Marta Piñeiro. High Rise Wooden Buildings

Page 1

HIGH RISE WOODEN BUILDINGS IN CONTEMPORARY ARCHITECTURE AAR4817 - Emissions as Design Drivers - Theory course Supervisor: Dr. Aoife Houlihan Wiberg Final Report

Faculty of Architecture and Fine Art Department of Architectural Design, History and Technology Marta Piñeiro Lago May 2017



ACKNOWLEDGEMENTS

I would like to express my special thanks and appreciation to Vegard Hjelden, construction leader of Veidekke Entreprenør in Trondheim. Thank you for your patience and detailed explanations, and for providing me with all the information that I needed to elaborate this small report. It would not have been possible without your help. Thank you as well to my professor Dr. Aoife Houlihan Wiberg for your guidance and support, and Marial Coral Ness, for being always willing to lend a helping hand. To Filippo Frontini, for providing me the tools that allowed me to calculate the timber structure, and to Hanne Bylemans for providing me the calculation tables for the hollow core concrete slab. Thank you to Pasi Aalto, who set the starting point of this research, and to Dave Collins, for his kindness and good vibes. Thank you to Jairo Rúa, for being the light in the dark, and to my friendly classmates -Irene Hutami, Nikita Chagger, Juanma Cruz...-, for your kind words during stressful moments. Last but not least, I would like to give a heartfelt thanks to every person who spent their time answering my emails. Thanks to Sepp Schilcher from the X-fix company, Kazunori Yamaguchi from OOPEAA, Julia Schemel and Thomas Hoepfner from NUR-HOLZ, Alice Moncaster from The Open University, Peter Feltendal from Helen&Hard, Jenn Zatser from Michael Green Architects, Tham & Videgård Arkitekter, Josefin Roos from C.F. Møller, Anne Lilienthal from Sit, Arnstein Olav from NTNU, and Mario Rando.


ABSTRACT

The continuous growth of the population and the need for new housing are global problems in the present times. In a global situation where 40% of the total CO2 emissions released to the atmosphere are due to the buildings sector, finding a way to build more sustainable is not a possibility, but an urgent need. Research on architecture and building engineering is rapidly moving towards the design of more energy efficient buildings and sustainable materials for construction. However, what if the more sustainable solution has always been in front of us? What if the sustainable material that we are looking for is the oldest material that has ever exist? Wood, due to its carbon sequestration capacity has been proved to be one of the more sustainable materials from all times, and high rise wooden buildings are not a dream anymore, but a feasible reality. This report aims to research on this new architectural typology, and to prove how much is possible to reduce the CO2 emissions due to materials by using this wonderful and natural resource on high rise buildings’ structure instead of more conventional structural solutions.


TABLE OF CONTENTS 1. INTRODUCTION

07

2. TECHNICAL BACKGROUND

13

3. AIM OF THE STUDY

21

4. CASE STUDY

25

5. RESULTS

38

6. CONCLUSIONS

40

7. DISCUSSION

41

8. FURTHER WORK

44

REFERENCES

45

APPENDIXES

59

Fig. 1: Empire State of Wood_MGA



1. INTRODUCTION Setting the scene. The history of high rise wooden buildings

According to Strelitz (2005), high rise buildings are defined as an architectural typology in which the dimension on its vertical axis -height- is dominant over the horizontal dimension.

China, the Yingxian Pagoda. Built in 1056 and with a total of 67.30 meter tall, this pagoda has survived several large earthquakes throughout the centuries.

Due to its minimum footprint and high compactness, high rise buildings may be considered as the optimal solution when it comes to areas with high population density. However, there is no international agreement on a minimum high for this architectural typology, as if a building might be considered or not a high rise depends on its urban context. For the case of Norway, buildings higher than six storeys may be considered high rise buildings in most of the cases.

However, China and Japan are not the only countries with a tall wood building heritage. Several countries around the world have a history of constructing these kind of superstructures. “According to UNESCO, stave churches constitute one of the most elaborate and technologically advanced types of wooden construction that existed in North-Western Europe during the Middle Ages” (n.d., cited in ARUP, 2014).

Nowadays, most of the high rise buildings that still stand in our cities’ skylines are built in steel or concrete. Nevertheless, due to the high environmental impact of these construction materials, the current tendency moves towards the development of more sustainable structural alternatives. That is the case of wood. Many people tend to think that high rise wooden buildings are a cutting-edge technology, and in many aspects they are. However, there is a world wide cultural heritage for the case of high wooden buildings that remains ignored. Tall wood buildings have existed for centuries. 1400 years ago tall pagodas in Japan and China were built up to nineteen storeys in wood. Many of them still stand today even in high seismic areas and wet climate environments. This is the case of Hōryū-ji Pagoda in Japan, one of the oldest buildings existing in the world. This beautiful pagoda built in 711 was inscribed in 1993 as a UNESCO World Heritage Site under the name Buddhist Monuments. Another example is the oldest existent fully wooden pagoda still standing in

Stave churches are medieval wooden Christian churches that were very common in this area of Europe. The name derives from their structural system of post and lintel, a type of timber framing where the load-bearing posts are called “stav” in Norwegian. Originally much more widespread, most of the surviving stave churches are in Norway. One of the oldest and finest remaining examples is the Urnes Stavkirke. Built around 1130, this church was partially constructed from elements of another church built on the site a century earlier. It consists entirely of wood, with large columns and arches supporting the structure. In 1979 it was included on the UNESCO World Heritage List as one of the two first Norwegian entries. Along with Asia and Europe, North America has its own history on tall wood buildings. From 1850’s to 1940’s, in Canada and the United States, tall timber structures were built using a new structural system called “brick and beam”. This system consists on a brick façade supported by a heavy solid wood internal structure. These “brick and beam” constructions were widely used during almost a century as it allowed large, open floor plans, very useful

High Rise Wooden Buildings in Contemporary Architecture_ Introduction

7


High Rise Wooden Buildings in Contemporary Architecture_ Introduction

8

Hōryū-ji Oldest Japanese Pagoda

711

1056 Yingxian Oldest Chinese Pagoda

The Great Chicago’s fire. Setting point for technical innovation in new structural systems in concrete and steel

Urnes Stavkirke Almost 900 years old stave church, Norway

1132

1850’s

1871

Canadian and U.E. “Brick and beam” structural system used until 1941 E.g. Toronto Carpet Factory 1899

1872 First patent of Glued laminated timber (glulam) by Otto Hetzer Weimar, Germany


Perry House Oldest timber construction in Australia “Brick and beam� system

1913

1970

Murray Grove First CLT building UK

2009 Cross laminated timber (CLT) Product idea development 1990_First panels Switzerland

Concrete Jointed Timber Frame. Hybrid system Timber Tower Research Project SOM

Finding the forest through the trees (FFTT) hybrid system MGA

2012

2013

Life Cycle Tower First building using hybrid timber-based system Autria

2014

Puukuokka Housing block has been completed Finland

2017

Wood Innovation Design Centre Combines glulam, CLT and SCL on its structure Canada

High Rise Wooden Buildings in Contemporary Architecture_ Introduction

9


High Rise Wooden Buildings in Contemporary Architecture_ Introduction

10

for offices and industrial facilities. This structural system was also exported to Australia later on, becoming very popular on the 1900’s. Nevertheless, with the creation of the National Building Code of Canada in 1941, several restrictions for the “brick and beam” structural system were implemented on the new regulations, which made this system obsolete and no longer used. There is another historical event that has a key role in the history of tall wood buildings. In 1871, big part of Chicago was reduced to ashes in what is known as The Great Chicago’s Fire. Due to the increment of prices after the fire and the need of maximizing the efficiency of the available terrain, this unfortunate event was the setting point for technical innovation in new concrete and steel based structural systems that would allow the buildings to go taller. Those new structural systems were exported lateron from there to all over the world, beginning the era of concrete and steel high rises. Nevertheless, structural timber materials were never completely forgotten. In 1972, just one year later of the great fire, the first patent of glued laminated timber was released in Germany. These wood based material, also called glulam, is a type of structural engineered wood product comprising a number of layers of dimensioned lumber bonded together with structural glue. The first industrial patented use was in Weimar, Germany, where Otto Hetzer set up a steam sawmill and carpentry business. Almost a hundred years later, in 1970, the product idea of cross laminated timber - also called CLT - was developed. Twenty years from then, the first CLT panel was produced in Switzerland, creating a new world of possibilities for high rise timber structures. Fig. 2: Murray Grove building. Waugh Thistleton Architects. London, U.k.


Almost twenty years later, in 2009, the first CLT building was completed. The Murray Grove, also known as the Stadhaus building, is set in the capital city of UK. This nine-story residential building was entirely constructed in a platform-framed CLT, with the exception of the ground floor, which is made of reinforced concrete. The construction of the Murray Grove set the point of inflexion for a remarkable new interest in timber superstructures. Nevertheless, every structural system has its limitations and, for the case of entirely based timber structures, the higher limit is on twenty storeys. This high limitations for structural security reasons created a new technical ambition in finding a solution for going taller. That is how hybrid systems became a cutting-edge structural technology. The first timber-concrete based hybrid system was developed by CREE company. According to Karacabeyli and Mohammad (2015), this new system called Life Cycle Tower -LCT- “has a potential heights of up to 30 storeys and floor spans of up to 9,4 meters. LCT involves the use of glulam beams and columns as the primary building material, with concrete used in prefabricated concrete-timber composite deck elements. All components are prefabricated to support modular installation”. In 2012, the first building using this hybrid timber-based system was built in Autria. The same year, The Skidmore, Owings & Merrill -SOM- architectural and engineering firm proposed a new hibrid system for a 42-storey high-rise. SOM published a report about this stuctural system one year later, in 2013, detailing the proposed system: a Concrete Jointed Timber Frame -CJTF-. Another option for these innovative structural solutions are timbersteel hybrid systems. According to Karacabeyli and Mohammad

(2015) “steel elements can be designed to provide ductility, high tensile capacity, and predictability, where required, while timber is used for weight reduction and high bearing capacity parallel to grain. Steel and timber working together is not new; many timber connections rely on steel to transfer loads from plates, bolts, screws, etc”. Finding the Forest Through the Trees -FFTT-, is a timber-steel hybrid concept by Michael Green Architecture and engineers Equilibrium Consulting designed for high-rises up to 30 storeys in height in high seismic regions. FFTT relies on a “strong column – weak beam” approach to building design, where the “weak beam” component is made of steel beams bolted to the Mass Timber panels in order to provide ductility in the system. This hybrid alternative was published in 2012 in 200-page thesis title The Case For Tall Wood Buildings. In October of 1014, the first building using glued laminated timber, cross laminated timber and structural composite lumber together on its structure was completed under the name of the Wood Innovation and Design Centre -WIDC-. It is a six-story building placed in Prince George, British Columbia, that almost 30 meters high. This building contains glulam columns and beams, CLT floors and shearwalls, and additional elements include laminated veneer lumber -LVL- and parallel strand lumber -PSL-. Overall, it seems clear that these innovative hybrid systems open a new world of possibilities in the future of high rise wooden counstructions. CF Møller architect, Ola Jonsson (2015), also believes wood is the future: “We have researched massive wood constructions for many years and strongly believe that it is the smartest way to build multi-storey buildings in Scandinavia.” The architect, who is currently working on a “woodscraper” that will be

High Rise Wooden Buildings in Contemporary Architecture_ Introduction

11


High Rise Wooden Buildings in Contemporary Architecture_ Introduction

12

placed in Stockholm, believes the biggest challenge to overcome is not the limits of the material, but the lack of experience within the construction industry.

A recent study by Perkins+Will -funded by British Columbia Forestry Innovation Investment and the Bi-national Softwood Lumber Council- (2015), indicated that “the key driver in Europe for tall wood construction has been the strong regulatory support for low carbon content materials, renewable resources and energy efficient construction. Such policies directly and indirectly encouraged tall wood and mass timber construction”. All in all, it can be clearly appreciated that the way we perceive and understand skyscrapers is being suffering the biggest change in the past 150 years. Nowadays, it is possible to think in a high rise building without automatically relating it with steel or concrete as the only alternatives to make this architectural typology feasible. We might be starting a new era in architecture’s history.

Fig. 3: Västerbroplan. CF Møller. Stockholm, Sweden.


2. TECHNICAL BACKGROUND Advantages and properties of wood

Renewable and recyclable According to Stora Enso (n.d.), “a sustainable tree plantation preserves native ecosystems, enhances local welfare and is financially profitable”. However, the environmental benefits of using timber are not straightforward. “With a current global situation where 80% of the total forest area is already affected by human activity, with more than a third of the remainder under immediate threat “(Fenning and Gershenzon, 2002), to farm trees in plantations composed of fast-growing elite genotypes becomes extremely important in terms of maintaining global sustainability on the natural environment. The re-establishment of the cut trees that is carried out in tree plantations is important not only to preserve the levels of CO2 on the atmosphere, but also for soil and water conservation reasons, as well as to preserve the local species and global biodiversity. Nowadays, The biggest part of wood used to produce new timber based materials -such as CLT or glulam-, comes from sustainable plantations. This industrialized timber products are specially appropriate for this kind of plantations as they are composed by layers of timber. Therefore, they do not require big solid pieces from old trees, instead, they can be produced from small young trees, which makes the cycle of planting, cutting down and re-planting shorter and more profitable. Furthermore, not only the process of extracting the material can be renewable. When it comes to the end of life of timber products, these can be either re-utilized in order to create new construction materials -such as OSB panels-, or be sent to a thermal plant in order to recycling it for generating process heat and electricity.

Raw material

Recycle

Manufacturing

Transportation

Use

Construction

Durable It has been already prove that timber constructions can last hundreds of years when is properly maintained. On the other hand, timber durability relies on the specie utilized and its physical properties, as well as on the natural or chemical treatments applied to protect this material from external and xylophagous agents. In general, species with a high heartwood content tents to last longer (Ödeen and Norén, 1999), while regarding the range of treatments, there are several options available on the market, each one appropriate for certain types of risk or exposures. Between those options we can find, from more superficial to deeper protections: brushing, spraying, short immersion, prolonged immersion, vacuum pressure treatments or thermo-treated wood (AITIM, n.d.).

High Rise Wooden Buildings in Contemporary Architecture_ Technical background

13


High Rise Wooden Buildings in Contemporary Architecture_ Technical background

14

The permanent or temporary exposure to external agents is a key factor when choosing the type of protection to be applied. From lower to higher, risk types for timber elements are classified in the following categories: class 1 -covered without contact with the ground-, class 2 -covered without contact with the ground and humidity risk-, class 3 -exterior element uncovered without contact with the ground-, class 4 -in contact with the ground or sweet water-, class 5 -in contact with salty water (AITIM, n.d.). This classification determines the risk of xylophagous agents attack depending on the degree of moisture that the wood can reach during its service life (less than 18%, occasionally more than 20%, often more than 20% and permanently more than 20%).

Great load bearing capacity As shown on the following tables, different structural timber materials available on the market have been prove to have great resistance values, specially when it comes to structural efforts such as bending, tension in plane and pressure in plane. Nevertheless, despite of the fact that timber based industrialize materials are proved to be more sustainable as construction material in terms of sustainable plantations and industrialized production, natural onepiece timber elements are more resistant in terms of load bearing capacity. Classification of wood species in softwood -C- or hardwood -D- relies on their physical structure and make up. Hardwood comes from angiosperm species -such as oak, maple, or walnut-, that are not monocots, while softwood comes from gymnosperm trees, usually evergreen conifers -like pine or spruce- (Diffen, n.d.). However, by classifying the wood on these two groups it is commonly thought

Solid wood resistance values (N/mm2) - Softwood C24

C27

C30

C35

C40

Bending

24

27

30

35

40

Tension in plane

14

16

18

21

24

Pressure in plane

21

22

23

25

26

Pressure normal to the plan

5,3

5,6

5,7

6,0

6,3

Shear from lateral force

2,5

2,8

3,0

3,4

3,8

Solid wood resistance values (N/mm2) - Hardwood D35

D40

C50

C60

C70

Bending

35

40

50

60

70

Tension in plane

21

24

30

36

42

Pressure in plane

25

26

29

32

34

Pressure normal to the plan

8,4

8,8

9,7

10,5

13,5

Shear from lateral force

3,4

3,8

4,6

5,3

6,0


Glued laminated timber resistance values (N/mm2) GL22

GL24

GL26

GL28

GL30

Bending

22

24

26

28

30

Tension in plane

14

15,5

16,5

17,5

18,5

Pressure in plane

21,5

23,5

24,5

25,5

26,5

Pressure normal to the plan

4,8

5,1

5,3

5,6

5,7

1,9

2,1

2,5

2,5

2,6

Shear from lateral force

that hardwoods are hard and durable in comparison to softwoods, which are expected to be soft and workable. Although this may be true in most of the cases, there are some exceptions to this assumption. This is the case of wood from yew trees — a softwood that is relatively hard — and wood from balsa trees — a hardwood that is softer than softwoods. On the contrary, as can be seen in the graph below, timber based materials do not behave in a great manner when it comes to large spans. For spans larger that 15 m, concrete elements can support up to 800 KN, while the maximum load that laminated timber elements can support is up to 100 KN. This means that for the same span, a bigger section on timber would be needed in order to resist the load, meaning a higher cost due to materials. This is the reason why in open plan designs, concrete is preferred over timber as structural material.

Cross laminated timber resistance values (N/mm2) BBS 125

BBS XL

Bending

18

24

Tension in plane

9,8

14

Pressure in plane

21

21

Pressure normal to the plan

2,5

2,5

Shear from lateral force

1

0,7

Fig. 4: Table from Derex Laminated Timber, n.d.

High Rise Wooden Buildings in Contemporary Architecture_ Technical background

15


High Rise Wooden Buildings in Contemporary Architecture_ Technical background

16

Stores carbon It is also well known that wood has a high carbon storage capacity. Trees, as other plants and organisms, have a unique ability to store carbon. Through a natural process widely known as photosynthesis, trees transform light energy into nutrients in a chemical process that takes carbon dioxide out of the atmosphere. They convert this pollutant gas into glucose and oxygen, just with the aid of water and solar light.

in timber products rather than increasing the CO2 levels on the atmosphere, contributing to climate change. Building long lasting, efficient and durable buildings may help reduce the amount of carbon dioxide in the atmosphere by using timber based materials. “A lot of people somehow imagine trees grow from the ground. They don’t, they grow from the air. They are congealed carbon dioxide and all of that carbon is stored in them” (Flannery, 2008 cited in Planet Ark, 2017).

According to Flannery (2008, cited in Planet Ark, 2017), “In order to produce 1kg of timber, a tree consumes 1,47kg of CO2 and returns just over 1kg of oxygen into the atmosphere. When trees are harvested and used to make wood products, the carbon remains stored in the wood for the life of the product. 50% of the dry weight of wood is carbon”. One single tree can store up to 150Kg during its lifetime, just by the simple process of photosynthesis. In other words, applying this knowledge to the constructive sector, each cubic metre of timber used in construction is storing one tonne of CO2 (Green, 2013). If we compare this data with the emissions that concrete produces during its manufacturing, just 1Kg of this material releases to the atmosphere up to 334,7Kg (oekobaudat, n.d.), while the production of Portland cement -one of the most common components of concrete for construction- releases 1,04Kg per 1Kg of product produced (PCA, 2016). Given these points, is not difficult to deduce that, despite of the higher load bearing capacity of concrete, it is far more preferable - environmentally speaking-, to use a bigger amount of material in our buildings’ structure if that means having the carbon stored

Fig. 5: Chemical process of photosynthesis

Good for health and well being “Exposure to wooden furniture and fittings has real and measurable health and wellbeing benefits. These benefits are outlined in a report produced by Planet Ark’s Make it Wood campaign. The report titled ‘Wood - Housing, Health, Humanity’ examines the growing body of research showing the range of health and wellbeing benefits of living, working and learning in environments rich in wooden furnishing and fixtures” (Planet Ark, 2017).


Some of the findings of this report include that residents in aged care centres interact more with each other when surrounded by wood. Moreover, students in classrooms featured with more wood have lower heart rates and stress responses than students in classrooms featured with plastic and metal furnitures. On the other hand, two out of three workers prefer offices with wooden chairs, desks and blinds over the same office with those items made from plastic. “The studies examining the effects of wooden rooms and furnishings clearly prove that the presence of wood has positive psychological and physiological benefits that mimic the effect of spending time outside in nature. The feelings of natural warmth and comfort that wood elicits in people has the effect of lowering blood pressure and heart rates, reducing stress and anxiety and increasing positive social interactions� (Planet Ark, 2017). Furthermore, wood products within a room have also been shown to improve indoor air quality by compensating humidity levels.

Nowadays, the increase of knowledge about these benefits has resulted in a number of architects and designers creating designs for schools and health care facilities with significant amounts of visible wood, a great example of this fact is the award winning Dandenong Mental Health Centre. This new facilities has been carefully designed choosing timber elements, both new and recycled, to provide a warmth texture and a non-institutional feel to the building.

Fast an efficient to build with New mass timber construction components are typically precast off-site, which can be translated in a significant reduction in on-site construction time. For instance, a major advantage in using timber rather than wet pour concrete is the elimination of set and dry times, which reduce the construction schedule and allows other trades to begin work sooner.

Fig. 6: Time line of the construction of the Wood Innovation Design Centre. Michael Green Architects, 2014

High Rise Wooden Buildings in Contemporary Architecture_ Technical background

17


High Rise Wooden Buildings in Contemporary Architecture_ Technical background

18

This “dry construction� allows the building to take shape quickly with great accuracy. A clear example of this is the Wood Innovation Design Centre in British Columbia, Canada, design by Michael Green Architects and completed in 2014. The structure of this building is fabricated using glulam columns and beams, CLT floors and shear walls, and additional elements that include laminated veneer lumber -LVL- and parallel strand lumber -PSL-. The construction of this building started in fall of 2013 with the collocation of the elevator structural core made out of CLT,

followed by the setting in place of the glulam columns -continuous from ground floor to the roof-. The next step was to stabilize the columns with the glulam beams, further increasing this effect with the collocation of the CLT floor panels and follow by the setting in place of the main staircase made out of LVL. Lastly, the envelope of the building was constructed with LVL window mullions as the main material, and once the interior was protected from external agents, the interior finishes were completed. In less than a year, by spring of 2014, the WIDC was entirely completed. Lastly, another advantage of this building system is that the Building can be easily disassembled at the end of its functional life, and the wood products can be reused.

Natural insulator Due to air pockets within its cellular structure, wood is a natural and efficient insulator. It is 15 times better than masonry, 400 times better than steel, and 1.770 times better than aluminium (Planet Ark, 2017). In addition, lightweight wood framing methods, such as balloonframe, allow easy installation of additional fibre or foil insulation. As a result of this improved thermal performance, buildings designed with timber elements, in particular engineered timber such as CLT, Glulam and LVL require less energy demand, resulting in reduced energy consumption.

Fig. 7: Structural system of Wood Innovation Design Centre. Michael Green Architects, 2014

Furthermore, timber is hygroscopic,thus has the ability to exchange moisture with the surrounding air, which provides a buffer against short-term changes in humidity and temperature.


Behaviour in case of fire Wood is composed by carbon. Therefore, it is a combustible material and susceptible of being degraded by fire. Degradation occurs through chemical reactions -combustion- that gradually decrease its resistant section and can cause its total destruction depending on the duration of the fire exposure. The combustion of Wood is produced by combining, through the action of heat, its main components -carbon and hydrogen-, with oxygen to produce, respectively, carbon dioxide and water. Many of the materials commonly used in construction are not fuels -they do not contribute to the development of the fire-. However, none is totally fireproof. For instance, metal structures rapidly dilate and twist in a fire, causing the collapse of the building when it lose its strength. Reinforced concrete cracks with heat and even more when it cools quickly by the action of water from sprinklers. Although wood is a flammable material at relatively low temperatures in relation to those occurring in a fire, it is safer than people tent to believe. First of all, its low thermal conductivity causes the temperature to decrease towards the interior. On the one hand, the surface carbonization that is produced when wood burns prevents the outflow of gases and heat penetration and, being its thermal expansion negligible, it does not act on the structure and do not cause its deformation. According to AITIM -Spanish acronym for the Technical Investigation Association of Wood Industries- (n.d.), the action of fire on wood is evaluated with two basic parameters that rely on the material properties -reaction to fire- and structural capacity -fire resistance-.

Reaction to fire is the contribution that a material can make to fire and its development. It is a capacity index of the material in relation to the development of the fire. In short, it evaluates how a material behaves in front of the fire to determine whether the material is combustible or incombustible. The fire resistance of a constructive element is measured by the time the structural element is able to fulfil its structural function within the building. Depending on its properties, the element will be classified as fire stable, fire retardant or fire resistant. Generally speaking, timber should not be rejected as a constructive material due to fire behaviour reasons since, when compared to other materials, correctly used wood can offer adequate security conditions, within the economic considerations governing the construction.

High Rise Wooden Buildings in Contemporary Architecture_ Technical background

19


High Rise Wooden Buildings in Contemporary Architecture_ Technical background

20

New timber based materials: massive wood

Glued laminated timber Also called glulam, this timber based material is composed of several layers of lumber boards positioned based on their performance characteristics, bonded together with structural adhesives. The grain of all laminations runs parallel with the length of the member (University of North British Columbia, 2017). Its internal composition makes it very easy to create not only standard beams and columns with high load bearing capacity, but also curved elements with the same structural characteristics.

An example of this application is the structural roof of the Centre Pompidou-Metz in Metz, France. In 1942, A significant development in the glulam industry was release. A fully water-resistant phenol-resorcinol adhesive was introduce on the market, allowing glulam elements to be used today in exposed exterior environments without concern of its degradation.

Laminated veneer lumber Laminated veneer lumber, also called LVL, is a type of structural composite lumber -SCL-. LVL is produced by bonding thin wood veneers together using structural adhesives under heat and pressure and then sawn to desired dimensions. The wood grain of the veneers is oriented parallel to the length of the member (University of North British Columbia, 2017).

Cross laminated timber Fig. 8: Glued laminated timber beams

Fig. 10: Cross laminated timber panels

Fig. 9: Laminated veneer lumber panels

Also called CLT, this industrialized timber material is composed by several layers of lumber boards stacked in alternating directions oriented at right angles to one another and then glued to form structural panels with exceptional strength, dimensional stability, and rigidity. Those panels are Lightweight yet very strong, with superior acoustic, fire, seismic, and thermal performance (University of North British Columbia, 2017).


3. AIM OF THE STUDY

Nowadays, 50% of the global population lives in cities whereas the other half lives in rural environments. Nevertheless, the population is still growing and, every day, more people -specially young population- move from villages to cities looking for work opportunities. In 2050 it is expected that this situation will be reversed. According to FAO statistics -Food and Agriculture Organisation of the United Nations- (2016), in 25 years, 75% of the population will live in cities, while the rural population will be reduced to a 25%.

Rural population

person within those 3 billion will need a home. When thinking in such a large amount of people, a high density concept seems the proper solution architecturally speaking. It is widely known that, currently 40% of the CO2 emissions released to the atmosphere are due to the building industry. In the case of the United States of America, the third most populated country in the world just behind China and India (United Nations, 2015), 47% of the total emissions are due to this building activity, followed by the 33% of transportation and 19% of industry (Michael Green, 2013).

Urban population

2017

50%

2050

75%

Fig. 11: Statistical predictions of the global population according to FAO, n.d.

Furthermore, 100 billion people are currently homeless, and 1billion live in slums (United Nations for Human Rights, 2005). These people who have no home or live in precarious conditions have the right to have a dignified roof. Moreover, as previously mentioned, global population still growing every year at a vertiginous rhythm. According to the architect Michael Green (2013) in the next 20 years world population is expected to be increased in 3 billion, which represents the 40% of the current population, and every

3 billion people in the next 20 years

40%

of the current population Fig. 12: Global increase of population according to Michael Green, 2013

Cities, as we know them nowadays, are predominantly made from steel and concrete as the main structural and construction material. Nevertheless, from this 47% of emissions mentioned before in the US, a total of 8% is due to the concrete and steel industrial production -3% in the case of steel and 5% of concrete- (Michael Green, 2013), and the situation is similar for the rest of developed and in developing process cities in the world. Thus, it seems clear

21

High Rise Wooden Buildings in Contemporary Architecture_ Aim of the study

The role of high rise wooden building in contemporary society. Research question


High Rise Wooden Buildings in Contemporary Architecture_ Aim of the study

22

that the way architects and urban planers design and construct cities at the present has to change, as if this uncontrolled rhythm of emissions to the atmosphere continues, the effects they may have on the acceleration of climate change could become irreversible. In the case of China, the biggest pollutant country in the world, building sector is becoming the second largest carbon emitter (Eom et al., 2012; Lu et al., 2016; Oberheitmann, 2012; cited in Shen

40% 33% 19%

transportation

CO2emissions building industry

used on their construction. For instance, researchers in this field have already proved the trees carbon storage capacity -as mentioned before, one single tree can storage up to 150 Kg of CO2 during its life time-, which directly applied to the buildings industry means that every cubic meter of wood used for construction storage 1 tonne of CO2 during the material’s life cycle. As a matter of fact, the reduction on the CO2 emission due to materials in a high rise building can be specially noticed in the

5% concrete

industry

=

= 8% 3%

of the global greenhouse emissions

steel Fig. 13: CO2 emission in the US according to Michael Green, 2013

et al., 2016). In 2012, China building sector CO2 emissions raised up to 1600 million tonnes of carbon dioxide, 1200 million of them due to indirect emissions and 400 million tonnes to direct emission (International Energy Agency & Tsinghua University, 2015). On the other hand, not every data in the panorama of architecture and the global warming potential of its activity is discouraging. Nowadays, the research in this field is being oriented towards more energy efficient buildings design and more sustainable materials

150 Kg CO2 storage capacity

1 m3 wood

1 tonne CO2

Fig. 14: Wood CO2 storage capacity according to Michael Green, 2013

case of its structure, since it represents the biggest amount of materials within a building. This change can make a net difference of thousand of CO2 kg equivalents per structure built but, more precisely, how many thousands of kilograms are we talking about? As a conclusion, the question that this report aims to assess is: how much it is possible to reduce the CO2 emissions just by using timber elements instead of conventional structural systems?


Methodology

A2

A3

A4

A5

B1

B2

B3

B4

B5

C1

C2

C3

C4

D

Use

Maintenance (incl. transport)

Repair (incl. transport)

Replacement (incl. transport)

Refurbishment (incl. transport)

Deconstruction / demolition

Transport to end of life

Waste Processing

Disposal

Reuse / Recovery/Recycle or Exported energy / Potential

X

X

X

X

X

USE STAGE

RECYCLE

END OF LIFE

X

Fig. 15: System Boundary EN 15804:2012

High Rise Wooden Buildings in Contemporary Architecture_ Aim of the study

A1

Installation into building

A life cycle analysis will be carried out so as to asses the kilograms of carbon dioxide equivalents released to the atmosphere due to

PROCESS STAGE

Transport to building site

System boundary

PRODUCTION

Manufacturing

Once the case study has been selected, the second stage in this report’s development is the modelling of the building in order to extract numerical results. The modelling has been carried out in Revit -software for BIM (Building Information Modelling) developed by Autodesk- in combination with Microsoft Excel -software capable of creating and editing spreadsheets whose general uses are cellbased calculation, pivot tables, and various graphing tools-.

Due to the use of carbon sequestration method for the EPDs of timber elements -negative accounting for the carbon stored during the material’s life time-, the life cycle assessment carried out must take into consideration the end of life stage. Therefore, being only possible to equally compare the materials with the same available information for the phases on their EPD, the following boundary conditions will be applied to the LCA, according to the System Boundary EN 15804:2012.

Transport to Manufacturer

The selected case study figure among this year edition nominates -2017- of the prestigious Mies van der Rohe Award: the Moholt Timber Towers. The nomination of this building relies in more than aesthetic reasons. Due to its environmentally conscious design and sustainable construction materials, these buildings have allowed to reduce their environmental impact up to a 57% in comparison with more traditional building systems (Plataforma Arquitectura, 2017). Its location in the neighbourhood has been another influence factor when choosing this case study, since its proximity allows the author to check in detail its performing and constructive solutions.

the strural materials. In order to do so, the Environmental Product Declaration -EPD- for each material used in the building model will be needed. For the cases in which the company producing the material is known, it will be utilized its particular EPD, while for the case of local materials or with no specified producers, an equivalent material from the Ecoinvent library will be utilized.

Raw Material Supply

With the aim of answering the previous question in a precise manner, a reference building is needed. For this reason, a case study methodology has been chosen in order to develop this analysis. The selection of this reference case study allows to have real quantitative information as a base for research, which will be the setting point for a detailed quantitative comparative method. The selection of the case study is a key decision on the development of this report. For this reason, it has been carefully taken.

23


MATERIAL Concrete Steel CLT Self leveling concrete Vinyl flooring Prefabricated bathrooms (steel+concrete) Rockwool Linoleum flooring Gypsum/plasterboard Other

High Rise Wooden Buildings in Contemporary Architecture_ Aim of the study

24

Scope of the report As can be seen in the following graph, the biggest drivers for the CO2 emissions of the Moholt Timber Towers are the materials composing the structure. With this chart it has been prove that, for the case of high rise buildings, the selected materials for the structural design are the ones that are going to make the difference in the final LCA results. It can be seen that, even if the amount of concrete is much smaller than the CLT, the emissions due to this particular material are higher. For the reasons explained above, the scope of this report is set on the emissions due to the structural materials, as they represent the most significant amount of emission for the case of a high rise building. Therefore, only the structural elements have been modelled and taken into consideration on the LCA results.

TOTAL EMISSIONS 19,29 % 17,81 % 16,87 % 10,89 % 7,95 % 5,33 % 4,47 % 3,44 % 2,66 % 11,3 %

Percentage of CO2 emissions per material 11,3 19,29 2,66 3,44

Concrete Steel

4,47

CLT Self leveling concrete Vinyl flooring

5,33

Prefabricated bathrooms (steel+concrete) 17,81 7,95

Rockwool Linoleum flooring Gypsum/plasterboard Other

10,89 16,87

Scenarios Four different models have been developed corresponding to four different scenarios in order to compare different LCA results. These scenarios are based on the utilization of several structural systems of different materials. The first one will be the actual solution, while the other three are based on hypothetical structural alternatives. As all the towers have the same dimensions, distribution and structural system, only one of them will be modelled to obtain the numerical results. More precisely, the one modelled is the tower A. As mentioned previously, the first scenario is the tower A as it is currently built. Its structural system is composed of basement and

MATERIAL Concrete Steel CLT Self leveling concrete Vinyl flooring Prefabricated bathrooms (steel+concrete) Rockwool Linoleum flooring Gypsum/plasterboard Other

TOTAL EMISSIONS 19,29 % 17,81 % 16,87 % 10,89 % 7,95 % 5,33 % 4,47 % 3,44 % 2,66 % 11,3 %

Fig. 16: Percentage of emissions per material of Mofolt 50|50. Percentage of CO 2 emissions per material Veidekke Entreprenør AS 11,3 19,29


ground floor in a concrete structure with load bearing walls, solid concrete slabs and columns, while the rest of the floors -from 2nd to 9th- are made out of CLT load bearing panels, with the addition of three CLT beams which carry the load of the open floor plan common space. This structural system includes steel plates and screws for joining the CLT panels together, as well as bigger steel plates to absorb the shrinkage. The anchoring to the concrete structure is also made out of this material. The second scenario is completely opposite to the previous one. In a more traditional way, this structural system is completely made out of reinforced concrete. Therefore, the underground and first floor remain with the same structural system -increasing the dimensions of some of the load bearing walls to resist the extra weigh- while the rest of the floors will be switch into a concrete framing system of beams and columns which also include some load bearing walls to support the lateral forces of the wind and stabilize the central nucleus. On the third scenario, the underground and first floor are once again built in concrete, while, this time, the upper floors up to the roof will be made in a glulam framing system composed by beams and columns. This structural system will also maintain the CLT panels for the lift and stairs central nucleus in order to stabilize the building from lateral forces, while the connections between columns and beams will be made in traditional woodworking joints instead of steel plates and screws. As it is belief that the steel connections for the timber elements could be a significant driver for the emission, this fourth and last scenario aims to prove that out. Therefore, this structural system will be once again like the first one -two first floors in concrete and rest

of them in CLT load bearing panels- with a remarkable difference. This time, the joints between timber elements will be completely made out of timber in an innovative new structural system which will be detailed explained further on. However, not all the steel elements are possible to be replaced by wood. Consequently, the structural plates that absorb the shrinkage and the anchoring to the concrete structure will remained in steel.

High Rise Wooden Buildings in Contemporary Architecture_ Aim of the study

25


4. CASE STUDY

High Rise Wooden Buildings in Contemporary Architecture_ Case Study

26

Moholt 50|50. The Moholt Timber Towers

Every two years, with the aim of acknowledge and reward quality architectural production in Europe, the European Union Prize for Contemporary Architecture – Mies van der Rohe Award, is granted to a contemporary building. This international prize helps not only as recognition, but also as inspiration for professionals on the field of architecture to development new ideas and technologies. This year, the Moholt 50|50, commonly known as Moholt Timber Towers, is nominated to receive this prestigious award. Design by the architectural office MDH Arkitekter with base in Oslo, and built by the contractor Veidekke Entreprenør AS of the Trondheim district, this innovative project, with a total surface of 21.700 m2, is at the moment the biggest CLT project built in Europe (Veidekke Entreprenør, 2017).

Fig. 17: Axonometrix of the CLT structure and interior distribution of Moholt 50|50

This project has not only been built trying to minimize the CO2 emissions due to materials, but it has also been carefully designed to minimize the emissions due to the use stage. The generous layers of isolation that covers not only the exterior envelope but almost every surface on this buildings, and the quality of the constructive designed in the encounters of the exterior windows and doors, makes this buildings extremely energy efficient. All this added to a sustainable system of energy production based on geothermal and solar energy sum to the district heating water system. As a result, all this decisions have allowed to reduced the global warming potential of this building up to a 57% in comparison with more traditional alternatives. The Moholt towers are part of a master plan of densification for a student village in Trondheim, Norway. The project uses the site of an old parking lot to create the new heart of the student community, which includes housing units, nursery, market and sports facilities.

Fig. 18: Aereal picture of Mholt 50|50. MDH Arkitekter , 2017


The five towers are 9-storey height, making a total of 28 meters. The basement and ground floor are made in cast in situ reinforced concrete. From the second to the ninth floor the whole structure is composed of prefabricated elements of cross laminated timber. The central spaces for elevators and stairs are also constructed in this timber panels. All of them, both inner and outer elements, are structural load bearing panels. As there is no producer within the Scandinavian Countries with such a large production of CLT, the material used in this project has been brought from Austria, which implies three times higher emissions due to transportation. However, even taking into account this fact, the total footprint of the Moholt towers is only about 380m2. According to the Veidekke construction leader Vegard Hjelden (2017), the CLT structure of each tower can be built in less than five weeks, and workers with breathing diseases needed less medication working with this material in comparison with more common structural alternatives. The original architectural proposal for the competition consisted on

Fig. 19: elevation of the towers of Moholt 50|50. MDH Arkitekter

Fig. 20: Situation plan of Moholt 50|50. MDH Arkitekter

High Rise Wooden Buildings in Contemporary Architecture_ Case Study

27


28

High Rise Wooden Buildings in Contemporary Architecture_ Case Study

this type of structural solution (Archdaily, 2017). CLT structures have the characteristics of shrinkage in tangential and radial direction. Therefore, the façade cladding system of the student towers, made of Kebony treated pine wood panels, is designed to give it a telescopic characteristic, which can absorb the shrinkage of the floor elements without creating tensions in the cladding (Archdaily, 2017).

Fig. 21: Picture of Moholt 50|50. MDH Arkitekter , 2017

towers built with conventional construction methods, a steel and concrete structure with a brick outer lining in order to harmonize with the existing housing buildings of the student village, with redbrick façades. However, with the aim of meeting the project’s ambitious energy and climatic objectives, the team investigated the possibility of convert the structure into a cross laminated timber construction. Besides, with their relatively short stretches and Y-shaped volumes, the towers were in many aspects optimum for

Fig. 22: Picture of Moholt 50|50. MDH Arkitekter , 2017


Consu Addres Addres Phone Fax e-mail Consu Addres Addres Phone Fax e-mail

Revit models for the different LCA scenarios

Consu Addres Addres Phone Fax e-mail Consu Addres Addres Phone Fax e-mail

29

No.

Consu Addres Addres Phone Fax e-mail Consu Addres Addres Phone Fax e-mail Consu Addres Addres Phone Fax e-mail Consu Addres Addres Phone Fax e-mail

1

1

3D Section

Consu Addres Addres Phone Fax e-mail

P 3

3D Section Copy 1

Project nu Date

No.

Fig. 23: Scenario 1& 4. CLT load bearing panels system

Fig. 24: Scenario 2. Concrete framing system

Fig. 25: Scenario 3. Glulam framing P system + CLT load bearing panels

3

Project nu Date

High Rise Wooden Buildings in Contemporary Architecture_ Case Study

Consu Addres Addres Phone Fax e-mail


High Rise Wooden Buildings in Contemporary Architecture_ Case Study

30

Scenario 1

As explained before, four different scenarios have been developed in order to test the carbon dioxide emission from different structural systems based on different materials. The first scenario corresponds to the actual constructive and structural solution for these innovative timber towers. The first two floors -one of them underground and the other above groundhave been solved with a reinforced concrete framing system and solid concrete slabs. The structural function of these two storeys is to carry the load from the timber structure of the floors above to the terrain. It is supposed that one single floor made out of reinforced concrete -the underground floor- would have been enough to accomplish the function of containing the terrain and act as a foundation -also solved with a cast in situ solid reinforced concrete

Fig. 26: Basement structure scenario 1

slab-. However, the first floor has probably also been built out of this material as a solution to hygrothermic reasons. Thus, this floor will avoid the humidity from the terrain to come inside the building, improving as a results the building’s energy efficiency. Regarding the upper floors, both walls and floors have been completely made out of CLT panels, with the exception of three big beams which function is to allow an open floor plan in the common areas. However, not all the CLT panels are strictly load bearing, some of them have the function of stabilizing the structure. In fact, only one of each two walls separating the students’ rooms has a load bearing function. Hence, there are several dimensions of CLT panels used in this project.

Fig. 27: First floor structure scenario 1

Fig. 28: 2nd to 9th floor structure scenario 1


31

Scenario 1 Emissions per material Scenario 2

Scenario 1 Emissions per material

Emis

[Kg CO2 eq] per material Kilograms of CO2 equivalents

900000,00

Emissions per material [Kg CO2 eq]

900000,00

800000,00

900000,00

800000,00

800000,00

700000,00

700000,00

600000,00

As can be clearly seen on the following graph, the drivers of the 500000,00 emissions are the production stage -A1 to A3- and the end of life -C1 400000,00 to C4, of which only C2 and C3 are included in this LCA-. It is seems also clear that the key phase on end of life stage regarding 300000,00 CO2 emissions is C3 -waste processing-, while C2 -transport to end 200000,00 of lifeis almost negligible. It fact, it is C3 phase what is making the different in this LCA.

600000,00

500000,00

500000,00

400000,00

On the other hand, as it was expectable, both CLT and concrete 0,00 are the main drivers of emissions regarding materials. Here, it can be -100000,00 clearly appreciated what was also showed on the chart facilitated by Veidekke Entreprenør: the kilograms of CO2 equivalents due to -200000,00 the use of concrete are considerably big in comparison with the total amount of concrete used in this structural system -since only -300000,00 two of the ten floors are built in this structural material-.

100000,00

600000,00

100000,00

-400000,00

Lastly, it seems also clear that the small amount of steel utilized in this -500000,00 project -6000Kg in total- is not a big driver on the global emissions. -600000,00 -700000,00

700000,00 600000,00 500000,00 400000,00 300000,00 200000,00

C2

C3

D

Concrete

195049,77

273,90

804,21

-13450,10

CLT

-638586,29

472,23

841515,74

-382024,80

steel

8160,00

14,88

0,00

-3528,00

Concrete

CLT

steel

200000,00

300000,00

100000,00

100000,00

200000,00

0,00

0,00

-100000,00

-100000,00

0,00

-200000,00

-200000,00

-100000,00

-300000,00

-300000,00

-200000,00

-400000,00

-400000,00

-400000,00

-500000,00

-500000,00

-600000,00 -500000,00

-600000,00

-300000,00

-700000,00 -600000,00

A1-A3

300000,00

400000,00

-700000,00

A1-A3

A1-A3

C2 Concrete

C2

C3

C3

CLT

D

D

-700000,00

steel

CastFig. in place concretescenario 349205,90 -24080,29per material on each 29: Results 1. Table490,37 and graph1439,81 of CO2 emissions Precast concrete 22928,55 243,00 0,00 -1274,79 phase Cast in place concrete

Precast concrete

High Rise Wooden Buildings in Contemporary Architecture_ Case Study

As structural load bearing walls, CLT panels of 120, 140 and 160 [Kg CO 2 eq] mm have been utilized depending on the area - 120mm on the 900000,00 rooms, and 140 or 160mm on the vertical communication nucleus and800000,00 central common space- while the flooring structure has been solved with 140mm thick CLT panels. Additional panels of 80mm thick700000,00 have been used as separation between dorms with an stiffening structural function.

A1-A3

Cast in place


High Rise Wooden Buildings in Contemporary Architecture_ Case Study

32

Scenario 2

Nowadays, most of the buildings in our cities are built out of concrete. For that reason, this second scenario aims to find out how much the CO2 emissions due to materials would have been increased if this building was one among many others on the city of Trondheim. It consist on a structural solution completely made out of reinforced concrete, composed by both, a framing system of beams and columns, and load bearing walls for lateral stability. In order to minimize as maximum as possible weigh and material -and consequently kilograms of CO2 equivalents- the floors’ structure have been made out of pre-cast hollow core concrete slabs when possible. Under those circumstances, the first two floors remain as the original solution, with an increase on the thickness of the perimeter retaining wall -from 250 to 450 mm-; while for the

Fig. 30: Basement structure scenario 1

upper floors a more efficient solution has been implemented. These upper floors take advantage of the small span between perimeter walls on each of the three wings that compose the Y-shape building in order to avoid as maximum as possible the use of extra columns and beams. Therefore, as this distance is less than 14m, a hollow core concrete slab of 265mm thick can be used from side to side, resting on the these load bearing perimeter walls that act, at the same time, stabilizing the building from lateral forces. The collocation of this hollow core concrete slab - running parallel to the longest direction- is not the common way to use this structural unidirectional system. However, due to the short spans present in this building, it is perfectly possible to be used in this way.

Fig. 31: First floor structure scenario 1

Fig. 32: 2nd to 9th floor structure scenario 1


33

Scenario 1 Scenario 2 Emissions per material

Scenario 2 Emissions per material

Emissions per material [Kg CO2 eq] This system allows the900000,00 walls where [Kg CO2 the eq] windows of the individual students’ rooms are located to be completely non-structural 800000,00 -except from the substructure that might be needed for carrying 900000,00 the load of the windows-. Therefore, the external envelope may be 700000,00 more energy efficient 800000,00 increasing the thickness of the isolation. The same may occur with 600000,00 the partitions between the students’ rooms.

[Kg CO2 eq] Kilograms of CO2 equivalents per material

800000,00 700000,00

700000,00

600000,00

500000,00in this particular case, there is a main Regarding the LCA results 600000,00 difference in relation to the previous scenario: in this case, emissions 400000,00 due to phase500000,00 C3 -waste processing- is almost negligible in the case of the concrete 300000,00 cast in situ and non-existent for the precast concrete. On 400000,00 the other hand, the potential for recycling the cast 200000,00 in place concrete -phase D- is making a small but yet noticeable 300000,00 difference of 20 tonnes of CO2 equivalent in the LCA results.

200000,00

500000,00 400000,00 300000,00 200000,00

100000,00

100000,00

As it might be expected, the emissions due to cast in place concrete 0,00 100000,00 have been increased from almost 200 tonnes of CO2 in scenario 1 to 350 tonnes of CO equivalent in the second scenario. However, 2 -100000,00 0,00 despite of the fact that the total cubic meters of precast concrete -200000,00 -100000,00 on the flooring system are almost the same than the total cubic meters of solid slab - 356 and 386 m3 respectively- the emissions due -200000,00 -300000,00 to precast concrete are not that high in comparison to the ones due to cast in-300000,00 situ concrete. -400000,00

-13450,10 -382024,80

steel

-3528,00

-100000,00 -200000,00 -300000,00 -400000,00

-400000,00 -500000,00

-500000,00

-500000,00 -600000,00

-600000,00

-600000,00 -700000,00 D

0,00

-700000,00

A1-A3

A1-A3

C2 Concrete

C2

C3

C3

D CLT

Cast in place concrete

349205,90

490,37

1439,81

-24080,29

Precast concrete

22928,55

243,00

0,00

-1274,79

Cast in place concrete

Precast concrete

D steel

-700000,00

A1-A3

C2

Cast in place concrete

C3

D

Precast concrete

Fig. 33: Results scenario 2. Table and graph of CO2 emissions per material on each phase

High Rise Wooden Buildings in Contemporary Architecture_ Case Study

900000,00


High Rise Wooden Buildings in Contemporary Architecture_ Case Study

34

Scenario 3

Scenario number three aims to find out whether a framing system made out of timber would actually have been worse or better than the load bearing panel system implemented on the final structural solution of the Moholt Timber Towers. Consequently, this third scenario has been designed following this framing system and its limitations. The main problematic with this kind of systems is that, for the case of high rise buildings, the bending moment on the base due to their height and the buckling may be quite hight. Therefore, a design completely based on a framing system with small section elements is not possible, since these kind of systems do not have enough stability.

Fig. 34: Basement structure scenario 1

A possible solution to this problematic would have been the use of high section elements -like in the case of the Bjergsted Financial Park in Stavanger designed by Helen & Hard-, or diagonal elements between columns for a better stabilization. Both options imply the use of a higher amount of material and the first one is not appropriated for such a compartmented floor plan designed with short spans. Another issue to take into account is that the structural design for high rise timber buildings usually includes a rigid nucleus to improve their stability. This fact can be clearly appreciated in the case of the structural designs for the Wood Innovation Design Centre -Fig. 6- or hybrid structural systems for high rise buildings like the ones proposed by Michael Green Architects, SOM or CREE -mentioned on the introduction of this report-.

Fig. 35: First floor structure scenario 1

Fig. 36: 2nd to 9th floor structure scenario 1


35

As a result, the final structural[Kg design CO2 eq] for this scenario is composed by two floors of concrete structure -as it is nowadays- and a framing 900000,00 system of glulam columns -130x230mm- and beams -130x330mm-. 800000,00 While the core of the building, where the staircase an elevator are located, remains in CLT panels, as well as the flooring structure, and 700000,00 some of the exterior walls in order to improve its lateral stability -as 600000,00 it has been explained before-. 500000,00

In an attempt to minimize the emissions due to the steel connections 400000,00elements, traditional woodworking joints have been used between instead. However, this fact does not imply a complete substitution 300000,00 of all the steel used in the structure, since some elements -like the 200000,00 plates that absorb the shrinkage and the anchoring to the concrete structure- are need to be made out of steel. 100000,00

As can 0,00 be seen in the following chart, the emissions due to the use of CLT are slightly reduced in comparison with scenario 1, as -100000,00 well as the ones produced by the use of steel -which are once again almost negligible-. Phases A1 to A3 -production stage- and -200000,00 D -recycling or energy production potential- are one more time -300000,00 drivers on the final CO2 emissions, while phase C2 is negligible. -400000,00

It can also be observed that emissions due to glulam structure are not-500000,00 very high, since the final amount of this material is quite small in comparison with CLT and concrete in the building’s structure. -600000,00 -700000,00

900000,00

900000,00

800000,00

800000,00

800000,00

700000,00

700000,00

600000,00

600000,00

500000,00

500000,00

400000,00

400000,00

300000,00

300000,00 200000,00 100000,00 0,00 -100000,00

[Kg CO2 eq]

700000,00 600000,00 500000,00 400000,00 300000,00 200000,00

200000,00

100000,00

100000,00

0,00

0,00

-100000,00

-100000,00

-200000,00

-200000,00

-300000,00

-200000,00 -300000,00 -400000,00 -500000,00 -600000,00

-400000,00

-300000,00

-500000,00

-400000,00

-600000,00

-500000,00

-700000,00 -600000,00

A1-A3

C2

C3

D

Concrete

195049,77

273,90

804,21

-13450,10

CLT

-426251,74

315,21

561705,69

-254998,80

Concrete

195049,77

273,90

Glulam

-38239,03

791,18

43434,23

-11192,52

CLT

-638586,29

472,23

2720,00

4,96

0,00

-1176,00

Steel

Concrete

CLT

Glulam

Steel

Emis

-700000,00

-700000,00 A1-A3

C2 A1-A3

C3 C2 804,21 Concrete CLT 841515,74

D C3 -13450,10 Glulam Steel -382024,80

D

Results scenario graph of CO emissions per material on each 2 Steel Fig. 37: 2720,00 4,963. Table and0,00 -1176,00 phase Concrete

CLT

Steel

High Rise Wooden Buildings in Contemporary Architecture_ Case Study

Scenario 3 Emissions per material

Scenario 3 Emissions per material Scenario 4of CO2[Kg CO2 eq] Kilograms equivalents per material Emissions per material 900000,00

A1-A3

C


High Rise Wooden Buildings in Contemporary Architecture_ Case Study

36

Scenario 4

The fourth and last scenario is the same structural system than the first one, with a significant difference. In this case, part of the steel joints have been replaced by timber elements. This alternative has been possible due to a new innovative system called X-fix, designed for the connection of CLT panels without the need of using steel screws.

This system is as easy to install as it is possible to see on the pictures.

This innovative solution inspired in traditional woodworking systems has been developed by a German company, and has been already tested in real buildings. It has two varieties: X-fix C and X-fix L. The first one, designed for connections in the same plane, has the equivalent strength to 12 steel screws of 6mm diameter and 120mm long or 24 of 6mm diameter and 80mm long. While the X-fix L has been desidned for connections in perpendicular angles.

Fig. 39: Basement structure scenario 1

Fig.40: First floor structure scenario 1

Fig. 38: Installation of the X-fix C system.

Fig. 41: 2nd to 9th floor structure scenario 1


900000,00

900000,00

700000,00 800000,00

800000,00

600000,00 700000,00

700000,00 600000,00 500000,00 400000,00 300000,00 200000,00

900000,00 800000,00 900000,00 700000,00 800000,00 600000,00 700000,00 500000,00 600000,00 400000,00 500000,00 300000,00 400000,00 200000,00 300000,00 100000,00 200000,00 0,00 100000,00 -100000,00 0,00 -200000,00 -100000,00 -300000,00 -200000,00 -400000,00 -300000,00 -500000,00 -400000,00 -600000,00 -500000,00 -700000,00 -600000,00

[Kg CO2 eq]

500000,00 600000,00 400000,00 500000,00 300000,00 400000,00 200000,00 300000,00 100000,00 200000,00

Fig. 42: Installation of the X-fix L system.

0,00 Regarding the LCA results for this scenario, the only dirrecence 100000,00 100000,00 regarding scenario 1 is the emissions due to the steel joints, which -100000,00 0,00 can be clearly seen0,00 on the table bellow that has been reduced from 8160 Kg CO-200000,00 equivalents in the case of scenario 1, to 2720 Kg 2 -100000,00 -100000,00 CO2 equivalents.

D -13450,10

-200000,00

-300000,00 -200000,00

-300000,00

-400000,00 -300000,00

-400000,00

-500000,00 -400000,00

-500000,00

-600000,00 -500000,00

-600000,00

-700000,00 -600000,00

-700000,00

-254998,80

Concrete

-11192,52

CLT

-1176,00

Steel

A1-A3 -700000,00 195049,77

-700000,00 A1-A3

C2

C3

C2

Concrete C3 CLT

Glulam D Steel

-638586,29

273,90 A1-A3 472,23

2720,00

4,96

804,21 C2 841515,74 Concrete CLT 0,00

-13450,10 C3 -382024,80 Glulam Steel -1176,00

Concrete

CLT

Steel

D

37

Scenario 4 Emissions per material [Kg CO2 eq]4 Scenario Emissions per material

Kilograms of CO[Kg equivalents per material 2 CO2 eq]

A1-A3

C2

C3

D

A1-A3

C2

C3

D

Concrete

CLT

Steel

D CLTof CO Steel emissions per material on each Fig. 43: Results scenario 4. TableConcrete and graph 2 phase

High Rise Wooden Buildings in Contemporary Architecture_ Case Study

Scenario 3 Emissions per material [Kg CO2 eq]3 Scenario 900000,00 ScenarioEmissions 4 per material [Kg CO2 eq] Emissions per material 800000,00


5. RESULTS 38

LCA comparison of CO2 emissions due to structural materials for the different scenarios Phase A1-A3 C2 As can be seen in C3 the following D

High Rise Wooden Buildings in Contemporary Architecture_ Results

Scenario 1 Scenario 2 Scenario 3 Scenario 4 -266721 -440816,52 -435376,52 372134,45 1385,25 751,08 761,00 733,37 605944,13 842319,95 842319,95 1439,81 graph, the emissions due to phase -399002,90 -25355,08 C3 -waste processing- are the most significant ones in -280817,42 all scenarios-396650,9

where wood represents a predominant material on the building’s structure. However, for the case of scenario 2, where reinforce Scenario 1 Scenario 2 Scenario 3 Scenario 4 concrete is the only material used in the structural system, phases Totals 348952,55 59790,96 5603,61 8701,53 A1to A3 -production stage- are the biggest emission drivers.

Scenario 3

800000,00 700000,00

400000,00 300000,00 200000,00 100000,00 0,00 -100000,00

180000,00

Scenario 2

900000,00

500000,00

It is also remarkable the difference between phases A1 to A3 130000,00 among the different scenarios. For the case of scenarios 1, 3 and 4, 80000,00 the total emissions are negative, fact that has its explanation in the high carbon storage30000,00 capacity of wood. Scenario 1

1000000,00

-200000,00 -300000,00 -400000,00 Scenario 4

Regarding phase D -recycling or energy production potential-, the emissions are also negative. This fact is explained due to the Scenario 2 Scenario 3 Scenario 4 consideration that the energy produced out of these materials at Differences 6 39 the production the end of their life or their recycling avoiding of -0,4

-500000,00

Phase A1-A3 C2 C3 D

-900000,00

Scenario 1 Scenario 2 -435376,52 372134,45 761,00 733,37 842319,95 1439,81 -399002,90 -25355,08

Scenario 3 -266721 1385,25 605944,13 -280817,42

Scenario 4 -440816,52 751,08 842319,95 -396650,9

[Kg CO2 eq] Kilograms of CO2 equivalents per phase

600000,00

This fact has its explanation on the way the material is processed Total emissions per scenario at the end of life stage. In the case of the CLT, it is sent to a thermal [Kg CO2 eq] power plant in order to produce thermal energy out of it. The chemical reaction of combustion when the wood is burned is 380000,00 the responsible factor of these high CO2 emissions. For the cases of concrete and glulam, 330000,00 the material is simply disassembled and recycled, therefore280000,00 these processes do not produce as much CO2 emissions as the combustion process. 230000,00

-20000,00

Total emissions per phase

-600000,00 -700000,00 -800000,00

-1000000,00

Total emissions Scenario 2 per phase Scenario 3

Scenario 1

A1-A3

[Kg CO2C2 eq]

C3

Scenario 4 D

Fig. 44: Table and graph of comparison of the total CO2 emissions per phase of the 1000000,00 life cycle assessment on each scenario

900000,00 800000,00


39 Material Scenario 1 Scenario 2 Scenario 3 Scenario 4 Concrete 182677,78 182677,78 182677,78 327055,79 CLT -119229,65 -178623,12 new materials and the increase in the use of new 0,00 resources are -178623,12 0,00production 1548,96 1548,96 4646,88 compensating the CO2 steel emissions released during the Precast concrete 21896,76 0,00 0,00 0,00 stage. Glulam 0,00 -5206,13 0,00 0,00

Total emissions per material

[Kg CO2 eq] Kilograms of CO2 equivalents per material 500000,00 450000,00

350000,00 300000,00 250000,00 200000,00

For the case of scenario 1, the total equivalent emissions due to the use of concrete are 180 tonnes of CO2, same amount that in the third and fourth scenario. While in the second one, the total equivalent emissions due to the use of this material rises up to 352 tonnes of CO2, almost the double than in the other scenarios where concrete has been substituted by timber.

150000,00 100000,00 50000,00 0,00 -50000,00

In this graph can be also seen very clearly the benefits of the use of wood mentioned before, since its carbon sequestration capacity is storing up to 180 tonnes of carbon dioxide in the case of scenarios 1 and 4, and up to 125 tonnes of CO2 for the case of scenario 3.

-100000,00 -150000,00 -200000,00 -250000,00 -300000,00 -350000,00

Material Concrete CLT steel Precast concrete Glulam

Scenario 1 Scenario 2 182677,78 327055,79 0,00 -178623,12 0,00 4646,88 21896,76 0,00 0,00 0,00

Scenario 3 182677,78 -119229,65 1548,96 0,00 -5206,13

Scenario 4 182677,78 -178623,12 1548,96 0,00 0,00

-400000,00 -450000,00 -500000,00

500000,00

Total emissions per material [Kg CO2 eq]

Scenario 1 Concrete

Scenario 2 CLT

steel

Scenario 3 Precast concrete

Scenario 4 Glulam

450000,00 Fig. 45: Table and graph of comparison of the total CO2 emissions per materials of each scenario

400000,00 350000,00

High Rise Wooden Buildings in Contemporary Architecture_ Results

400000,00

Regarding the emissions per material, in the next graph can be seen how the use of concrete is a key factor in the final results of the total kilograms of CO2 equivalents. No matter how small is the amount of concrete used that it is always going to be a high emissions driver.


6. CONCLUSSION

High Rise Wooden Buildings in Contemporary Architecture_ Conclusions

40

Analysing the results Phase Scenario 1 Scenario 2 Scenario 3 Scenario 4 A1-A3 -266721 -440816,52 -435376,52 372134,45 C2 1385,25 751,08 761,00 733,37 First of all, 842319,95 it has been mathematically proved that the selection C3 605944,13 842319,95 1439,81 of the structural materials has a direct consequence on the final D -396650,9 -399002,90 -25355,08 -280817,42 1000000,00 carbon dioxide emissions. Therefore, a conscious selection of the constructive system used in the building and its associated raw 900000,00 material must be present from the early stages of design. 800000,00 Scenario 1 Scenario 2 Scenario 3 Scenario 4 Totals It has been8701,53 348952,55 5603,61 observed that the use of 59790,96 concrete instead of timber as 700000,00 structural material has a direct impact on the final results of the LCA, increasing the total CO2 emissions released into the atmosphere up 600000,00 to 40 times more (Fig. 46) compared to scenario 1. This is due to 500000,00 Total emissions per scenario the fact that emission during the production stage -A1 to A3- are [Kg of COthis 2 eq] material, while the compensation 400000,00 notably high for the case of emissions in phase D -recycling or energy production potential- is 300000,00 not as high in comparison with the CLT. 380000,00 330000,00 It is a fact that it has been possible to improve the results from

scenario 1 up to a 0,004% in scenario 4 (Fi. 46) by substituting the 280000,00

Phase Scenario 1 per Scenario 2 Scenario 3 Scenario 4 Total emissions phase A1-A3 -266721 -440816,52 -435376,52 372134,45 [Kg CO2 eq] to scenario 1 are actually higher. This result is due to the way the C2 1385,25 751,08 761,00 733,37 material is used at the end of life stage - while in the case of the C3 605944,13 842319,95 842319,95 1439,81 CLT the material is burned to produce energy, the glulam is simply Drecycled and the -396650,9 -399002,90 -25355,08 -280817,42 end of its life-time-. Therefore, it can be concluded that when it comes to the end Scenario 1 out Scenario Scenario Scenario 4 of life, producing energy of the2 material is 3better than simple recycle it for the8701,53 case of timber based 59790,96 materials. On 5603,61 the other Totals 348952,55 hand, the utilization of concrete, even when using hollow core precast elements to reduce the amount of material utilized- always provokes much higher emissions than the use of timber as structural Total emissions per scenario element. [Kg CO2 eq] Total Kilograms of CO2 equivalents per scenario

Phase 180000,00 A1-A3 130000,00 80000,00 C2 On the other hand, despite of the fact that it has been actually -300000,00 80000,00 30000,00 possible to reduce the amount of timber used on the structure from -400000,00 C3 D30000,00 1061 m3 of CLT in scenario 1 to 769 m3 of glulam and CLT in scenario -20000,00 Scenario 1 Scenario 2 Scenario 3 Scenario 4 3 (see appendixes A and C), the results of scenario 3 compared -500000,00 -20000,00

Differences

Scenario 2 39

Scenario 3 6

Scenario 4 -0,4

-600000,00 -700000,00

Totals

-800000,00 Fig. 46: How much the CO2 emissions results have been improved or worsened compared to the baseline scenario -scenario 1-.

-1000000,00

Scenario 1 Scenario 2 -435376,52 372134,45 761,00 733,37 842319,95 1439,81 -399002,90 -25355,08 Scenario 1

Scenario 2

Scenario 3 -266721 1385,25 605944,13 -280817,42 Scenario 3

Scenario 4 -440816,52 751,08 842319,95 -396650,9 Scenario 4

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 2 Scenario 3 Scenario 4 348952,55 59790,96 5603,61 8701,53 Differences 6 -0,4 39

Total emissions per scenario

Scenario 1

600000,00 500000,00 400000,00

0,00

Fig. 47: Final comparison. Total amount of CO2 per scenario

-900000,00

700000,00

100000,00

280000,00 230000,00

800000,00

200000,00

100000,00 330000,00

steel joints between timber elements by the innovative German 0,00 system for CLT panels called X-fix. Nevertheless, this improvement 180000,00 is almost negligible compared to the total CO2 emissions of theses -100000,00 scenarios. 130000,00 -200000,00

900000,00

300000,00

200000,00 380000,00

230000,00

1000000,00

Scenario 2

[Kg CO 3 ] Scenario2 eq

Scenario 4

-100000,00 -200000,00 -300000,00

1000000 -400000,00

900000 -500000,00

800000 -600000,00

-700000,00 700000

-800000,00 600000

-900000,00 500000

-1000000,00 400000


7. DISCUSSION An overall review of the accomplished work

Throughout the development of this report, it has been possible to prove that wood is always a better option compared to concrete when it comes to the selection of the structural material. Therefore, in a current global situation where “enough concrete constructions are built each year worldwide to exceed the height of Mount Everest” (SINTEF, 2016), it seems clear that a change in favour of this sustainable material is an urgent need.

It is important to highlight that some of the concrete parts of high rise buildings, such as the foundations, are not possible to be substituted by timber due to the physical properties and load bearing capacity of this material. For these cases where reinforced concrete is strictly needed, the use of this eco-cement for its production would be a good alternative to consider, since it allows to reduce the global warming potential of the material without loosing its physical properties.

The use of eco-cement for concrete production

It can also be highlighted that in many cases the use of concrete is preferred over timber due to its affordable price. Hence, when the EPD -Environmental Impact Declaration- of this new product under development becomes available, it would be interesting to compare the results of using this eco-cement for the production of a complete high rise structure versus a structure made in traditional reinforced concrete.

Nevertheless, as explained before, the research on the field of building engineering is rapidly moving towards the development of new alternatives to this common and cheap material that is the reinforced concrete. In fact, a more sustainable alternative is already been developed by the Norwegian institution for research and technology SINTEF. This eco-cement using burnt clay or Norwegian blue clay is already been proved in some pilot projects. Regarding this burnt clay cement alternative, SINTEF researcher Harald Justnes explains that “the manufacture of cement involves subjecting limestone to heat treatments in excess of 1450 degrees. This causes the rock to release CO2, which alone makes up about 60 % of the total emissions. The rest is derived from the fuel used to drive the process. This burnt clay is more eco-friendly because it doesn’t give off CO2 during heat treatment, other than those emissions resulting from the heating process. However, the volumes are much lower because the clay doesn’t need to be heated to more than between 600 and 800 degrees. Moreover, it’s possible to use bio-fuels, which reduce CO2 emissions even further” (SINTEF, 2016).

The role of steel in the current urban situation It is also important to consider that many of the high rise buildings in our cities are not made out of concrete, but they have steel structures instead. Hence, to find out what is the environmental impact of a steel structure for the case of a high rise building, the modelling of a similar case study may be also necessary. Steel has a very high load bearing capacity, so it is frequently preferred over concrete for the case of open floor plan designs. Besides, its potencial to be recycled at the end of life is also quite high. Consequently, it would be very interesting to test which is the difference of emissions between designing a high rise building made out of steel versus the same building made out of timber.

High Rise Wooden Buildings in Contemporary Architecture_ Discussion

41


42

High Rise Wooden Buildings in Contemporary Architecture_ Discussion

Going taller. The use of hybrid systems in high rise buildings In spite of the fact that timber structures have been proved to be the best sustainable alternative currently available on the market, structural systems made out of this material have their limitations. On the introduction of this report it was mentioned that some reseah on the field have already proved that for the case of buildings higher than 30 storeys, the implementation of an hybrid system is needed.

There are different available alternatives that have been already developed and tested when it comes to hybrid systems. Some of them are the timber-concrete hybrid system designed by CREE company, a system called Life Cycle Tower -LCT- with potential heights of up to 30 storeys; the also timber-concrete hybrid system proposed by Skidmore, Owings & Merrill -SOM- architectural and engineering for a 42-storey high-rise called Concrete Jointed Timber Frame -CJTF-; or Finding the Forest Through the Trees -FFTT-, a timber-steel hybrid concept by Michael Green Architecture and engineers Equilibrium Consulting designed for high-rises up to 30 storeys in height.

Fig. 48: Structural system up to 30 storeys using only timber developed by MGA, 2012. Available in the thesis The Case for Tall Wood Buildings.


Consequently, it would be very interesting to find out what is the equivalent amount of CO2 in kilograms resulting from the use of one of these hybrid systems compared to a structural system where only timber is used.

available at the moment for this product. However, it would be also very interesting testing how much this new panel system allows to reduce the CO2 emissions compared to a traditional CLT panels’ system.

New materials. CLT without glue

To sum up

In spite of the fact that CLT panels are already a very sustainable solution, a company from UK called NUR-HOLZ has recently developed and alternative to these conventional panels in which glue is not used. This new product, called NUR-HOLZ mass-timber panels (Fig. 48), uses instead timber screws for joining the layers of the mass-timber panels together (NUR-HOLZ, n.d.).

There are many possibilities regarding structural materials and systems currently available in the market or under experimental phase that would allow us to reduce even more the CO2 emissions in our projects. However, even if engineers and architects want to build as green as possible, only a few customers are willing to pay anything extra to achieve this purpose.

This new system has been already tested in several commercial and residential buildings in the UK. Unfortunately, there is no EPD

As Vegard Hjelden said, “we as a contractor in constant competition are dependent on ‘green’ materials being competitive with the standard products we usually use in terms of price and/or time”. So, as a conclusion, “everything is possible, but someone has to be willing to pay for it” (Vegard Hjelden, 2017).

Fig. 49: joining system of NUR-HOLZ mass-timber panels

High Rise Wooden Buildings in Contemporary Architecture_ Discussion

43


8. FURTHER WORK

High Rise Wooden Buildings in Contemporary Architecture_ Further Work

44

The role of high rise wooden buildings on tackling climate change

In this report has been possible to prove that wooden structures are the best solution for high rise buildings when it comes to the use of sustainable materials. However, the statement that high rise buildings are the best architectural typology in order to guarantee a sustainable growth in our cities is still open to discussion. Consequently, possible lines for further work in the field of high rise wooden buildings are the followings: • To compare the total footprint of a high density typology in wood versus a low density typology for housing the same amount of people (total footprint per person). • To compare the total Kg CO2 equivalents of a hybrid system using concrete or steel compared to an only timber structural system (maximum 30 storeys). • To analyse the possible reduction in CO2 emissions by using ecocement in concrete production versus the use of traditional concrete. • To analyse the possible reduction in CO2 emissions by using the NUR-HOLZ mass-timber panels instead of conventional CLT panels in the construction.


REFERENCES

AITIM, n.d. Informacion_general_77_proteccion.pdf ArchDaily, 2017. Moholt Timber Towers / MDH Arkitekter [WWW Document]. URLhttp://www.archdaily.com/803810/moholt-timbertowers-mdh-arkitekter (accessed 5.27.17). ArchDaily, 2017. Newly Discovered Molecular “Glue” May hold the Key to Strong Wooden Skyscrapers [WWW Document]. URL http://www.archdaily.com/802205/newly-discovered-molecularglue-may-hold-the-key-to-strong-wooden-skyscrapers (accessed 4.22.17). ArchDaily, 2016. The Compact Wooden City: A Life-Cycle Analysis of How Timber Could Help Combat Climate Change [WWW Document]. URL http://www.archdaily.com/788736/the-compactwooden-city-a-life-cycle-analysis-of-how-timber-could-helpcombat-climate-change (accessed 4.22.17). Bimobject.com, n.d. Cree Buildings System by Cree Building System [WWW Document]. BIMobject. URL http://bimobject.com/en/ cree-building/privatecloud/creebuildings (accessed 5.20.17). Bjergsted Financial Park, Stavanger | Projects [WWW Document], n.d. URL http://www.helenhard.no/projects/bjergsted_financial_ park_stavanger/ (accessed 5.5.17). BREEAM Awards, 2017. pdf Diffen, n.d. Hardwood vs Softwood - Difference and Comparison [WWW Document]. URL http://www.diffen.com/difference/ Hardwood_vs_Softwood (accessed 5.25.17).

Dezeen, 2015. Architects embrace “the beginning of the timber age” [WWW Document]. URL https://www.dezeen.com/2015/11/09/ cross-laminated-timber-construction-architecture-timber-age/ (accessed 4.22.17). Doggerel, 2014. A short history of tall wood buildings [online] URL https://doggerel.no/ (accessed 4.22.17). Dwell, n.d. A 40-Story Skyscraper Built of Wood May Not Be Far from Reality [WWW Document]. URL https://www.dwell.com/article/a40-story-skyscraper-built-of-wood-may-not-be-far-from-reality/ (accessed 4.22.17). Finansparken, n.d. Hjem 2 [WWW Document]. URL http://www. finansparken.no/ (accessed 5.5.17). Hooper, 2015. Innovative Detail: Wood Innovation and Design Centre [WWW Document]. Architect. URL http://www.architectmagazine. com/technology/detail/innovative-detail-wood-innovation-anddesign-centre_o (accessed 5.15.17). Issuu, n.d. Catálogo Vigas Laminadas Encoladas GLULAM Lignum [WWW Document]. URL https://issuu.com/grupobcconsulting/ docs/catalogo_vigas_laminadas_glulam_cam (accessed 4.23.17). J.M.C.O., 2003. 1 Billion Live In Slums [WWW Document]. URL http://www.cbsnews.com/news/1-billion-live-in-slums/ (accessed 4.23.17). Kenneth Koo, 2013. A Study on Historical Tall Wood Buildings in Toronto and Vancouver. pdf.

High Rise Wooden Buildings in Contemporary Architecture_ References

45


46

High Rise Wooden Buildings in Contemporary Architecture_ References

Life Cycle Hub, n.d. [WWW Document] URL http://www.lifecyclehub. com/ (accessed 5.20.17). M.G. Architecture © Copyright, 2017. MICHAEL GREEN ARCHITECTURE [WWW Document]. MICHAEL GREEN ARCHITECTURE. URL http:// mg-architecture.ca/ (accessed 4.22.17). Midroc, n.d. Sweden’s largest newly constructed building made of wood! [WWW Document]. URL http://mpd.midroc.se/en/aboutmpd/references/limnologen (accessed 4.22.17). NUR-HOLZ, 2014. Bright Forest Limited. NUR-HOLZ Haus – Vollholzhäuser: gesund und nachhaltig [WWW Document], n.d. URL http://www.enthammer.at/nur-holz-haus-planen-bauen.html (accessed 5.15.17).

URL https://www.researchgate.net/publication/257623197_CO2emission_reduction_in_China’s_residential_building_sector_ and_contribution_to_the_national_climate_change_mitigation_ targets_in_2020 (accessed 5.26.17). Research Gate, n.d. Interpretive Structural Modeling based factor analysis on the implementation of Emission Trading System in the Chinese building sector [WWW Document]. URL https://www. researchgate.net/publication/301249827_Interpretive_Structural_ Modeling_based_factor_analysis_on_the_implementation_ of_Emission_Trading_System_in_the_Chinese_building_sector (accessed 5.26.17).

Planet Ark, 2015. Wood-Housing, Health, Humanity Report. pdf

Research Gate, n.d. Measuring embodied carbon dioxide equivalent of buildings: A review and critique of current industry practice [WWW Document]. URL https://www.researchgate.net/ publication/313567670_Measuring_embodied_carbon_dioxide_ equivalent_of_buildings_A_review_and_critique_of_current_ industry_practice (accessed 5.16.17).

Ramage, M.H. et al., 2017. The wood from the trees: The use of timber in construction. Renewable and Sustainable Energy Reviews 68, Part 1. pdf

Resilient Wood, n.d. Tamedia Headquarters [WWW Document]. URL http://resilientwood.tumblr.com/post/129800466182/tamediaheadquarters (accessed 5.5.17).

Research Gate, n.d. Circular economy for the built environment: A research framework [WWW Document]. URL https://www. researchgate.net/publication/312803919_Circular_economy_for_ the_built_environment_A_research_framework (accessed 5.16.17).

Scribd, 2014. Tall-Wood-CEU. pdf

Research Gate, n.d. CO2-emission reduction in China’s residential building sector and contribution to the national climate change mitigation targets in 2020 [WWW Document].

SOM, 2013. Timber Tower Research Project [WWW Document]. URL http://www.som.com/ideas/research/timber_tower_research_ project (accessed 4.22.17).

PCA, n.d. Portland cement EPD. pdf

SFPE, n.d. High-Rise Timber Buildings [WWW Document] URL http:// www.sfpe.org/?page=2014_Q3_1 (accessed 4.22.17).


Stora Enso, n.d. Sustainable tree plantations [WWW Document]. URL http://www.storaenso.com/rethink/responsibility/forest-andland-use/sustainable-tree-plantations (accessed 5.23.17). Strelitz, Ziona et al., 2005. Tall buildings a strategic design guide. The British Council for Offices and RIBA Publishing. pdf Swissinfo, n.d. Europe’s oldest wooden house still going strong [WWW Document]. URL https://www.swissinfo.ch/eng/europe-soldest-wooden-house-still-going-strong/ (accessed 4.23.17). Tall_Wood. pdf The Wooden High-Rise Is Inevitable [WWW Document], n.d. Tommaso Scalet, n.d. Bachelor Thesis. pdf Inverse, n.d. URL https://www.inverse.com/article/14951-woodskyscrapers-are-the-gorgeous-world-saving-future-of-urbanskylines (accessed 4.22.17). Trada, n.d. Murray Grove Case Study. pdf U.N.N.S., 2015. UN News - UN projects world population to reach 8.5 billion by 2030, driven by growth in developing countries [WWW Document]. UN News Service Section. URL http://www.un.org/ apps/news/story.asp?NewsID=51526#.WP0LlYnyhE4 (accessed 4.23.17). University of Northern British Columbia, n.d. Construction of the Wood Innovation & Design Centre [WWW Document]. URL http:// www.unbc.ca/engineering-graduate-program/constructionwood-innovation-design-centre (accessed 4.22.17).

WCMS, n.d. The Benefits of Using Wood [WWW Document]. URL http://makeitwood.org/benefits-of-wood/ (accessed 4.22.17a). Derix, n.d. Wood as material | Load-Bearing-Capacity: Laminated timber compared to concrete [WWW Document]. URL http://www. derix.de/en/baustoff_holz/holz-ist-natur/lastpotenzialvergleich (accessed 5.24.17). Woods, S., 2016. A History of Wood from the Stone Age to the 21st Century [WWW Document]. EcoBuilding Pulse. URL http://www. ecobuildingpulse.com/products/a-history-of-wood_o (accessed 4.22.17). X-fix, n.d. X-fix C / X-fix L Holz-Holz Verbinder fĂźr BSP / CLT / X-LAM. pdf X_LAM, n.d. Tech_Brochure_Nov_23. pdf York Heritage, n.d. Toronto Carpet Factory [WWW Document]URL http://www.yorkheritage.com/the-properties/liberty-village-area/ toronto-carpet-factory.html (accessed 4.22.17). WPP, 2015. Key Findings. pdf, n.d.

High Rise Wooden Buildings in Contemporary Architecture_ References

47


APPENDICES 48

Appendix A. Scenario 1_Materials take off and their GWP

High Rise Wooden Buildings in Contemporary Architecture_ Appendices

Materials Take Off Scenario 1 Wall Material Takeoff Material

2

Concrete, Cast-in-Place Convetional CLT panels

Area (m ) 794 4594

Volume (m³) 181,36 539,12

Density (KN/m³) Density (Kg/m³) 23,6 491,65

Mass (Kg) 436299,29 265058,35

Floor Material Takeoff Material Concrete - Cast-in-Place Conventional CLT panels

Area (m2) 1257 3630

Volume (m³) 385,68 508,13

Density (KN/m³) Density (Kg/m³) 23,6 491,65

Mass (Kg) 927833,64 249822,11

Area (m2) 158 213

Volume (m³) 15,72 13,93 0,76433121

Density (KN/m³) Density (Kg/m³) 23,6 491,65 7850

Mass (Kg) 37817,74 6848,68 6000

Structural elements

Material Concrete beams and columns CLT beams Steel joints


49

Construction

SCENARIO 1

End of life

Reuse/Recyling potential

A1-A3 60701,19 -324426,24

A4 2684,13 -

A5 244,84 -

C1 547,71 -

C2 85,24 239,91

C3 250,28 427522,16

C4 0,00

D -4185,79 -194083,20

Floor Material Takeoff GWP A1-A3 129087,10 Concrete [kg CO2 equiv.] -305777,39 CLT [kg CO2 equiv.]

A4 5708,06 -

A5 520,67 -

C1 1164,75 -

C2 181,27 226,12

C3 532,24 402947,09

C4 0,00

D -8901,49 -182926,80

Other structural elements GWP A1-A3 5261,48 Concrete [kg CO2 equiv.] -8382,66 CLT [kg CO2 equiv.] 8160,00 Steel [kg CO2 equiv.]

A4 232,66 525,60

A5 21,22 14,82

C1 47,47 54,96

C2 7,39 6,20 14,88

C3 21,69 11046,49 0,00

C4 0,00 4,10

D -362,82 -5014,80 -3528,00

C2 273,90 472,23 14,88

C3 804,21 841515,74 0,00

TOTALS Concrete CLT steel

Material Concrete CLT

A1-A3 195049,77 -638586,29 8160,00

Scenario 1 182677,78 -178623,12

Phase A1-A3 C2

Scenario 1 -435376,52 761,00

D -13450,10 -382024,80 -3528,00

High Rise Wooden Buildings in Contemporary Architecture_ Appendices

Wall Material Takeoff GWP Concrete [kg CO2 equiv.] CLT [kg CO2 equiv.]

Production


50

Appendix B. Scenario 2_Materials take off and their GWP

High Rise Wooden Buildings in Contemporary Architecture_ Appendices

Materials Take Off Scenario 2 Wall Material Takeoff 2

Area (m ) 2513

Volume (m³) Density (KN/m³) Density (Kg/m³) Mass (Kg) 601,07 23,6 1445999,18

Material Biridectional cast-in-Place concrete slab Precast Hollow core concrete slab

Area (m2) 1257 2713

Volume (m³) Density (KN/m³) Density (Kg/m³) Mass (Kg) 385,68 23,6 927833,64 356,31 275 97985,25

Structural elements Material Concrete columns Concrete beams

Area (m2) 251 532

Volume (m³) Density (KN/m³) Density (Kg/m³) 21,02 23,6 35,57 23,6 -

Material

Concrete, Cast-in-Place

Floor Material Takeoff

Mass (Kg) 50567,99 85571,05


51

Wall Material Takeoff Concrete (cast in place) Concrete (precast)

Construction

SCENARIO 2

End of life

Reuse/Recyling potential

GWP [kg CO2 equiv.] [kg CO2 equiv.]

A1-A3 201178,13 0,00

A4 8895,84 0,00

A5 811,44 0,00

C1 1815,23 0,00

C2 282,50 0,00

C3 829,48 0,00

C4 0,00

D -13872,70 0,00

GWP [kg CO2 equiv.] [kg CO2 equiv.]

A1-A3 129087,10 22928,55

A4 5708,06 8583,51

A5 520,67 358,63

C1 1164,75 897,54

C2 181,27 243,00

C3 532,24 0,00

C4 141,10

D -8901,49 -1274,79

GWP [kg CO2 equiv.] [kg CO2 equiv.]

A1-A3 7035,39 11905,28

A4 311,10 526,44

A5 28,38 48,02

C1 63,48 107,42

C2 9,88 16,72

C3 29,01 49,09

C4 -

D -485,14 -820,96

TOTALS Cast in place concrete Precast concrete

A1-A3 349205,90 22928,55

C2 490,37 243,00

C3 1439,81 0,00

Material Cast in place concrete Precast concrete

Scenario 2 327055,79 21896,76

Floor Material Takeoff Concrete (cast in place) Concrete (precast)

Other structural elements Concrete beams Concrete columns

Phase A1-A3 C2 C3 D

Scenario 2 372134,45 733,37 1439,81 -25355,08

D -24080,29 -1274,79

High Rise Wooden Buildings in Contemporary Architecture_ Appendices

Production


52

Appendix C. Scenario 3_ Materials take off and their GWP

High Rise Wooden Buildings in Contemporary Architecture_ Appendices

Materials Take Off Scenario 3 Wall Material Takeoff Material

Concrete, Cast-in-Place Convetional CLT panels

2 Area (m ) Volume (m³) Density (KN/m³) Density (Kg/m³) 794 181,36 23,6 1565 200,2 491,65

Mass (Kg) 436299,29 98428,33

Floor Material Takeoff Material Concrete - Cast-in-Place Conventional CLT panels

Area (m2) Volume (m³) Density (KN/m³) Density (Kg/m³) 1257 385,68 23,6 6452 508,13 491,65

Mass (Kg) 927833,64 249822,11

Structural elements Material Concrete beams and columns Glulam beams and columns Steel joints

Area (m2) Volume (m³) Density (KN/m³) Density (Kg/m³) 158 15,72 23,6 1355 60,72 491,65 0,25 7850

Mass (Kg) 37817,74 29852,99 2000

Total CLT

708,33


Wall Material Takeoff GWP Concrete [kg CO2 equiv.] CLT [kg CO2 equiv.]

Production

Construction

SCENARIO 3

End of life

Reuse/Recyling potential

A1-A3 60701,19 -120474,35

A4 2684,13 -

A5 244,84 -

C1 547,71 -

C2 85,24 89,09

C3 250,28 158758,60

C4 0,00

D -4185,79 -72072,00

GWP Concrete [kg CO2 equiv.] CLT [kg CO2 equiv.]

A1-A3 129087,10 -305777,39

A4 5708,06 -

A5 520,67 -

C1 1164,75 -

C2 181,27 226,12

C3 532,24 402947,09

C4 0,00

D -8901,49 -182926,80

Other structural elements GWP Concrete [kg CO2 equiv.] Glulam [kg CO2 equiv.] Steel [kg CO2 equiv.]

A1-A3 5261,48 -38239,03 2720,00

A4 232,66 1032,85 175,20

A5 21,22 566,52 4,94

C1 47,47 0,71 18,32

C2 7,39 791,18 4,96

C3 21,69 43434,23 0,00

C4 4294,73 1,37

D -362,82 -11192,52 -1176,00

C2 273,90 315,21 791,18 4,96

C3 804,21 561705,69 43434,23 0,00

Floor Material Takeoff

TOTALS Concrete CLT Glulam Steel

A1-A3 195049,77 -426251,74 -38239,03 2720,00

D -13450,10 -254998,80 -11192,52 -1176,00

High Rise Wooden Buildings in Contemporary Architecture_ Appendices

53


54

Appendix D. Scenario 4_ Materials take off and their GWP

High Rise Wooden Buildings in Contemporary Architecture_ Appendices

Materials Take Off Scenario 4 Wall Material Takeoff Material

Concrete, Cast-in-Place Convetional CLT panels

2 Area (m ) Volume (m³) Density (KN/m³) Density (Kg/m³) Mass (Kg) 794 181,36 23,6 436299,29 4594 539,12 491,65 265058,35

Floor Material Takeoff Material Concrete - Cast-in-Place Conventional CLT panels

Area (m2) Volume (m³) Density (KN/m³) Density (Kg/m³) Mass (Kg) 1257 385,68 23,6 927833,64 3630 508,13 491,65 249822,11

Structural elements Material Concrete beams and columns CLT beams Steel joints

Area (m2) Volume (m³) Density (KN/m³) Density (Kg/m³) Mass (Kg) 158 15,72 23,6 37817,74 213 13,93 491,65 6848,68 0,25477707 7850 2000


Production

Wall Material Takeoff GWP Concrete [kg CO2 equiv.] CLT [kg CO2 equiv.]

Construction

SCENARIO 4

End of life

Reuse/Recyling potential

A1-A3 60701,19 -324426,24

A4 2684,13 -

A5 244,84 -

C1 547,71 -

C2 85,24 239,91

C3 250,28 427522,16

C4 0,00

D -4185,79 -194083,20

A1-A3 129087,10 -305777,39

A4 5708,06 -

A5 520,67 -

C1 1164,75 -

C2 181,27 226,12

C3 532,24 402947,09

C4 0,00

D -8901,49 -182926,80

A1-A3 5261,48 -8382,66 2720,00

A4 232,66 175,20

A5 21,22 4,94

C1 47,47 18,32

C2 7,39 6,20 4,96

C3 21,69 11046,49 0,00

C4 0,00 1,37

D -362,82 -5014,80 -1176,00

C2 273,90 472,23 4,96

C3 804,21 841515,74 0,00

Floor Material Takeoff GWP Concrete [kg CO2 equiv.] CLT [kg CO2 equiv.]

Other structural elements GWP Concrete [kg CO2 equiv.] CLT [kg CO2 equiv.] Steel [kg CO2 equiv.]

TOTALS Concrete CLT Steel

A1-A3 195049,77 -638586,29 2720,00

Material Concrete CLT

Scenario 4 182677,78 -178623,12

Phase A1-A3 C2

Scenario 4 -440816,52 751,08

D -13450,10 -382024,80 -1176,00

High Rise Wooden Buildings in Contemporary Architecture_ Appendices

55


High Rise Wooden Buildings in Contemporary Architecture_ Appendices

56

Appendix E. GWP -global warming potential- of the different materials used

Material Concrete (cast in place) CLT panels (conventional) Steel joints Hollow core concrete slabs (precast) Glue Laminated Timber NUR-HOLZ Panles (without glue)

Declared unit [1m³] [1m³] [Kg] [1tonne=1000Kg] [1m³]

Production GWP [kg CO2 equiv.] [kg CO2 equiv.] [kg CO2 equiv.] [kg CO2 equiv.] [kg CO2 equiv.]

A1 -731,00 -

A2 7,23 -

A3 122,00 -

EPD A1-A3 334,70 -601,77 1,36 234,00 -629,76

Construction A4 A5 14,80 1,35 0,09 0,00 87,60 3,66 17,01 9,33

C1 3,02 0,01 9,16 0,01

End of life C2 C3 0,47 1,38 0,45 793,00 0,00 0,00 2,48 0,00 13,03 715,32

C4 0,00 0,00 1,44 70,73

Reuse/Recyling potential D -23,08 -360,00 -0,59 -20,01 -184,33

The previous GWP factor have been obtained from the Ecoinvent database except for the CLT panels - which corresponds to the prduct X-lam from the Austrian company KLH-, and the hollow core concrete slab -extracted from EPD-norge from the company Skonto Prefab-.


Appendix F. Original plans of Moholt 50|50. Veidekke Entreprenør AS

VEGGTYPER

MV160

160mm massivtrevegg.

9

MV140 140mm massivtrevegg.

Snitt DD2 1/50 8 -0 A-TA- 2101

MV120 120mm massivtrevegg. 2750

Prosjekt

Tegn nr.

Moholt Studenthus TÅRN A

A-TA- 1100 -U

MASSIVTREVEGGER

I

MV100

100mm massivtrevegg.

NB! ALLE MASSIVTRE ELEMENTSKJØTER I YTTERVEGG TEIPES! ALLE MÅL KONTROLLMÅLES PÅ BYGGEPLASS!

MERKNAD: KONSTRUKSJON AV BETONG I UNDERETASJE OG 1.ETASJE; SE RIB-TEGNINGER FOR MÅLSETTING.

MV80

7

80mm massivtrevegg.

MV40

5000

57

Avslutning trappeskive i trapperom, rekkverk 9. etasje. 40mm massivtrevegg.

PÅFORINGER PÅ MASSIVTRE 6010

6

massivtre på denne siden 5000

massivtre på denne siden

PF02

massivtre på denne siden

PF03

H 3+

5

A050

Teknisk rom 93.7 m²

050

I

massivtre på denne siden

6010

E

PF08

3650 7670

EI60

ID09-V EI 60-Sa ID A031.2

020

Boder 79.2 m²

2385

Innervegg sjakter hybel og vindfang. 70mm isolert stålstenderverk 2x 13mm gips.

IV03

15

Snitt CC 1/50 A-TA- 2102 -0

12

3450

13

9

IV04

11

20

160

Stålstender 70mm over badekabiner, kledd med sammenhengende 13mm gips fra bunn badekabin til tak.

C 1200

20

ID09-V EI 60-Sa ID A031.3

1200

EI60 Innervegg sjakter med brannkrav EI60. 2x 13mm gips, 70mm stålstenderverk, 2x 13mm gips.

16

8 10 20

A020

031

14

1180

052

SKJEMA INTERIØR TRAPP A-TA-4060-0 2560 20

IV05 EI30

Innervegg mellom inngang og trapperom 1.etasje. 13mm gips, isolert stålstenderverk 70mm, 13mm gips.

20

50

YD04-H EI 60-Sa ID A532.1

Snitt CC 1/50 A-TA- 2102 -0

Hovedtavle 4.2 m²

A031

Korridor 15.3 m²

17

7

1020

051

A052

2665

A051

Datarom 8.0 m²

5 6

IV01 170

18

4

3045

2665

IV03 EI60

70

70

IV03 EI60 1595

70

PF10

Påforing på BK type 1, 1s 2 og 3. 13mm gips.

INNERVEGGER

19

2 3

2425

ID12-H EI 60-Sa ID A030.2 170 910

5000

1

IV03 EI60

ID11-V EI 60-CSa ID A030.1

090

IV03 EI60

13650

1765

A030

Trapperom 18.0 m²

MV100

G

Brannmaling på eksponert massivtre på innside trapperom.

PÅFORINGER

1805

5315

ID11-V EI 60-CSa ID A053

YD04-H EI 60-Sa ID A432.1

1660

DETALJ

EI60

Brannmaling D

A-TA- 5030 -U

Påforing på massivtre i fellesareal og vindfang. 13mm gips, 2x 15mm branngips.

Påforing på massivtre i heissjakt. Oppfyller brannkrav EI60 sammen med tilliggende massivtrevegg. 13mm gips.

053

04-H YD 60-Sa EI 32.1 A2 ID

PF04

Rw 52dB Påforing på massivtre mellom hybler. Frittstående (10mm) stålstenderverk 70mm, isolert 50mm, 13mm gips, 15mm branngips.

massivtre på denne siden

SKJEMA INTERIØR BODER A-TA-4070-U

Bøttekott 10.6 m²

H

Påforing på massivtre hybel yttervegg, akse I, 6, B. Frittstående (10mm) stålstenderverk 70mm, isolert 50mm, 13mm gips, 15mm branngips.

PF06

1340

A053

EI30 / Rw 45dB Påforing på massivtre mellom hybel og korridor, akse B, 3+, H. Frittstående (10mm) stålstenderverk 70mm, isolert 50mm,13mm gips.

massivtre på denne siden

6010

04-H YD 60-Sa EI 32.1 A3 ID

PF01

Påforing på massivtre yttervegg hybel, akse A, 5, I. Frittstående (10mm) stålstenderverk 70mm, isolert 50mm, 13mm gips.

ID09-V EI 60-Sa ID A021.5

IV13 5000

Innervegg.13mm gips, stålstenderverk 70mm, 13mm gips.

IV15

R´w 48dB

B+

ID09-H EI 60-Sa ID A031.1

A021

Boder 121.2 m² 1660

021

SKJEMA INTERIØR BODER A-TA-4070-U

Innervegg med lydkrav i legesenter 1.etg. 2x13mm gips, stålstenderverk 70mm, isolert 50mm, 2x13mm gips.

B

ID11-V EI 60-CSa ID A032.2

032

Lager i P-kjeller

7670

MR MR

IR

MR

06.08.15

IR

NZ

12.06.15

IR

MR

Dato

Tegn.

Kontr.

ARK

MDH arkitekter SA

Storgata 37a 0182 Oslo

LARK

MASU planning ASP

Struenseegade 15 1th DK-2200 København-N

RIB

Høyer Finseth AS

Engebrets vei 5 0275 Oslo

Vintervoll AS

Ingvald Ystgaards veg 23 7047 Trondheim

Teknisk ventilasjon AS

Industriveien 39a 7080 Heimdal

RIBr

Rambøll Norge AS

Mellomila 79 7493 Trondheim

IV17

RIA

Brekke og Strand AS

Klæbuveien 196b 7037 Trondheim

Innervegg med lydkrav i legesenter 1.etg. 2x13mm gips, stålstenderverk 70mm, isolert 50mm, 13mm gips, 12mm x-finer.

RØR

K. Lund AS

Pb. 2433 Sluppen 7005 Trondheim

IV21

Inngang fra P-kjeller

Innervegg.13mm gips, stålstenderverk 70mm, 12mm x-finer, 13mm gips.

Nedkjørsel til P-kjeller

ID11-V EI 60-CSa ID A033

B

6010

6010

YTTERVEGGER

A

YV01 200mm Flexsystemplate, 36x98mm vertikallekt. Horisontal lekt ulike bredder.Vertikal skråstilt trekledning 123mm

A033 Lager 8.1 m²

033

Snitt AA 1/50 A-TA- 2100 -0

Oppdatert romnummerering Oppdatert id-nummer på dører i kjeller og rømningsdør 2-9etg Kjeller: oppdatert dører, Snitt DD: detaljhenvisning, 2-9etg: type rømningsdør Oppdat. skjema- + detaljhenv. Oppdat. dørtyper i kjeller +1etg. Kjeller: boder, plass.p-kjeller, målsetting, dørinfo. 1.etg: dørinfo+type, YD info, GV01, inngangsdør + matte plass., himling inngang, målsetting. 2-9etg: dørtype VF. Takplan: gesims. Fasader: YD info, brannkrav kledningstype 7. Snitt: P-kjeller info, himling inngang, gesims. 1 Detalj-nummerering endret, veggtype YV05 og YV06, skjemahenvisning heis. 2-9etg: PF10 fjernet rundt BK Type 3, målsetting sjakter i hybler, sikringsskap og luke i VF. 1etg: gipsvegger flyttet, mattestørrelse- og plassering, fotskraperister og takoverbygg sekundærinnganger. Kjeller: slagretning dør. Rev. Beskrivelse

RIV

R´w 48dB

ID27-H EI 60-CSa ID A032.1

A032

Vindfang 4.6 m²

HN IR

27.11.15

2

RIE

R´w 34dB

B

22.04.16 04.12.15

3

Innervegg med lydkrav i legesenter 1.etg. 13mm gips, stålstenderverk 70mm, isolert 50mm, 13mm gips.

IV16

120 boder

5 4

E

D

Snitt AA 1/50 A-TA- 2100 -0

C

YV02

N

EI60

A

Yttervegg med brannkrav EI60. Når yttervegg ligger utenpå betongvegg taes brannkravet opp i betongen. 200mm Flexsystemplate, 36x98mm vertikallekt. Horisontal lekt ulike bredder. Vertikal skråstilt trekledning 123mm

A

5000

5000

2750

5450

Tiltakshaver

5

YV03 EI60

12750

1

2

3

Yttervegg med brannkrav EI60, hovedinngang. Brannkravet taes opp i tilliggende betongvegg. 200mm Flexsystemplate, 36x98mm vertikallekt. Horisontal lekt. Vertikal trekledning 123mm

4

YV04

Studentsamskipnaden i Trondheim Postboks 2460 7005 Trondheim Totalentreprenør

Veidekke Entreprenør AS - Trondheim Vegamot 8 7048 Trondheim

Yttervegg hovedinngang. 2x 13mm gips, 48mm isolert stenderverk, dampsperre, 198mm isolert stenderverk, 9mm GU.

Arkitekt

YV05

Prosjekt

Gnr. / Bnr.

Moholt Studenthus

54 / 53

MDH ARKITEKTER SA Storgata 37A 0182 Oslo

office@mdh.no tlf: 48 34 60 30

Snitt DD1 1/50 A-TA- 2101 -0

N

Yttervegg hovedinngang over glassvegg. 2x 13mm gips,48mm isolert stenderverk, dampsperre, 198mm isolert stenderverk, 9mm GU, 12x48mm vertikallekt, 36mm horisontallekt, 20mm vertikal trekledning.

YV06 Sokkelvegg på betong. Grunnmursplate, 150 mm isopor, 23mm vertikallekt, 8mm fibersementplate.

Prosjektnr.

030

Almenning 1-5 Fase

Tegnet av

Kontroll

Arbeidstegninger

IR

NZ

Tittel

Målestokk A0:

Kjelleretasje

Tegn nr.

A-TA- 1100 -U

1:50

Dato

Revisjon

29.05.15

5

High Rise Wooden Buildings in Contemporary Architecture_ Appendices

0 1275


VEGGTYPER

Prosjekt

Tegn nr.

Moholt Studenthus TÅRN A

A-TA- 1101 -1

MASSIVTREVEGGER MV160

160mm massivtrevegg.

MV140

Snitt DD2 1/50 A-TA- 2101 -0

9

ALLE MÅL KONTROLLMÅLES PÅ BYGGEPLASS!

MV120

MERKNAD:

MV100

100mm massivtrevegg.

1420

GU 12.6 m²

Lege III 14.6 m²

1230

70

V11 /Rw+Ctr = 26dB 2420 x 1420 ID A161.1

V10-V /Rw+Ctr = 26dB 2420 x 1420 ID A161.2

V10-V /Rw+Ctr = 26dB 2420 x 1420 ID A162.1 1420

1420

1140

5000

PF10 IV04 400 160 70

70

1420

bh. 300

V10-V /Rw+Ctr = 26dB 2420 x 1420 ID A150

5000

1140

13650 1420

V10-V /Rw+Ctr = 26dB 2420 x 1420 ID A158.3

A-TA- 5020 -1

IV05

Snitt CC 1/50 A-TA- 2102 -0

EI30

Innervegg mellom inngang og trapperom 1.etasje. 13mm gips, isolert stålstenderverk 70mm, 13mm gips.

C

1140

IV15 R`w48dB

IV13 IV15

1420

R´w 48dB Innervegg med lydkrav i legesenter 1.etg. 2x13mm gips, stålstenderverk 70mm, isolert 50mm, 2x13mm gips.

IV16

5000

1140

3745

R´w 34dB Innervegg med lydkrav i legesenter 1.etg. 13mm gips, stålstenderverk 70mm, isolert 50mm, 13mm gips.

IV17

R´w 48dB Innervegg med lydkrav i legesenter 1.etg. 2x13mm gips, stålstenderverk 70mm, isolert 50mm, 13mm gips, 12mm x-finer.

365

1020

2550

162

Sekundærinngang legesenter C+ 116500

2155

MR

IR

MR

28.08.15

IR

MR

06.08.15

IR

NZ

12.06.15

IR

MR

Dato

Tegn.

Kontr.

ARK

MDH arkitekter SA

Storgata 37a 0182 Oslo

LARK

MASU planning ASP

Struenseegade 15 1th DK-2200 København-N

RIB

Høyer Finseth AS

Engebrets vei 5 0275 Oslo

RIE

Vintervoll AS

Ingvald Ystgaards veg 23 7047 Trondheim

RIV

Teknisk ventilasjon AS

Industriveien 39a 7080 Heimdal

RIBr

Rambøll Norge AS

Mellomila 79 7493 Trondheim

RIA

Brekke og Strand AS

Klæbuveien 196b 7037 Trondheim

RØR

K. Lund AS

Pb. 2433 Sluppen 7005 Trondheim

B E

A

D C

x-finer på denne siden

10

2855

bh. 300

bh. 300

YV01

V10-V /Rw+Ctr = 26dB 2420 x 1420 ID A163

V11 /Rw+Ctr = 26dB 2420 x 1420 ID A162.2

1140

1420

Tiltakshaver

YV03

A

1140

1420

725

EI60

Yttervegg med brannkrav EI60, hovedinngang. Brannkravet taes opp i tilliggende betongvegg. 200mm Flexsystemplate, 36x98mm vertikallekt. Horisontal lekt. Vertikal trekledning 123mm

5

2750

5450

12750

3

N

Yttervegg med brannkrav EI60. Når yttervegg ligger utenpå betongvegg taes brannkravet opp i betongen. 200mm Flexsystemplate, 36x98mm vertikallekt. Horisontal lekt ulike bredder. Vertikal skråstilt trekledning 123mm

Snitt AA 1/50 A-TA- 2100 -0

5000

2

MR

IR

07.09.15

EI60

IV21

YV04

1

IR

11.09.15

YV02

IV13

163

MR

01.10.15

200mm Flexsystemplate, 36x98mm vertikallekt. Horisontal lekt ulike bredder.Vertikal skråstilt trekledning 123mm

A-TA-5039-1

YV01

MR MR MR

IR

YTTERVEGGER

A-TA- 5038 -1 DETALJ

2865

HN IR IR

16.10.15

YV01

3285

505

Oppdatert romnummerering Detaljhenvisninger 1-9etg:Plassering sprinkler i systemhimling, skjemahenvisninger. Snitt CC: høyde inngang. IV08 utgår i tårn A. IV17 endret, IV21 opprettet. Innkassing av rør i A151. 6 Innkassing av rør i entré, endret skjemahenvisninger, beskrivelse plassering lampe i himling i A158. 5 1etg: skjemahenv. lukebeskrivelse, fotskraperister, himling legesenter. 9etg: endret vegg. 4 1.etg: detaljhenvisninger, flyttet vegg i legesenter, ny dørtype i datarom 3 Detaljhenvisninger. YV06 endret. 1.etg: plan legesenter, størrelse fotskraperister, dør + romnavn bod/båre, nye veggtyper. Fasader: fjernet nedre securoventil. 2 Oppdat. skjema- + detaljhenv. Oppdat. dørtyper i kjeller +1etg. Kjeller: boder, plass.p-kjeller, målsetting, dørinfo. 1.etg: dørinfo+type, YD info, GV01, inngangsdør + matte plass., himling inngang, målsetting. 2-9etg: dørtype VF. Takplan: gesims. Fasader: YD info, brannkrav kledningstype 7. Snitt: P-kjeller info, himling inngang, gesims. 1 Detalj-nummerering endret, veggtype YV05 og YV06, skjemahenvisning heis. 2-9etg: PF10 fjernet rundt BK Type 3, målsetting sjakter i hybler, sikringsskap og luke i VF. 1etg: gipsvegger flyttet, mattestørrelse- og plassering, fotskraperister og takoverbygg sekundærinnganger. Kjeller: slagretning dør. Rev. Beskrivelse

Innervegg.13mm gips, stålstenderverk 70mm, 12mm x-finer, 13mm gips.

DETALJ

A162

Laboratorium 31.5 m²

22.04.16 29.01.16 10.11.15

7

6010

70

10 9 8

IV21

B

YV01

5845

1835 EKG 4.9 m²

3650 1140

2045

DETALJ

1420

Korridor 46.3 m²

2010

70

A163

3165

1585 1050 475

A134

Stålstender 70mm over badekabiner, kledd med sammenhengende 13mm gips fra bunn badekabin til tak.

A158

IV15 R`w48dB

YD02-H ID A020.2

3230 70 2475

x-finer på denne siden

10

?

3085

Akutt/ Skifterom 21.2 m²

IV13

70

ID15-H ID A134.3

1960

1010 230

495

1675 1010

ID30-H ID A132.2 645

143

70

ID29-H ID A143

Garderobe 4.0 m²

500

ID14-V /R`w 38dB ID A134.4

IV17 R`w48dB

570

bh. 300

1010

IV15 R`w48dB

70 315

1150

1395

70

1010

ID17-S ID A163

1010 bh. 300

1140

2005

70 2475 2140

bh. 300

1625 bh. 300

144

2585

SKJEMA RIST A-TA-4162-1

1345

1010

2155

5010

IV21

bh. 300

1420

135

1265

340

70

IV15 R`w48dB

161

1010

IV13 490

2415

Personalrom 13.1 m²

ID17-S ID A162.2

IV15 R`w48dB

ID29-V ID A160

410

V10-W 2020 1310 x 2020 ID A159

IV13

2005 Urinavlukke

IV13

1010

IV15 R`w48dB bh. 1100

625

70

Data 3.0 m²

655

ID14-V /R`w 38dB ID A162.1

1435 70 70

3150 70 SKJEMA INTERIØR RESEPSJON A-TA-4042-1 A-TA-4043-1

55 70

IV13

SKJEMA INTERIØR KJØKKEN A-TA-4041-1

1725

A160

2475

1815

70

1010

PF10 IV04

70

70

IV04 345 70

1785

70 IV04 IV13

640 70 15

bh. 300

A144

HC-dusj + WC 5.0 m²

1075 IV13

IV04

Innervegg.13mm gips, stålstenderverk 70mm, 13mm gips.

V10-V /Rw+Ctr = 26dB 2420 x 1420 ID A158.2

2305

70

EI60 Innervegg sjakter med brannkrav EI60. 2x 13mm gips, 70mm stålstenderverk, 2x 13mm gips.

70

SKJEMA TOALETT LEGESENTER HC-dusj A-TA-4140-1 1930

IV13

70

PF10

570

70

1890

1295

IV15 R`w48dB Hette for avsug

160

70

IV15 R`w48dB

70

2735

70

1805

3155

bh. 300

V11 /Rw+Ctr = 26dB 2420 x 1420 ID A161.3

A159

Resepsjon 9.6 m²

Luke for urinprøver 400x400mm UK:1100

PF10

A

365

400 300

IV04

IV16 R`w34dB

4595

159

135

A161

400

1060

70 2560

YD01-HV ID A020.3

70

Entre IV15 4.5 m² R`w48dB

1805

1100

PF10

A135

SKJEMA RIST A-TA-4161-1

DETALJ

IV12

ID18-H /R`w 33dB ID A140 1010

PF10

1535

bh. 300

IV15 R`w48dB

1805

A-TA- 5026 -1

HC-WC 5.9 m²

70

IV16 R`w34dB

Betalingsautomat

1010 ID31-V /R`w 38dB ID A132.3

IV04

A140

1420

3155

3155 980 245 70 70 1315 70 475 2620

IV13

1580

910 ID28-V ID A146

bh. 300

70

V10-V /Rw+Ctr = 26dB 2420 x 1420 ID A151

100

ID14-H /R`w 38dB ID A151 1860 70

435

140

IV15 R`w48dB

1465

V11 /Rw+Ctr = 26dB 2420 x 1420 ID A132

1660

132

ID32-HV ID A131.4

YV01

1390

3495

3480

Venterom 27.8 m²

IV13

DETALJ

7670

SKJEMA TOALETT LEGESENTER HC A-TA-4124-1

A132

2500

A-TA-5061-1

6010

1010 70

146

V10-V /Rw+Ctr = 26dB 2420 x 1420 ID A158.1

OP C A B R IG T R Y H

OY C A B R IG R P T H

3245

830

DETALJ

3580

375 280 70 PF10

IV17 R`w48dB

Garderobe 3.2 m²

A143

B+

IKKE SOLAVSKJERMING PÅ DENNE FASADEN

IV04 70

1845

20

70

YV02 EI60

Snitt AA 1/50 A-TA- 2100 -0

SKJEMA INTERIØR TRAPP A-TA-4060-0 2560 20

1180

1255

20

360

70

IV13

1550

IV03

5110

11

Innervegg sjakter hybel og vindfang. 70mm isolert stålstenderverk 2x 13mm gips.

x-finer på denne siden

x-finer på denne siden

12

YV01

IV15 R`w48dB

2290

13

8 9

1175

680

7

DETALJ

INNERVEGGER

D

150

A146

IV13

PF10

Påforing på BK type 1, 1s 2 og 3. 13mm gips.

Lege I 17.5 m²

250

14

A-TA- 5040 -1 4360

15

10

141

A150

1580

16

Brannmaling på eksponert massivtre på innside trapperom.

IV01

ID14-H /R`w 38dB ID A158

17

4

910 ID16-V ID A134.2

18

3

6

EL-skap 4.5 m²

850

6425

Inngang legesenter C+ 116500

20

400

2470 1010

YV04

19

5

ID13-H EI 60-Sa ID A131.3

DETALJ A-TA- 5064 -1

1

A-TE-5006-1

A-TA- 5060 -1

1200

2

DETALJ (TÅRN E)

B

190

160 20

4980

DETALJ A-TA- 5011 -1

475

Snitt CC 1/50 A-TA- 2102 -0

Trapperom 16.0 m²

1200

1295

200 20

EI60

PÅFORINGER

5390

70

1265

Påforing på massivtre i fellesareal og vindfang. 13mm gips, 2x 15mm branngips.

Påforing på massivtre i heissjakt. Oppfyller brannkrav EI60 sammen med tilliggende massivtrevegg. 13mm gips.

PF10

1750 A-TA- 5040 -1

70

70

IV15 R`w48dB

A-TA- 5031 -1

A141

SKJEMA RIST A-TA-4160-1

A130

DETALJ

Rw 52dB Påforing på massivtre mellom hybler. Frittstående (10mm) stålstenderverk 70mm, isolert 50mm, 13mm gips, 15mm branngips.

EI60

IV15 R`w48dB

IV04 265 70

715

DETALJ

1565

IV03 EI60 1620

130

IV03 EI60

DETALJ

1010

70

A-TA- 5040 -1

IV03 EI60

A-TA-5016-1 YV03 EI60

PF08

Påforing på massivtre hybel yttervegg, akse I, 6, B. Frittstående (10mm) stålstenderverk 70mm, isolert 50mm, 13mm gips, 15mm branngips.

Brannmaling

IV04

1365

1190 Entré 31.1 m²

GV01 SKJEMA GLASSVEGG A-TA-4170-1

Inngang bolig C+ 116500

PF06

massivtre på denne siden

151

IV04

DETALJ

142

70

125

A-TE-5006-1

G

YV03 EI60

A142

A131

1510

300 bh.

1660

1420

V11= 26dB tr +C 1420 /Rw 20 x 55.1 24 A1 ID

N DE SA FA

DETALJ

IV04 480

ID07-HV E 30-CSa ID A131.1

1140

A-TA- 5010 -1

SKJEMA INTERIØR ENTRÉ A-TA-4040-1

IV01

Bod/Båreoppbev. 3.1 m²

DETALJ

IV15 R`w48dB

805

Lege II 17.7 m²

70

A-TA- 5064 -1

A-TA-5016-1 SKJEMA FASADE INNGANGSPARTI A-TA-4100-1

massivtre på denne siden

5725

400

DETALJ

70

A151

70

2030

500 1010

2255

4090

70

ID13-V EI 60-Sa ID A131.2

156

1270

IV03 EI60

6010

DETALJ

E

134

3415

DETALJ (TÅRN E)

A134

Korridor 46.3 m²

70

3930

YV02 EI60

DETALJ A-TA- 5062 -1

480

1565

YV01

H

880

1520

2465

155

PF10

GU 8.4 m²

PF04

A-TA-5063-1

YD03-H EI 60-Sa ID A020.1

ID14-V /R`w 38dB ID A150 1850

IV15 R`w48dB 2010

A156

1020

750

2125

IV04

A155

-H 1 ID15134. A ID 1010

1245

PF10

Lege V 13.8 m²

280

70

300 bh.

1420

7670

NE EN ÅD GP MIN JER SK AV OL ES IKK

-V dB V10 = 26 tr +C 1420 /Rw 20 x 55.2 24 A1 ID

6010

1140

IV15 R`w48dB

IV13

70

IV04 ? 1525

148

IV13

945

455

-V ID1438dB /R`w A155 ID 1835

70

3415

IV15 R`w48dB

1555

70

330

70

3+

PF02

EI30 / Rw 45dB Påforing på massivtre mellom hybel og korridor, akse B, 3+, H. Frittstående (10mm) stålstenderverk 70mm, isolert 50mm,13mm gips.

massivtre på denne siden

5 SKJEMA FASADE BRANNTRAPP A-TA-4110-1

A148

PF10 ID /R`w 14-V ID A138dB 56

H

Bøttekott IV04 2.0 m²

70

700

70

3220

300 bh.

1420

V11= 26dB tr +C 1420 /Rw 20 x 54.3 24 A1 ID

IV15 R`w48dB

315

2170

70

200

1005

1825

1010

IV15 R`w48dB

IV15 R`w48dB

965

1010

1010

70

1980

-V ID1438dB /R`w A152 ID

-V 1880 ID1438dB /R`w A154 ID

154

3050

1835

Lege IV 15.5 m²

660

IV15 R`w48dB

Påforing på massivtre yttervegg hybel, akse A, 5, I. Frittstående (10mm) stålstenderverk 70mm, isolert 50mm, 13mm gips.

PF03

2555

70

-H 3395 ID1438dB /R`w A153 ID

3220

A154

PF01

massivtre på denne siden

152

153

IV15 R`w48dB

4925

YV02 EI60

A152

A153

70

massivtre på denne siden

6010

IV15 R`w48dB

70

300 bh.

I

4625

PF10

300 bh.

-V dB V10 = 26 tr +C 1420 /Rw 20 x 54.2 24 A1 ID

3220

1420 365

300 bh.

V11= 26dB tr +C 1420 /Rw 20 x 54.1 24 A1 ID

1140

70

5035

1420

5000

massivtre på denne siden

2555

PF10

300 bh.

3200

6

YV01

V11= 26dB tr +C 1420 /Rw 20 x 53.2 24 A1 ID

1140

Avslutning trappeskive i trapperom, rekkverk 9. etasje. 40mm massivtrevegg.

300 bh.

-V dB V10 = 26 tr +C 1420 /Rw 20 x 53.1 24 A1 ID

1140

MV40

PÅFORINGER PÅ MASSIVTRE

1765

5000

I

-V dB V10 = 26 tr +C 1420 /Rw 20 x 52 24 A1 ID

2385

0 1275

1420

High Rise Wooden Buildings in Contemporary Architecture_ Appendices

80mm massivtrevegg.

725

1420 1140

7

KONSTRUKSJON AV BETONG I UNDERETASJE OG 1.ETASJE; SE RIB-TEGNINGER FOR MÅLSETTING.

MV80 2750

58

ALLE MASSIVTRE ELEMENTSKJØTER I YTTERVEGG TEIPES!

140mm massivtrevegg.

120mm massivtrevegg.

8

NB!

Yttervegg hovedinngang. 2x 13mm gips, 48mm isolert stenderverk, dampsperre, 198mm isolert stenderverk, 9mm GU.

4

Studentsamskipnaden i Trondheim Postboks 2460 7005 Trondheim Totalentreprenør

Veidekke Entreprenør AS - Trondheim Vegamot 8 7048 Trondheim Arkitekt

MDH ARKITEKTER SA Storgata 37A 0182 Oslo

office@mdh.no tlf: 48 34 60 30

Snitt DD1 1/50 A-TA- 2101 -0

N

YV05

Prosjekt

Gnr. / Bnr.

Yttervegg hovedinngang over glassvegg. 2x 13mm gips,48mm isolert stenderverk, dampsperre, 198mm isolert stenderverk, 9mm GU, 12x48mm vertikallekt, 36mm horisontallekt, 20mm vertikal trekledning.

Moholt Studenthus

54 / 53

YV06 Sokkelvegg på betong. Grunnmursplate, 150 mm isopor, 23mm vertikallekt, 8mm fibersementplate.

Prosjektnr.

030

Almenning 1-5 Fase

Tegnet av

Kontroll

Arbeidstegninger

IR

MR

Tittel

Målestokk A0:

Plan 1. etasje

Tegn nr.

A-TA- 1101 -1

1:50

Dato

Revisjon

29.05.15

10


VEGGTYPER

Prosjekt

Tegn nr.

Moholt Studenthus TÅRN A

A-TA- 1102 -2

MASSIVTREVEGGER MV160

160mm massivtrevegg.

MV140 140mm massivtrevegg.

NB! ALLE MASSIVTRE ELEMENTSKJØTER I YTTERVEGG TEIPES! ALLE MÅL KONTROLLMÅLES PÅ BYGGEPLASS!

MV120 120mm massivtrevegg.

Snitt DD2 1/50 A-TA- 2101 -0 9

MV100

100mm massivtrevegg.

MV80 80mm massivtrevegg.

8

1320

C-H dB V01tr = 3220 +C 13 /Rw 70 x 5 20 ID20 450 bh.

260200

MV80

MV120

bh. 450

PF01

bh. 450

875

V01A-V /Rw+Ctr = 26dB 2070 x 1320 ID215

V01A-H /Rw+Ctr = 26dB 2070 x 1320 ID214

1320

1240

1240

1660

980

1225 3650

1320

V01B-H /Rw+Ctr = 27dB 2070 x 1320 ID206

bh. 450

3390

1240

30

1320

V01A-H /Rw+Ctr = 26dB 2070 x 1320 ID207

bh. 450

2400

1240 5000 13650

1320

V01A-V /Rw+Ctr = 26dB 2070 x 1320 ID208

2380

bh. 450

1265

1525

1115

875

20 20

840

1240

1115

5910

200

DETALJ

1240

2230

1240 5000

MR

IR

MR

06.08.15

IR

NZ

01.07.15

IR

MR

12.06.15

IR

MR

Dato

Tegn.

Kontr.

Storgata 37a 0182 Oslo

MASU planning ASP

Struenseegade 15 1th DK-2200 København-N

Høyer Finseth AS

Engebrets vei 5 0275 Oslo

RIE

Vintervoll AS

Ingvald Ystgaards veg 23 7047 Trondheim

Innervegg med lydkrav i legesenter 1.etg. 13mm gips, stålstenderverk 70mm, isolert 50mm, 13mm gips.

RIV

Teknisk ventilasjon AS

Industriveien 39a 7080 Heimdal

RIBr

Rambøll Norge AS

Mellomila 79 7493 Trondheim

IV17

RIA

Brekke og Strand AS

Klæbuveien 196b 7037 Trondheim

Innervegg med lydkrav i legesenter 1.etg. 2x13mm gips, stålstenderverk 70mm, isolert 50mm, 13mm gips, 12mm x-finer.

RØR

K. Lund AS

Pb. 2433 Sluppen 7005 Trondheim

Innervegg.13mm gips, stålstenderverk 70mm, 12mm x-finer, 13mm gips.

B

B

YTTERVEGGER

A

YV01 200mm Flexsystemplate, 36x98mm vertikallekt. Horisontal lekt ulike bredder.Vertikal skråstilt trekledning 123mm

E

D

20

YV01

3660

PF01

bh. 450

PF01

Yttervegg med brannkrav EI60. Når yttervegg ligger utenpå betongvegg taes brannkravet opp i betongen. 200mm Flexsystemplate, 36x98mm vertikallekt. Horisontal lekt ulike bredder. Vertikal skråstilt trekledning 123mm

Tiltakshaver

200

bh. 450

YV03 EI60

Yttervegg med brannkrav EI60, hovedinngang. Brannkravet taes opp i tilliggende betongvegg. 200mm Flexsystemplate, 36x98mm vertikallekt. Horisontal lekt. Vertikal trekledning 123mm

V01A-V /Rw+Ctr = 26dB 2070 x 1320 ID211

1320

1240

1320

315

2750

3

5450

4

N

EI60

Snitt AA 1/50 A-TA- 2100 -0

2510

C

YV02

6010

5910

PF04 Rw=52dB

5000

2

MR MR

IR

21.09.15

IV21

MV120

YV01

YV04

12750

1

Oppdatert romnummerering Oppdatert id-nummer på dører i kjeller og rømningsdør 2-9etg Kjeller: oppdatert dører, Snitt DD: detaljhenvisning, 2-9etg: type rømningsdør Plan 2-9etg: Dørtype BK2, fjernet EL-luke ved besøkstoalett. 3 Oppdat. skjema- + detaljhenv. Oppdat. dørtyper i kjeller +1etg. Kjeller: boder, plass.p-kjeller, målsetting, dørinfo. 1.etg: dørinfo+type, YD info, GV01, inngangsdør + matte plass., himling inngang, målsetting. 2-9etg: dørtype VF. Takplan: gesims. Fasader: YD info, brannkrav kledningstype 7. Snitt: P-kjeller info, himling inngang, gesims. 2 Fasader: kledning like bredder, beskrivelse type kledning. Planer: Inspeksjonsluke sjakt korridor, inspeksjonsdør i VF, fjernet PF10 og PF07 i sjakt VF. PF07 utgår. Snitt og himling: Fjernet himling i trapperom, himling ved yttervegg i hybler endret høyde over FG. 1 Detalj-nummerering endret, veggtype YV05 og YV06, skjemahenvisning heis. 2-9etg: PF10 fjernet rundt BK Type 3, målsetting sjakter i hybler, sikringsskap og luke i VF. 1etg: gipsvegger flyttet, mattestørrelse- og plassering, fotskraperister og takoverbygg sekundærinnganger. Kjeller: slagretning dør. Rev. Beskrivelse

MDH arkitekter SA

R´w 48dB

A-TA- 5005 -0

IV01

SKJEMA INTERIØR TYPISK HYBEL A-TA-4010-0

V01A-H /Rw+Ctr = 26dB 2070 x 1320 ID212

1320

5000

HN IR

27.11.15

4

RIB

R´w 34dB

1320

V01A-V /Rw+Ctr = 26dB 2070 x 1320 ID210

bh. 450

2420

PF01

PF03

MV100

A210

SKJEMA INTERIØR Hybel TYPISK HYBEL 13.3 m² A-TA-4010-0 210

22.04.16 04.12.15

5

LARK

Innervegg med lydkrav i legesenter 1.etg. 2x13mm gips, stålstenderverk 70mm, isolert 50mm, 2x13mm gips.

865

840

1115

3330

7 6

ARK

R´w 48dB

1320

V01A-H /Rw+Ctr = 26dB 2070 x 1320 ID209

bh. 450

2380

1245

1505

1115

875

20 20

IV15

3660

1285

ID01-V EI 30-Sa /R`w 43dB ID A210.1

MV80

IV01

Innervegg.13mm gips, stålstenderverk 70mm, 13mm gips.

IV16

3660

20

920

ID05-H ID A211.2

ID05-V ID A212.2

PF10

Innervegg mellom inngang og trapperom 1.etasje. 13mm gips, isolert stålstenderverk 70mm, 13mm gips.

IV13

A V01A-V /Rw+Ctr = 26dB 2070 x 1320 ID213

1320

EI30

C

PF01

PF04 3330Rw=52dB

IV01

IV05 Snitt CC 1/50 A-TA- 2102 -0

211

3330

3660

3330

MV120

2790

75

1890

3520

295

20 2230

2230 3330 3660

209

Stålstender 70mm over badekabiner, kledd med sammenhengende 13mm gips fra bunn badekabin til tak.

PF01

PF04 Rw=52dB

SKJEMA INTERIØR TYPISK HYBEL A209 SPEILVENDT Hybel A-TA-4011-0 13.4 m²

IV04

Hybel 13.6 m²

2400

PF01

IV03

EI60 Innervegg sjakter med brannkrav EI60. 2x 13mm gips, 70mm stålstenderverk, 2x 13mm gips.

840

A211

PF04 Rw=52dB

bh. 450

208

MV100

200

YV01

1115

1670

SKJEMA INTERIØR TYPISK HYBEL SPEILVENDT A-TA-4011-0

2400

PF01

A212 212

PF04 Rw=52dB

2380

A-TA- 5022 -0

3330

IV01

Innervegg sjakter hybel og vindfang. 70mm isolert stålstenderverk 2x 13mm gips.

IV01 1525

IV01

MV80

3660

3330

3330 3660

PF04 Rw=52dB

ID05-H ID A210.2

BK type 1 I

IV01 875

YV01 DETALJ

MV80

IV01 SKJEMA INTERIØR A208 TYPISK HYBEL Hybel A-TA-4010-0 13.1 m²

IV01

PF01

PF04 Rw=52dB 3330 3660

PF02 EI30 / Rw=45dB

1375

Hybel 13.5 m²

SKJEMA INTERIØR TYPISK HYBEL A-TA-4010-0

995

Påforing på BK type 1, 1s 2 og 3. 13mm gips.

D

PF10 1265

213

SKJEMA INTERIØR TYPISK HYBEL SPEILVENDT A-TA-4011-0

2420

1115

IV01

PF02 EI30 / Rw=45dB

211 B

Hybel 13.2 m²

214

PF03

20 20

840

A213

Hybel 13.4 m²

215

PF01

1115

1560 5910

A214

MV120

5910

6130

6010

1505

IV01

920

PF10

1265

2230

210 B

ID01-V EI 30-Sa /R`w 43dB ID A211.1

IV01

2230

BK type 1 I

212 B

IV01

875

350

ID01-H EI 30-Sa /R`w 43dB ID A212.1

PF10 1245

IV01 840

IV01

SKJEMA INTERIØR TYPISK HYBEL A-TA-4010-0

BK type 1 M

5910

1115

IV04

920

PF02 EI30 / Rw=45dB

BK type 1 I

ID05-H ID A213.2

ID05-V ID A214.2

2230

2230

20 20

IV01 1580

MV120

PF02 EI30 / Rw=45dB

213 B

Hybel 13.3 m²

200

2810

PF10 1115

A-TA- 5043 -0

920

ID01-V EI 30-Sa /R`w 43dB ID A213.1

214 B

PF10 1285

A215

350

ID01-H EI 30-Sa /R`w 43dB ID A214.1

209 B

20

1560

1540

BK type 1 M

PF10 2800

DETALJ

20

20

20

920

PF02 EI30 / Rw=45dB

BK type 1 I

ID05-H ID A215.2 YV01

A

805

BK type 1 M

EL-luke 300x300 OK luke til FG: 300

MV120

205

MV140 bh. 50

MV120

2790

PF02 EI30 / Rw=45dB

215 B

Snitt AA 1/50 A-TA- 2100 -0

1450

ID04-V ID A232.2

PF10

INNERVEGGER

5910

ID05-V ID A209.2 PF10

PF02 EI30 / Rw=45dB

1930 1565 Bøttekott

1300

920

ID01-V EI 30-Sa /R`w 43dB ID A215.1

2330

PF06

UK himling: 2750mm

295

221

20

207

5910

1580

ID01-H EI 30-Sa /R`w 43dB ID A209.1

1660

70

IV04

20

HC-WC 5m²

Brannmaling på eksponert massivtre på innside trapperom.

MV140

A-TA- 5043 -0

BK type 3

A-TA- 5042 -0

IV01

1245

920

DETALJ

Brannmaling EI60 2600

MV160

5910

1715 1420

1660

B

DETALJ A-TA- 5042 -0

4035

V05-V /Rw+Ctr = 26dB 2470 x 1420 ID232.2

IKKE SOLAVSKJERMING PÅ DENNE FASADEN

B+

DETALJ

SKJEMA INTERIØR TYPISK HYBEL SPEILVENDT A207 A-TA-4011-0 Hybel 13.5 m²

3660

1540

ID01-H EI 30-Sa /R`w 43dB ID A207.1

ID05-H PF10 ID A208.2

Brannskap 800x800 OK skap til FG: 1850

A-TA- 5042 -0

1700

2445 2790

1615

8345

208 B

10

4860

bh. 50

2230

BK type 1 I

11

DETALJ

DETALJ

A-TA- 5065 -0 2230

EI60

PÅFORINGER

MV140

IV01

Påforing på massivtre i fellesareal og vindfang. 13mm gips, 2x 15mm branngips.

Påforing på massivtre i heissjakt. Oppfyller brannkrav EI60 sammen med tilliggende massivtrevegg. 13mm gips.

E

PF01

IV01

PF02 EI30 / Rw=45dB

Brannmaling EI60

PF01

PF10

Rw 52dB Påforing på massivtre mellom hybler. Frittstående (10mm) stålstenderverk 70mm, isolert 50mm, 13mm gips, 15mm branngips.

Brannmaling

5910

ID05-V ID A207.2

ID01-V EI 30-Sa /R`w 43dB ID A208.1

12

MV140

7530

2410

1020

ID02-H EI 30-Sa /R`w 43dB ID A206.1

1545 13

5415

14

6

9

20

SKJEMA INTERIØR TRAPP A-TA-4060-0

V06-H /Rw+Ctr = 26dB 2470 x 1920 ID220.1

2525

920

MV120

20

MV100

15

5

8

207 B

20

16

4

PF06

200

PF04 Rw=52dB 3030 3255

370

MV120

SKJEMA INTERIØR FELLES KJØKKEN A-TA-4030-0 A-TA-4031-0 A-TA-4032-0

220

1540

230

40 MV1

Fellesareal 56.3 m²

SKJEMA INTERIØR HC-HYBEL A-TA-4012-0

IV01

DETALJ A-TA- 5035 -0

PF02 EI30 / Rw=45dB

17

3

7

20

2385

MV120

1200

2120

291

PF08

Påforing på massivtre hybel yttervegg, akse I, 6, B. Frittstående (10mm) stålstenderverk 70mm, isolert 50mm, 13mm gips, 15mm branngips.

EI60

206

2610

BK type 1 M

160

1

A220

DETALJ

1200

MV140

min.300

290

20

2

PF01

A-TA- 5004 -0

A230

Trapperom 13.9 m²

1415

ID19-V EI 60-Sa ID A231

ID03-H EI 60-CSa ID A230

195

PF06

massivtre på denne siden

A206

IV01

206 B

200

HC-hybel 18.7 m²

PF10

BK type 2

1200 380 Brannmaling Brannmaling EI60 EI60

20

-V dB V06 = 26 tr +C 1920 /Rw 70 x 0.2 24 22 ID 1920

50 bh.

720

EL-/kjøkken sjakt

A-TA- 5024 -0

ID06-V ID A206.2

45

PF08 EI60

1595

4125

PF10

1565

1920

1020

IV03 EI60

5800

200

08-H YD 60-Sa.3 EI 32 A2 ID

330

IV03 EI60

Snitt CC 1/50 A-TA- 2102 -0

480

4805

PF06

massivtre på denne siden

20

3840

A-TA- 5042 -0

DETALJ

1725

MV120

PF06

365

N DE SA FA G

2230

-V 2 ID05205. A ID UK himling: 2200mm SKJEMA INTERIØR VINDFANG A-TA-4020-0

DETALJ

PF08 EI60

780

PF01

5910

min.500

5910

-H 2 ID05204. A ID

200

A-TA- 5042 -0

60 MV1 2080

5910

50 bh.

1660

-H dB V05 = 26 tr +C 1420 /Rw 70 x 2.1 24 23 ID 1420

H

UK himling: 2750mm

MV120

PF01 905

IV01

VF 10.8 m²

DETALJ

PF02 EI30 / Rw=45dB

PF08 EI60

Vent.sjakt

A231

YV02 EI60

A-TA- 5006 -0

PF08 EI60

DETALJ A-TA- 5041 -0

PF06

5

1540

PF06

20 MV1

295

4425

735

PF04

6010

DETALJ A-TA- 5003 -0

MV140

DETALJ

2020

920

bh. 450 620

UK himling: 2200mm

A-TA- 5041 -0

1505

1700

2790

PF01

200

DETALJ

20

-H a ID01 30-S EI 43dB .1 /R`wA201 ID

20

201 B

PF02 EI30 / Rw=45dB

YV01

A232

Korridor 59.7 m²

2810

3+

V07 EI60/Rw+Ctr = 26dB 1670 x 620 ID232.3

350

20 MV1

920

920

1555

PF02

EI30 / Rw 45dB Påforing på massivtre mellom hybel og korridor, akse B, 3+, H. Frittstående (10mm) stålstenderverk 70mm, isolert 50mm,13mm gips.

massivtre på denne siden

PF02 EI30 / Rw=45dB

920

Påforing på massivtre yttervegg hybel, akse A, 5, I. Frittstående (10mm) stålstenderverk 70mm, isolert 50mm, 13mm gips.

PF03

H

205 B

920

203 B

1540

BK type 1 M

204 B

A-TA- 5032 -0

BK type 1 M

PF01

massivtre på denne siden

DETALJ A-TA-5033-1 DETALJ

-H a ID01 30-S EI 43dB .1 /R`wA205 ID

-V a ID01 30-S EI 43dB .1 /R`wA204 ID

BK type 1 I

350

20

NE EN ÅD GP MIN JER SK AV OL ES IKK

-V 2 ID05201. A ID

PF02 EI30 / Rw=45dB

20 1115

20

2230

202 B

1265

PF02 EI30 / Rw=45dB

PF02 EI30 / Rw=45dB

YV02 EI60

840

IV01

PF10

BK type 1 M

-H a ID01 30-S EI 43dB .1 /R`wA203 ID

-V a ID01 30-S EI 43dB .1 /R`wA202 ID

BK type 1 I

1670

1525

2230

2230

6010

6130

1285 PF10

2230

20

IV01

205

1375 PF10

IV01

1115

20

20

1115

-V 2 ID05203. A ID

20

3660

3330

1115

3660

IV01

PF10 -H 2 ID05202. A ID

5910

1580

IV01

1265PF10 1245

1115

840

203

1560

1505

IV01

840

IV01

5910

202

875

A201 201

5910

Hybel 13.4 m²

204

IV01

PF01

A205

Hybel 13.6 m²

Hybel 13.5 m²

875

A203

PF04 Rw=52dB

A204 PF04 Rw=52dB

Hybel IV01 13.2 m²

A202 PF04 Rw=52dB IV01

PF03 Hybel 13.3 m²

PF04 Rw=52dB

SKJEMA INTERIØR TYPISK HYBEL A-TA-4010-0

3660

3330

3330 3660

20 MV1

SKJEMA INTERIØR TYPISK HYBEL SPEILVENDT A-TA-4011-0

I

SKJEMA INTERIØR TYPISK HYBEL SPEILVENDT A-TA-4011-0

2380

80 MV

200

PF01

200

2420

SKJEMA INTERIØR TYPISK HYBEL A-TA-4010-0

2400

3330

PF01

450 bh.

PF01

20 MV1

450 bh.

C-H dB V01tr = 3220 +C 13 /Rw 70 x 1 20 ID20

6010

1240

1320

massivtre på denne siden

3660

450 bh.

2510

SKJEMA INTERIØR TYPISK HYBEL SPEILVENDT A-TA-4011-0

2400

80 MV

5000

YV01

C-V dB V01tr = 32 +C 1320 /Rw 70 x 2 20 ID20

PF01

3330

1320

875

450 bh.

00 MV1

PF01

20 MV1

1320

C-H dB V01tr = 3220 +C 13 /Rw 70 x 3 20 ID20

1240

massivtre på denne siden

200

MV120

C-V dB V01tr = 32 +C 1320 /Rw 70 x 4 20 ID20

1240

20 MV1

1320 5000

0 1275

59

PÅFORINGER PÅ MASSIVTRE

920

1240

7

Avslutning trappeskive i trapperom, rekkverk 9. etasje. 40mm massivtrevegg.

I

5

Studentsamskipnaden i Trondheim Postboks 2460 7005 Trondheim Totalentreprenør

Veidekke Entreprenør AS - Trondheim Vegamot 8 7048 Trondheim

Yttervegg hovedinngang. 2x 13mm gips, 48mm isolert stenderverk, dampsperre, 198mm isolert stenderverk, 9mm GU.

Arkitekt

YV05

Prosjekt

Gnr. / Bnr.

Moholt Studenthus

54 / 53

MDH ARKITEKTER SA Storgata 37A 0182 Oslo

office@mdh.no tlf: 48 34 60 30

Snitt DD1 1/50 A-TA- 2101 -0

N

Yttervegg hovedinngang over glassvegg. 2x 13mm gips,48mm isolert stenderverk, dampsperre, 198mm isolert stenderverk, 9mm GU, 12x48mm vertikallekt, 36mm horisontallekt, 20mm vertikal trekledning.

YV06 Sokkelvegg på betong. Grunnmursplate, 150 mm isopor, 23mm vertikallekt, 8mm fibersementplate.

Prosjektnr.

030

Almenning 1-5 Fase

Tegnet av

Kontroll

Arbeidstegninger

IR

MR

Tittel

Målestokk A0:

Plan 2. etasje

Tegn nr.

A-TA- 1102 -2

1:50

Dato

Revisjon

29.05.15

7

High Rise Wooden Buildings in Contemporary Architecture_ Appendices

2750

6

MV40

315


Prosjekt

Moholt Studenthus TÅRN A

VEGGTYPER

Tegn nr.

A-TA- 2100 -0

MASSIVTREVEGGER MV160

160mm massivtrevegg.

MV140 140mm massivtrevegg.

NB! ALLE MASSIVTRE ELEMENTSKJØTER I YTTERVEGG TEIPES! ALLE MÅL KONTROLLMÅLES PÅ BYGGEPLASS!

Gesims C+ 144500.0

MV120 120mm massivtrevegg.

10. Takplan 27720/ 144220.0

MV100 115

260

100mm massivtrevegg.

MD110

MV80 3520

260

2960

2040

massivtre på denne siden

450

massivtre på denne siden

2960

MV100

260 2040

massivtre på denne siden

PF06

massivtre på denne siden

PF08

2960

260 2040

EI60

EI60 Brannmaling på eksponert massivtre på innside trapperom.

PÅFORINGER PÅ BADEKABINER

28000

2960

MV120

Påforing på massivtre i fellesareal og vindfang. 13mm gips, 2x 15mm branngips.

Brannmaling

6. Etasje

260 2040

Rw 52dB Påforing på massivtre mellom hybler. Frittstående (10mm) stålstenderverk 70mm, isolert 50mm, 13mm gips, 15mm branngips.

Påforing på massivtre i heissjakt. Oppfyller brannkrav EI60 sammen med tilliggende massivtrevegg. 13mm gips.

A-TA- 5002 -0

450

70 115

MV80

2820

2635

MV120

MV80

MV120

PF03

Påforing på massivtre hybel yttervegg, akse I, 6, B. Frittstående (10mm) stålstenderverk 70mm, isolert 50mm, 13mm gips, 15mm branngips.

PF04

15320/ 131820.0

MV120

PF02

EI30 / Rw 45dB Påforing på massivtre mellom hybel og korridor, akse B, 3+, H. Frittstående (10mm) stålstenderverk 70mm, isolert 50mm,13mm gips.

massivtre på denne siden

7. Etasje 18280/ 134780.0

MV100

115

MV80

2820

2635

MV100

MV80

MV100

MV100

massivtre på denne siden

DETALJ

MD140

PF01

Påforing på massivtre yttervegg hybel, akse A, 5, I. Frittstående (10mm) stålstenderverk 70mm, isolert 50mm, 13mm gips.

8. Etasje

450

115

MV80

2820

2635 70

MV100

MV80

MV100

MV100 MD140

EKSISTERENDE TERRENG

PÅFORINGER PÅ MASSIVTRE

9. Etasje 24200/ 140700.0

MV100

115

MV80

2820

2635 70

MV100

MV80

MV100

MV100

Avslutning trappeskive i trapperom, rekkverk 9. etasje. 40mm massivtrevegg.

21240/ 137740.0

MD140

PF10

450

260

115

2960

2040

IV03

EI60 Innervegg sjakter med brannkrav EI60. 2x 13mm gips, 70mm stålstenderverk, 2x 13mm gips.

450

MV80

2635

2820

IV01 Innervegg sjakter hybel og vindfang. 70mm isolert stålstenderverk 2x 13mm gips.

70

MV120

MV80

MV120

MV120

INNERVEGGER

5. Etasje 12360/ 128860.0

MV120

70

Påforing på BK type 1, 1s 2 og 3. 13mm gips.

MD140

4. Etasje

EI30

2960

MV120

260 2040

IV05 Innervegg mellom inngang og trapperom 1.etasje. 13mm gips, isolert stålstenderverk 70mm, 13mm gips.

450

115

MV80

2820

2635 70

MV120

MV80

MV120

MV120

Stålstender 70mm over badekabiner, kledd med sammenhengende 13mm gips fra bunn badekabin til tak.

IV06

3. Etasje

Lydkrav

6440/ 122940.0

YTTERVEGGER 2960

2040

MV120

115

Oppdat. skjema- + detaljhenv. Oppdat. dørtyper i kjeller +1etg. Kjeller: boder, plass.p-kjeller, målsetting, dørinfo. 1.etg: dørinfo+type, YD info, GV01, inngangsdør + matte plass., himling inngang, målsetting. 2-9etg: dørtype VF. Takplan: gesims. Fasader: YD info, brannkrav kledningstype 7. Snitt: P-kjeller info, himling inngang, gesims.

06.08.15

IR

1

Fasader: kledning like bredder, beskrivelse type kledning. Planer: Inspeksjonsluke sjakt korridor, inspeksjonsdør i VF, fjernet PF10 og PF07 i sjakt VF. PF07 utgår. Snitt og himling: Fjernet himling i trapperom, himling ved yttervegg i hybler endret høyde over FG.

01.07.15

IR

MR

Rev.

Beskrivelse

Dato

Tegn.

Kontr.

ARK

MDH arkitekter SA

Storgata 37a 0182 Oslo

LARK

MASU planning ASP

Struenseegade 15 1th DK-2200 København-N

RIB

Høyer Finseth AS

Engebrets vei 5 0275 Oslo

RIE

Vintervoll AS

Ingvald Ystgaards veg 23 7047 Trondheim

RIV

Teknisk ventilasjon AS

Industriveien 39a 7080 Heimdal

RIBr

Rambøll Norge AS

Mellomila 79 7493 Trondheim

RIA

Brekke og Strand AS

Klæbuveien 196b 7037 Trondheim

RØR

K. Lund AS

Pb. 2433 Sluppen 7005 Trondheim

200mm Flexsystemplate, 36x98mm vertikallekt. Horisontal lekt ulike bredder.Vertikal skråstilt trekledning 123mm

2. Etasje

B

3480/ 119980.0

A

490

YV02

E

Yttervegg med brannkrav EI60. Når yttervegg ligger utenpå betongvegg taes brannkravet opp i betongen. 200mm Flexsystemplate, 36x98mm vertikallekt. Horisontal lekt ulike bredder. Vertikal skråstilt trekledning 123mm

3480

2390

3180

3330

EI60

DETALJ

planert terreng C+116550.0

300

1. Etasje 0/ 116500.0

50

100

A-TA- 5001 -1

Korridor - inngang fra P-kjeller

YV04

Nedkjørsel til P-kjeller

Yttervegg hovedinngang. 2x 13mm gips, 48mm isolert stenderverk, dampsperre, 198mm isolert stenderverk, 9mm GU.

0. Kjeller -3300/ 113200.0

D

2750.0

4

5000.0

3

YV05 Yttervegg hovedinngang over glassvegg. 2x 13mm gips,48mm isolert stenderverk, dampsperre, 198mm isolert stenderverk, 9mm GU, 12x48mm vertikallekt, 36mm horisontallekt, 20mm vertikal trekledning.

5000.0

2

C N

EI60

Yttervegg med brannkrav EI60, hovedinngang. Brannkravet taes opp i tilliggende betongvegg. 200mm Flexsystemplate, 36x98mm vertikallekt. Horisontal lekt. Vertikal trekledning 123mm

Lager i P-kjeller

D

YV03

3300

2900.0

planert terreng C+116550.0

NZ

YV01

450

MV80

2750

2635

MV120

MV80

MV120

Innervegg med lydkrav i legesenter 1.etg. 2x13mm gips, isolert stålstenderverk 96mm, 2x13mm gips.

260

MD140

2

IV04

9400/ 125900.0

MD140

MV120

High Rise Wooden Buildings in Contemporary Architecture_ Appendices

MV100

2040

MV80

MD140

KONSTRUKSJON AV BETONG I UNDERETASJE OG 1.ETASJE; SE RIBTEGNINGER FOR MÅLSETTING.

MV40

450

2820

2635 70

MV100

MV80

MV100

60

MV100

80mm massivtrevegg.

MERKNADER:

1

C

YV06

C

Sokkelvegg på betong. Grunnmursplate, 98mm trykkfast isolasjon, 50+10mm sirocplate.

A

A

D

Tiltakshaver

Studentsamskipnaden i Trondheim Postboks 2460 7005 Trondheim Totalentreprenør

Veidekke Entreprenør AS - Trondheim Vegamot 8 7048 Trondheim Arkitekt

MDH ARKITEKTER SA Storgata 37A 0182 Oslo

office@mdh.no tlf: 48 34 60 30

Prosjekt

Gnr. / Bnr.

Moholt Studenthus

54 / 53

030

Tegnet av

Kontroll

Prosjektnr.

Almenning 1-5 Fase

Arbeidstegninger

IR

Tittel

Målestokk A0:

Snitt AA

Tegn nr.

A-TA- 2100 -0

NZ 1:50

Dato

Revisjon

29.05.15

2


Prosjekt

VEGGTYPER

Moholt Studenthus TÅRN A

Tegn nr.

A-TA- 2101 -0

MASSIVTREVEGGER MV160

160mm massivtrevegg.

MV140

DETALJ

140mm massivtrevegg.

A-TA- 5008 -0

NB! ALLE MASSIVTRE ELEMENTSKJØTER I YTTERVEGG TEIPES! ALLE MÅL KONTROLLMÅLES PÅ BYGGEPLASS!

MV120

Gesims C+ 144500.0

120mm massivtrevegg.

80mm massivtrevegg.

3520

MV100

450

massivtre på denne siden

9. Etasje 24200/140700.0

115

2960

MV100

2040 450

massivtre på denne siden

PF04

massivtre på denne siden

PF06

massivtre på denne siden

PF08

2960

260

MV100

2040 450

PF02

EI30 / Rw 45dB Påforing på massivtre mellom hybel og korridor, akse B, 3+, H. Frittstående (10mm) stålstenderverk 70mm, isolert 50mm,13mm gips.

PF03

260

7. Etasje 18280/134780.0

Påforing på massivtre yttervegg hybel, akse A, 5, I. Frittstående (10mm) stålstenderverk 70mm, isolert 50mm, 13mm gips.

Påforing på massivtre hybel yttervegg, akse I, 6, B. Frittstående (10mm) stålstenderverk 70mm, isolert 50mm, 13mm gips, 15mm branngips. Rw 52dB Påforing på massivtre mellom hybler. Frittstående (10mm) stålstenderverk 70mm, isolert 50mm, 13mm gips, 15mm branngips.

Påforing på massivtre i fellesareal og vindfang. 13mm gips, 2x 15mm branngips.

EI60 Påforing på massivtre i heissjakt. Oppfyller brannkrav EI60 sammen med tilliggende massivtrevegg. 13mm gips.

2040

2960

Brannmaling EI60 Brannmaling på eksponert massivtre på innside trapperom.

MV100

PÅFORINGER PF10

6. Etasje 15320/ 131820.0

Påforing på BK type 1, 1s 2 og 3. 13mm gips.

IV01

28000

2960

2040

2820

2635

INNERVEGGER

2420

2105

2200

330

645

MV120

MV120

780 2180

450

115 2820

70

2635

2420

2200

2105

2180

330

645

MV100

MV100

780

MV100 MV120

61

PF01

massivtre på denne siden

8. Etasje 21240/137740.0

260

2820

2635 70 115

2820

70

2635

2420

2200

2105

2180

330

645

MV100

MV100

780

MV100 2820 2820

2820

2820

300

EKSISTERENDE TERRENG

Avslutning trappeskive i trapperom, rekkverk 9. etasje. 40mm massivtrevegg.

260

70 115

330 2420

2105

2180

2200

2820

300

MV100 2520 300

MV100 2520 300

MV120 2520

2820

2200 2200

330

645

MV120

2420

2105

2820

2200

330

645

MV100

2105

2420 330

645 2105

2420

MV100

70 115

2820

2635 70 115

2820

2635

MD140

2820

2200

2105

2420

2820

2635 70 115 2635

2820

2040 450

MV100 MV100

450

MV100

2040

260

MD140

KONSTRUKSJON AV BETONG I UNDERETASJE OG 1.ETASJE; SE RIBTEGNINGER FOR MÅLSETTING.

MV40

massivtre på denne siden

MD140

MERKNADER:

Innervegg sjakter hybel og vindfang. 70mm isolert stålstenderverk 2x 13mm gips.

MV100

450 2040

2960

Stålstender 70mm over badekabiner, kledd med sammenhengende 13mm gips fra bunn badekabin til tak.

3

Kjeller: oppdatert dører, Snitt DD: detaljhenvisning, 2-9etg: type rømningsdør Oppdat. skjema- + detaljhenv. Oppdat. dørtyper i kjeller +1etg. Kjeller: boder, plass.p-kjeller, målsetting, dørinfo. 1.etg: dørinfo+type, YD info, GV01, inngangsdør + matte plass., himling inngang, målsetting. 2-9etg: dørtype VF. Takplan: gesims. Fasader: YD info, brannkrav kledningstype 7. Snitt: P-kjeller info, himling inngang, gesims.

27.11.15

IR

MR

06.08.15

IR

NZ

1

Fasader: kledning like bredder, beskrivelse type kledning. Planer: Inspeksjonsluke sjakt korridor, inspeksjonsdør i VF, fjernet PF10 og PF07 i sjakt VF. PF07 utgår. Snitt og himling: Fjernet himling i trapperom, himling ved yttervegg i hybler endret høyde over FG.

01.07.15

IR

MR

Rev.

Beskrivelse

Dato

Tegn.

Kontr.

2

IV05

115

MV100

450

Innervegg mellom inngang og trapperom 1.etasje. 13mm gips, isolert stålstenderverk 70mm, 13mm gips.

4. Etasje 9400/ 125900.0

IV13

Innervegg.13mm gips, stålstenderverk 70mm, 13mm gips.

260

70

EI30

330

645

MV120

MV140

780

MV120

260

70 115 2820

2635

2420

2200

2105

2180

330

645

MV120

MV120

32102.0

780

2820

MV120

2820

MV120 2520 300

MV140 2520

330

645

MV120

EI60 Innervegg sjakter med brannkrav EI60. 2x 13mm gips, 70mm stålstenderverk, 2x 13mm gips.

5. Etasje 12360/ 128860.0

IV04

2820

2200

330

645

MV120

2105

2420

2820

2635 70 115

260 2040 450

MV100

MD140

115

70

MV100

IV03

MD140

IV15

Innervegg med lydkrav i legesenter 1.etg. 2x13mm gips, stålstenderverk 70mm, isolert 50mm, 2x13mm gips.

2960

2040

2820

2635

2420

2105

2180

2200

2820

300

2200

2105

2420

2820

2635

R´w 48dB

IV16

IV17

2960

2040

Industriveien 39a 7080 Heimdal

RIBr

Rambøll Norge AS

Mellomila 79 7493 Trondheim

RIA

Brekke og Strand AS

Klæbuveien 196b 7037 Trondheim

RØR

K. Lund AS

Pb. 2433 Sluppen 7005 Trondheim

MV100

450 490

E

A

D

3480

2390

3180

2180

C

EI60

0/

1120

50

N

Yttervegg med brannkrav EI60. Når yttervegg ligger utenpå betongvegg taes brannkravet opp i betongen. 200mm Flexsystemplate, 36x98mm vertikallekt. Horisontal lekt ulike bredder. Vertikal skråstilt trekledning 123mm

300

100

B

900

Tiltakshaver

2900.0

3300

EI60

Yttervegg med brannkrav EI60, hovedinngang. Brannkravet taes opp i tilliggende betongvegg. 200mm Flexsystemplate, 36x98mm vertikallekt. Horisontal lekt. Vertikal trekledning 123mm

2180

2900 1595

1295

Teknisk ventilasjon AS

YV02

YV03

300

2900

Ingvald Ystgaards veg 23 7047 Trondheim

RIV

200mm Flexsystemplate, 36x98mm vertikallekt. Horisontal lekt ulike bredder.Vertikal skråstilt trekledning 123mm

YV04

1100

D

Yttervegg hovedinngang. 2x 13mm gips, 48mm isolert stenderverk, dampsperre, 198mm isolert stenderverk, 9mm GU.

1660.0

B

Vintervoll AS

YV01

0. Kjeller

A

Engebrets vei 5 0275 Oslo

RIE

YTTERVEGGER

-3300/113200.0

6010.0

Struenseegade 15 1th DK-2200 København-N

Høyer Finseth AS

2. Etasje 3480/ 119980.0

planert terreng C+116440.0

3165

2865

3330

3180 2400

300

3180

3330

50 100

planert terreng C+116400.0

Storgata 37a 0182 Oslo

MASU planning ASP

RIB

IV21

900

1000

780

Innervegg med lydkrav i legesenter 1.etg. 2x13mm gips, stålstenderverk 70mm, isolert 50mm, 13mm gips, 12mm x-finer.

MDH arkitekter SA

LARK

Innervegg.13mm gips, stålstenderverk 70mm, 12mm x-finer, 13mm gips.

300

3165

2865

MV100

450 260

70 115 2750

2635

2420

2200

2105

2180

330

645

MV120

MV140

780

2820

2820

MV120

2820

MV140 2520 300

2200

330

645

MV120

2105

2420

2750

2635

Innervegg med lydkrav i legesenter 1.etg. 13mm gips, stålstenderverk 70mm, isolert 50mm, 13mm gips.

3. Etasje 6440/ 122940.0

R´w 48dB

450

MV100

2040

260

MD140

115

70

MV100

R´w 34dB

ARK

Studentsamskipnaden i Trondheim Postboks 2460 7005 Trondheim Totalentreprenør

Veidekke Entreprenør AS - Trondheim Vegamot 8 7048 Trondheim Arkitekt

MDH ARKITEKTER SA Storgata 37A 0182 Oslo

office@mdh.no tlf: 48 34 60 30

1660.0

B+ G

6010.0

H

C I

C

A

A

D

YV05

Prosjekt

Yttervegg hovedinngang over glassvegg. 2x 13mm gips,48mm isolert stenderverk, dampsperre, 198mm isolert stenderverk, 9mm GU, 12x48mm vertikallekt, 36mm horisontallekt, 20mm vertikal trekledning.

Moholt Studenthus

YV06 Sokkelvegg på betong. Grunnmursplate, 150 mm isopor, 23mm vertikallekt, 8mm fibersementplate.

Gnr. / Bnr.

Prosjektnr.

54 / 53

030

Tegnet av

Kontroll

Almenning 1-5 Fase

Arbeidstegninger

IR

Tittel

Målestokk A0:

Snitt DD

Tegn nr.

A-TA- 2101 -0

NZ 1:50

Dato

Revisjon

29.05.15

3

High Rise Wooden Buildings in Contemporary Architecture_ Appendices

260

115 2820

2635

2420

2200

2105 645

MV100

MV100

780

MV100

MV100

330

645

MV100

100mm massivtrevegg.

MV80

2040

330

645

MV100

MV100

15 1320 2180

1200 Rekkverk

4145

2200

2420

2105

2750

3500

MV100

MV100

330

645

MV100

115

2820

2635 115

MV100

PÅFORINGER PÅ MASSIVTRE

70

MV100 260

MD140

10. Takplan 27720/144220.0

150

MD200

MD110


Prosjekt

VEGGTYPER

Moholt Studenthus TÅRN A

Tegn nr.

A-TA- 2102 -0

MASSIVTREVEGGER MV160

NB!

160mm massivtrevegg.

MV140 140mm massivtrevegg.

ALLE MASSIVTRE ELEMENTSKJØTER I YTTERVEGG TEIPES! ALLE MÅL KONTROLLMÅLES PÅ BYGGEPLASS!

DETALJ Gesims C+ 144500.0

A-TA- 5007 -0

MERKNAD:

MV120 120mm massivtrevegg.

150

10. Takplan

MV100

MV80 MV40

Avslutning trappeskive i trapperom, rekkverk 9. etasje. 40mm massivtrevegg.

PF02

massivtre på denne siden

PF03

massivtre på denne siden

PF04

massivtre på denne siden

PF06

massivtre på denne siden

PF08

MV100

70

MV100

2960

7. Etasje 18280/134780.0

MV100

MD140

Påforing på massivtre yttervegg hybel, akse A, 5, I. Frittstående (10mm) stålstenderverk 70mm, isolert 50mm, 13mm gips. EI30 / Rw 45dB Påforing på massivtre mellom hybel og korridor, akse B, 3+, H. Frittstående (10mm) stålstenderverk 70mm, isolert 50mm,13mm gips.

Påforing på massivtre hybel yttervegg, akse I, 6, B. Frittstående (10mm) stålstenderverk 70mm, isolert 50mm, 13mm gips, 15mm branngips. Rw 52dB Påforing på massivtre mellom hybler. Frittstående (10mm) stålstenderverk 70mm, isolert 50mm, 13mm gips, 15mm branngips.

Påforing på massivtre i fellesareal og vindfang. 13mm gips, 2x 15mm branngips.

EI60 Påforing på massivtre i heissjakt. Oppfyller brannkrav EI60 sammen med tilliggende massivtrevegg. 13mm gips.

Brannmaling

2960

115

260 2040

2820

2635 70 115

2820

massivtre på denne siden

8. Etasje

2635

330

645

MV100

2420

2105

PF01

21240/137740.0

MD140

450

330

645

MV100

2420

2105

2200

MV100

2200

massivtre på denne siden

2960

115 2820

MD140

2635

330

645

MV100

2105

2200

MV100

2820

2520

MV100

300 2820

300

2520

MV100

2420

MV100

MV100 300

2820 2820 2820

450

70

70 260

480

MV100

2440

2270 70

50

480

MV100

2270 70 260

480

MV100

2440

2270

9. Etasje 24200/140700.0

EI60 Brannmaling på eksponert massivtre på innside trapperom.

70

MV100

Påforing på BK type 1, 1s 2 og 3. 13mm gips.

INNERVEGGER IV01

28000

2960

115

MD140 260

PF10

6. Etasje 15320/131820.0

2040

2820

2635

645

330 2420

2105

2200

MV120

2820

MV120

MV120

300

2270

2820

480

MV120

MD140

2520

50

70

PÅFORINGER

Innervegg sjakter hybel og vindfang. 70mm isolert stålstenderverk 2x 13mm gips.

450

EI60 Innervegg sjakter med brannkrav EI60. 2x 13mm gips, 70mm stålstenderverk, 2x 13mm gips.

5. Etasje 12360/128860.0

MD140 MV100

70 115

330

645

MV120

2820

MV120

MV120

260

480

MV120

2520

70

IV03

MD140

IV04 Stålstender 70mm over badekabiner, kledd med sammenhengende 13mm gips fra bunn badekabin til tak.

DETALJ 2960

2820

2635

4. Etasje 9400/ 125900.0

70

2105

2420

Innervegg.13mm gips, stålstenderverk 70mm, 13mm gips.

2960

2040

2820

2635

2420

2105

2200

300

2820

2270

IV15

450

Kontr.

Storgata 37a 0182 Oslo Struenseegade 15 1th DK-2200 København-N

Høyer Finseth AS

Engebrets vei 5 0275 Oslo

RIE

Vintervoll AS

Ingvald Ystgaards veg 23 7047 Trondheim

Innervegg med lydkrav i legesenter 1.etg. 13mm gips, stålstenderverk 70mm, isolert 50mm, 13mm gips.

RIV

Teknisk ventilasjon AS

Industriveien 39a 7080 Heimdal

RIBr

Rambøll Norge AS

Mellomila 79 7493 Trondheim

IV17

RIA

Brekke og Strand AS

Klæbuveien 196b 7037 Trondheim

Innervegg med lydkrav i legesenter 1.etg. 2x13mm gips, stålstenderverk 70mm, isolert 50mm, 13mm gips, 12mm x-finer.

RØR

K. Lund AS

Pb. 2433 Sluppen 7005 Trondheim

B

MV100

YV01 200mm Flexsystemplate, 36x98mm vertikallekt. Horisontal lekt ulike bredder.Vertikal skråstilt trekledning 123mm

3480

3180

2390 300

100

A

D

DETALJ

C

EI60

N

Yttervegg med brannkrav EI60. Når yttervegg ligger utenpå betongvegg taes brannkravet opp i betongen. 200mm Flexsystemplate, 36x98mm vertikallekt. Horisontal lekt ulike bredder. Vertikal skråstilt trekledning 123mm

1. Etasje

50

3165

E

YV02

DETALJ

2865

MR

Tegn.

Innervegg.13mm gips, stålstenderverk 70mm, 12mm x-finer, 13mm gips.

300

2400

IR

Dato

YTTERVEGGER

A-TA- 5021 -1

100

01.07.15

Beskrivelse

IV21

2. Etasje 3480/ 119980.0

C+116500

50

Fasader: kledning like bredder, beskrivelse type kledning. Planer: Inspeksjonsluke sjakt korridor, inspeksjonsdør i VF, fjernet PF10 og PF07 i sjakt VF. PF07 utgår. Snitt og himling: Fjernet himling i trapperom, himling ved yttervegg i hybler endret høyde over FG.

MASU planning ASP

R´w 48dB

2960

70 115 2750

MD140

2635

330

645

MV120

2105

2420

MV140

3. Etasje 6440/ 122940.0

3165

2865

50

1

Rev.

MDH arkitekter SA

R´w 34dB

A-TA- 5013 -1

0/116500.0

A-TA- 5000 -1

Tiltakshaver

DETALJ

YV03

A-TA- 5012 -1

EI60

Nedkjørsel til P-kjeller

Yttervegg med brannkrav EI60, hovedinngang. Brannkravet taes opp i tilliggende betongvegg. 200mm Flexsystemplate, 36x98mm vertikallekt. Horisontal lekt. Vertikal trekledning 123mm

1595

1295

300

2900

A-TA- 5014 -1

3300

DETALJ

NZ

RIB

IV16

A-TA- 5050 -0

C+116500

MR MR

IR

LARK

Innervegg med lydkrav i legesenter 1.etg. 2x13mm gips, stålstenderverk 70mm, isolert 50mm, 2x13mm gips.

A-TA- 5015 -1

DETALJ

IR IR

06.08.15

ARK

R´w 48dB

A-TA- 5017 -0

DETALJ

2820

2200

MV120

300

2750

2520

70 260

480

MV140

2440

2270

DETALJ

29.01.16 10.11.15

IV13

MV100

115

MD140 260

330

645

MV120

Innervegg mellom inngang og trapperom 1.etasje. 13mm gips, isolert stålstenderverk 70mm, 13mm gips.

A-TA- 5023 -0

DETALJ

Detaljhenvisninger 1-9etg:Plassering sprinkler i systemhimling, skjemahenvisninger. Snitt CC: høyde inngang. Oppdat. skjema- + detaljhenv. Oppdat. dørtyper i kjeller +1etg. Kjeller: boder, plass.p-kjeller, målsetting, dørinfo. 1.etg: dørinfo+type, YD info, GV01, inngangsdør + matte plass., himling inngang, målsetting. 2-9etg: dørtype VF. Takplan: gesims. Fasader: YD info, brannkrav kledningstype 7. Snitt: P-kjeller info, himling inngang, gesims.

2

IV05

DETALJ

MD140

4 3

EI30

2820

MV140

MV120

2200

300

2820

480

MV140

MD140

2520

50

70

2270

2440

A-TA- 5025 -0

2715

High Rise Wooden Buildings in Contemporary Architecture_ Appendices

MD140

EKSISTERENDE TERRENG

80mm massivtrevegg.

PÅFORINGER PÅ MASSIVTRE

MD140

MD140

KONSTRUKSJON AV BETONG I UNDERETASJE OG 1.ETASJE; SE RIBTEGNINGER FOR MÅLSETTING.

100mm massivtrevegg.

3520

115

260 2040

2820

2635

330

645

MV100

2105

2200

2420

MV100

MV100

MD110

4145

2270

62

2820

480

MV100

MD110

MV100

27720/144220.0

0. Kjeller

D

-3300/113200.0

YV04

Studentsamskipnaden i Trondheim Postboks 2460 7005 Trondheim Totalentreprenør

Veidekke Entreprenør AS - Trondheim Vegamot 8 7048 Trondheim

Yttervegg hovedinngang. 2x 13mm gips, 48mm isolert stenderverk, dampsperre, 198mm isolert stenderverk, 9mm GU.

Arkitekt

YV05

Prosjekt

MDH ARKITEKTER SA Storgata 37A 0182 Oslo

office@mdh.no tlf: 48 34 60 30

C 6010

1

3+

5

C

Yttervegg hovedinngang over glassvegg. 2x 13mm gips,48mm isolert stenderverk, dampsperre, 198mm isolert stenderverk, 9mm GU, 12x48mm vertikallekt, 36mm horisontallekt, 20mm vertikal trekledning.

A

A

YV06 D

Sokkelvegg på betong. Grunnmursplate, 150 mm isopor, 23mm vertikallekt, 8mm fibersementplate.

Moholt Studenthus

Gnr. / Bnr.

54 / 53

Prosjektnr.

030

Almenning 1-5 Fase

Tegnet av

Arbeidstegninger

IR

Tittel

Målestokk A0:

Snitt CC

Tegn nr.

A-TA- 2102 -0

Kontroll

MR 1:50

Dato

Revisjon

29.05.15

4


High Rise Wooden Buildings in Contemporary Architecture_ Appendices

63


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.