LTE LONG TERM EVOLUTION
Contents
Contents
Evolution of Cellular Networks 1G (First Generation)
AMPS Advanced Mobile Telephone System
TACS Total Access Communications System
ETACS Extended Total Access Communication System
2G (Second Generation)
GSM Global System for Mobile communications
CDMA One (IS-95)
3G (Third Generation)
UMTS WCDMA
CDMA2000
Digital - Advanced Mobile Phone System Based on IS-136
Other
LTE Advanced
TD-SCDMA
Code Division Multiple Access Based on IS-95
DAMPS(IS-136)
4G (Fourth Generation)
WiMAX
UMB EV-DO Rev C
WiMAX 802.16m
3GPP Evolution : Before LTE
3GPP Evolution : From LTE to LTEA/B/C Performance
LTE-C (Optimized diverse service support)
LTE-B LTE-A (4G certif., 1Gpbs DL Peak .)
(Capacity Boosting)
LTE Fundamental
OFDMA, MIMO Small Cell
HomoNet 2005~2007
CA, CoMP HO MIMO, eICIC
HetNet 2008~2012
10xSmall Cell Per Macro, 256QAM
50xSmall Cell Per Macro,
Fusion-Net 2013~2016
2017~2020
3GPP Time
LTE Technical Objectives LTE Requirements from ITU
LTE Technical Features from 3GPP
Flexible bandwidth
1.4MHz, 3MHz, 5MHz, 10Mhz, 15Mhz, 20MHz
Higher spectrum efficiency
DL: 5(bit/s)/Hz, 3~4 times than R6HSDPA UL: 2.5(bit/s)/Hz, 2~3 times than R6HSDPA
3GPP creates a new generation of wireless communication systems, with Control plane:< 100ms, User plane: wireless access capabilities beyond Control plane:< 100ms, User plane: < 10ms < 10ms LTE Technical Objectives existing network, fully support highShall support Shall support high speed vehicular(>350km/h) performance data services, and stationary/pedestrian/vehicular/hi for 100kbps access service. gh speed vehicular leading the next 10 years. Higher peak throughput (@20MHz) DL:100Mbps, UL: 50Mbps DL:100Mbps, UL: 50Mbps
Support inter-system handover VoIP Capacity Decrease network evolution cost Reduce CAPEX and OPEX
Support interoperability between 3GPP existed and non-3GPP Remove CS domain, CS service realized in PS domain which can support multiple service, especially voice service (such as VoIP). Remove BSC/RNC SON
Contents
EPS Network Architecture
EPS Network Architecture --2G/3G Co-existence Gb
SGSN
HSS
PCRF SWx
GERAN Iu S3
S4 S6a
Gxa
Rx Gxc
S12
MME S11
UTRAN
Gxb
Gx
S5
S1-C
SGi
S1-U E-UTRAN
SGW S2a SWn
Trusted non 3GPP IP Access
Un-trusted non 3GPP IP Access STa
PDN-GW S6b S2b SWa
ePDG
3GPP-AAA
Operatorâ&#x20AC;&#x2122;s IP Service
UE Related Information
Functions of EPC Main Elements
Contents
E-UTRAN Protocol Stackâ&#x20AC;&#x201C;Uu Interface
Contents
Principles of OFDM
Division Multiplexing Overview
OFDM Overview
IFFT Realization of OFDM
FFT Realization of OFDM
Advantage 1 of OFDM: High Spectral Efficiency
Advantage 2 of OFDM: Effectively Withstand Multi-Path
Cyclic Prefix
Advantage 3 of OFDM: Resistant to Frequency Selection Fading
Disadvantage 1 of OFDM: Vulnerable to Frequency Offset
Disadvantage 2 of OFDM: High PAPR
OFDM Advantages and Disadvantages
Contents
Multiple Access Technology: Distinguishing Users
From FDM/FDMA to OFDM/OFDMA
LTE DL Multiple Access Technology â&#x20AC;&#x201D; OFDMA
LTE UL Multiple Access Technology â&#x20AC;&#x201D; SC-FDMA
OFDMA Vs SC-FDMA
SC-FDMA Subcarrier Mapping Concept
SC-FDMA Signal Generation N symbols sequence produces N subcarriers
DFT Output
First N Symbols DFT Modulated and Coded Symbols Second N Symbols DFT
Different input sequence produces different output
SC-FDMA and the eNB
Contents
LTE Release 9 FDD/TDD Frequency Band E-UTRA Operating Band 1 2 3 4 5 6 7 8 9 10 11 12 13 14 … 17 18 19 20 21 … 33 34 35 36 37 38 39 40
Downlink
Uplink
Duplex
Rang of NDL
FUL_low [MHz]
NOffs-UL
Range of NUL
0 600 1200 1950 2400 2650 2750 3450 3800 4150 4750 5010 5180 5280
0 – 599 600 - 1199 1200 – 1949 1950 – 2399 2400 – 2649 2650 – 2749 2750 – 3449 3450 – 3799 3800 – 4149 4150 – 4749 4750 – 4949 5010 – 5179 5180 – 5279 5280 – 5379
1920 1850 1710 1710 824 830 2500 880 1749.9 1710 1427.9 699 777 788
18000 18600 19200 19950 20400 20650 20750 21450 21800 22150 22750 23010 23180 23280
18000 – 18599 18600 – 19199 19200 – 19949 19950 – 20399 20400 – 20649 20650 – 20749 20750 – 21449 21450 – 21799 21800 – 22149 22150 – 22749 22750 – 22949 23010 – 23179 23180 – 23279 23280 – 23379
734 860 875 791 1495.9
5730 5850 6000 6150 6450
5730 – 5849 5850 – 5999 6000 – 6149 6150 - 6449 6450 – 6599
704 815 830 832 1447.9
23730 23850 24000 24150 24450
23730 – 23849 23850 – 23999 24000 – 24149 24150 - 24449 24450 – 24599
FDD FDD FDD FDD FDD FDD FDD FDD FDD FDD FDD FDD FDD FDD FDD FDD FDD FDD FDD FDD
1900 2010 1850 1930 1910 2570 1880 2300
36000 36200 36350 36950 37550 37750 38250 38650
36000 – 36199 36200 – 36349 36350 – 36949 36950 – 37549 37550 – 37749 37750 – 38249 38250 – 38649 38650 – 39649
1900 2010 1850 1930 1910 2570 1880 2300
36000 36200 36350 36950 37550 37750 38250 38650
36000 – 36199 36200 – 36349 36350 – 36949 36950 – 37549 37550 – 37749 37750 – 38249 38250 – 38649 38650 – 39649
TDD TDD TDD TDD TDD TDD TDD TDD
FDL_low [MHz] 2110 1930 1805 2110 869 875 2620 925 1844.9 2110 1475.9 729 746 758
NOffs-DL
EARFCN Calculation
Example
Contents
LTE Frame Structure Type1-FDD
CP(Cyclic Prefix)
LTE Physical Resource Concept
Resource Grid Structure
Relationship between Channel BW and RB
Contents
Location of LTE Physical Channels
Path de Cursos E&S Global
Path de Certificaciones
Prรณximos Cursos