Plug and Play ZEB F l exl a b : P rojec t Re p o r t
A A R 4 6 1 6 I n teg ra te d E n e rg y D e si g n G ro u p 1 I re n e H u ta m i Juan Manuel Cruz M a r ta P i Ăą e i ro La go N i ki ta C h h a j e r
S u pe r v i so r I n ge r A n dre se n To m m y K l e i v e n Michael Gruner
C onte nts Introduction 5 Integrated Design Process
6
Project Boundary Condition
9
Design Concept
25
Building Design
47
References 88
AAR 4616 Integrated Energy Design
Z EB Fl ex ib l e La b il l u st ra ted b y Sn ø het ta
4
PL AY lab | Project Report
Introduction The ZEB F le xible Lab i s pa rt o f Ze ro Emi s s i o n Build ing ( ZEB) re search ce nter b y N TN U a n d S I N TEF. ZEB focuse s o n re search in ze ro - e mi s s i o n b ui ld i n gs a n d i ts conne ct io n to t he clim ate . Th i s n e w la b o ra to r y i s lo ca te d in th e heart o f NTNU ’s Glø sha uge n ca mp us wi th th e ZEB Tes t Ce ll Labo rato r y and t he A d va n ce d Ma te ri a ls a n d C ompo ne nt Labo rato rie s as its i mme d i a te n e i gh b o rs . Th e Z EB F le xible Lab will be co me a li v i n g la b o ra to r y wh i ch accom m o date s o ffice and e duca ti o n ce n te r to geth e r i n one place . The 1500 m 2 fac i li ty wi ll b e us e d b y N TN U and SI NTEF By ggfo rsk fo r co rp o ra te a n d e d uca ti o n a l p ur p ose s. The pro je ct is e xp e cte d to b e co mp lete d b y 2020.
i n teg ra te d p h o to v o l ta i c s) a n d bu i l di n g se r v i ce s l i ke fo r i n s ta n ce v e n t i l a t i o n syste m s. T h e F l e x i bl e La b w i l l a ls o b e a re s ea rc h o bj e c t a n d to o l w h i c h w o u l d e n a bl e re s ea rch e r to stu dy t h e i n te rco n n e c t i o n bet w e e n u se rs a n d te ch n o lo g y. T h i s pa r t i c u l a r l a b n e e de d to be f l e x i bl e th us wi ll e n a bl e va r i o u s re sea rc h e s a n d e x pe r i m e n t s o n n e w s o luti o n s o f te c h n i ca l i n sta l l a t i o n s, ro o m de si g n , a n d cli ma te s c re e n s. Th e d e s i g n o f Z E B F l e x i bl e La b n e e ds to be fu tu re o ri e n te d , wh i c h m ea n s i t w i l l be bu i l t w i t h to m o r ro w ’s te ch n o lo g y. I t w i l l n e e d to po sse ss h i g h a rc h i te c tu ra l q ua li ty wh i ch w i l l e n r i c h t h e G l ø sh a u ge n ca m pu s a rch i te cture . H o w e v e r, i t s a rc h i te c tu re m u st a l so be i n teg ra te d wi t h c l i m a te a da pta t i o n st ra teg i e s t h ro u g h pa s s i v e a n d a c t i v e syste m s. O n to p o f t h i s, t h e Z E B Fle x i b le L a b a i m s to fu l f i l t h e c r i te r i a fo r Z E B - CO M o r a s h i gh a mb i ti o n o f Z E B a s po ssi bl e .
The m ain fo cu s o f t he F le x i b le L a b i s to co mp le me n t Tes t Ce ll Labo rato r y, which i s us e d fo r te s ti n g lo wenergy, integrate d bu ilding s y s te ms un d e r rea li s ti c op era t io nal co ndit io ns, and A d va n ce d Ma te ri a ls a n d C ompo ne nt Labo rato rie s, wh i ch i s us e d fo r b o th d e vel o pm e nt and re search o n b ui ld i n g ma te ri a ls , b uild ing e nve lo pe co m po ne n ts (s uch a s s ma rt fa ca d e s ), tec hno lo gie s fo r e ne rgy su p p ly (fo r e xa mp le b ui ld i n g
5
AAR 4616 Integrated Energy Design
Integrated Design Process The team m e m be r o f t he p ro j e ct co mp o s e d o f th re e p ers o ns wit h backgro u nd in a rch i te cture a n d o n e p e rs o n w ith backgro u nd in bu ilding e n g i n e e ri n g . Th o ugh th e re are mo re team m e m be r in t he a rch i te cture ba ckg ro un d , und erstanding t hat t he pro j e ct re q ui re s a h o li s ti c ap p roach in integrat io n o f a rch i te cture a n d b ui ld i n g s ystem m eans t he co o pera ti o n b etwe e n d i f fe re n t k now le dge , e xpe rie nce , and e x p e rti s e ea ch tea m me mb e r h as to o ffe r be co m e s cru cial. The init ial wo rk pro ce s s s ta rts b y un d e rs ta n d i n g the pro je ct brie f and set t in g th e goa ls th a t i s to b e ac hie ve d fro m t he pro je ct . Th i s crea te s a co mmo n ground fo r t he who le team to e n s ure ea ch me mb e r i s on the sam e u nde rstanding o f th e p ro j e ct . Fro m th e re on, for e ve r y m ile sto ne , list of ta s k a n d d e li v e ra b le s a re mad e as a m anage m e nt to o l to ke e p tra ck o n p ro ce s s and re su lt . Each pe rso n take s re s p o n s i b i li ty i n d i f fe re n t task a cco rding to t he ir e xpe rt i s e b ut n o t li mi ti n g th e m to w hat t he y are go o d at to allo w i n d i v i d ua l g ro wth wi th i n the p ro ce ss o f de ve lo ping t he p ro j e ct . Co m m u nicat io n is an i mp o rta n t fa cto r i n a tea m w or k . Fo r file sharing, t he team s et up a clo ud f i le s h a ri n g fold er which allo w each m e m b e r to a d d a n d s h a re f i le s . T h e file sharing is u pdate d i n rea l ti me th e re fo re wh e n the team m e m be rs are no t in th e s a me p la ce a t th e s a me time, t he y can st ill che ck u p o n ea ch o th e r’s wo rk . A comm u nicat io n net wo rk t hro ug h g ro up ch a t i s a ls o ma d e
to e n s ure lo n g di sta n ce co m m u n i ca t i o n . T h e tea m set u p a h a b i t to a lwa ys u pda te o n w h a t t h e y’ re w o r ki n g o n so th a t e v e r y o n e kn o w s t h e pro g re ss o f t h e pro j e c t . Wh e n e v er t h e re n e e ds to be di sc u ssi o n , g u i da n ce , a n d d e ci s i o n m a ki n g , t h e tea m m e m be rs n e e d to be p re s e n t to a llo w ea si e r co m m u n i ca t i o n a n d di sc u ssi o n . To s e le ct s o lu t i o n o r de c i si o n fo r t h e pro j e c t , t h e tea m me mb e rs we n t t h ro u g h e va l u a t i o n o f di f fe re n t fa c to rs a n d lo o k i n g ba c k to t h e l i st o f bu i l di n g v i si o n to e n su re th e p ro j e ct a lig n s w i t h t h e goa l s.
6
PL AY lab | Project Report
Team
Nikita Chhajer
Irene Hutami
Marta PiĂąeiro Lago
Juan Manuel Cruz
Architect
A rch i tect
A rch i te ct
B u i l di n g E n g i n ee r
Interior design and co nstruction materials
Conceptual izer and graphic design
Modelling, optimization and climate analysis tools
Integrated energy systems and materials e valuation
7
1
Project Boundary Condition
AAR 4616 Integrated Energy Design
P roje c t Ke y D ata - Proj e ct nam e : Plu g and Pla y - Loca t io n : Hø gsko le ringe n 1 1 , NTNU, Glø shau ge n Ca mp us . - Users : 80 SI NTEF wo rke rs a n d 4 0 s tud e n ts .
• •
The pro je ct pro gram br i e f a s k s fo r a b ui ld i n g th a t w ill be u se d fo r labo rato r y, tea ch i n g , a n d re s ea rch office. The bu ilding will be us e d b y N TN U a n d S I N TEF emp lo y e e s wit h re search re l a te d to th e ZEB . Th e re wi ll b e approxim ate ly 80 wo rkin g s pa ce s , a rea s a n d ro o ms for teaching act ivit ie s. Acco rdi n g to th e p ro j e ct b ri e f, th e p roject ne e ds to be able to a n s we r re s ea rch q ue s ti o n s related to go o d co ndit io ns for o f f i ce wo rk a n d h o w us e rs can influ e nce e ne rgy u se and a d a p t to ZEB te ch n o lo gi e s .
Da ta ret r i e va l f ro m stu dy, re sea rc h , a n d bu i l di n g s e n s ors Po s s i b l e to ta ke do w n pa r t s o f t h e fa ca de ( wa l l e le me n t s a n d/o r w i n do w s)
A lo n g wi t h t h i s pro j e c t re qu i re m e n t s, t h e re i s a l so th e a i m o f ful f i l l t h e sta n da rds o f a Z E B CO M bu i l di n g , a ch i e v i n g a h i g h qu a l i t y a rc h i te c tu ra l re su l t , w i t h future o ri e n te d m a te r i a l u se a n d bu i l di n g te c h n o l o g i e s. Furth e rmo re , t h e c l i m a te a da pta t i o n m u st a l so be ta ke n i n to co n si de ra t i o n , a cco m m o da t i n g t h e re sea rc h re q ui re me n ts a t t h e sa m e t i m e t h a t t h e sh a do w o v e r t h e ZEB Te s t Ce ll i s m i n i m i ze d.
The bu ilding ne e ds to ca te r re s ea rch p o s s i b i li ti e s and re qu ire m e nt s, su ch as: • Fle xible e ne rgy & biocli ma ti c s y s te ms • Po ssibilit y to change to mo re a d va n ce d te ch n i ca l so lu t io ns fo r ve nt ila ti o n , h ea ti n g a n d co o li n g ( act ive sy ste m s) • Having alte rnat ive sys te m up o n co mp leti o n • Po ssibilit y to de ve lo p a co mpa ra ti v e s tud y bet we e n t he t wo syste ms • Fle xible wo rkplace d e s i g n • Stu dying inno vat ive wo rk p la ce d e s i g n • Fle xibilit y in changin g wo rk p la ce d i v i s i o n • Co nt ro l and m easu re me n t s y s te m
Z EB A m b it io n Le v el s
10
Pro j ect Bo u ndar y Co ndi ti o ns
PL AY lab | Project Report
Resea rch Fa c. Offi ce Resi den ti a l Lei su re Su r ro u n d in g Fu n c t io n s
11
AAR 4616 Integrated Energy Design
Ne ig hbourho o d C onte xt The pro je ct area is lo ca te d o n th e s o uth e rn pa rt of the Glø shau ge n Cam pu s i n th e N o r wegi a n ci ty o f Trondhe im .
v e h i cle s i s , o n t h e o t h e r h a n d, t h ro u g h H ø g sko l e r i n ge n roa d , b o rd e ri n g t h e pl o t f ro m i t s so u t h e n d to t h e n o rth ea s t .
Situ ate d near to t he b us s to p s o f G lø s h a uge n S yd a nd Le rke ndal, t he plo t i s v e r y we ll co n n e cte d b y p ub lic t ranspo rt wit h t he su rro un d i n gs . Th e b us i s a ls o the m ean o f t ranspo rt t hat m o s t o f th e s tud e n ts ch o o s e w hen co m m u t ing to t he u nive rs i ty. B i ke s a re a ls o wi d e ly used , fo r which co ndit io ne d bi ke pa th s a re a ls o p ro v i d e d in th e area.
Rega rd i n g t h e D i st r i c t H ea t i n g N et w o r k , t h e re i s th e p o s s i b i li ty to co n n e c t o u r pro j e c t to i t du e to t h e e x i s te n ce o f a n a va i l a bl e n et w o r k o n t h e prox i m i t i e s. Th i s n etwo rk b e l o n g s to t h e co m pa n y S ta t kra f t . A cco rd i n g to c u r re n t reg u l a t i o n s, a l l t h e bu i l di n g s b e lo n g i n g to NT N U w h i c h a re bi g ge r t h a n 5 0 0 m 2 m u st b e co n n e cte d to t h i s n et w o r k . T h e re fo re , du e to t h e fa c t th a t o ur p ro j e c t , w i t h a to ta l e st i m a te d a rea o f 1 5 0 0 m 2 , i s b i gge r th a n t h a t , w e sh o u l d pro v i de d t h i s co n n e c t i o n .
To wards t he no rt h o f th i s a rea , th e n ucle us o f Gløshau ge n cam pu s is e xpa n d e d , wh i le o n th e s o uth , the train line se parate s o u r plo t f ro m Le rke n d a l a rea , a p oss ible fu tu re co m m e rcial a n d le i s ure a rea d ue to i ts p roximit y to Ro se m bo rg stadi um.
Mo re o v e r, o n e o f o u r e n e rg y syste m w i l l be u si n g th i s D i s tri ct h ea t i n g a s e n e rg y so u rce . T h i s po ssi bi l i t y wi ll b e furth e r e x pl a i n e d o n t h i s re po r t .
I n te rm s o f facilit ie s, th e a rea i s a ls o p ro v i d e d w ith m u lt iple su pe rm arket s, re s ta ura n ts a n d b us s to p s . Among t he m , we can find t he B un n p ri s a n d Pe p p e’s P i zza in a radiu s o f 300 m , as we ll as th e S e n tra lb y g g ’s ca n te e n .
Th e CO 2 e m i ssi o n s du e to t h i s e n e rg y so u rce w i l l b e a ls o i n clude d o n pro j e c t l i fe c yc l e a sse ssm e n t , w h i c h a cco rd i n g to a va i l a bl e da ta a re st i m a te d to be 1 5 0 g / KWh .
To wards t his ce nt ral b ui ld i n g i s a ls o wh e re we find the highe r flu x o f pe op le i n o ur p lo t , b e i n g th e mos t t ransite d area t he park i n g p lo t f ro m s o uth we s t to nor theast dire ct io n. The highe r flu x o f pr i va te tra n s p o rt a n d o th e r 12
Pro j ect Bo u ndar y Co ndi ti o ns
PL AY lab | Project Report
A ccesib il it y
13
AAR 4616 Integrated Energy Design
300 m
20 0 m
100 m
Co n n ec t iv it y
14
Pro j ect Bo u ndar y Co ndi ti o ns
PL AY lab | Project Report
Dist r ic t H ea t in g N et wo r k - N TN U Gl ; sha u gen C a m p u s
15
AAR 4616 Integrated Energy Design
Site and C limate C onte xt Wit h t he pu rpo se o f d e v e lo p i n g a b i o cli ma ti c d esign, t he clim at ic charac te ri s ti cs o f th i s a rea h a v e b een detaile d stu die d. Fro m th i s s tud y, th e fo llo wi n g conclu sio ns have be e n e xt racte d : Thanks to t he lo w co nstructi o n d e n s i ty o f th e a rea , the so lar o bst ru ct io n o f t h e p lo t i s mi n i ma l, h a v i n g almost fu ll so lar acce ssibili ty co mi n g f ro m th e s o uth . T h is fact also cau se s t he h i g h v i s i b i li ty o f th e future p roject , du e to it s lo cat io n in a pa rk i n g p lo t wi th o n ly a fe w cars parke d o n it .
1
4
2
5
3
6
Wit h t he aim o f imp le me n ti n g n a tura l cro s s ventilat io n o n t he bu ilding’s d e s i g n , th e p re va i li n g wi n g s h ave also be e n stu die d. The p re va i li n g wi n d s i n wi n te r are co m ing fro m t he so u t hwe s t , wh i le th e s umme r o n e s from the no rt heast . Last ly, a stu dy abo u t t he s urro un d i n g b ui ld i n gs a n d their acce sse s has also be e n ca rri e d o ut , co n clud i n g th a t all the bu ildings su rro u nding th e p lo t (N I N A h us et , th e S IN T EF Byggfo rsk and t he ZEB te s t ce ll) h a v e re s ea rch or office fu nct io ns. The acces s e s to By g g fo rs k a n d th e test ce ll are bo t h lo cate d o n th e n o rth ea s t co rn e r o f th e p lot , while t he cam pu s acce ss i s lo ca te d o n th e o p p o s i te s id e o f it . This fact will be ta ke n i n to co n s i d e ra ti o n w hen de signing o u r bu ildi n g ’s co n n e cti o n wi th i ts s ur rou ndings.
Su r ro u n d in g Situ a t io n
16
Pro j ect Bo u ndar y Co ndi ti o ns
PL AY lab | Project Report
1
6 2 5 3
4
Su r ro u n d in g Situ a t io n
17
AAR 4616 Integrated Energy Design
S un Pat h
Op t im u m So l a r Ra d ia t io n
18
Pro j ect Bo u ndar y Co ndi ti o ns
PL AY lab | Project Report
S U MMER
WI NTER Re s earc h Fa c il it ies O f f i ce P re vai l i n g WI nd
A ccess a n d en t ra n ces
19
AAR 4616 Integrated Energy Design
P rog ram and Func t i on The pro je ct re qu ire s in to ta l 1 5 0 0 m2 o f d i f fe re n t p rogram and fu nct io n to be acco mmo d a te d i n th e s e le cte d s ite. The m ain pro gram co n s i s ts o f o f f i ce , tea ch i n g, s ocial space , te chnical ro o m, re s tro o m, s to ra ge s , a n d c irc ulat io n. Office fo r re search i s th e ma i n fun cti o n o f the p ro je ct . The re will be app rox i ma te ly 8 0 re s ea rch e rs that wo u ld wo rk in t he bu ild i n g . Wi th th e co n n e cti o n to N T N U t he re will ne e d to be spa ce s fo r tea ch i n g wi th th e capacit y o f 40 stu de nt s. The s e a re th e ma i n fun cti o n s that drive s t he pro je ct .
Th e s e re sea rc h qu e st i o n s go a l o n g w i t h se v e ra l re q ui re me n ts fo r t h e re sea rc h a c t i v i t i e s i n w h i c h t h e re i s a n e e d fo r co m pa ra t i v e stu dy bet w e e n se v e ra l co n di t i o n s, co mpa ri n g a n d c h a n g i n g o f di f fe re n t te c h n i ca l syste m s, e n e rg y s y s te m s, a n d u n de rsta n di n g t h e i m pl i ca t i o n to th e us e rs .
The site is ro u ghly 1377 m2 a n d b e i n g n e x t to th e Test Ce ll Labo rato r y it give s a li mi ta ti o n wh i ch ma ke s par t of t he site u nu sable to b e b ui lt o n gro un d a s i t ma y s h ad ow t he te st ce ll. This m ea n s th a t th e fun cti o n s wi ll need to be acco m m o date d in mo re th a n o n e full f lo o r o f the s ite and o r t he pro gram n e e d s to b e co mpa cte d to use m o re e fficie nt space . The arrange m e nt o f t h e p ro gra m a n d fun cti o n s need s to be able to answe r t wo re s ea rch q ue s ti o n s : • What archite ctu ral a n d te ch n i ca l co n ce p ts a n d so lu t io ns are ne e de d to rea li ze go o d co n d i ti o n s fo r o ffice wo rk and ed uca ti o n i n a Ze ro Emi s s i o n Bu ilding? • Ho w do t he u se rs o f th e b ui ld i n g i n f lue n ce t he e ne rgy u se , and h o w d o th e y a d a p t to ZEB te chno lo gie s? 20
Pro j ect Bo u ndar y Co ndi ti o ns
PL AY lab | Project Report
1500 m 2 O f f i ce Tea c h i n g C i rc u l a t i o n Social Te c h n i ca l
1377 m
2
site
Re st ro o m S to ra ge
P ro g ra m DI st r ib u t io n
21
AAR 4616 Integrated Energy Design
Ac tiv it y B a s e d Wor king Th e I n trepi d E x pl o re r A n i n d i v i du a l w h o pe r fo r m s so m e o f h i s/ h e r a cti v i ti e s a t a si n g l e w o r k set t i n g bu t o f te n u se o t h e r lo ca ti o n wi th i n t h e o f f i ce .
Act ivit y- base d wo rking (A B W) i s a tra n s fo rma ti o nal b usine ss st rategy t hat pro vi d e s p e o p le wi th a ch o i ce o f s ettings fo r a variet y o f wo rkp la ce a cti v i ti e s . Ra th e r th a n forc in g individu als to u nde r ta ke a ll th e i r wo rk a t o n e s etting, su ch as a fixe d de sk o r wi th i n a d e s i g n a te d cub ic le, ABW se e ks to e nco u rage p e o p le to p h y s i ca lly lo ca te themse lve s whe re it is m o st s ui ta b le fo r th e m to co m p lete t he ir wo rk . Space s are de s i g n e d to crea te o p p o rtu nities fo r a variet y o f wo rkpla ce a cti v i ti e s f ro m i n te n s e , foc us e d wo rk to im pro m ptu a n d i n fo rma l me eti n g s o r more fo rm al m e et ings.
Th e True Tra n si e n t A n i n d i v idu a l w h o u se s m u l t i pl e w o r k set t i n g a n d ra re ly ba s e my se l f a t a si n g l e l o ca t i o n w i t h i n t h e o f f i ce . I n th i s b u i l di n g f l e x i bi l i t y i s a ke y de si g n st ra teg y h e n ce a n A B W syste m f i t s pe r fe c t l y fo r t h e i n di v i du a l s wo rk i n g h e re .
ABW is ge ne rally divide d i n to 4 s e cti o n s : The Cam pe r: An individu al who pe rforms mo s t o r a ll o f h i s /h e r ac tivit ie s at a single wo rk setti n g a n d ra re ly us e o th e r locatio n wit hin t he o ffice .
The Camper
The True Transient
The Tim id t rave lle r: An individu al who pe rfo rms ma j o ri ty o f h i s /h e r ac tivit ie s at a single wo rk setti n g b ut a ls o us e s o th e r locatio ns wit hin t he o ffice .
The Intrepid Explorer
The Timid Traveller
A c t iv it y Ba sed W o r k in g C a tego r y
22
Pro j ect Bo u ndar y Co ndi ti o ns
PL AY lab | Project Report
I perform most or all of my activities at a single work setting and rarely use other location within the office
I perform majority of my activities at a single work setting but also use other location within the office
I perform some of my activities at a single work setting but often use other location within the office
I use multiple work setting and rarely base myself at a single location within the office
The Camper
The Timid Traveller
The Intrepid Explorer
The True Transient
19 %
10 %
30 %
41 %
A c t iv it y Ba sed W o r kin g C a tego r y
23
2
Design Concept
AAR 4616 Integrated Energy Design
Inte g rat i on B al ance Whe n approaching a su s ta i n a b le b ui ld i n g d e s i gn , to ac hie ve a pro pe r balance b etwe e n cli ma ti c e le me n ts and the de sire d archite ctu ral q ua li ti e s i s a ke y fa cto r. Wit h t he aim o f re du cing th e e n e rgy d e ma n d o f th e b uild i ng, a bio clim at ic de sign i s to b e i mp le me n te d . I n th i s regard, a co m pact shape is to b e ch o s e n (Le ch n e r, 2 0 0 8 ), w hile dealing wit h a se rie s o f multi p le co n s tra i n s th a t w ill be cru cial de sign drive rs fo r th e f i n a l a rch i te ctura l result . The se co nst rains are rela te d n o t o n ly to o ur goa l of creat ing a high pe rfo rm ance e n e rgy b ui ld i n g , b ut a ls o to the clim ate facto rs and b o un d a r y co n d i ti o n s f ro m the su rro u ndings. The re fo re, o ur ro le i s to p e rfo rm a balan cing act bet we e n o u r goa ls i n rega rd s to a e s th eti c q ualitie s and o t he r facto rs, s uch a s mi n i mi zi n g th e s h ad ow o ve r t he te st ce ll, u si n g th e p re va i li n g wi n d s fo r natural cro ss ve nt ilat io n, ma x i mi zi n g th e co n n e cti v i ty w ith t he su rro u ndings and o pti mi zi n g th e s o la r ra d i a ti o n over t he e nve lo pe fo r m ax i mi zi n g ma x i mum e n e rgy p rod uct io n. He nce , o u r goal is to ach i e v e a h i g h q ua li ty b ui ld i n g , in term s o f bo t h e ne rgy pe rfo rma n ce a n d a rch i te ctura l aesthet ics, while creat ing a go o d wo rk i n g e n v i ro n me n t for the m o st im po rtant de sign fa cto r: th e us e r.
pre vailing wind
foo
nt tpri
connectivity
m in im iz e p a s s i v e s h a d o w in g s o l a r g a i n
so rad lar iat ion
Ba l a n ce
26
PL AY lab | Project Report
The pro je ct was divide d i n to two s ta ge s d e s i g n p has e and im ple m e ntat io n ph a s e . Th e tea m wa n te d to w or k as an o ffice he nce a co rp o ra te a p p roa ch wi th s o me ke y p o int s was e stablishe d. T h e s tra teg y wa s ca lle d th e 3 c ’s. The 3c’s stand fo r co ns tructi o n , co mp uta ti o n a n d co -w orking fo r each phase .
Co n s truct i o n : S i n ce t h e de si g n ph a se ta ke s ca re o f a ll th e p e rmuta t i o n a n d co m bi n a t i o n s o f t h e r i sks a n d ca lcula ti o n loa d o f u n ce r ta i n t y de c rea se s i n t h i s ph a se a n d wo rk a n d bu i l d t i m e ca n be re du ce d si g n i f i ca n t l y. Co mp uta t i o n a l : I m pl e m e n ta t i o n o f e n e rg y syste m s ca n b e d o n e m o re e f f i c i e n t l y si n ce a l l t h e o u tco m e s a re ca lcula te d a n d e st i m a te s ca n be dra w n o u t o f i t .
D e sign Phase : Co nst ru ct io n: Lo o king a t d i f fe re n t co n s tructi o n and de sign approache s to m a ke a ze ro e mi s s i o n b ui ld i n g .Fac to rs su ch as se le ct io n o f ma te ri a ls , LCA o f d i f fe re n t energy sy ste m im ple m e ntat io n i s ta ke i n to co n s i d e ra ti o n .
Co - wo rk i n g : P l a ce m e n t o f a n a c t i v i t y- ba se d wo rk i n g s y s te m fo r t h e bu i l di n g . C o - w o r ki n g a l so ta ke s i n to co n s i d e ra t i o n t h e w o r k c l a r i t y bet w e e n a rc h i te c t s, e n gi n e e rs a n d bu i l de rs.
Co m pu tat io nal: Stu dyi n g o p ti ma l s h a p e s wi th res p e ct to t he site . Fo r m a x i mum s o la r ra d i a ti o n fo r PV pa ne ls, daylight facto r, wi n d d i re cti o n a n d e n e rgy cons u m pt io n t hro u gh digital o p ti mi za ti o n i n s o f twa re’s like Rhino, Grassho ppe r, Diva a n d S i mi e n .
De s i gn P h a se
Co - wo rking: Wo rking a s a tea m a n d i d e n ti f y i n g strengt hs o f each gro u p m e mb e r a n d d i v i d i n g wo rk accordingly.
3C B u i l d P h a se
B u ilt Phase : Co n s tr u c t i o n - C o m pu ta t i o n - C o w o r ki n g St ra teg ies Co n cep t
27
Desi gn Co ncept
Strate g i e s
AAR 4616 Integrated Energy Design
C1
St rateg i e s : D e sig n P ha s e Co-working S et t i n g Vi si o n a n d G oa l s Un de rsta n di n g t h e pro g ra m S pa t i a l & P ro g ra m C o n ce pt 28
PL AY lab | Project Report
1
Minim iz e shado win g o n s urro un d i n g e x i s ti n g bu ilding
2
Opt im iz ing day light o n b ui ld i n g
3
Opt im iz ing so lar ra d i a ti o n fo r pa s s i v e s o la r gain and/o r e ne rgy p ro d ucti o n
4
Achie ving ZEB- COM
5
Co m pact bu ilding
6
High fle xibilit y o f spa ce
7
High space u t ilizat i o n
8
Fu tu re o rie nte d bui ld i n g
9
Healt hy and su pporti v e re s ea rch fa ci li ty / la b
10
B a s e d o n t h e m a i n fo c u s o f t h e st ra teg i e s to d e v e lo p th e p ro j e c t a n d u n de rsta n di n g o f t h e co n te x t o f th e p ro j e ct , t h e tea m l i st o u t bu i l di n g v i si o n s t h a t wo uld co v e r di f fe re n t a spe c t s f ro m n e i g h bo r h o o d sca l e , a rch i te ctura l de si g n , e n e rg y a n d e m i ssi o n , a l so u se rs a n d re s ea rch a cti v i t y a s t h e h ea r t o f t h e pro j e c t . T h e bu i l di n g v i s i o n s a re th en g ro u pe d i n to t h e se fo u r a spe c t s w h i c h th e n d e f i n e the m a i n goa l s o f t h e pro j e c t .
1
Crea ti n g po si t i v e i m pa c t to t h e su r ro u n di n g a n d n e i g h b or i n g re sea rc h fa c i l i t i e s & a c t i v i t i e s
2
Crea ti n g a n i n teg ra te d a rc h i te c tu re t h ro u g h pa s s i v e & a c t i v e de si g n st ra teg i e s
3
A ch i e v i n g e n e rg y e f f i c i e n t a n d e n v i ro n m e n ta l l y f ri e n d ly bu i l di n g a cco rdi n g to Z E B - CO M c r i te r i a
4
Crea ti n g a h ea l t h y a n d su ppo r t i v e re sea rc h fa c i li ty
I nvo lve m e nt o f u ser Goa l s
Bui l d i n g Vi s i o n
29
Desi gn Co ncept
Vi si on and G o al s
AAR 4616 Integrated Energy Design
C irc u lation 200 m2
Flexibility Concept Base d o n t he u nde rstan d i n g o f th e s pa ce p ro g ra m, func tio n, and t he pro je ct re qu i re me n t , th e s pa ce p ro g ra m and fu nct io n is divide d into two pa rts : Fi xe d pa rt a n d Flexible part . The fixe d part acco mmo d a te s fun cti o n s th a t is not o ccu pie d o n a wo rking h o ur ba s i s a n d s e r v i ce s th a t s up p ort s t he bu ilding. The f le x i b le pa rt a cco mmo d a te s func tio ns t hat is o ccu pie d o n wo rk i n g h o ur a n d re q ui re h igh f le xibilit y in it s u se . As t he pro gram brie f re q ue s te d , th e f le x i b i li ty o f the p ro gram s is divide d into th re e ty p e s : f le x i b le la y o ut , flexible te chnical syste m , a n d f le x i b le e n v e lo p e . Th e fixed part is t he least fle xi b le wh i ch o n ly a llo ws fo r
1
F le x i b le La y out
2
F le x i b le Te chn ica l S y stem
3
F le x i b le E n vel op e
Storage 50 m2 Soc ial 200 m2
Re stroom 100 m2 Te c hnical 150 m2
Fixed Teac hing 200 m2
Flexible O  ice 600 m2
P ro g ra m Dist r ib u t io n
30
d iffere nt te chnical syste m s to b e i n s ta lle d li mi te d to th e space. The fle xible part is se pa ra te d i n to two pa rts , th e head qu arte r and t he playgroun d . Fro m t his po int o n, it i s a ls o un d e rs to o d th a t th e res ea rch to be do ne m ay re q ui re h i gh e r f le x i b i li ty a n d les s s t rict bo u ndar y t han t he ma i n o f f i ce fun cti o n , d ri v i n g th e 20 0 m 2 o f fle xible part se pa ra te d i n to two pa rts . Th e head qu arte r will acco m m o da te 1 3 0 0 m2 o f th e f i xe d pa rt and t he fle xible part , while th e 2 0 0 m2 o f f i ce fun cti o n w ill be a playgro u nd u nit as pa rt o f th e re s ea rch .
Fixed
Head quarter
Plug and Play : Spatial Zoning Th e s pa ti a l zo n i n g o f t h e pro g ra m i n t h e si te i s ba se d o n a s e r v i ce a n d se r v i ce d ba se . T h e f i xe d pa r t i n w h i c h th e s e r v i ce s fu n c t i o n s a re l o ca te d w i l l be t h e so c ket wh e rea s th e f l e x i bl e pa r t w h i c h i s t h e se r v i ce d fu n c t i o n s wi ll b e th e p lu g t h a t h a s co n n e c t i o n to t h e so c ket . T h i s i s d o n e o n a l i n ea r a r ra n ge m e n t h o r i zo n ta l l y o n pl a n a n d s e cti o n . To e n su re co n n e c t i v i t y w i t h su r ro u n di n g re s ea rch a cti v i t i e s, bu i l di n g si de s t h a t a re a dj a ce n t to o th e r re s ea rch o f f i ce bu i l di n g o r fa c i l i t i e s a n d t rea te d a s re s ea rch co n n e c t i o n w h i c h a l l o w s fo r c i rc u l a t i o n a n d co mmun i ca ti o n bet w e e n bu i l di n g .
Playground
Rate o f Flex ibilit y
PLAY
PLUG
PLAY
Fle xible Layo u t Fle xible Technical Sy ste m Fle xible E nve lo pe C o n cep tu a l Ver t ica l Zo n in g
31
Desi gn Co ncept
PL AY lab | Project Report
AAR 4616 Integrated Energy Design
RE
S
R EA
CH
CO
E NN
PL
CT
IO
N
AY
PL
UG
PL
AY
C o n cep tu a l Spa t ia l Zo n in g
32
Plug and Play : Set of Rules We aim to pro vide t he pe rfe ct co mp ro mi s e d s o luti o n b etw ee n o u r de sign goals an d th e p ro j e ct re q ui re me n ts , to c reate a “play gro u nd” whe re a n y k i n d o f e n e rgy o r materialit y re late d e xpe rim e n t i s p o s s i b le .
-To n ot e xce e d t h e h e i g h t o f t h e so u t h fa ca de o f th e h ea dqu a r te rs, i n o rde r to a v o i d o v e rsh a do w i n g th e P V pa n e l s l o ca te d o n i t s ro o f. - To l i m i t t h e e x te n si o n o f t h e e x pe r i m e n t to th e “ p la y gro u n d a rea” i n o rde r to a v o i d a n y po ssi bl e s h a d o w o v er t h e te st ce l l bu i l di n g .
Ho we ve r, we we re als o a s ke d to d e s i gn a n energy e fficie nt bu ilding. T h i s k i n d o f co n s tructi o n s are characte rize d by a lo w e n e rgy co n s ump ti o n a n d enviro nm e ntal im pact , achie v e d th a n k s to th e us e o f pas s ive st rategie s and o wn en e rg y p ro d ucti o n . Thu s, we aim to sat isfy t wo re q ui re me n ts th a t s e e m to b e inco m pat ible wit h each o th e r: to crea te a co n tro lle d enviro nm e nt at t he sam e t ime th a t we p ro v i d e th e s pa ce th at make s po ssible any e xpe ri me n t i ma g i n a b le . In o rde r to do t hat , we s h o uld li mi t th e d egre e s of fre e do m o f t he e xpe rim en t b y s etti n g a n umb e r o f r ules t hat spe cifie s it s lim ita ti o n s . Th e s e rule s wi ll b e followings: -To no t co ve r o r dire ct ly o b s truct mo re th a n 5 0 m 2 o f th e so u t h facade o f each flo o r, i n o rd e r to gua ra n te e th e d es ired daylight co ndit io ns i n s i d e th e wo rk i n g s pa ce s .
Plug and Play
33
Desi gn Co ncept
PL AY lab | Project Report
AAR 4616 Integrated Energy Design
Minimize Solar Obstruction On e o f t h e re qu i re m e n t s t h e w e m u st a c h i e v e a cco rd i n g to t h e br i e f i s to n o t o v e rsh a do w t h e te st ce l l n ea r to o ur p lot . I n o rde r to do so, a n o pt i m i za t i o n w i t h th e s o la r e n v el o pe to o l o f L a dybu g fo r R h i n o ce ro s h a s b e e n ca rri e d o u t . I n t h i s o pt i m i za t i o n , t h e m a x i m u m h e i g h t th a t th e bu i l di n g ca n h a v e i s h a s be e n fo u n d o u t a s we ll a s th e m i n i m u m h e i g h t i n o rde r to h a v e so l a r a cce s s . Th i s la st o n e i s e qu a l to ze ro. On th e i n i t i a l ste ps o f t h e de si g n , t h e so l a r o b s tructi o n o f t h e l a b bu i l di n g ’s w i n do w s be h i n d o u r p lo t wa s ta ke n i n to co n si de ra t i o n ( I n i t i a l T h re sh o l d Re s ult)b ut d i s ca rde d l a te r o n , si n ce a s c h e c k i n a a n n u a l s h a d o w ra n ge a n a l ysi s, t h e se w i n do w s a re a l rea dy s h a d e d b y th e bu i l di n g i t se l f. T h u s, t h e f i n a l t h re sh o l d re s ult wa s o b ta i n e d.
C2
St rate g i e s : D e sig n P ha s e Computation So lar Obst r ucti o n Mi n i mi za ti o n So lar Radi a ti o n Op ti mi za ti o n
34
Desi gn Co ncept
PL AY lab | Project Report
I n i t i al L i m i tat i o n S et- U p
I n it ia l Op t im ized So l a r En v el o p e
Rhin o Sc r ip t
35
AAR 4616 Integrated Energy Design
F i nal L i m i tat i o n S et- U p
Op t im ized So l a r En v el o p e
36
PL AY lab | Project Report
Solar Energy 149 (2017) 347–369
G. Lobaccaro et al. / Solar Energy 149 (2017) 347–369
solar dynamic simulation software. A set of simulations was then conducted by assigning materials and colors of each surface in order to exploit as much as possible the contribution given by the indirect mutual solar reflections of the urban surrounding. The final step of the optimization process required running simulations in the final calculation stage in order to take into account all lar solar e reflections fromh all enabling estimate Once t he so nve lo pe a surban b e esurfaces, n ca lcula te dan fo r of the improvement in global solar radiation incident at the anaits opt im al so lu lyzed t io n,buildings. t he ne x t s te p i s to a ch i e v e a go o d balan ce bet we e n Finally, m axim insolar g s radiation o la r raincident d i a ti on o ntheto wa rd sin the the iz total buildings masterplan was compared with the values obtained energy pro du ct io n and so la r ga i n s i n wi n te r, a nind thea nsimple urban district scenario in order to estimate the deviation between efficie nt u se o f thet he site are, s i n ce th e mo re s q ua re d outcomes of the simplified urban district with respect to the meters we have pe r floone, o r, enabling t he le sthe s sevaluation to re y s of withe ll beffectiveness e n e e d e dof the complex solar urban planning recommendations to guide decision-making to fulfill t he pro gram re qu ire me n ts . and inform policymaking for the masterplan. The main criteria I t is co m m ofor nly kno wn t habuildings t th e oshould p ti mum o ri n ta timethodon selection of which be used toetest the towards m axim iz ing were: so lar ra d i a ti olocated n o vine rana unfavorable s urfa ce position, is ology (a) buildings affected by a significant overshadowing effect; (b) buildings paralle l to t he So u t h. Ho we v e r, a cco rd i n g to a pa p e rwith dimensions or exposure of the façades consistently differing from p ub lishe d by Gabrie bacca rodistrict a n dscenarios; Luca and Fi n(c) o cch i a rowith those ofletheLo simple urban buildings dimensions, aspect ratio and values of reflectance identical to the ones in the simple urban district scenarios. The buildings complying with criteria (a) and (b) were chosen in order to verify the reliability of the assumption that the simple urban district scenario can be used to inform the design of a complex scenario, thereby providing feedback on the generalizability of the solar urban planning recomr Fl oo r So lamendations to a complex urban environment. The buildings that io n Ra di atconform to criterion (c) were selected Ar toea estimate the uncertainty of the calculation of the global solar radiation incident at the buildings’ surfaces caused by the application of the simple urban district scenarios.
Solar Radiation Analysis
3.6. The energy implications of the enhancement of solar potential
Contents lists available at ScienceDirect
Solar Energy
tions with the energy production derived from the exploitation of journal homepage: www.elsevier.com/locate/solener the solar potentials. The use of photovoltaic panels characterized by different efficiencies, as 21%, and 16%, districts for monocrystalline, multiBoosting solarsuch accessibility and 18% potential of urban in the Nordic climate: A case and study glass–glass in Trondheim modules respectively, have been concrystalline a, b c,d e Gabriele Lobaccaro Salvatore Carlucci Silvia Croce , Rossanasurfaces Paparella c, Luca sidered and⇑, assigned to , the different of Finocchiaro the masterplan (i.e., roofs, façades and tilted surfaces). It was assumed that the energy supply of the building was completely provided by electricsolar dynamic simulation software. A set of simulations was then tions with the energy production derived from the exploitation of conducted by assigning materials and colors of each surface in solar potentials. ity and the percentage of energy demand covered the by electricity order to exploit as much as possible the contribution given by The use of photovoltaic panels characterized by different effia r t i c l e i n f o a b s t r a c t the indirect mutual solar reflections of the urban surrounding. ciencies, such as 21%, 18% and 16%, for monocrystalline, multifrom PV was estimated. The step of the optimization process required running simucrystalline and glass–glass modules respectively, have been conThe final harvesting of solar energy still encounters many barriers in Scandinavia. This paper proposes a set of a
b c
d e
Department of Architecture and Planning, Faculty of Architecture and Design, Norwegian University of Science and Technology NTNU, Trondheim, Norway Department of Civil and Environmental Engineering, Faculty of Engineering, Norwegian University of Science and Technology NTNU, Trondheim, Norway Università degli Studi di Padova, Department of Civil, Environmental and Architectural Engineering, Padua, Italy 358 G. Lobaccaro et al. / Solar Energy 149 (2017) 347–369 EURAC Research, Institute for Renewable Energy, Bolzano, Italy Department of Architecture and Technology, Faculty of Architecture and Design, Norwegian University of Science and Technology NTNU, Trondheim, Norway
Article history: Received 5 August 2016 Received in revised form 17 March 2017 Accepted 7 April 2017 Available online 20 April 2017
lations in the final calculation stage intoorder to take into accessibility account sidered and and assigned to the different surfaces of the masterplan solar urban planning recommendations enhance the solar and potential thereby all solar the reflections from all urban surfaces,solar enabling estimate (i.e., roofs,urban façades and tilted surfaces). It was assumed that the increase energy production from integrated active an systems installed in a Nordic environofment. the In improvement in analyses global solar incident the ana- on two this work, solar usingradiation DIVA-for-Rhino wereatconducted typical Norwegian energy supply of theresibuilding was completely provided by electricdential housing types, row houses and high-rise apartment blocks, to maximize potential in of energy demand covered by electricity lyzed buildings. ity their and solar the percentage anFinally, isolatedthe scenario and toradiation evaluate incident the contributions of indirectinmutual solar reflections created by total solar on the buildings the from PV was estimated. the urban surroundings. The effect buildings’ orientation, finishing materials of the buildings’ masterplan was compared with of thethe values obtained in thethe simple façades, and the ground soil on solar potential have been estimated in geometrically simplified urban disurban district scenario in order to estimate the deviation between 4. Results and discussion tricts. The numerical outcomes observed were transferred into solar urban planning recommendations the outcomes of the simplified urban district with respect to the that were applied to the task of developing the masterplan of the Øvre Rotvoll district, located in complex one, enabling the evaluation of the effectiveness of the Inplanning this section, the relevant results for the different scenarios Trondheim, Norway. Simulations were run (i) to apply and evaluate the solar urban recommensolar urban planning to guide decision-making dations, (ii) to optimizerecommendations the district morphology, and (iii) to localize the most suitable surfacesalong for instalare discussed with the significance of the effects of building and policymaking for theThe masterplan. The mainthat criteria ling inform integrated solar active systems. results demonstrated by optimizing the urbanand morphology orientation indirect mutual solar reflections from the ground for selection of which buildings should be used to test the method(e.g., orientation, building height and distance between buildings) and choosing finishing materials andthe façades through the analysis of the isolated building scenarios ology were:and (a)materials buildings located anthe unfavorable (e.g., colors of the façadesinand ground soil)position, from the earlyand design phases, the solar the simple urban district scenarios. In addition, the outcomes potentialby cana be increased overshadowing by up to 25% andeffect; the energy yield fromwith the integrated solar active systems affected significant (b) buildings of the studies—called solar urban planning recommendations— can provide up to 55% of the total primary energy demand of an entire urban district, even in a Nordic dimensions or exposure of the façades consistently differing from are applied to influence the masterplan of Øvre Rotvoll. Finally, climate. those of the simple urban district scenarios; and (c) buildings with theLtd.optimization process for the Øvre Rotvoll masterplan is 2017 All rights reserved. dimensions, aspect ratio and values of reflectance identical to theElsevier discussed. ones in the simple urban district scenarios. The buildings complying with criteria (a) and (b) were chosen in order to verify the reliabil4.1. Effect of the buildings’ orientation ity of the assumption that the simple urban district scenario can be
4. Results and discussion
Keywords: Solar accessibility Solar potential Nordic climate Urban planning
In this section, the relevant results for the different scenarios are discussed along with the significance of the effects of building orientation and indirect mutual solar reflections from the ground and façades through the analysis of the isolated building scenarios and the simple urban district scenarios. In addition, the outcomes of the studies—called solar urban planning recommendations— used to inform the design of a complex scenario, thereby providing 1. are Introduction table solar potential at latitudes asRotvoll. well The as logistical impediapplied to influence the masterplan ofhighØvre resultsFinally, in the isolated building scenarios demonstrated that feedback on the generalizability of the solar urban planning recomments and economic feasibility (Skaugen and Romundstad, the highest annual global solar radiation on the building envelope mendations to a complex urban environment. The buildings that Since 2011, when the European Climateprocess Foundation published most significant beliefs are related to the low is achieved fortempera45 North/East the optimization for 2016). theThe Øvre Rotvoll masterplan is (NE)/South/West (SW) and 67.5 NE/ conform to criterion (c) were selected to estimate the uncertainty the Energy Roadmap 2050 (European Climate Foundation, n.d.), ture, long hours of darkness and low inclination of solar rays. A high-rise apartment block (annual global SW orientation for the of the calculation of the global solar radiation incident at the buildfive decarbonization scenarios have been proposed, and the use research project conducted by the Nordic Energy radiation 2085Research MW h/a) and the row house (annual global radiadiscussed. ings’ surfaces caused by the application of the simple urban district of renewable energy sources (RES) such as solar energy, is growing (Boström, 2013) revealed that it is incorrecttion to presume that a cold 1352 MW h/a) respectively. At high latitudes, these orienta-
scenarios. rapidly worldwide (Mohajeri et al., 2016). In the last decade, cumuclimate has a negative effect on solar systems. tionsMoreover, guaranteethe theeffihighest values of solar radiation on the two lative installed capacity has grown yearly by about 49% for photociency of energy systems has been extensively studied façades in relation contiguous of buildings facing South/West (SW) and voltaic (PV) (International Energy Agency, 2014a) and 12% for solar to their operating temperature (Dubey etSouth/East al., 2013), (SE) and (Chwieduk a low and Bogdanska, 2004; Compagnon, thermal (International Energy Agency, 2014b, 2014c). However, ambient temperature has been shown to help maintain optimum 2004; Yun and Steemers, 2009). 3.6. The energy implications of the enhancement of solar potential despite these figures, the exploitation of solar energy is facing barefficiency of solar systems (Jones and Underwood, 2001). FurtherThe differences between the annual global solar radiations riers, especially in the Scandinavian region where theanalyses adoptionwere of more, this has demonstrated that two identicalfor sun tracking obtained the other orientations were consistently below 2% Energy carried out study to assess the relationship solar technologies has been discouraged between for a long time to systems installed in for Sweden in Germany receive almost the for both the high-rise apartment block and the row houses. Therethe solardue potential and the energy need space and heating adverse weather conditions and false beliefs related toin the same global solar radiation, with and a higherfore, total of sun hours that in for new buildings in new urban developit can be stated and cooling theexploisimple urban district scenarios for row houses (withperformance about 2000 of annual sun hours) than in Frei- does not significantly affect the annual ments, their orientation high-rise apartment blocks.Piteå, SinceSweden the energy a burg, Germany (with about 1700 annual sun hours) (Boström, ⇑ Corresponding author. global solar radiation incident at the buildings’ envelope. The situbuilding depends on the quality of its building envelope coupled 2013; Klitkou and established Godoe, 2013). Additionally, low inclination ationthe is different if the building is inserted into an existing urban E-mail address: gabriele.lobaccaro@ntnu.no (G. Lobaccaro). to its energy systems, three quality levels were in order environment that is characterized by building shapes and functionto assess the energy implication of the enhancement of the solar http://dx.doi.org/10.1016/j.solener.2017.04.015 alities that are already planned and distributed in it, which can evipotential. The three quality levels were established according to 0038-092X/ 2017 Elsevier Ltd. All rights reserved. dently influence the complexity of the solar accessibility within the the Norwegian energy labeling system (ENOVA SF, 2014). The Nordistrict morphology (Mohajeri et al., 2016). wegian energy labeling system provides an overall assessment of the building’s energy requirements on a scale that goes from A (the best performance) to G (the worst performance). Energy calcu4.2. Effect of the ground reflection lations were executed assuming a standard use of the building in accordance with the Norwegian standard NS 3031 (Standard In the isolated building scenario, an increase in the reflectance of Norge, 2014) (Table 7). The quality levels selected for the buildings the finishing materials of the ground produces an improvement in were A-class, B-class, and C-class—the energy classes permitted for the global solar radiation on the building envelope of up to 12%. new buildings in Norway. These energy performance requirements This effect is mostly created by the contribution of the indirect are declared in the technical building regulation from 2010 (TEK mutual solar reflection from the ground and it occurs most preva10) (Direktoratet for Byggvalitet, 2010). lently on the lower parts of the façades. The energy overview was completed by comparing the primary In the simple urban district scenarios, for a ground reflectance of energy need of the entire masterplan calculated in dynamic condi0.2, the losses given by the overshadowing effect on global solar
4.1. Effect of the buildings’ orientation
The results in the isolated building scenarios demonstrated that the highest annual global solar radiation on the building envelope is achieved for 45 North/East (NE)/South/West (SW) and 67.5 NE/ SW orientation for the high-rise apartment block (annual global radiation 2085 MW h/a) and the row house (annual global radiation 1352 MW h/a) respectively. At high latitudes, these orientations guarantee the highest values of solar radiation on the two contiguous façades of buildings facing South/West (SW) and South/East (SE) (Chwieduk and Bogdanska, 2004; Compagnon, 2004; Yun and Steemers, 2009). The differences between the annual global solar radiations obtained for the other orientations were consistently below 2% for both the high-rise apartment block and the row houses. Therefore, it can be stated that in ro new Paper b yfor Ganew b r ielbuildings e Lo ba cca eturban a l . Bodevelopo st in g so l a r a ccesib il it y ments, their orientation does not significantly affect the annual global solar radiation incident at the buildings’ envelope. The situation is different if the building is inserted into an existing urban environment that is characterized by building shapes and functionalities that are already planned and distributed in it, which can eviTable 7 Limits of energy performance defined by the energy label for residential buildings in Norway (Standard Norge, 2014).
Energy analyses were carried out to assess the relationship between the solar potential and the energy need for space heating and cooling in the simple urban district scenarios for row houses and high-rise apartment blocks. Since the energy performance of a building depends on the quality of its building envelope coupled to its energy systems, three quality levels were established in order 37 to assess the energy implication of the enhancement of the solar potential. The three quality levels were established according to
Building type
Delivered energy normalized by the heated net floor area (AH) [kW h/(m2 a)] A-class
B-class
C-class
D-class
E-class
F-class
G-class
Block of flats Area correction
85 +600/AH
95 +1000/AH
110 +1500/AH
135 +2200/AH
160 +3000/AH
200 +4000/AH
>F
Desi gn Co ncept
358
AAR 4616 Integrated Energy Design
among o t he rs, it was fo u nd out th a t i n o rd e r to a ch i e v e the m axim u m e xpo se d su rface wi th th e h i g h e s t a n n ua l s olar radiat io n fo r t he case o f lo w- ri s e i s o la te d b ui ld i n g s , its s o u t hwe st and so u t heast fa ca d e s s h o uld fo rm 4 5 º w ith t he line o f t he ho rizo n. Pu t t ing t his principle in to p ra cti ce , th e fo llo wi n g four bu ilding e nve lo pe s we re d e s i gn e d , tr y i n g to ba la n ce a maxim u m u se o f t he plo t area wi th a n o p ti mum fa ca d e or ientat io n. The re fo re , e nve lo p e s 1 a n d 3 us e i mp le me n t this 4 5º principle , t he se co nd o n e wi th a b i gge r fo o tp ri n t than t he first o ne . Enve lo pe 2 o ccup i e s a s much p lo t area a s po ssible , while e nve l o p e 4 o ccup i e s q ui te a b i g p or tion o f t he flo o r area, bu t o n ly o n e o f i ts fa ca d e s i s op tim ize d in te rm s o f o rie nta ti o n . I n o rde r to che ck which o n e o f th e fo ur a lte rn a ti v e s p er form s bet te r in te rm s o f e x p o s e d s urfa ce a n d op tim ize d angle s fo r annu al glo ba l s o la r ra d i a ti o n , th e Rad iat io n Analysis to ll fro m L a d y b ug fo r Rh i n o ce ro s wa s utilize d. The re su lt s pre se nte d i n th e fo llo wi n g s umma r y tab le sho w t hat , as it was e xp e cta b le , o p ti o n 3 i s th e o n e receiving highe r so lar radiat i o n o n i ts e x p o s e d fa ca d e s , w ith a to tal e xpo se d area o f 4 0 9 m 2 a n d a to ta l a n n ua l s olar radiat io n o f 305019 KWh p e r y ea r. Ho we ve r, t he e nve lo pe d e s i g n n o t o n ly a i ms to op tim ize t he walls e xpo su re , b ut a ls o th e f lo o r a rea s i n ce the m o re space , t he m o re fle x i b i li ty.
SW
90º 45º
45º
SE
1 . O p t i m i ze d S ol a r Ra d ia t io n
W
90º
SW
45º
SE 45º
3 . O p t i m i ze d S o l a r Ra d ia t io n & F l o o r A rea
38
W
90º
E
2. Op t im ized Fo o t p r in t
W
= S = 4. So u t h Or ien ted
Desi gn Co ncept
PL AY lab | Project Report
Gra ssho p p er sc r ip t fo r ra d ia t io n a n a l ysis wit h La d yb u g SWW 689.5 KWh/m 2 SW
763.5 KWh/m
SE
767.0 KWh/m 2
SWW 689.5 KWh/m 2 S
2
En vel o pe 3 . Resu l t o f t h e rad i at i o n anal y s i s wi t h L ad y b ug
843.0 KWh/m 2
En v el o p e 4. Resu l t o f t he ra d ia t io n a n a l ysis wit h La d yb u g
39
AAR 4616 Integrated Energy Design
O pt ion 1 O r i ent at ion
O pt ion 2
O pt i on 3
O pt i on 4
SW
SE
Fa ls e SW
Fa ls e S
Fa ls e S W
SW
SE
S
S ol ar radi at ion
763.5
767
689.5
820.5
68 9 . 5
763.5
767
843.00
Fa รง ade are a
226.50
134.50
215.22
173.26
68 9 . 5 0
116.02
767.00
188.78
Tot a l e x p os e d
361.00
388.48
408.81
188.78
Tot a l f lo or are a
837.60
1,056.19
922.36
912.48
Tot a l s ol ar r a d i at ion
2 7 6,094.25
290,554.02
305,019.13
159,141.54
* A total hight of 7m is assumed. Areas in m 2 , Solar radiation in KWh/m 2 and Total solar radiation in KWh.
40
Thu s, t he e nve lo pe o p ti o n th a t wo uld a ch i e v e a compro m ise bet we e n so lar ra d i a ti o n a n d f lo o r a rea effic ienc y wo u ld be again t he o p ti o n 3 . Rat he r t han u sing t his stud y to d e f i n e th e f i n a l s h a p e of our bu ilding’s e nve lo pe , it i s d e ci d e d to p ro v i d e i t a s a guide line fo r t he te st ing fa ci li ty s ta f f. Th i s wa y, wh e n th e technical staff want s to b ui ld th e te s ti n g o b j e cts , th e y wo u ld kno w which facad e a n gle th e y mus t ch o s e to ach ie ve t he ir goals.
=
More F l e x ibi lit y
F l e xibi lit y
More Sp ace
Space
Minimi z e S ol ar Ob st r u c t i on
O ptimi z e d S ol ar R adi ati on 41
Desi gn Co ncept
PL AY lab | Project Report
AAR 4616 Integrated Energy Design
C3
St rateg i e s : D e sig n P ha s e Construction Pa ssi v e H o u se S ta n da rd Z E B - CO M C r i te r i a
42
Passive House Requirements Whe n de signing t his bu i ld i n g th e ma i n re s tri cti o n s come fro m t he NS 3701: 2013 c ri te ri a fo r pa s s i v e h o us e s . A pas s ive ho u se is de nne d as a bui ld i n g th a t i n v o ke s pa s s i v e meas u re s in o rde r to lim it it s e n e rg y co n s ump ti o n . U s ua l example s o f su ch m easu re s wo uld b e h ea t re co v e r y, increa se t he t hickne ss o f t h e i n s ula ti o n , lo we r lea ka ge numbe rs and also t he act ive us e o f th e s un s ra d i a ti o n a s a h eat so u rce . The approach fo r t hi s p ro j e ct i s to o b ta i n a pas s ive ho u se wit h re ne wa b le e n e rg y p ro d ucti o n to reach t he m inim u m o f 60% re n e wa b le e n e rg y f ro m TEK 17. Re qu ire m e nt s u se d in t he p ro j e ct i s ba s e d o n th e guid e line s fro m t he No r wegia n S ta n d a rd N S 3 7 0 1 .
U-Va l u e s
E nergy Requ ireme n t U nive rsit y
125
k Wh /m 2
Wa ll
0.12
W/ m 2 K
Wi n d o w / Do o r
0.8
W/ m 2 K
G la s s Fa ca d e
0.8
W/ m 2 K
Ro o f
0.08
W/ m 2 K
Flo o r
0.08
W/ m 2 K
H ow to a c h i eve?
t h e r m a co r k
t r i pl e g l a ze d N o rma li ze d th e rma l b ri d ge
43
0.03
W/ m 2 K
Desi gn Co ncept
PL AY lab | Project Report
AAR 4616 Integrated Energy Design
M ATER I A L S W OOL B R I C K S TH ER M A C O R K R ECY CLE D G L A SS H EM P CR E T E LONG LA ST I N G M A T E R I A L S
Operation
INDOOR ENVIORNMENT + B U IL T F O RM O P T IM IS A T IO N + N A T U RA L V E N T IL A T IO N + F A C A D E O P T IM IS A T IO N LIGHTING + M A X IM IS E D A YL IG H T IN G + H IG H E M M IS IV IT Y M A T E RIA L S + O RIE N A T A T IO N
H E A T I N G +E N E R G Y PASSIVE + + + +
HIG H P E RF O M A N C E G L A S S IN S U L A T IO N G RE E N H O U S E ? SOLAR VENT
ACTIVE + + + + +
B u il d in g m a te rial s
Desig n
HE A T RE C O V E RY F RO M A P P L IA N C E S IS O L A T E D HE A T IN G G A IN ( RO C K B ED) S O L A R T H E RM A L C O L L E C T O R T A B S S YS T E M P V P A N E L S RO O F A N D F A C A D E
Ener g y Sy stems
U S E R P HAS E SA VI N G E N E R G Y TH E N E W N OR MA L A UTOMA TI ON I N E N E R G Y SA VI N G F OOD F R OM G R E E N H OUSE USE R C ON TR OL* * *
User Phase Z EB COM Cr iter ia
44
ZEBCOM
Construction
Production
PL AY lab | Project Report
Desi gn Co ncept
ZEB COM Requirements A cco rding to t he Ze ro E mi s s i o n B ui ld i n g s ta n d a rd s Z EBCOM is achie ve d whe n th e b ui ld i n g’s re n e wa b le energy pro du ct io n co m pe ns a te s fo r g re e n h o us e ga s emissio ns fro m co nst ru ct io n, o p e ra ti o n a n d p ro d ucti o n of b uilding m ate rials. In t his pro je ct t he goal wa s s et to a ch i e v e a ZEB COM le vel fo r t he bu ilding. Which mea n s us i n g ma te ri a ls a n d systems wit h lo we st GHG e mi s s i o n s . Th i s i s e s p e ci a lly ch allenging give n t he fact th a t th i s wi ll b e a h i gh tec h bu ilding which will cha n ge co n s ta n tly d ue to i ts exp erim e ntal natu re wit h t he te s ti n g un i ts . A ZEBCOM bu ilding ca n b e o b ta i n e d b y a d d i n g more so lar PV pane ls alo ng wi th a n o th e r re n e wa b le energy so u rce , so t he pro du cti o n co mp e n s a te s fo r a ll th e green ho u se gas e m issio ns fro m o p e ra ti o n o f th e b ui ld i n g. Dep en ding o n ho w m u ch e nerg y th e s o urce p ro d uce , a n d how m any phase s o f t he bu ildi n g li fe c y cle i t co mp e n s a te for. It ’s no t ice d in nu m e ro us s tud i e s th a t fo r ma k i n g a zero e m issio n pro je ct su cce ssful i n a p re - p la n n i n g o f th e p roject is cru cial. This no t o n ly re d uce s th e co s t b ut a ls o red uce s u nce rtaint y regardin g co n s tructi o n a n d s y s te ms to b e invo lve d. 45
3
Building Design
AAR 4616 Integrated Energy Design
48
Building D esi gn
PL AY lab | Project Report
I l l u st ra t io n
49
AAR 4616 Integrated Energy Design
C1
St rateg i e s : Bui l d P ha s e Coworking C o n n e c t i v i t y w i t h t h e su r ro u n di n g A c t i v i t y B a se d W o r ki n g F l e x i bl e La yo u t F l e x i bl e E n v e l o pe
50
PL AY lab | Project Report
C onne c t iv it y w ith Sur rounding Building D esi gn
Fro m t he acce sse s to t he s urro un d i n g b ui ld i n gs a n d flux of pe o ple analysis e xplai n e d a t th e b egi n n i n g o f th i s rep or t , t he ne e d fo r t wo diffe re n t a cce s s e s i n o ur p ro j e ct has be e n co nclu de d. The firs t o n e , wi th a mo re o p e n tothe - pu blic characte r has be e n p la ce d o n th e n o rth we s t sid e o f t he plo t , while a m o re re s ea rch - o ri e n te d a cce s s has be e n place d o n t he o ppos i te s i d e . B o t h acce sse s are co nne cte d to th e co v e r b i ke pa rk area, t ransfo rm ing t he alle y th a t wo uld b e fo rme d o n th e bac k o f t he bu ilding into a bea uti ful a tri um wi th a gre e n wall, which plays t he ro le , at th e s a me ti me , o f th e ma i n b uild ing’s acce ss. Du e to t he pro gram sim i la ri ty wi th th e ZEB ’s te s t cell lo cate d o n t he east par t o f th e p lo t , th e d e ci s i o n of conne ct ing o u r bu ilding wi th th i s o n e h a s b e e n d o n e , creating a t hird se co nd acce ss to th e b ui ld i n g f ro m i n s i d e of th e te st ce ll. The su rro u nding area o f th e b ui ld i n g h a s b e e n solved wit h bo t h a landsca p e a n d a h a rd s ca p e wi th d iffere nt fu nct io nal pu rpo ses , wh i ch wi ll b e e x p la i n e d fur the r o n. C o n n ec t iv it y wit h su r ro u n d in g a c t iv it ies
51
AAR 4616 Integrated Energy Design
Bi c y cl e Parking The bic ycle parking area i s lo ca te d o n th e n o rth par t o f t he bu ilding, an area a d j a ce n t to th e A d va n ce d Material and Co m po ne nt La b o ra to r y. I t b e h a v e s a s a connect io n bet we e n re search la b o ra to ri e s a n d a ls o mar k s t he e nt rance to t he ZEB Fle x L a b. The bic ycle parking rack i s a mo d ula r s e mi - v e rti ca l
B i ke Ra ck M o du l e
B i ke Ra ck Ap p l i cat i o n
pa rk i n g un i t d i sta n ce d 3 5 0 m m f ro m ea c h o t h e r m a de o ut o f la mi n a te d w o o d. I t ca n be t ra n sfo r m e d a cco rdi n g to i ts lo ca ti o n o r pl a ce m e n t w i t h t h e u n i t co n n e c te d to a ro o f s y s te m or i n t h i s pro j e c t i t i s m e rge d w i t h w o o de n wa ll fea ture w i t h pl a n t s. T h e g re e n wa l l fea tu re c l ea n s a i r wi th i n th e pa ssa ge wa y a n d pro v i di n g oxyge n to t h e a rea .
G re e n Wal l + Bi ke Rac k
Bike pa r kin g a n d en t ra n ce il l u st ra t io n
52
PL AY lab | Project Report
Building D esi gn
Entrance a b
c d
e
1
2
4
3
First Floor Plan o
53
5
AAR 4616 Integrated Energy Design
a b
c d
e
1
3
2
4
Second floor plan o
54
5
Building D esi gn
PL AY lab | Project Report
Technical Area
Basement floor plan o
55
5
AAR 4616 Integrated Energy Design
F l e xibl e L ay out fo r tea ch i n g, w h i c h sh o u l d be c l o se d w h e n n e e de d. T h e tea ch i n g ro o m ca n be u se d a s a n o f f i ce w h e n n o t u se d fo r s tud y i n g a n d ca n be u se d a s o f f i ce s, m e et i n g ro o m s o r wo rk i n g d e sks o t h e r w i se .
The bu ilding is divide d i n to two zo n e s o n th e f i rs t floor and the second floor play and work zone respectively. T his a nalo gy he lps de fining th e s up e r f le x i b le la y o ut o f th e b u ilding bu t also he lps to d e f i n e ce rta i n b o un d a ri e s regarding a wo rking e nviro nme n t . PL AY The first flo o r o f t he bu i ld i n g i s th e “ p la y ” a rea . I t gets it s nam e du e to t he im ple me n ta ti o n a v e r y f le x i b le activi t y base d wo rkplace lay o ut . Multi p le a cti v i ti e s ca n b e carrie d o u t in re lat io n to th e b ui ld i n g a n d to th e exp erim e nt s taking place he re . Th e furn i ture i s e n ti re ly flexible and can be m o ve d a ro un d a cco rd i n g to th e req uire m e nt o f t he re searches go i n g o n th e te s ti n g ce ll. T he flo o r can be divide d accord i n g to th e a rea wh e re th e res ea rch is taking place and re s p e cti v e o f f i ce s ca n b e ar ran ge d in t he area be hind th e te s t ce ll. WORK The se co nd flo o r o f t he b ui ld i n g i s th e “ wo rk “ a rea th ere is ce rtain rigidit y to t he la y o ut b uy th e mo va b le panels give it an o ppo rtu nit y to o p e n up co mp lete ly a s w ell. The re ne e d a re qu ire m e n t fo r i t to h a v e ce rta i n p la ce s 56
PL AY lab | Project Report
Building D esi gn
Flexible Layout: Full Capacity in Headquarter
57
AAR 4616 Integrated Energy Design
Flexible Layout: Research Mode
58
PL AY lab | Project Report
Building D esi gn
Flexible Layout: Full Capacity in Headquarter
59
AAR 4616 Integrated Energy Design
Flexible Layout: Research Mode
60
Building D esi gn
PL AY lab | Project Report
I n ter io r I l l u st ra t io n
61
AAR 4616 Integrated Energy Design
F l e xibl e Env el ope It is o u r goal to pro vide a f le x i b le e n v e lo p e wh e re not on ly diffe re nt e ne rgy syste ms , b ut a ls o ma te ri a ls a n d energy e qu ipm e nt can be te ste d . A s we have e xplaine d b e fo re , i n o rd e r to a ch i e v e a th erm ally co nt ro lle d e nvelo p e th a t wi ll a llo w us to ach ie ve a m inim ize d e ne rgy co n s ump ti o n , we s h o uld d es ign a part o f t he bu ilding th a t i s a lwa y s f i xe d . Th a t is way it is divide d into th e h ea d q ua rte rs a n d th e p laygro u nd. The se parat io n bet we e n th e f i xe d a n d th e to ta lly flexible part is a do u ble faca d e th a t wi ll a s s ume th e th er mal characte rist ics o f th e b ui ld i n g wh eth e r th e exp erim e nt is o r no t taking pla ce o n th e p la y gro un d a rea . On t he fo llo wing illu s tra ti o n s , i t i s p o s s i b le to obser ve all the multiple possibilities that this experiments can have , alway s re spe ct ing th e li mi ta ti o n s e x p la i n e d b efore in t he “set o f ru le s� ch a p te r. Thu s, in t his playgro u n d , e n d le s s n e s s e x p e ri me n t p os s ibilit ie s can be carrie d o ut , s uch a s te mp o ra r y b uild ings, diffe re nt e nve lop e ma te ri a ls o r e n e rg y p rod u ct io n e qu ipm e nt like wi n d turb i n e s o r P V pa n e ls . 62
Testing materials
Testing area 385 m2
63
Testing energy equipment
Building D esi gn
PL AY lab | Project Report
AAR 4616 Integrated Energy Design
Testing 1 single volume
100 m2
64
Testing 2 volumes
50 m
2
50 m2
65
Building D esi gn
PL AY lab | Project Report
AAR 4616 Integrated Energy Design
C2
C3
St rate g i e s : Bui l d P ha s e
St rateg i e s : Bui l d P ha s e
Ve n ti la ti o n S y s te m H ea ti n g S y s te m En e rgy S up p ly En e rg y P ro d ucti o n
M a te r i a l S e l e c t i o n D a yl i g h t i n g Pa ssi v e S t ra teg i e s T h e r m a l Lo sse s E m i ssi o n B a l a n ce
Computation
Construction
66
PL AY lab | Project Report
The m ate rials have be e n ca re fully s e le cte d th ro ug h a life c y cle asse ssm e nt as we d i d i n th e p re v i o us s e me s te r. T he bu ilding st ru ctu re will u s e CLT fo r wa lls , ro o f a n d floors, whe reas t he fo u ndat ion a n d ba s e me n t wa lls wi ll b e ma de fro m lo w e m issio n co n crete , tr y i n g to mi n i mi ze th e se ct io n o f I t by u sing CLT p i lla rs fo r th e h i g h e r le v e ls .
Fo r th e te c h n i ca l wa l l , t h e tea m h a v e co n si de re d ma n y d i f fe re n t o pt i o n s a n d co m pa re t h e m f ro m a Z E B COM p e rs p e cti v e . T h e m o du l e s n e e d to be m o du l a r, so th e y ca n b e a sse m bl e d a n d pu t o u t ea si l y. H o w e v e r, e mi s s i o n s a re n o t t h e o n l y t h i n g ta ke n i n to, bu t a l so us e r- f ri e n d ly m a te r i a l s, go o d a e st h et i c s a n d e co n o m i c s. Th e re fo re , o th e r m a te r i a l s l i ke E T F E , U- g l a ss o r A l ga e pa n e ls ca n a ls o be pl a ce d o n to t h e fa ça de . Cork Slab (300 kg/m2)
Cork Slab (160 kg/m2)
Cork (board)
Cork (general)
Mineral Wool
R o c k W o o l ( 1 5 0 k g / m 3)
0
To fu lfil ZEB- COM standa rd s , a th i ck i n s ula ti o n la y e r w ill be ne e de d to t he bu ildin g . Th e re fo re , fo llo wi n g th e pas s ive ho u se standard re co mme n d a ti o n s , a n e x te ri o r wall wit h 200m m o f co rk ins ula ti o n o n th e o uts i d e a n d 60mm in t he inside , 100m m CLT s tructure i n th e mi d d le , w ill be ne ce ssar y fo r achie vi n g a 0 . 1 3 W/m²K U - va lue . T his will be sim ilar fo r t he fl o o r; h o we v e r, th e f lo o r wi ll have 280m m o f insu lat io n.
100
50
150
200
250
300
Th i c k n e s s ( m m ) r e q u i r e d f o r U V a l u e o f 0 . 1 5 W / m 2 K
Concrete Steel Brick Timber
Cork Slab (300 kg/m2) Cork Slab (160 kg/m2) Cork (board) Cork (general) Mineral Wool
- 1 0R0o0c k W o0 o l ( 1 15 0 0k0g / m23 )0 0 0 0
3000
4000
5000
6000
7000
8000
9000
10000
11000
12000
1E0m b2o0d i 3e d0 C4a0r b o n ( k g C O 2 e ) p e r m 3 o f m a t e r i a l
E m b o d i e d C a r b o n fo r Bu il d in g Ma ter ia l ( kg CO 2 eq) p er m 3 o f m a ter ia l
Emboedied Carbon (kgCO2e) per m2 of wall
The ro o f has a 260m m co rk i n s ula ti o n o n to p o f a 140 m m CLT e le m e nt , a re co mme n d e d s o luti o n fo r ach ie ving a 0.8 W/m ²K U - valu e . Th e s tructure n e e d s to b e strong to ho ld 15º t ilte d ro of wh i ch mi g h t n e e d to h o ld snow du ring so m e pe rio ds o f th e y ea r.
Cork Slab (300 kg/m2) Cork Slab (160 kg/m2) Cork (board) Cork (general) Mineral Wool
Fo r t he at riu m , we have ch o s e n ETFE fo r i ts lo w car b o n e m issio n, light we ight a n d G - va lue .
R o c k W o o l ( 1 5 0 k g / m 3) -150
-100
-50
0
Sequestered and Emboedied Carbon (kgCO2e) per m2 of wall
50
E m b o died C a r b o n fo r Va r io u s I n su l a t io n ( kg CO 2 eq) p er m 2 o f wa l l
67
Building D esi gn
Material Selection
AAR 4616 Integrated Energy Design
Cross Laminated Timber Construction
Cork Slab Insulation
Ma ter ia l u se in b u il d in g
68
PL AY lab | Project Report
Wood
Algae
Triple Glazing
U-Glass
ETFE
25
17
26
26
26
Building D esi gn
Facade Integration Process
CO2
Score
CO2
U-value
Visibility
Acoustics
Durability
Emissions
Recyclability
Modularity
Costs
Operation
Materials
Construction
Ma ter ia l So l u t io n Ma ter ix fo r So u t h Wa l l
69
AAR 4616 Integrated Energy Design
Passive and Active Strategies and Building Seasonal Mode Summe r Mo d e
we s t , wi ll n o t o v e r h ea t a n d i f pro pe r l y v e n t i l a te d, w i l l b e a f re s h s pa ce w i t h i n do o r pl a n t s t h a t ca n pro v i de t h e b ui ld i n g wi th c l ea n a i r. T h e a c t i v e st ra teg i e s i n su m m e r a re to us e e le c t r i c i t y f ro m t h e so l a r pa n e l s o n t h e ro o f a n d ge o th e rma l f re e co o l i n g fo r v e n t i l a t i o n .
Du ring su m m e r, t he ma i n s tra tegy i s to re d uce over heat ing t hro u gh natu ral v e n ti la ti o n . Th e b ui ld i n g h a s th ree st rategic pillars, t he tech n i ca l wa ll, th e o p e ra b le sk ylight and t he at riu m se pa ra ti n g th e b ui ld i n gs . Th e tec hnical wall will ve nt ilate i ts e lf wi th two o p e n i n g s to th e ex te rio r, o ne o n t he lo wer pa rt , ta k i n g th e f re s h a i r and ano t he r o n t he highe r par t , wh e re th e wa rm a i r wi ll b e relive d to t he o u t side . The wa ll i s 1 . 2 0 m wi d e s o wi ll a ls o actua te like a shading st ru ctu re , h a v i n g th e p o s s i b i li ty o f us ing diffe re nt o pacit y m ate ri a ls o n i ts mo d ule s .
Win ter Mo d e Fo r co ld w i n te rs l i ke t h e o n e i n Tro n dh e i m , i t i s i mp o rta n t to u se t h e co r re c t syste m s n o t to l o se i n te r i o r h ea t a n d ga i n a s m u c h so l a r a s w e ca n . Fo r i n sta n ce , t h e b ui ld i n g i s p rope r l y i n su l a te d w i t h co n t i n u o u s i n su l a t i o n th ro ug h th e en t i re e n v e l o pe , u si n g h i g h pe r fo r m a n ce co mp o n e n ts , l i ke t r i pl e - pa n e d w i n do w s, a i r t i g h t n e ss to p re v e n t i n f i ltra t i o n o f o u t si de a i r a n d l o ss o f co n di t i o n e d a i r, p ro v i d e s ol a r ga i n s spe c i a l l y f ro m t h e so u t h fa รงa de a n d a ba la n ce d v e n t i l a t i o n w i t h e n e rg y re co v e r y syste m s.
The skylight will be u se d a ls o fo r n a tura l v e n ti la ti o n . T he ro o f will have a 50cm o ff s et th a t wi ll h e lp th e a i r to move into it fo r pre ssu re diffe re n ce . Th e o p e n i n g o n th e sid e will de live r t he warm ai r tra n s p o rte d to i t th ro ug h th e ce nt ral space . I t is im porta n t to o p e n th e wi n d o ws , so that it will he lp t he air to f lo w n a tura lly, a n d e v e n th ough t he bu ilding is no t so h i gh fo r h a v i n g a s i gn i f i ca n t stack ve nt ilat io n, it will be e n o ugh fo r b ri n gi n g th e a i r outs ide .
Th e b ui ldi n g w i l l a ga i n re l y o n t h e se t h re e m a i n p i lla rs . Th e s o u t h fa รงa de w i l l be c l o se d so t h a t t h e su n wi ll p ro d uce d i re c t a n d i n di re c t so l a r ga i n s, g i v i n g u s t h e p o s s i b i li ty to u se h i g h h ea t a bso r pt i o n m a te r i a l m o du l e s o n th e i n n e r la ye r, w h i c h w i l l pro v i de t h e r m a l m a ss to t h e b ui ld i n g o r d i re c t g l a z i n g t h a t w i l l br i n g l i g h t a n d so l a r h ea t ga i n s . Wh e n t h e wa r m e r a i r c i rc u l a te s to t h e h i g h e r
The t hird pillar is t he a tri um, wh i ch wi th o ut exp osu re to t he so u t h and m i n i ma l e x p o s ure to ea s t a n d 70
PL AY lab | Project Report
Building D esi gn
par t of t he clo se d te chnical wa ll, i t wi ll b e re co v e re d and bro u ght to t he te chnical ro o m wh e re a ro ta to r y h ea t exch a nge r will re u se it fo r t he v e n ti la ti o n s y s te m. A sim ilar heat re co ve r y s y s te m wi ll b e us e d i n s i d e the bu ilding, Du ring t he wi n te r, th e s k y li gh t wi n d o w w ill be clo se d so t hat t he re a re n o t h ea t lo s s e s a n d th e air w ill circu late to t he highe s t p o i n t o f th e b ui ld i n g , w here t he e xhau st air will be return e d to a ro ta to r y h ea t exch a nge r, su pplie d wit h fre s h a i r i n th e a tri um, a n d reus e d fo r heat ing pro po se s. Th e s k y li gh t wi ll a ls o h e lp the b u ilding to get natu ral ligh t d uri n g wi n te r. Du ring winte r, t he so lar e n e rg y f ro m s o la r pa n e ls wi ll b e reuse d, and t he re t he gro un d s o urce ba s e d h ea t p ump w ill be u se d fo r space heat in g a n d p ro v i d i n g d o me s ti c h ot wate r. An e xt ra su pply o f e le ctri ci ty wi ll b e n e e d e d , w hic h is co nside re d in t he e n e rgy p ro d ucti o n pa rt .
71
AAR 4616 Integrated Energy Design
at r i um ro o f o p e n fo r ai r c i rc ul at i o n
d i f fus e d d ay l i g h t f ro m s k y l i g h t
p o we r ge n e rat i o n f ro m S o l ar Pane l s
o2 in d o o r p l a n t s to c l ea n ind o o r a ir
win d o ws o p en to a l l o w n a tu ra l v en t il a t io n ci rcul ate ai r i ns i d e te c h ni cal wal l to a vo i d o v e r h eat i n g
o2 wi n d o ws o p e n to al l o w n atural v e n t i l at i o n
geo th er ma l fre e co o l i ng th ro u g h h ea t e xh c h an ge r
Su m m er Mo d e
72
PL AY lab | Project Report
o2
f re s h ai r to ro tar y h eat e xc h ange r
spa ce hea t in g fro m ra d ia to r
h i g h s o l ar gai n o n te c h ni cal wal l
in d o o r p l a n t s to c l ea n ind o o r a ir
o2
d i s p l ace m e n t v e n t i l at i o n
di str i ct h ea ti n g
geo th er ma l h eat i n g fo r do mesti c h o t war te r and spa ce h eat i ng
W in ter Mo d e
73
Building D esi gn
d i f fus e d d ay l i g h t f ro m s k y l i g h t
a ir ex t ra c t io n a n d hea t re co v er y system
AAR 4616 Integrated Energy Design
Energy Supply Th e p ro ce ss to a c h i e v i n g a Z E B - co m bu i l di n g i s n o t ea s y, a n d w e h a v e a sse sse d se v e ra l a l te r n a t i v e s a n a lyzi n g ma n y o pt i o n s. Th e ca lc u l a t i o n sta r te d w i t h u si n g t h e fo l l o w i n g pa ra mete rs : 1 K g CO 2 e q/ yea r fo r co n st r u c t i o n e m i ssi o n s, 4 K gCO2 e q /y ea r fo r m a te r i a l e m i ssi o n a n d w e ca l c u l a te d th e o p e ra ti o n e m i ssi o n s w i t h di f fe re n t o pt i o n s fo r so l a r pa n e ls . Af te r wa rds, w e de c i de d to m a ke a pro pe r LC A fo r th e b ui ld i n g , f ro m bo t h w i t h ca r bo n se qu e st ra t i o n a n d wi th o ut ca r bo n se qu e st ra t i o n , a n d w e a ssu m e d t h e wo rs t o n e , wi t h o u t ca r bo n se qu e st ra t i o n . Wh e n ca l c u l a t i n g t h e m a te r i a l e m i ssi o n s f ro m t h e s o la r pa n e ls , w e sa w t h a t t h e e m i ssi o n s a re e x t re m e l y h i g h , fo r th a t w e t r i e d a n o pt i o n w i t h o u t so l a r pa n e l s a n d a n o th e r w i t h o n l y t h e so u t h o r i e n te d o n e s, a n d n e v e rth e le s s t h e e m i ssi o n s w h e re so h i g h , t h e so l a r e n e rgy p ro d uc t i o n wa s m o re n e ce ssa r y. T h e n u m be rs ch o s e n fo r con si de r i n g e m i ssi o n s fo r so l a r pa n e l s ( A 1 A 3 ) a re 9 0 - 1 2 0 kg CO 2 / m ² . Fo r h ea ti n g a n d co o l i n g w e t r i e d di f fe re n t o pt i o n s b etwe e n d i s tr i c t h ea t i n g a n d t h e g ro u n d ba se d h ea t p ump (COP = 3 , a i r to wa te r 3 5 ºC / 2 8 º) , u n t i l w e a r r i v e d 74
PL AY lab | Project Report
Gro u nd So u rce d Heat Pu m p
Di s tri c H ea ti n g N etwo rk
Ele ctri ci ty
S pace Heat ing
90 %
10 %
10 %
Do m e st ic Ho t Wate r
90 %
10 %
10 %
Ve nt ilat io n Heat ing
100 %
-
-
Ve nt ilat io n Co o ling
100 %
-
-
S pace Co o ling
100 %
-
-
Building D esi gn
to th e m o st e fficie nt o pt io n , co n s i d e ri n g a ls o th e CO2 emissio ns o f t he Dist rict H ea ti n g p la n t i n H e i md a l (150gCO2/kWh) . Fo r e le ct ricit y de m an d , wh e n we n e e d mo re electricit y t hat what t he so l a r pa n e ls ca n p ro v i d e , we cons ide re d u sing dire ct e le ctri ci ty a n d B i o ma s s , a n d n o n w ith standing t he fact t hat t h e B i o ma s s i s b ette r i n te rms of CO2 e m issio ns, it has also a h i gh e r p ri ce a n d i t n e e d s more space te chnical o pe rat i o n .
En erg y Co v era ge b y d ifferen t En erg y Su p p l y
75
AAR 4616 Integrated Energy Design
HVAC System The bu ilding will be hea te d th ro ug h a i r d e li v e re d from ve nt ilat io n syste m co m b i n e d wi th ra d i a to rs a lo n g th e amphit heat re An air displace m e nt s y s te m s up p ly th ro ugh a d iffuse r will de live r air alo ng th e f lo o r i n a th i n la y e r o f 160mm in he ight . The su pply a i r s p rea d s a cro s s th e a i r d uc ts o n t he flo o r. The du ct s h a v e b e e n d i me n s i o n e d a n d d ivid ed t hro u gh 3 sy ste m s, on e a lo n g th e n o rth e rn a rea
o f th e o p e n o f f i ce spa ce a n d t w o m o re o f sym m et r i ca l p ro p o rti o n s b u t o n so u t h - w e st a n d so u t h - ea st si de s o f th e b ui ld i n g , w i t h t h e pro po se o f t r yi n g di f fe re n t te mp e ra ture s a n d h a v i n g t h e po ssi bi l i t y o f di sco n n e c t i n g s o me o f th e m , fo r e xa m pl e t h e so u t h e r n o n e s a n d ke e p i n g th e n o r t h e r o n e o n w h e n so l a r ga i n s pro v i de s th e s o uth e rn s pa ce w i t h so l a r h ea t i n g . S i n ce th e pro po se o f t h e te c h n i ca l wa l l i s g i v i n g t h e
Supply air system technical wall
Fan coil unit north sector
Fan coil units west sector
Return air system technical wall
Displacement air supply amphitheatre
Air handling unit Split system
Fan coil units east sector
Displacement air supply register (150x100mm)
Ven t il a t io n system d ia g ra m
76
p os s ibilit y o f te st ing diffe re n t s y s te ms , a n o th e r s y s te m, w ith air su pply and air return , wi ll b e p re pa re d i n s i d e th e te chnical wall, so t hat it i s p o s s i b le to co n n e ct i t a n d d isco nne ct it easily fo r t he re q ui re d te s ti n g . A ll t he du ct s are co m in g f ro m th e te ch n i ca l ro o m on the base m e nt , whe re t he h ea t p ump wi ll p ro v i d e us w ith the ne ce ssar y heat , u si n g th e te ch n i ca l wa ll a s a conne ct io n wit h t he flo o rs. A i r s up p ly regi s te rs h a v e
b e e n a ls o p la ce d o n t h e ce n t re o f t h e a m ph i t h ea t re , h e lp i n g th e e x h a u st a i r go i n g t h ro u g h t h e o pe n spa ce to th e up p e r f lo or. Th e ba s e boa rd ra di a to rs o n t h e ce n t ra l co re o f t h e b ui ld i n g a n d on t h e se r v i ce s ro o m s co m bi n e d pe r fe c t l y wi th d i s p la ce m e n t v e n t i l a t i o n u si n g a n u n de rg ro u n d h ea t p ump.
Radiation system on services rooms|
Underground based Heat pump 3 COP air to water 35°C / 28 °C
Baseboard radiatior for central core of the building
Spa ce hea t in g a n d co o l in g d ia g ra m
77
Building D esi gn
PL AY lab | Project Report
AAR 4616 Integrated Energy Design
Daylighting A cco rding to t he No r weg i a n B ui ld i n g Co d e , th e req uire m e nt s fo r t he m ean D a y li g h t Fa cto r i n ro o ms for p erm ane nt stay m u st be e q ua l o r h i gh e r th a n 2 %. H ow e ve r, EU standards set t h i s re co mme n d a ti o n to e q ua l or h ighe r t han 5% whe n e le ct ri ca l li gh t i s n o t n o rma lly to b e use d and 2% fo r t he re st o f ca s e s . Th i s Fle x L a b h a s
b e e n d e s i gn e d a cco rdi n g to t h i s pre re qu i si te s, a c h i e v i n g a mea n D F o f 2 . 8 % fo r t h e f i rst f l o o r a n d 5 . 8 % i n t h e s e co n d o n e , a l l o w i n g u s to sa v e a si g n i f i ca n t a m o u n t o f e le ctri ci ty.
D ay l i g h t i n g F i rs t F l o o r
Da yl ig ht in g Seco n d Fl o o r
78
A NALYSIS Daylit Area
F I RST F LOOR
S E CO N D F LO O R
75 % of the room area
98 % of the room area
2.8 %
5.8 %
Mean Daylight Fa ctor Minim um Dayl igh t Fa ctor of 2 % Mean Daylight Au ton om y Cont inuous Day ligh t Au ton om y
66 % of all illuminance sensors
90 % of all illuminance sensors
57 % for active occupant behaviour
70 % for active occupant behaviour
69 % for active occupant behaviour
77 % for active occupant behaviour
30 % of floor area
73 % of floor area
31 % of occupied hours
23 % of occupied hours
Useful Dayligh t I llu m in a n ce
( 1 0 0 < UD I < 2 0 0 lux larger th an 5 0 % )
E st im at ion of a r t if icia l ligh t in g u se ( A cco rd in g to co n ti nuo us D ay li gh t Auto no m y)
Da yl ig ht in g Resu l t
79
Building D esi gn
PL AY lab | Project Report
AAR 4616 Integrated Energy Design
Energy Budget H a v i n g co n si de re d a l l t h e i m po r ta n t fa c t s fo r re d uci n g th e e n e rg y de m a n d fo r t h e bu i l di n g a s m u c h a s p o s s i b le , th e resu l t s sh o w t h a t by u si n g pro pe r i n su l a t i o n , a CAV v e n ti la t i o n syste m n o t o v e r di m e n si o n e d a n d we ll co n tro lle d, co u pl e d by t h e e sse n t i a l u se o f n a tu ra l v e n ti la ti o n , we ca n a ssu m e pa ra m ete rs o f 7 m ³ / h m² fo r s up p ly a i r d uri n g o pe ra t i o n h o u rs a n d 1 m ³ / h m² o u t si de o p e ra ti n g h o urs fo r v e n t i l a t i o n . Fo r th e li g h t n i n g syste m , t h e bu i l di n g w i l l u se Po E L ED li gh ti n g (li g h t o v e r t h e E t h e r n et ) w i t h 4 . 5 W/ m ² po w e r d e ma n d , th i s P O E syste m s, i n teg ra te s i n te r n et ca bl e s fo r li g h ti n g, b e ca u se n o w a da ys l i g h t l o w e r co n su m pt i o n b ulb us d o e s n o t n e e d o l d e l e c t r i c ca bl e s, E t h e r n et ca b le s wi ll p rov i de i t m u c h m o re e f f i c i e n t l y, a n d a t t h e s a me ti me , s i n ce i t i s a bo t h wa ys ca bl e , i t w i l l retu r n th e d a ta e x tra c te d f ro m t h e m o v e m e n t , te m pe ra tu re a n d CO2 s e n s o rs pl a ce d a l l o v e r t h e bu i l di n g fo r a sm a r te r co n tro l. U s i n g th i s pa ra m ete rs, t h e e n e rg y bu dget o f th e b ui ld i n g i s 6 1 . 8 kW h / m ² , fa r f ro m 1 2 5 kW h / m ² re q ui re me n ts fo r u n i v e rsi t y bu i l di n g s. T h e e n e rg y n e e d i s p retty e v e n l y di v i de d, w h e re ro o m h ea t i n g h a s t h e h i g h e s t n e e d s ( 2 5 . 5 % ) , h o w e v e r, te c h n i ca l e qu i pm e n t (2 1 . 6 %) a n d li g h t i n g ( 1 9 . 4 % ) a re fo l l o w i n g f ro m c l o se .
Total energy budget: 61.8 kWh/m²
E n e rg y Bud get
80
PL AY lab | Project Report
Energy Demand vs. Delivered Energy
Th e a i m o f t h e pro j e c t i s to a c h i e v e a Ze ro E m i ssi o n B ui ld i n g th a t ba l a n ce s u se r n e e ds w i t h re n e wa l e n e rg y p ro d ucti o n . A to ta l o f 6 3 1 m² su r fa ce o f so l a r pa n e l s wi ll b e us e d to su ppl y 6 5 % o f t h e e l e c t r i c i t y n e e d, th e re ma i n i n g 3 5 % w i l l be co v e re d e i t h e r f ro m di re c t e le ctri ci ty (n o t 1 0 0 % ) o r a bi o m a ss bo i l e r. W h i l e t h e b ui ld i n g wi ll a l so e x t ra c t h ea t f ro m a g ro u n d so u rce h ea t p ump a n d wi l l u se a pe rce n ta ge o f di st r i c t h ea t i n g fo r p ea k h ea ti n g d e m a n ds. Ev e n th ou g h t h e e l e c t r i c i t y de l i v e re d to t h e so l a r pa n e ls to th e b u i l di n g , i t ’s o n l y t h e 6 5 % o f t h e e l e c t r i c i t y n e e d s , th e to ta l pro du c t i o n o f t h e m i s m u c h h i g h e r (1 0 7 , 4 5 1 k Wh /y ea r ) , bu t m o st o f i t w i l l be e x po r te d to t h e g ri d . Th e ma j or i t y o f t h e so l a r pa n e l s w i l l be pl a ce d o n th e 1 5 º ti lte d ro o f o r i e n te d to wa rds so u t h ( 3 5 0 m² ) , bu t a ls o 2 3 5 m ² wi l l be pl a ce d 3 º to wa rds ea st , 2 6 m ² w i l l be p la ce d s o uth , w i t h i n a 4 5 º i n c l i n a t i o n a n g l e , a n d 2 0 m² o n th e s o uth fa ça de .
[kWh] 10000 5000 0 -5000 -10000 -15000 -20000
Electricity from Mar Apr May Jun Julther source Aug Sep Electricity from 34 % solar panels Energy demand from building 66to %building El. delivered from solar panels El. delivered from Direct electricity
Jan
Feb
Oct
Nov
Des
E l e c t r i c i t y D e m an d an d S up p l y Monthly Energy Demand for Specific Electricity
3090
3190
2990
3400
3300
3190
3350
3350
3350
3350
3200
3350
3450
2060 1030 0
Jan
Feb
Fan
Mar
Apr
Pump
Mai
Jun
Jul
Lighting
Aug
Sep
Okt
Nov
Des
Technical Equipment
E l e c t r i c i t y S p e c i f i c D e m and
81
Building D esi gn
Renewable Energy Production
AAR 4616 Integrated Energy Design
Energy requirements electricity / Energy production solar panels [kWh] 10000 5000 0 -5000 -10000
S o l ar Pane l s I n s tal l at i o n Lo cat i o n
-15000
So u t h ( 15 deg re e ) So u t h East ( 45 deg re e ) East ( 3% inclina ti o n )
350 m
2
-20000
26 m2 235 m
20 m2
TOTA L
631 m2
Feb
Mar
Apr
May
Jun
Energy demand from building El. delivered from solar panels to building El. exported from solar panels to the grid
2
So u t h ( 90 deg re e )
Jan
S o l ar Pan e l s Area
Jul
Aug
Sep
Oct
Nov
Des
Total production: 107,451 kWh
El ec t r ic it y gen era t io n fro m So l a r Pa n el s
82
PL AY lab | Project Report
P V pa n e ls h a ve a g rea t i m pa c t i n t h e e m i ssi o n ba l a n ce . A lth o ug h th e PV pa n e l s h a v e h i g h e m i ssi o n i n t h e m a te r i a l p ro d ucti o n , d u r i n g t h e o pe ra t i o n pe r i o d, w i t h m a x i m u m a n d o p ti mum pl a ce m e n t o f t h e pa n e l s, i t a l l o w s a l a rge a mo un t o f e n e rg y pro du c t i o n , i n w h i c h a l a rge su m o f i t i s e x p o rte d th e g r i d t h u s c rea t i n g a n ega t i v e va l u e i n t h e e mi s s i o n . Th i s a l so o cc u rs w h e n t h e m a te r i a l e m i ssi o n ta ke s i n to a ccou n t t h e ca r bo n se qu e st ra t i o n . C o m pa r i n g th e us e d i re c t e l e c t r i c i t y a n d bi o m a ss bo i l e r, u si n g b i o ma s s b o i le r g i v e s a bet te r e m i ssi o n ba l a n ce . H o w e v e r, i f ta ke n i n to a cco u n t m a i n te n a n ce a n d co st u si n g e le ctri ci ty i s ch ea pe r a n d l e ss m a i n te n a n ce n e e de d.
To asse ss t he e m i s s i o n ba la n ce , d i f fe re n t cond i t io ns o f t he bu ilding en e rg y s o luti o n i s a n a lyze d . For the co nst ru ct io n phase , 1 kg CO2 e q / m2 i s us e d a s the em issio n facto r. The m a te ri a l p ro d ucti o n e mi s s i o n is cal cu late d in t wo diffe re nt meth o d s . Th e f i rs t meth o d uses 4 kg CO2 e q/ m 2 fo r m a te ri a l p ro d ucti o n e mi s s i o n fac tor, and t he se co nd m eth o d us e s th e d eta i le d LCA meth od. The bo u ndar y fo r t he LCA i s o n ly A 1 - A 3 , B 4 i s n o t inc lude d in t he LCA calcu lat i o n , h o we v e r, th e li feti me i s calc ulate d fo r 25 years and t h e n d i v i d e d b y th i s li fe ti me to calcu late t he e m issio n pe r y ea r. Th e e mi s s i o n f ro m the ope rat io n is de rive d fro m S I MI EN y ea rly s i mula ti o n . Diffe re nt bu ilding e ne rg y co n d i ti o n th a t i s a n a lyze d inc lude s re ne wable e ne rgy wi th o ut P V pa n e ls , re n e wa b le energy wit h o pt im u m PV pa n e ls p la ce me n t , re n e wa b le energy wit h m axim u m PV pan e ls p la ce me n t , ca lcula ti o n of mate rials e m issio n wit h 4 kg CO2 e q / m2 e mi s s i o n fac tor, and calcu lat io n o f m a te ri a ls e mi s s i o n wi th LCA meth od bo t h wit h carbo n se q ue s tra ti o n a n d n o ca rb o n s eq ue st rat io n. By co m paring t he re su l ts o f th e e mi s s i o n ba la n ce b etw e e n diffe re nt e ne rgy s o luti o n , th e meth o d o f calc ulat ing t he m ate rial e m iss i o n a n d th e i n s ta lla ti o n o f 83
Building D esi gn
ZEB Emission Balance
AAR 4616 Integrated Energy Design
10000
Em issio n fro m M ate rial
E m i s s i o n - k g C O 2e q / y e a r
5000
0
-5000
-10000
-15000
Re ne wable Ene rgy S upply & Ene rgy Pro du ct io n
-20000 4 k g C O 2e q Material Emission Factor
4 k g C O 2e q Material Emission Factor without PV Panels
Without Carbon sequestration
With Carbon Sequestration
Operation Emission
Construction Emission
Less PV Panels
Without PV Panels
WIthout District Heating, with Biomass Boiler
Material Production Emission
Em issio n p er yea r fo r d ifferen t co n d it io n
84
PL AY lab | Project Report
12
E m i s s i o n - k g C O 2e q / y e a r / m 2
Building D esi gn
10.60
9
6 4.58
3
0 -1.98
-2.7
-3.66
-3
-6 -8.19 -9 -12.49
-12
-15 4 k g C O 2e q Material Emission Factor
4 k g C O 2e q Material Emission Factor without PV Panels
Without Carbon seques -tration
With Carbon Seques -tration
Less PV Panels
Without PV with BioPanels mass Boiler
Em issio n ba l a n ce p er yea r p er m 2 fo r d ifferen t co n d it io n
85
AAR 4616 Integrated Energy Design
References Varu n, Bhat , I ., & Praka s h , R. (2 0 0 9 ). LCA o f re n e wa b le e n e rgy fo r e l e c t r i c i t y ge n e ra t i o n syste m s — A re v i e w. Rene wable and Su stainable E n e rg y Re v i e ws , 1 3 (5 ), 1 0 6 7 – 1 0 7 3 . Fu fa, S. M., Schlanbu sch , R. D . , S ø rn e s , K . , I n ma n , M. , & A n d re s e n , I . (2 0 1 6 ) . A N o r w eg i a n Z E B D e f i n i t i o n G u i de l i n e . N or way : SI NTEF Acade m ic Pre s s . Lo baccaro, G., Carlu cci, S . , Cro ce , S . , Pa pa re lla , R. , & Fi n o cch i a ro, L . ( 2 0 1 7 ) . B o o st i n g so l a r a cce ssi bi l i t y a n d p otent ial o f u rban dist rict s in th e N o rd i c cli ma te : A ca s e s tud y i n Tro n d h e i m . S o l a r E n e rg y, 3 4 7 – 3 6 9 . Bu ll, J. ( 2011, April 8) . E mb o d i e d Ca rb o n o f I n s ula ti o n . Retri e v e d N o v e m be r 2 8 , 2 0 1 7 , f ro m h t t p: / / w w w. g re e n spe c . co.uk /: ht t p://www.gre e nspe c.co. uk /b ui ld i n g- d e s i gn /e mb o d i e d - ca rb o n - o f- i n su l a t i o n / Standard No rge . ( 2012). N S 3 7 0 1 - K ri te ri e r fo r pa s s i v h us o g la v e rn e rg i byg n i n ge r - yr ke sbyg n i n ge r. N o r wa y: S tandard No rge . Dire kto ratet fo r Byggkva li tet . (2 0 1 7 ). By ggte k n i s k fo rs k ri f t , TEK 1 7 . N o r wa y: D i re kto ra tet fo r Byg g kva l i tet . Lave ne rgipro gram m et . (2 0 1 7 , Octo b e r 4 ). Dette e r e n e rg i k ra v e n e i byg g te kn i sk fo rskr i f t ( T E K 1 7 ) . Ret r i e v e d Decem be r 4, 2017, fro m Laven e rgi p ro g ra mmet : h ttp : //la v e n e rg i p ro gra mmet . n o /a ktu e l t / n ye - e n e rg i kra v - i - byg g te kn i skfors k rift / Alte r, L. ( 2008, Fe bru ar y 1 3 ). D e s i gn i n g wi th Ca rb o n Di ox i d e . Retri e v ed N o v e m be r 2 8 , 2 0 1 7 , f ro m t re e h u g ge r S us ta inabilit y Made Sim ple : h ttp s : //www.tre e h ugge r.co m/gre e n - a rch i te cture /de si g n i n g - w i t h - ca r bo n - di ox i de . h t m l Le e sm an I nde x. ( 2016) . A cti v i ty B a s e d Wo rk i n g Th e ri s e a n d ri s e o f A B W : Re sh a pi n g t h e ph ysi ca l , v i r tu a l a n d b ehavio u ral wo rkspace . Lo nd o n : Le e s ma n .
86
PL AY lab | Project Report
87
Fa culty o f A rch i te cture a n d De si g n S us ta i n a b le A rch i te ctu re Autumn 2 0 1 7