02
E
Yttervegg med brannkrav EI60. Når yttervegg ligger utenpå betongvegg taes brannkravet opp i betongen. 200mm Flexsystemplate, 36x98mm vertikallekt. Horisontal lekt ulike bredder. Vertikal skråstilt trekledning 123mm
3480
2390
3180
3330
EI60
DETALJ
planert terreng C+116550.0
300
1. Etasje 0/ 116500.0
50
100
A-TA- 5001 -1
Korridor - inngang fra P-kjeller
YV04
Nedkjørsel til P-kjeller
Yttervegg hovedinngang. 2x 13mm gips, 48mm isolert stenderverk, dampsperre, 198mm isolert stenderverk, 9mm GU.
0. Kjeller -3300/ 113200.0
D
2750.0
4
5000.0
3
YV05 Yttervegg hovedinngang over glassvegg. 2x 13mm gips,48mm isolert stenderverk, dampsperre, 198mm isolert stenderverk, 9mm GU, 12x48mm vertikallekt, 36mm horisontallekt, 20mm vertikal trekledning.
5000.0
2
C N
EI60
Yttervegg med brannkrav EI60, hovedinngang. Brannkravet taes opp i tilliggende betongvegg. 200mm Flexsystemplate, 36x98mm vertikallekt. Horisontal lekt. Vertikal trekledning 123mm
Lager i P-kjeller
D
YV03
3300
2900.0
planert terreng C+116550.0
NZ
YV01
450
MV80
2750
2635
MV120
MV80
MV120
Innervegg med lydkrav i legesenter 1.etg. 2x13mm gips, isolert stålstenderverk 96mm, 2x13mm gips.
260
MD140
2
IV04
9400/ 125900.0
MD140
MV120
High Rise Wooden Buildings in Contemporary Architecture_ Appendices
MV100
2040
MV80
MD140
KONSTRUKSJON AV BETONG I UNDERETASJE OG 1.ETASJE; SE RIBTEGNINGER FOR MÅLSETTING.
MV40
450
2820
2635 70
MV100
MV80
MV100
60
MV100
80mm massivtrevegg.
MERKNADER:
1
C
YV06
C
Sokkelvegg på betong. Grunnmursplate, 98mm trykkfast isolasjon, 50+10mm sirocplate.
A
A
D
Tiltakshaver
Studentsamskipnaden i Trondheim Postboks 2460 7005 Trondheim Totalentreprenør
Veidekke Entreprenør AS - Trondheim Vegamot 8 7048 Trondheim Arkitekt
MDH ARKITEKTER SA Storgata 37A 0182 Oslo
office@mdh.no tlf: 48 34 60 30
Prosjekt
Gnr. / Bnr.
Moholt Studenthus
54 / 53
030
Tegnet av
Kontroll
Prosjektnr.
Almenning 1-5 Fase
Arbeidstegninger
IR
Tittel
Målestokk A0:
Snitt AA
Tegn nr.
A-TA- 2100 -0
NZ 1:50
Dato
Revisjon
29.05.15
2
Prosjekt
VEGGTYPER
Moholt Studenthus TÅRN A
Tegn nr.
A-TA- 2101 -0
MASSIVTREVEGGER MV160
160mm massivtrevegg.
MV140
DETALJ
140mm massivtrevegg.
A-TA- 5008 -0
NB! ALLE MASSIVTRE ELEMENTSKJØTER I YTTERVEGG TEIPES! ALLE MÅL KONTROLLMÅLES PÅ BYGGEPLASS!
MV120
Gesims C+ 144500.0
120mm massivtrevegg.
80mm massivtrevegg.
3520
MV100
450
massivtre på denne siden
9. Etasje 24200/140700.0
115
2960
MV100
2040 450
massivtre på denne siden
PF04
massivtre på denne siden
PF06
massivtre på denne siden
PF08
2960
260
MV100
2040 450
PF02
EI30 / Rw 45dB Påforing på massivtre mellom hybel og korridor, akse B, 3+, H. Frittstående (10mm) stålstenderverk 70mm, isolert 50mm,13mm gips.
PF03
260
7. Etasje 18280/134780.0
Påforing på massivtre yttervegg hybel, akse A, 5, I. Frittstående (10mm) stålstenderverk 70mm, isolert 50mm, 13mm gips.
Påforing på massivtre hybel yttervegg, akse I, 6, B. Frittstående (10mm) stålstenderverk 70mm, isolert 50mm, 13mm gips, 15mm branngips. Rw 52dB Påforing på massivtre mellom hybler. Frittstående (10mm) stålstenderverk 70mm, isolert 50mm, 13mm gips, 15mm branngips.
Påforing på massivtre i fellesareal og vindfang. 13mm gips, 2x 15mm branngips.
EI60 Påforing på massivtre i heissjakt. Oppfyller brannkrav EI60 sammen med tilliggende massivtrevegg. 13mm gips.
2040
2960
Brannmaling EI60 Brannmaling på eksponert massivtre på innside trapperom.
MV100
PÅFORINGER PF10
6. Etasje 15320/ 131820.0
Påforing på BK type 1, 1s 2 og 3. 13mm gips.
IV01
28000
2960
2040
2820
2635
INNERVEGGER
2420
2105
2200
330
645
MV120
MV120
780 2180
450
115 2820
70
2635
2420
2200
2105
2180
330
645
MV100
MV100
780
MV100 MV120
61
PF01
massivtre på denne siden
8. Etasje 21240/137740.0
260
2820
2635 70 115
2820
70
2635
2420
2200
2105
2180
330
645
MV100
MV100
780
MV100 2820 2820
2820
2820
300
EKSISTERENDE TERRENG
Avslutning trappeskive i trapperom, rekkverk 9. etasje. 40mm massivtrevegg.
260
70 115
330 2420
2105
2180
2200
2820
300
MV100 2520 300
MV100 2520 300
MV120 2520
2820
2200 2200
330
645
MV120
2420
2105
2820
2200
330
645
MV100
2105
2420 330
645 2105
2420
MV100
70 115
2820
2635 70 115
2820
2635
MD140
2820
2200
2105
2420
2820
2635 70 115 2635
2820
2040 450
MV100 MV100
450
MV100
2040
260
MD140
KONSTRUKSJON AV BETONG I UNDERETASJE OG 1.ETASJE; SE RIBTEGNINGER FOR MÅLSETTING.
MV40
massivtre på denne siden
MD140
MERKNADER:
Innervegg sjakter hybel og vindfang. 70mm isolert stålstenderverk 2x 13mm gips.
MV100
450 2040
2960
Stålstender 70mm over badekabiner, kledd med sammenhengende 13mm gips fra bunn badekabin til tak.
3
Kjeller: oppdatert dører, Snitt DD: detaljhenvisning, 2-9etg: type rømningsdør Oppdat. skjema- + detaljhenv. Oppdat. dørtyper i kjeller +1etg. Kjeller: boder, plass.p-kjeller, målsetting, dørinfo. 1.etg: dørinfo+type, YD info, GV01, inngangsdør + matte plass., himling inngang, målsetting. 2-9etg: dørtype VF. Takplan: gesims. Fasader: YD info, brannkrav kledningstype 7. Snitt: P-kjeller info, himling inngang, gesims.
27.11.15
IR
MR
06.08.15
IR
NZ
1
Fasader: kledning like bredder, beskrivelse type kledning. Planer: Inspeksjonsluke sjakt korridor, inspeksjonsdør i VF, fjernet PF10 og PF07 i sjakt VF. PF07 utgår. Snitt og himling: Fjernet himling i trapperom, himling ved yttervegg i hybler endret høyde over FG.
01.07.15
IR
MR
Rev.
Beskrivelse
Dato
Tegn.
Kontr.
2
IV05
115
MV100
450
Innervegg mellom inngang og trapperom 1.etasje. 13mm gips, isolert stålstenderverk 70mm, 13mm gips.
4. Etasje 9400/ 125900.0
IV13
Innervegg.13mm gips, stålstenderverk 70mm, 13mm gips.
260
70
EI30
330
645
MV120
MV140
780
MV120
260
70 115 2820
2635
2420
2200
2105
2180
330
645
MV120
MV120
32102.0
780
2820
MV120
2820
MV120 2520 300
MV140 2520
330
645
MV120
EI60 Innervegg sjakter med brannkrav EI60. 2x 13mm gips, 70mm stålstenderverk, 2x 13mm gips.
5. Etasje 12360/ 128860.0
IV04
2820
2200
330
645
MV120
2105
2420
2820
2635 70 115
260 2040 450
MV100
MD140
115
70
MV100
IV03
MD140
IV15
Innervegg med lydkrav i legesenter 1.etg. 2x13mm gips, stålstenderverk 70mm, isolert 50mm, 2x13mm gips.
2960
2040
2820
2635
2420
2105
2180
2200
2820
300
2200
2105
2420
2820
2635
R´w 48dB
IV16
IV17
2960
2040
Industriveien 39a 7080 Heimdal
RIBr
Rambøll Norge AS
Mellomila 79 7493 Trondheim
RIA
Brekke og Strand AS
Klæbuveien 196b 7037 Trondheim
RØR
K. Lund AS
Pb. 2433 Sluppen 7005 Trondheim
MV100
450 490
E
A
D
3480
2390
3180
2180
C
EI60
0/
1120
50
N
Yttervegg med brannkrav EI60. Når yttervegg ligger utenpå betongvegg taes brannkravet opp i betongen. 200mm Flexsystemplate, 36x98mm vertikallekt. Horisontal lekt ulike bredder. Vertikal skråstilt trekledning 123mm
300
100
B
900
Tiltakshaver
2900.0
3300
EI60
Yttervegg med brannkrav EI60, hovedinngang. Brannkravet taes opp i tilliggende betongvegg. 200mm Flexsystemplate, 36x98mm vertikallekt. Horisontal lekt. Vertikal trekledning 123mm
2180
2900 1595
1295
Teknisk ventilasjon AS
YV02
YV03
300
2900
Ingvald Ystgaards veg 23 7047 Trondheim
RIV
200mm Flexsystemplate, 36x98mm vertikallekt. Horisontal lekt ulike bredder.Vertikal skråstilt trekledning 123mm
YV04
1100
D
Yttervegg hovedinngang. 2x 13mm gips, 48mm isolert stenderverk, dampsperre, 198mm isolert stenderverk, 9mm GU.
1660.0
B
Vintervoll AS
YV01
0. Kjeller
A
Engebrets vei 5 0275 Oslo
RIE
YTTERVEGGER
-3300/113200.0
6010.0
Struenseegade 15 1th DK-2200 København-N
Høyer Finseth AS
2. Etasje 3480/ 119980.0
planert terreng C+116440.0
3165
2865
3330
3180 2400
300
3180
3330
50 100
planert terreng C+116400.0
Storgata 37a 0182 Oslo
MASU planning ASP
RIB
IV21
900
1000
780
Innervegg med lydkrav i legesenter 1.etg. 2x13mm gips, stålstenderverk 70mm, isolert 50mm, 13mm gips, 12mm x-finer.
MDH arkitekter SA
LARK
Innervegg.13mm gips, stålstenderverk 70mm, 12mm x-finer, 13mm gips.
300
3165
2865
MV100
450 260
70 115 2750
2635
2420
2200
2105
2180
330
645
MV120
MV140
780
2820
2820
MV120
2820
MV140 2520 300
2200
330
645
MV120
2105
2420
2750
2635
Innervegg med lydkrav i legesenter 1.etg. 13mm gips, stålstenderverk 70mm, isolert 50mm, 13mm gips.
3. Etasje 6440/ 122940.0
R´w 48dB
450
MV100
2040
260
MD140
115
70
MV100
R´w 34dB
ARK
Studentsamskipnaden i Trondheim Postboks 2460 7005 Trondheim Totalentreprenør
Veidekke Entreprenør AS - Trondheim Vegamot 8 7048 Trondheim Arkitekt
MDH ARKITEKTER SA Storgata 37A 0182 Oslo
office@mdh.no tlf: 48 34 60 30
1660.0
B+ G
6010.0
H
C I
C
A
A
D
YV05
Prosjekt
Yttervegg hovedinngang over glassvegg. 2x 13mm gips,48mm isolert stenderverk, dampsperre, 198mm isolert stenderverk, 9mm GU, 12x48mm vertikallekt, 36mm horisontallekt, 20mm vertikal trekledning.
Moholt Studenthus
YV06 Sokkelvegg på betong. Grunnmursplate, 150 mm isopor, 23mm vertikallekt, 8mm fibersementplate.
Gnr. / Bnr.
Prosjektnr.
54 / 53
030
Tegnet av
Kontroll
Almenning 1-5 Fase
Arbeidstegninger
IR
Tittel
Målestokk A0:
Snitt DD
Tegn nr.
A-TA- 2101 -0
NZ 1:50
Dato
Revisjon
29.05.15
3
High Rise Wooden Buildings in Contemporary Architecture_ Appendices
260
115 2820
2635
2420
2200
2105 645
MV100
MV100
780
MV100
MV100
330
645
MV100
100mm massivtrevegg.
MV80
2040
330
645
MV100
MV100
15 1320 2180
1200 Rekkverk
4145
2200
2420
2105
2750
3500
MV100
MV100
330
645
MV100
115
2820
2635 115
MV100
PÅFORINGER PÅ MASSIVTRE
70
MV100 260
MD140
10. Takplan 27720/144220.0
150
MD200
MD110
Prosjekt
VEGGTYPER
Moholt Studenthus TÅRN A
Tegn nr.
A-TA- 2102 -0
MASSIVTREVEGGER MV160
NB!
160mm massivtrevegg.
MV140 140mm massivtrevegg.
ALLE MASSIVTRE ELEMENTSKJØTER I YTTERVEGG TEIPES! ALLE MÅL KONTROLLMÅLES PÅ BYGGEPLASS!
DETALJ Gesims C+ 144500.0
A-TA- 5007 -0
MERKNAD:
MV120 120mm massivtrevegg.
150
10. Takplan
MV100
MV80 MV40
Avslutning trappeskive i trapperom, rekkverk 9. etasje. 40mm massivtrevegg.
PF02
massivtre på denne siden
PF03
massivtre på denne siden
PF04
massivtre på denne siden
PF06
massivtre på denne siden
PF08
MV100
70
MV100
2960
7. Etasje 18280/134780.0
MV100
MD140
Påforing på massivtre yttervegg hybel, akse A, 5, I. Frittstående (10mm) stålstenderverk 70mm, isolert 50mm, 13mm gips. EI30 / Rw 45dB Påforing på massivtre mellom hybel og korridor, akse B, 3+, H. Frittstående (10mm) stålstenderverk 70mm, isolert 50mm,13mm gips.
Påforing på massivtre hybel yttervegg, akse I, 6, B. Frittstående (10mm) stålstenderverk 70mm, isolert 50mm, 13mm gips, 15mm branngips. Rw 52dB Påforing på massivtre mellom hybler. Frittstående (10mm) stålstenderverk 70mm, isolert 50mm, 13mm gips, 15mm branngips.
Påforing på massivtre i fellesareal og vindfang. 13mm gips, 2x 15mm branngips.
EI60 Påforing på massivtre i heissjakt. Oppfyller brannkrav EI60 sammen med tilliggende massivtrevegg. 13mm gips.
Brannmaling
2960
115
260 2040
2820
2635 70 115
2820
massivtre på denne siden
8. Etasje
2635
330
645
MV100
2420
2105
PF01
21240/137740.0
MD140
450
330
645
MV100
2420
2105
2200
MV100
2200
massivtre på denne siden
2960
115 2820
MD140
2635
330
645
MV100
2105
2200
MV100
2820
2520
MV100
300 2820
300
2520
MV100
2420
MV100
MV100 300
2820 2820 2820
450
70
70 260
480
MV100
2440
2270 70
50
480
MV100
2270 70 260
480
MV100
2440
2270
9. Etasje 24200/140700.0
EI60 Brannmaling på eksponert massivtre på innside trapperom.
70
MV100
Påforing på BK type 1, 1s 2 og 3. 13mm gips.
INNERVEGGER IV01
28000
2960
115
MD140 260
PF10
6. Etasje 15320/131820.0
2040
2820
2635
645
330 2420
2105
2200
MV120
2820
MV120
MV120
300
2270
2820
480
MV120
MD140
2520
50
70
PÅFORINGER
Innervegg sjakter hybel og vindfang. 70mm isolert stålstenderverk 2x 13mm gips.
450
EI60 Innervegg sjakter med brannkrav EI60. 2x 13mm gips, 70mm stålstenderverk, 2x 13mm gips.
5. Etasje 12360/128860.0
MD140 MV100
70 115
330
645
MV120
2820
MV120
MV120
260
480
MV120
2520
70
IV03
MD140
IV04 Stålstender 70mm over badekabiner, kledd med sammenhengende 13mm gips fra bunn badekabin til tak.
DETALJ 2960
2820
2635
4. Etasje 9400/ 125900.0
70
2105
2420
Innervegg.13mm gips, stålstenderverk 70mm, 13mm gips.
2960
2040
2820
2635
2420
2105
2200
300
2820
2270
IV15
450
Kontr.
Storgata 37a 0182 Oslo Struenseegade 15 1th DK-2200 København-N
Høyer Finseth AS
Engebrets vei 5 0275 Oslo
RIE
Vintervoll AS
Ingvald Ystgaards veg 23 7047 Trondheim
Innervegg med lydkrav i legesenter 1.etg. 13mm gips, stålstenderverk 70mm, isolert 50mm, 13mm gips.
RIV
Teknisk ventilasjon AS
Industriveien 39a 7080 Heimdal
RIBr
Rambøll Norge AS
Mellomila 79 7493 Trondheim
IV17
RIA
Brekke og Strand AS
Klæbuveien 196b 7037 Trondheim
Innervegg med lydkrav i legesenter 1.etg. 2x13mm gips, stålstenderverk 70mm, isolert 50mm, 13mm gips, 12mm x-finer.
RØR
K. Lund AS
Pb. 2433 Sluppen 7005 Trondheim
B
MV100
YV01 200mm Flexsystemplate, 36x98mm vertikallekt. Horisontal lekt ulike bredder.Vertikal skråstilt trekledning 123mm
3480
3180
2390 300
100
A
D
DETALJ
C
EI60
N
Yttervegg med brannkrav EI60. Når yttervegg ligger utenpå betongvegg taes brannkravet opp i betongen. 200mm Flexsystemplate, 36x98mm vertikallekt. Horisontal lekt ulike bredder. Vertikal skråstilt trekledning 123mm
1. Etasje
50
3165
E
YV02
DETALJ
2865
MR
Tegn.
Innervegg.13mm gips, stålstenderverk 70mm, 12mm x-finer, 13mm gips.
300
2400
IR
Dato
YTTERVEGGER
A-TA- 5021 -1
100
01.07.15
Beskrivelse
IV21
2. Etasje 3480/ 119980.0
C+116500
50
Fasader: kledning like bredder, beskrivelse type kledning. Planer: Inspeksjonsluke sjakt korridor, inspeksjonsdør i VF, fjernet PF10 og PF07 i sjakt VF. PF07 utgår. Snitt og himling: Fjernet himling i trapperom, himling ved yttervegg i hybler endret høyde over FG.
MASU planning ASP
R´w 48dB
2960
70 115 2750
MD140
2635
330
645
MV120
2105
2420
MV140
3. Etasje 6440/ 122940.0
3165
2865
50
1
Rev.
MDH arkitekter SA
R´w 34dB
A-TA- 5013 -1
0/116500.0
A-TA- 5000 -1
Tiltakshaver
DETALJ
YV03
A-TA- 5012 -1
EI60
Nedkjørsel til P-kjeller
Yttervegg med brannkrav EI60, hovedinngang. Brannkravet taes opp i tilliggende betongvegg. 200mm Flexsystemplate, 36x98mm vertikallekt. Horisontal lekt. Vertikal trekledning 123mm
1595
1295
300
2900
A-TA- 5014 -1
3300
DETALJ
NZ
RIB
IV16
A-TA- 5050 -0
C+116500
MR MR
IR
LARK
Innervegg med lydkrav i legesenter 1.etg. 2x13mm gips, stålstenderverk 70mm, isolert 50mm, 2x13mm gips.
A-TA- 5015 -1
DETALJ
IR IR
06.08.15
ARK
R´w 48dB
A-TA- 5017 -0
DETALJ
2820
2200
MV120
300
2750
2520
70 260
480
MV140
2440
2270
DETALJ
29.01.16 10.11.15
IV13
MV100
115
MD140 260
330
645
MV120
Innervegg mellom inngang og trapperom 1.etasje. 13mm gips, isolert stålstenderverk 70mm, 13mm gips.
A-TA- 5023 -0
DETALJ
Detaljhenvisninger 1-9etg:Plassering sprinkler i systemhimling, skjemahenvisninger. Snitt CC: høyde inngang. Oppdat. skjema- + detaljhenv. Oppdat. dørtyper i kjeller +1etg. Kjeller: boder, plass.p-kjeller, målsetting, dørinfo. 1.etg: dørinfo+type, YD info, GV01, inngangsdør + matte plass., himling inngang, målsetting. 2-9etg: dørtype VF. Takplan: gesims. Fasader: YD info, brannkrav kledningstype 7. Snitt: P-kjeller info, himling inngang, gesims.
2
IV05
DETALJ
MD140
4 3
EI30
2820
MV140
MV120
2200
300
2820
480
MV140
MD140
2520
50
70
2270
2440
A-TA- 5025 -0
2715
High Rise Wooden Buildings in Contemporary Architecture_ Appendices
MD140
EKSISTERENDE TERRENG
80mm massivtrevegg.
PÅFORINGER PÅ MASSIVTRE
MD140
MD140
KONSTRUKSJON AV BETONG I UNDERETASJE OG 1.ETASJE; SE RIBTEGNINGER FOR MÅLSETTING.
100mm massivtrevegg.
3520
115
260 2040
2820
2635
330
645
MV100
2105
2200
2420
MV100
MV100
MD110
4145
2270
62
2820
480
MV100
MD110
MV100
27720/144220.0
0. Kjeller
D
-3300/113200.0
YV04
Studentsamskipnaden i Trondheim Postboks 2460 7005 Trondheim Totalentreprenør
Veidekke Entreprenør AS - Trondheim Vegamot 8 7048 Trondheim
Yttervegg hovedinngang. 2x 13mm gips, 48mm isolert stenderverk, dampsperre, 198mm isolert stenderverk, 9mm GU.
Arkitekt
YV05
Prosjekt
MDH ARKITEKTER SA Storgata 37A 0182 Oslo
office@mdh.no tlf: 48 34 60 30
C 6010
1
3+
5
C
Yttervegg hovedinngang over glassvegg. 2x 13mm gips,48mm isolert stenderverk, dampsperre, 198mm isolert stenderverk, 9mm GU, 12x48mm vertikallekt, 36mm horisontallekt, 20mm vertikal trekledning.
A
A
YV06 D
Sokkelvegg på betong. Grunnmursplate, 150 mm isopor, 23mm vertikallekt, 8mm fibersementplate.
Moholt Studenthus
Gnr. / Bnr.
54 / 53
Prosjektnr.
030
Almenning 1-5 Fase
Tegnet av
Arbeidstegninger
IR
Tittel
Målestokk A0:
Snitt CC
Tegn nr.
A-TA- 2102 -0
Kontroll
MR 1:50
Dato
Revisjon
29.05.15
4
High Rise Wooden Buildings in Contemporary Architecture_ Appendices
63