Spsschap12

Page 1

‫<‬

‫]‪†Â<êÞ^nÖ]<Ø’ËÖ‬‬

‫‪Ù]<…]‚©÷]<tƒ^´<Øé× ‬خ‪3ê‬‬

‫‪Linear Regression Analysis‬‬

‫‪ .1 .12‬ﻣﻘﺪﻣﺔ‬ ‫‪ .1 .1 .12‬اﻻﻧﺤﺪار اﻟﺨﻄﻲ اﻟﺒﺴﻴﻂ )ﺑﻴﻦ ﻣﺘﻐﻴﺮﻳﻦ(‬ ‫‪ .2 .1 .12‬اﻻﻧﺤﺪار اﻟﻤﺘﻌﺪد‬ ‫‪ .3 .1 .12‬اﻟﺒﻮاﻗﻲ )اﻷﺧﻄﺎء(‬ ‫‪ .4 .1 .12‬ﻣﻌﺎﻣﻞ اﻻرﺗﺒﺎط اﻟﻤﺘﻌﺪد‬ ‫‪ .5 .1 .12‬ﻓﺘﺢ ﻧﺎﻓﺬة ﺗﺤﻠﻴﻞ اﻻﻧﺤﺪار اﻟﺨﻄﻲ‬ ‫‪ .2 .12‬اﻻﻧﺤﺪار اﻟﺨﻄﻲ اﻟﺒﺴﻴﻂ‬ ‫‪ .3 .12‬اﻻﻧﺤﺪار اﻟﻤﺘﻌﺪد‬ ‫‪ .4 .12‬ﺷﻜﻞ اﻻﻧﺘﺸﺎر وﺧﻂ اﻻﻧﺤﺪار‬


‫)‪ (12‬ﺘﺤﻠﻴل ﻨﻤﺎﺫﺝ ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﺨﻁﻲ‬

‫‪402‬‬


‫)‪ (12‬ﺘﺤﻠﻴل ﻨﻤﺎﺫﺝ ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﺨﻁﻲ‬

‫‪403‬‬

‫]‪†Â<êÞ^nÖ]<Ø’ËÖ‬‬ ‫‪Ù]<…]‚©÷]<tƒ^´<Øé× ‬خ‪ê‬‬ ‫‪Linear Regression Analysis‬‬ ‫‪ .1 .12‬ﻣﻘﺪﻣﺔ‪:‬‬ ‫ﺘﺤﺩﺜﻨﺎ ﻓﻲ ﺍﻟﻔﺼل ﺍﻟﺴﺎﺒﻕ ﻋﻥ ﻤﻘﺎﻴﻴﺱ ﺍﻻﺭﺘﺒﺎﻁ ﻭﻗﺩ ﻋﺎﻟﺠﻨﺎ ﺒﺎﻟﺘﻔﺼﻴل‬

‫ﺍﺴﺘﺨﺩﺍﻤﺎﺕ ﻤﻌﺎﻤل ﺍﺭﺘﺒﺎﻁ ﺒﻴﺭﺴﻭﻥ ﻟﻘﻴﺎﺱ ﻗﻭﺓ ﺍﻟﻌﻼﻗﺔ ﺒﻴﻥ ﺍﻟﻤﺘﻐﻴﺭﺍﺕ ﺍﻟﻜﻤﻴﺔ‬ ‫ﺍﻟﻘﻴﺎﺴﻴﺔ‪ ،‬ﻭﻟﻜﻥ ﻫﻨﺎﻙ ﻭﺠﻪ ﺁﺨﺭ ﻟﻠﻌﻤل ﻫﻨﺎ‪ ،‬ﻓﻌﻨﺩﻤﺎ ﻨﻌﻠﻡ ﺒﻭﺠﻭﺩ ﻋﻼﻗﺔ ﻗﻭﻴﺔ ﺒﻴﻥ‬ ‫ﻤﺘﻐﻴﺭﻴﻥ ﺃﻭ ﺃﻜﺜﺭ ﻻﺒﺩ ﻤﻥ ﻤﺤﺎﻭﻟﺔ ﻤﻌﺭﻓﺔ ﻁﺒﻴﻌﺔ ﺘﻠﻙ ﺍﻟﻌﻼﻗﺔ ﺒﺎﻟﺘﺤﺩﻴﺩ‪ ،‬ﻓﺄﺴﻠﻭﺏ‬

‫ﺍﻻﻨﺤﺩﺍﺭ ‪ Regression‬ﻴﻬﺘﻡ ﺒﻤﺤﺎﻭﻟﺔ ﺘﺤﺩﻴﺩ ﻁﺒﻴﻌﺔ ﺍﻟﻌﻼﻗﺔ ﺒﻴﻥ ﺍﻟﻤﺘﻐﻴﺭﺍﺕ ﻭﺍﺴﺘﺨﺩﺍﻡ‬

‫ﺘﻠﻙ ﺍﻟﻌﻼﻗﺔ ﻓﻲ ﺍﻟﺘﻨﺒﺅ ﺒﻘﻴﻡ ﻤﺘﻐﻴﺭ ﻤﺎ )ﻭﻴﻁﻠﻕ ﻋﻠﻴﻪ ﺍﻟﻤﺘﻐﻴﺭ ﺍﻟﺘﺎﺒﻊ ‪Dependent‬‬

‫‪ (Variable‬ﺇﺫﺍ ﻋﻠﻤﺕ ﻗﻴﻤﺔ ﺍﻟﻤﺘﻐﻴﺭ )ﺃﻭ ﺍﻟﻤﺘﻐﻴﺭﺍﺕ( ﺍﻵﺨﺭ )ﻭﻴﻁﻠﻕ ﻋﻠﻰ ﻫﺫﻩ‬ ‫ﺍﻟﻤﺘﻐﻴﺭﺍﺕ ﻤﺘﻐﻴﺭﺍﺕ ﻤﺴﺘﻘﻠﺔ ‪ ،(Independent Variables‬ﻭﻫﺫﺍ ﺍﻟﻔﺼل ﻴﻬﺘﻡ ﺒﻤﻌﺎﻟﺠﺔ‬

‫ﺍﺴﺘﺨﺩﺍﻡ ﻨﻅﺎﻡ ‪ SPSS‬ﻓﻲ ﺘﺤﻠﻴل ﺍﻟﻌﻼﻗﺎﺕ ﺒﻴﻥ ﺍﻟﻅﻭﺍﻫﺭ ﺍﻟﻜﻤﻴﺔ ﺒﺎﺴﺘﺨﺩﺍﻡ ﻨﻤﺎﺫﺝ‬ ‫ﺍﻻﻨﺤﺩﺍﺭ ‪.Regression Models‬‬

‫ﻭﺒﺎﺨﺘﺼﺎﺭ‪ ،‬ﺒﻴﻨﻤﺎ ﺘﻬﺘﻡ ﺃﺴﺎﻟﻴﺏ ﺍﻻﺭﺘﺒﺎﻁ ﺒﺈﻴﺠﺎﺩ ﻤﻘﻴﺎﺱ ﻟﻘﻭﺓ ﺍﻟﻌﻼﻗﺔ ﺒﻴﻥ‬

‫ﺍﻟﻤﺘﻐﻴﺭﺍﺕ ﺒﻘﻴﻤﺔ ﻭﺤﻴﺩﺓ ﺘﻌﺭﻑ ﺒﻤﻌﺎﻤل ﺍﻻﺭﺘﺒﺎﻁ ﻴﻜﻭﻥ ﺍﻟﻐﺭﺽ ﻤﻥ ﺃﺴﺎﻟﻴﺏ ﺍﻻﻨﺤﺩﺍﺭ‬

‫ﻫﻭ ﺘﻘﺩﻴﺭ ﻨﻤﻭﺫﺝ ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﺫﻱ ﻴﻤﺜل ﺍﻟﻌﻼﻗﺔ ﺒﻴﻥ ﺍﻟﻤﺘﻐﻴﺭﺍﺕ ﻻﺴﺘﺨﺩﺍﻤﻬﺎ ﻓﻲ ﺍﻟﺘﻨﺒﺅ‬ ‫ﺍﻹﺤﺼﺎﺌﻲ‪.‬‬


‫)‪ (12‬ﺘﺤﻠﻴل ﻨﻤﺎﺫﺝ ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﺨﻁﻲ‬

‫‪404‬‬

‫‪ .1 .1 .12‬اﻻﻧﺤﺪار اﻟﺨﻄﻲ اﻟﺒﺴﻴﻂ )ﺑﻴﻦ ﻣﺘﻐﻴﺮﻳﻦ( ‪:‬‬ ‫‪Simple (two variable) Regression :‬‬ ‫ﻋﻨﺩﻤﺎ ﻨﻜﻭﻥ ﻤﻬﺘﻤﻴﻥ ﺒﺩﺭﺍﺴﺔ ﺍﻟﻌﻼﻗﺔ ﺒﻴﻥ ﻤﺘﻐﻴﺭﻴﻥ ﻓﻘﻁ ﻓﺈﻨﻪ ﻴﻁﻠﻕ ﻋﻠﻰ ﻨﻤﻭﺫﺝ‬

‫ﺍﻻﻨﺤﺩﺍﺭ ﺒﻨﻤﻭﺫﺝ ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﺒﺴﻴﻁ‪ ،‬ﻭﻓﻲ ﻫﺫﻩ ﺍﻟﺤﺎﻻﺕ ﻴﻤﻜﻥ ﺘﻘﺩﻴﺭ ﻗﻴﻡ ﺃﺤﺩ ﺍﻟﻤﺘﻐﻴﺭﻴﻥ‬

‫)ﺍﻟﻤﺘﻐﻴﺭ ﺍﻟﺘﺎﺒﻊ‪ (Y ،‬ﻤﻥ ﻗﻴﻡ ﺍﻟﻤﺘﻐﻴﺭ ﺍﻵﺨﺭ )ﺍﻟﻤﺘﻐﻴﺭ ﺍﻟﻤﺴﺘﻘل‪ (X ،‬ﻤﻥ ﺨﻼل ﻤﻌﺎﺩﻟﺔ‬ ‫ﺨﻁﻴﺔ )ﻤﻥ ﺍﻟﺩﺭﺠﺔ ﺍﻷﻭﻟﻰ ﻓﻲ ﻜل ﻤﻥ ‪ X‬ﻭ ‪ (Y‬ﺘﺄﺨﺫ ﺍﻟﺼﻭﺭﺓ ﺍﻟﻌﺎﻤﺔ ‪:‬‬ ‫‪y = bo + b1 x‬‬ ‫ﺤﻴﺙ ‪ y‬ﻫﻲ ﻗﻴﻤﺔ ﻤﻥ ﻗﻴﻡ ﺍﻟﻤﺘﻐﻴﺭ ‪ Y‬ﻭ ‪ b1‬ﻫﻲ ﻤﻴل ﺍﻟﺨﻁ ﺍﻟﻤﺴﺘﻘﻴﻡ ‪the slope‬‬

‫)ﻭﺘﻌﺭﻑ ﺒﻤﻌﺎﻤل ﺍﻻﻨﺤﺩﺍﺭ ‪ (the regression coefficient‬ﻭ ‪ b0‬ﻫﻲ ﻤﻘﻁﻊ ﺍﻟﺨﻁ‬ ‫ﺍﻟﻤﺴﺘﻘﻴﻡ ‪) intercept‬ﻭﺘﻌﺭﻑ ﺒﺜﺎﺒﺕ ﺍﻻﻨﺤﺩﺍﺭ ‪.(regression constant‬‬

‫‪ .2 .1 .12‬اﻻﻧﺤﺪار اﻟﻤﺘﻌﺪد ‪:‬‬

‫‪Multiple regression‬‬

‫ﻓﻲ ﺤﺎﻟﺔ ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﻤﺘﻌﺩﺩ ﻴﻤﻜﻥ ﺘﻘﺩﻴﺭ ﻗﻴﻡ ﺃﺤﺩ ﺍﻟﻤﺘﻐﻴﺭﻴﻥ )ﺍﻟﻤﺘﻐﻴﺭ ﺍﻟﺘﺎﺒﻊ‪(Y ،‬‬ ‫ﻤﻥ ﻗﻴﻡ ﻤﺘﻐﻴﺭﻴﻥ ﺁﺨﺭﻴﻥ ﺃﻭ ﺃﻜﺜﺭ )ﺍﻟﻤﺘﻐﻴﺭﺍﺕ ﺍﻟﻤﺴﺘﻘﻠﺔ‪ (X1,X2,......,Xp ،‬ﻤﻥ ﺨﻼل‬

‫ﻤﻌﺎﺩﻟﺔ ﺨﻁﻴﺔ )ﻤﻥ ﺍﻟﺩﺭﺠﺔ ﺍﻷﻭﻟﻰ(‪ ،‬ﻭﻫﺫﺍ ﻴﻤﻜﻥ ﺃﻥ ﻴﺘﻡ ﺒﺎﺴﺘﺨﺩﺍﻡ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻟﺨﻁﻴﺔ‬

‫ﻋﻠﻰ ﺍﻟﺼﻭﺭﺓ ﺍﻟﻌﺎﻤﺔ ‪:‬‬

‫‪y = bo + b1 x1 + b2 x 2 + ............. + b p x p‬‬

‫ﺤﻴﺙ ‪ y‬ﻫﻲ ﻗﻴﻤﺔ ﻤﻥ ﻗﻴﻡ ﺍﻟﻤﺘﻐﻴﺭ ‪ Y‬ﻭ ‪ b1‬ﻭ ‪ b2‬ﻭ ‪ ....‬ﻭ ‪ bp‬ﻫﻲ ﻤﻌﺎﻤﻼﺕ‬

‫ﺍﻻﻨﺤﺩﺍﺭ ‪ (the regression coefficients‬ﻭ ‪ b0‬ﻫﻲ ﺜﺎﺒﺕ ﺍﻻﻨﺤﺩﺍﺭ ‪regression‬‬ ‫‪ ، constant‬ﻭﻫﺫﻩ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺘﻌﺭﻑ ﺒﻤﻌﺎﺩﻟﺔ ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﺨﻁﻲ ﺍﻟﻤﺘﻌﺩﺩ ‪Multiple‬‬

‫‪. regression equation of y upon x1,x2,.....,xp‬‬


‫)‪ (12‬ﺘﺤﻠﻴل ﻨﻤﺎﺫﺝ ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﺨﻁﻲ‬

‫‪ .3 .1 .12‬اﻟﺒﻮاﻗﻲ )اﻷﺧﻄﺎء( ‪:‬‬

‫‪405‬‬

‫‪Residuals‬‬

‫ﻋﻨﺩﻤﺎ ﺘﺴﺘﺨﺩﻡ ﻤﻌﺎﺩﻟﺔ ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﺘﻲ ﺘﻡ ﺘﻘﺩﻴﺭﻫﺎ ﻤﻥ ﺍﻟﺒﻴﺎﻨﺎﺕ ﻓﻲ ﺘﻘﺩﻴﺭ ﻗﻴﻤﺔ‬

‫ﺍﻟﻤﺘﻐﻴﺭ ‪ Y‬ﺒﺎﺴﺘﺨﺩﺍﻡ ﻗﻴﻡ ﻭﺍﺤﺩﹰﺍ ﺃﻭ ﺃﻜﺜﺭ ﻤﻥ ﺍﻟﻤﺘﻐﻴﺭﺍﺕ ﺍﻟﻤﺴﺘﻘﻠﺔ ‪ X‬ﻓﺈﻥ ﻗﻴﻤﺔ ﺍﻟﻤﺘﻐﻴﺭ‬

‫‪ Y‬ﺍﻟﻤﻘﺩﺭﺓ ﺍﻟﻨﺎﺘﺠﺔ )ﻭﺍﻟﺘﻲ ﺴﻨﺭﻤﺯ ﻟﻬﺎ ﺒﺎﻟﺭﻤﺯ ˆ‪ ( Y‬ﻟﻥ ﺘﻜﻭﻥ ﺒﺎﻟﻀﺭﻭﺭﺓ ﻤﺴﺎﻭﻴﺔ‬ ‫ﻟﻘﻴﻤﺘﻬﺎ ﺍﻟﺤﻘﻴﻘﻴﺔ‪ ،‬ﺒل ﻴﺘﻭﻗﻊ ﺃﻥ ﻴﻜﻭﻥ ﻫﻨﺎﻙ ﻓﺭﻕ ﺒﻴﻥ ﺍﻟﻘﻴﻤﺔ ﺍﻟﺤﻘﻴﻘﻴﺔ ﻭﺍﻟﻘﻴﻤﺔ ﺍﻟﻤﻘﺩﺭﺓ‬

‫) ˆ‪ (Y- Y‬ﻭﻫﺫﻩ ﺍﻟﻔﺭﻭﻕ ﻟﺠﻤﻴﻊ ﺍﻟﻘﻴﻡ ˆ‪ Y‬ﻴﻁﻠﻕ ﻋﻠﻴﻬﺎ ﺍﺴﻡ ﺍﻷﺨﻁﺎﺀ ﺃﻭ ﺍﻟﺒﻭﺍﻗﻲ‬ ‫‪ ، residuals‬ﻭﻫﺫﺍ ﻴﻌﻨﻲ ﻫﻨﺩﺴﻴﹰﺎ ﺃﻨﻪ ﻟﻥ ﺘﻘﻊ ﺒﺎﻟﻀﺭﻭﺭﺓ ﻗﻴﻡ ﺍﻟﻤﺘﻐﻴﺭ ‪ Y‬ﻋﻠﻰ ﺍﻟﺨﻁ‬ ‫ﺍﻟﻤﺴﺘﻘﻴﻡ ﺃﻭ ﺍﻟﻤﻨﺤﻨﻰ ﺃﻭ ﺍﻟﻤﺴﺘﻭﻯ ﺍﻟﺫﻱ ﺘﻡ ﺘﻭﻓﻴﻘﻪ ﻤﻥ ﺍﻟﺒﻴﺎﻨﺎﺕ ﺒﺎﺴﺘﺨﺩﺍﻡ ﺃﺴﻠﻭﺏ‬

‫ﺍﻻﻨﺤﺩﺍﺭ‪ ،‬ﻭﺩﺭﺍﺴﺔ ﻫﺫﻩ ﺍﻷﺨﻁﺎﺀ ‪ residuals‬ﻟﻬﺎ ﺃﻫﻤﻴﺔ ﻜﺒﻴﺭﺓ ﻋﻨﺩ ﺍﺴﺘﺨﺩﺍﻡ ﻁﺭﻕ‬

‫ﺍﻻﻨﺤﺩﺍﺭ ﻷﻨﻬﺎ ﺘﻌﻁﻲ ﻤﺅﺸﺭﺍﺕ ﻭﻤﻘﺎﻴﻴﺱ ﻋﻥ ﻤﺩﻯ ﺍﻟﺩﻗﺔ ﻓﻲ ﺘﻘﺩﻴﺭ ﻤﻌﺎﺩﻟﺔ ﺍﻻﻨﺤﺩﺍﺭ‬ ‫ﺍﻟﻨﺎﺘﺠﺔ ﻭﺇﻤﻜﺎﻨﻴﺎﺕ ﺍﺴﺘﺨﺩﺍﻡ ﻫﺫﻩ ﺍﻟﻤﻌﺎﺩﻟﺔ ﻓﻲ ﺘﻘﺩﻴﺭ ﻗﻴﻡ ﺍﻟﻤﺘﻐﻴﺭ ‪ Y‬ﺍﻟﻤﺴﺘﻘﺒﻠﻴﺔ‪.‬‬

‫‪ .4 .1 .12‬ﻣﻌﺎﻣﻞ اﻻرﺗﺒﺎط اﻟﻤﺘﻌﺪد ‪:‬‬ ‫‪The multiple correlation coefficient :‬‬ ‫ﺃﺤﺩ ﺍﻟﻤﻘﺎﻴﻴﺱ ﺍﻟﺒﺴﻴﻁﺔ ﺍﻟﻤﺴﺘﺨﺩﻤﺔ ﻓﻲ ﻗﻴﺎﺱ ﺩﻗﺔ ﻤﻌﺎﺩﻟﺔ ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﺫﻱ ﺘﻡ‬

‫ﺘﻘﺩﻴﺭﻩ ﻓﻲ ﺍﻟﺘﻨﺒﺅ ﺒﻘﻴﻡ ‪ Y‬ﻫﻭ ﻤﻌﺎﻤل ﺍﺭﺘﺒﺎﻁ ﺒﻴﺭﺴﻭﻥ ﺒﻴﻥ ﺍﻟﻘﻴﻡ ﺍﻟﺤﻘﻴﻘﻴﺔ ﻟﻠﻤﺘﻐﻴﺭ‪ Y‬ﻭﻗﻴﻡ‬

‫ˆ‪ Y‬ﺍﻟﻤﻨﺎﻅﺭﺓ ﻟﻬﺎ ﻭﺍﻟﺘﻲ ﺘﻡ ﺘﻘﺩﻴﺭﻫﺎ ﺒﺎﺴﺘﺨﺩﺍﻡ ﻤﻌﺎﺩﻟﺔ ﺍﻻﻨﺤﺩﺍﺭ ﻋﻥ ﻁﺭﻴﻕ ﺍﻟﺘﻌﻭﻴﺽ‬

‫ﺒﻘﻴﻡ ‪ X‬ﻓﻲ ﺍﻟﻤﻌﺎﺩﻟﺔ‪ ،‬ﻭﻴﻌﺭﻑ ﻤﻌﺎﻤل ﺍﻻﺭﺘﺒﺎﻁ ﺒﻴﻥ ﻗﻴﻡ ‪ Y‬ﻭﻗﻴﻡ ˆ‪ Y‬ﺒﺎﺴﻡ ﻤﻌﺎﻤل‬

‫ﺍﻻﺭﺘﺒﺎﻁ ﺍﻟﻤﺘﻌﺩﺩ ‪ ، multiple correlation coefficient R‬ﻻﺤﻅ ﺃﻥ ﺍﻟﺤﺭﻑ ‪R‬‬

‫ﺍﻟﻜﺒﻴﺭ ﻭﻟﻴﺱ ‪ r‬ﻫﻭ ﺍﻟﻤﺴﺘﺨﺩﻡ ﻟﻠﺘﻌﺒﻴﺭ ﻋﻥ ﻤﻌﺎﻤل ﺍﻻﺭﺘﺒﺎﻁ ﺍﻟﻤﺘﻌﺩﺩ ﻟﻠﺘﻤﻴﻴﺯ ﺒﻴﻨﻪ ﻭﺒﻴﻥ‬

‫ﻤﻌﺎﻤل ﺍﻻﺭﺘﺒﺎﻁ ﺍﻟﺒﺴﻴﻁ ‪ r‬ﻭﺍﻟﺫﻱ ﺘﻤﺕ ﻤﻨﺎﻗﺸﺘﻪ ﻓﻲ ﺍﻟﻔﺼل ﺍﻟﺴﺎﺒﻕ‪ ،‬ﻭﻴﺠﺩﺭ ﺒﺎﻟﺫﻜﺭ ﻫﻨﺎ‬

‫ﺃﻥ ﻫﺫﺍ ﺍﻟﻤﻌﺎﻤل ﻻ ﻴﺄﺨﺫ ﻗﻴﻤﹰﺎ ﺴﺎﻟﺒﺔ ﺭﻏﻡ ﺃﻥ ﻗﻴﻤﺘﻪ ﺍﻟﻤﻁﻠﻘﺔ ﺴﺘﻜﻭﻥ ﻤﺴﺎﻭﻴﺔ ﻟﻤﻌﺎﻤل‬ ‫ﺍﺭﺘﺒﺎﻁ ﺒﻴﺭﺴﻭﻥ )ﺍﻟﺒﺴﻴﻁ( ﻓﻲ ﺤﺎﻟﺔ ﻋﻨﺩﻤﺎ ﻴﻜﻭﻥ ﻫﻨﺎﻙ ﻤﺘﻐﻴﺭ ﻤﺴﺘﻘل ﻭﺍﺤﺩ ‪.‬‬


‫)‪ (12‬ﺘﺤﻠﻴل ﻨﻤﺎﺫﺝ ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﺨﻁﻲ‬

‫‪406‬‬

‫‪ .5 .1 .12‬ﻓﺘﺢ ﻧﺎﻓﺬة ﺗﺤﻠﻴﻞ اﻻﻧﺤﺪار اﻟﺨﻄﻲ ‪:‬‬ ‫‪Linear Regression Dialog Box :‬‬ ‫ﻟﺘﻨﻔﻴﺫ ﺃﻱ ﺃﻤﺭ ﻴﺘﻌﻠﻕ ﺒﺘﺤﻠﻴل ﻨﻤﺎﺫﺝ ﺍﻻﻨﺤﺩﺍﺭ ﻓﻲ ﻫﺫﺍ ﺍﻟﻔﺼل ﻨﺤﺘﺎﺝ ﺇﻟﻰ ﻓﺘﺢ‬

‫ﻨﺎﻓﺫﺓ ﻭﺍﺤﺩﺓ ﻭﻫﻲ ﻨﺎﻓﺫﺓ ﺘﺤﻠﻴل ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﺨﻁﻲ ‪ ، Linear Regression‬ﻭﻴﻤﻜﻥ‬ ‫ﺍﻟﻭﺼﻭل ﺇﻟﻰ ﻫﺫﻩ ﺍﻟﻨﺎﻓﺫﺓ ﻋﻥ ﻁﺭﻴﻕ ﺍﺨﺘﻴﺎﺭ ﺃﻤﺭ ﺍﻻﻨﺤﺩﺍﺭ ‪ Regression‬ﻤﻥ ﻗﺎﺌﻤﺔ‬

‫ﺍﻟﺘﺤﻠﻴل ﺍﻹﺤﺼﺎﺌﻲ ‪) Analyze‬ﺃﻭ ‪ Statistics‬ﻓﻲ ﺇﺼﺩﺍﺭ ‪ 8.0‬ﻤﻥ ﺍﻟﻨﻅﺎﻡ( ﻤﻥ‬ ‫ﺍﻟﻘﺎﺌﻤﺔ ﺍﻟﺭﺌﻴﺴﻴﺔ )ﺸﻜل ‪ ،(1-12‬ﻭﺴﻴﻔﺘﺢ ﺃﻤﺭ ﺍﻻﻨﺤﺩﺍﺭ ‪ Regression‬ﻗﺎﺌﻤﺔ ﺃﻭﺍﻤﺭ‬

‫ﺍﻻﻨﺤﺩﺍﺭ ﻭﻤﻨﻬﺎ ﻴﺘﻡ ﺍﺨﺘﻴﺎﺭ ﺃﻤﺭ ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﺨﻁﻲ ‪ Linear‬ﻟﺘﻔﺘﺢ ﻨﺎﻓﺫﺓ ﺘﺤﻠﻴل ﺍﻻﻨﺤﺩﺍﺭ‬

‫ﺍﻟﺨﻁﻲ ‪) Linear Regression‬ﺸﻜل ‪.(2-12‬‬ ‫ﻭﺤﻴﺙ ﺃﻥ ﺘﺭﻜﻴﺯﻨﺎ ﻓﻲ ﻫﺫﺍ ﺍﻟﻔﺼل ﺴﻴﻜﻭﻥ ﻋﻠﻰ ﺘﺤﻠﻴل ﻨﻤﺎﺫﺝ ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﺨﻁﻲ‬

‫ﺭﻏﻡ ﻭﺠﻭﺩ ﺃﻨﻭﺍﻉ ﺃﺨﺭﻯ ﻤﻥ ﺍﻻﻨﺤﺩﺍﺭ ﺴﻨﺘﺤﺩﺙ ﻋﻥ ﺒﻌﻀﻬﺎ ﻓﻲ ﺍﻟﻔﺼل ﺍﻟﺘﺎﻟﻲ ﻓﺈﻥ‬

‫ﻫﺫﻩ ﺍﻟﻨﺎﻓﺫﺓ ﺘﺤﺘﻭﻱ ﻋﻠﻰ ﺠﻤﻴﻊ ﺍﻹﺠﺭﺍﺀﺍﺕ ﺍﻟﻤﺘﻌﻠﻘﺔ ﺒﺘﺤﻠﻴل ﻨﻤﺎﺫﺝ ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﺨﻁﻲ‬

‫ﺍﻟﺨﺎﺼﺔ ﺒﻬﺫﺍ ﺍﻟﻔﺼل‪.‬‬

‫ﺸﻜل ‪ : 1-12‬ﺍﻟﻭﺼﻭل ﺇﻟﻰ ﻨﺎﻓﺫﺓ ﺘﺤﻠﻴل ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﺨﻁﻲ ‪.Linear Regression‬‬


‫)‪ (12‬ﺘﺤﻠﻴل ﻨﻤﺎﺫﺝ ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﺨﻁﻲ‬

‫‪407‬‬

‫ﺸﻜل ‪ : 2-12‬ﻨﺎﻓﺫﺓ ﺘﺤﻠﻴل ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﺨﻁﻲ ‪Linear Regression‬‬

‫‪ .2 .12‬اﻻﻧﺤﺪار اﻟﺨﻄﻲ اﻟﺒﺴﻴﻂ ‪Simple Regression :‬‬ ‫ﻓﻲ ﺇﺤﺩﻯ ﺍﻟﻜﻠﻴﺎﺕ ﺍﻟﻜﺒﺭﻯ ﻓﻲ ﺃﺤﺩ ﺍﻟﺠﺎﻤﻌﺎﺕ ﻟﻭﺤﻅ ﺃﻥ ﻫﻨﺎﻙ ﻤﺸﻜﻠﺔ ﻓﻲ‬

‫ﻤﻌﺎﻴﻴﺭ ﻗﺒﻭل ﺍﻟﻁﻠﺒﺔ ﻟﻬﺫﻩ ﺍﻟﻜﻠﻴﺔ‪ ،‬ﻓﺎﻗﺘﺭﺡ ﻤﺠﻠﺱ ﻫﺫﻩ ﺍﻟﻜﻠﻴﺔ ﻨﻅﺎﻡ ﺍﻤﺘﺤﺎﻥ ﻟﻠﻘﺒﻭل ﻟﻬﺫﻩ‬ ‫ﺍﻟﻜﻠﻴﺔ‪ ،‬ﻓﺘﻘﺭﺭ ﺃﻥ ﻴﺘﻡ ﺘﺠﺭﺒﺔ ﻫﺫﺍ ﺍﻟﻨﻅﺎﻡ ﻓﻲ ﻋﺎﻡ ﻤﻌﻴﻥ ﻋﻠﻰ ﺃﻥ ﻴﺘﻡ ﺍﻟﻌﻤل ﺒﻪ ﻓﻲ ﺤﺎﻟﺔ‬ ‫ﻨﺠﺎﺡ‬

‫ﺘﻠﻙ ﺍﻟﺘﺠﺭﺒﺔ‪ ،‬ﻭﺍﺘﻔﻕ ﻋﻠﻰ ﺃﻥ ﻴﻜﻭﻥ ﻤﻌﻴﺎﺭ ﺍﻟﻨﺠﺎﺡ ﻟﻬﺫﺍ ﺍﻟﻨﻅﺎﻡ ﻫﻭ ﻗﺩﺭﺓ‬

‫ﻤﺠﻤﻭﻉ ﺍﻟﺩﺭﺠﺎﺕ ﺍﻟﺘﻲ ﻴﺤﺼل ﻋﻠﻴﻬﺎ ﺍﻟﻁﺎﻟﺏ ﻓﻲ ﺫﻟﻙ ﺍﻻﻤﺘﺤﺎﻥ ﻋﻠﻰ ﺍﻟﺘﻨﺒﺅ ﺒﻤﺴﺘﻭﻯ‬

‫ﺃﺩﺍﺀ ﺍﻟﻁﺎﻟﺏ ﻓﻲ ﺍﻟﻜﻠﻴﺔ‪.‬‬

‫ﻓﺈﺫﺍ ﺤﺼﻠﻨﺎ ﻋﻠﻰ ﻤﺠﻤﻭﻉ ﺍﻟﺩﺭﺠﺎﺕ ﺍﻟﺘﻲ ﺤﺼل ﻋﻠﻴﻬﺎ ﺍﻟﻁﺎﻟﺏ ﻓﻲ ﺍﻟﻔﺼل‬

‫ﺍﻷﻭل ﺒﺎﻟﻜﻠﻴﺔ ‪ y‬ﻭﻤﺠﻤﻭﻉ ﺍﻟﺩﺭﺠﺎﺕ ﺍﻟﺘﻲ ﺤﺼل ﻋﻠﻴﻬﺎ ﻓﻲ ﺍﻤﺘﺤﺎﻥ ﺍﻟﻘﺒﻭل ﻟﻠﻜﻠﻴﺔ ‪x‬‬

‫ﻓﺈﻨﻪ ﻴﻤﻜﻥ ﺤﺴﺎﺏ ﻤﻌﺎﻤل ﺍﺭﺘﺒﺎﻁ ﺒﻴﺭﺴﻭﻥ ﺒﻴﻥ ﺍﻟﻤﺘﻐﻴﺭﻴﻥ ﻟﻘﻴﺎﺱ ﻗﻭﺓ ﺍﻟﻌﻼﻗﺔ ﺍﻟﺨﻁﻴﺔ‬ ‫ﺒﻴﻨﻬﻤﺎ‪ ،‬ﻭﻤﻥ ﺍﻟﻤﻤﻜﻥ ﺃﻴﻀﹰﺎ ﺍﺴﺘﺨﺩﺍﻡ ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﺨﻁﻲ ﺍﻟﺒﺴﻴﻁ ﻟﻠﺘﻨﺒﺅ ﺒﻤﺴﺘﻭﻯ ﺃﺩﺍﺀ‬

‫ﺍﻟﻁﺎﻟﺏ ﻓﻲ ﺍﻟﺠﺎﻤﻌﺔ ﻤﻥ ﺩﺭﺠﺎﺘﻪ ﻓﻲ ﺍﻤﺘﺤﺎﻥ ﺍﻟﻘﺒﻭل‪.‬‬


‫)‪ (12‬ﺘﺤﻠﻴل ﻨﻤﺎﺫﺝ ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﺨﻁﻲ‬

‫‪408‬‬

‫ﻭﻴﻤﻜﻥ ﺭﻴﺎﻀﻴﹰﺎ ﺃﻴﻀﹰﺎ ﺇﺜﺒﺎﺕ ﺃﻨﻪ ﻋﻨﺩﻤﺎ ﻴﺴﺘﺨﺩﻡ ﻤﺘﻐﻴﺭﻴﻥ ﻤﺴﺘﻘﻠﻴﻥ ﺃﻭ ﺃﻜﺜﺭ ﻓﻲ‬ ‫ﻤﻌﺎﺩﻟﺔ ﺍﻻﻨﺤﺩﺍﺭ ﻟﻠﺘﻨﺒﺅ ﺒﻘﻴﻡ ﺍﻟﻤﺘﻐﻴﺭ ﺍﻟﺘﺎﺒﻊ ‪ y‬ﻓﺈﻥ ﺍﻟﻘﻴﻡ ﺍﻟﻤﺘﻨﺒﺄ ﺒﻬﺎ ﺴﺘﻜﻭﻥ ﺃﺩﻕ ﻤﻤﺎ ﻟﻭ‬

‫ﺍﺴﺘﺨﺩﻡ ﻤﺘﻐﻴﺭ ﻤﺴﺘﻘل ﻭﺍﺤﺩ ﻭﻋﻠﻰ ﺍﻷﻗل ﺒﻨﻔﺱ ﺍﻟﺩﻗﺔ‪ ،‬ﺒﻌﺒﺎﺭﺓ ﺃﺨﺭﻯ ﻻﺒﺩ ﺃﻥ ﻴﻜﻭﻥ‬

‫ﻤﻌﺎﻤل ﺍﻻﺭﺘﺒﺎﻁ ﺍﻟﻤﺘﻌﺩﺩ ‪ R‬ﻋﻠﻰ ﺍﻷﻗل ﻤﺴﺎﻭﻴﹰﺎ ﻤﻌﺎﻤل ﺍﺭﺘﺒﺎﻁ ﺒﻴﺭﺴﻭﻥ ‪ ، r‬ﻭﻓﻲ ﻫﺫﺍ‬

‫ﺍﻟﻘﺴﻡ ﺴﻭﻑ ﻨﻨﺎﻗﺵ ﺃﺴﻠﻭﺏ ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﺒﺴﻴﻁ ﻭﺴﻨﻨﺎﻗﺵ ﺃﺴﻠﻭﺏ ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﻤﺘﻌﺩﺩ ﻓﻲ‬

‫ﺍﻟﻘﺴﻡ ﺍﻟﺘﺎﻟﻲ ﻤﻥ ﻫﺫﺍ ﺍﻟﻔﺼل ‪.‬‬

‫ﻴﻌﺭﺽ ﺍﻟﺸﻜل ‪ 3-12‬ﺒﻴﺎﻨﺎﺕ ﻟﻌﻴﻨﺔ ﻋﺸﻭﺍﺌﻴﺔ ﻤﻜﻭﻨﺔ ﻤﻥ ‪ 34‬ﻤﻥ ﺍﻟﻁﻠﺒﺔ ﻋﻠﻰ‬ ‫ﺸﻜل ﺃﺯﻭﺍﺝ ﻤﻥ ﻗﻴﻡ ﺍﻟﻤﺘﻐﻴﺭﻴﻥ )‪ (x , y‬ﺘﻤﺜل ﻤﺠﻤﻭﻉ ﺩﺭﺠﺎﺕ ﺍﻟﻁﺎﻟﺏ ﻓﻲ ﺍﻤﺘﺤﺎﻥ‬ ‫ﻼ ﺍﻟﻁﺎﻟﺏ‬ ‫ﺍﻟﻘﺒﻭل ﻟﻠﻜﻠﻴﺔ ‪ x‬ﻭﻤﺠﻤﻭﻉ ﺩﺭﺠﺎﺘﻪ ﻓﻲ ﺍﻟﻔﺼل ﺍﻷﻭل ﻓﻲ ﺍﻟﻜﻠﻴﺔ ‪ ، y‬ﻓﻤﺜ ﹰ‬ ‫ﺍﻷﻭل ﺤﺼل ﻋﻠﻰ ﺍﻟﻤﺠﻤﻭﻉ ‪ 44‬ﻓﻲ ﺍﻤﺘﺤﺎﻥ ﺍﻟﻘﺒﻭل ﻭﻋﻠﻰ ﺍﻟﻤﺠﻤﻭﻉ ‪ 38‬ﻓﻲ‬

‫ﺍﻤﺘﺤﺎﻨﺎﺕ ﺍﻟﻜﻠﻴﺔ‪ ،‬ﻭﺒﺎﻟﻤﺜل ﺤﺼل ﺍﻟﻁﺎﻟﺏ ﺍﻷﺨﻴﺭ )ﺭﻗﻡ ‪ (34‬ﻋﻠﻰ ﺍﻟﻤﺠﻤﻭﻉ ‪ 49‬ﻓﻲ‬

‫ﺍﻤﺘﺤﺎﻥ ﺍﻟﻘﺒﻭل ﻭﻋﻠﻰ ﺍﻟﻤﺠﻤﻭﻉ ‪ 149‬ﻓﻲ ﺍﻟﻜﻠﻴﺔ‪ ،‬ﻭﻫﻜﺫﺍ‪...‬‬

‫ﺸﻜل ‪ : 3-12‬ﺒﻴﺎﻨﺎﺕ ﻋﻥ ﻤﺠﻤﻭﻉ ﺩﺭﺠﺎﺕ ﺍﻟﻁﻠﺒﺔ ﻓﻲ ﺍﻻﻤﺘﺤﺎﻥ ﺍﻟﻨﻬﺎﺌﻲ ‪Final Univ.‬‬ ‫‪ Exam‬ﻓﻲ ﺍﻟﻜﻠﻴﺔ ‪ y‬ﻭﻤﺠﻤﻭﻉ ﺩﺭﺠﺎﺘﻪ ﻓﻲ ﺍﻤﺘﺤﺎﻥ ﺍﻟﻘﺒﻭل ‪ Entrance Score‬ﻟﻠﻜﻠﻴﺔ ‪x‬‬ ‫‪y‬‬

‫‪x‬‬

‫‪y‬‬

‫‪x‬‬

‫‪y‬‬

‫‪x‬‬

‫‪y‬‬

‫‪x‬‬

‫‪y‬‬

‫‪x‬‬

‫‪60‬‬

‫‪145‬‬

‫‪49‬‬

‫‪112‬‬

‫‪40‬‬

‫‪98‬‬

‫‪37‬‬

‫‪76‬‬

‫‪44‬‬

‫‪38‬‬

‫‪55‬‬

‫‪150‬‬

‫‪46‬‬

‫‪114‬‬

‫‪37‬‬

‫‪100‬‬

‫‪41‬‬

‫‪78‬‬

‫‪40‬‬

‫‪49‬‬

‫‪54‬‬

‫‪152‬‬

‫‪41‬‬

‫‪114‬‬

‫‪48‬‬

‫‪100‬‬

‫‪53‬‬

‫‪81‬‬

‫‪43‬‬

‫‪61‬‬

‫‪58‬‬

‫‪164‬‬

‫‪49‬‬

‫‪117‬‬

‫‪48‬‬

‫‪103‬‬

‫‪47‬‬

‫‪86‬‬

‫‪42‬‬

‫‪65‬‬

‫‪62‬‬

‫‪169‬‬

‫‪63‬‬

‫‪125‬‬

‫‪43‬‬

‫‪105‬‬

‫‪45‬‬

‫‪91‬‬

‫‪44‬‬

‫‪69‬‬

‫‪49‬‬

‫‪195‬‬

‫‪52‬‬

‫‪140‬‬

‫‪55‬‬

‫‪106‬‬

‫‪41‬‬

‫‪94‬‬

‫‪46‬‬

‫‪73‬‬

‫‪56‬‬

‫‪142‬‬

‫‪48‬‬

‫‪107‬‬

‫‪39‬‬

‫‪95‬‬

‫‪34‬‬

‫‪74‬‬

‫ﻭﺒﺎﺴﺘﺨﺩﺍﻡ ﺍﻟﻁﺭﻕ ﺍﻟﺘﻲ ﺘﻤﺕ ﻤﻨﺎﻗﺸﺘﻬﺎ ﻓﻲ ﺍﻟﻔﺼل ﺍﻟﺜﺎﻨﻲ ﻟﺘﻌﺭﻴﻑ ﺍﻟﻤﺘﻐﻴﺭﺍﺕ‬

‫ﻭﺇﺩﺨﺎل ﺍﻟﺒﻴﺎﻨﺎﺕ ﻴﻤﻜﻨﻨﺎ ﺒﺴﻬﻭﻟﺔ ﺘﻌﺭﻴﻑ ﺍﻟﻤﺘﻐﻴﺭﻴﻥ ‪ selectex‬ﻭ ‪ finalex‬ﺍﻟﺫﻴﻥ ﻴﺩﻻﻥ‬ ‫ﻋﻠﻰ ﺍﻟﻤﺘﻐﻴﺭﻴﻥ ﻤﺠﻤﻭﻉ ﺩﺭﺠﺎﺕ ﺍﻟﻁﺎﻟﺏ ﻓﻲ ﺍﻤﺘﺤﺎﻥ ﺍﻟﻘﺒﻭل ﻟﻠﻜﻠﻴﺔ ‪Entrance Exam‬‬


‫)‪ (12‬ﺘﺤﻠﻴل ﻨﻤﺎﺫﺝ ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﺨﻁﻲ‬

‫‪409‬‬

‫ﻭﻤﺠﻤﻭﻉ ﺩﺭﺠﺎﺘﻪ ﻓﻲ ﺍﻟﻔﺼل ﺍﻷﻭل ﻓﻲ ﺍﻟﻜﻠﻴﺔ ‪ ، University Exam‬ﺜﻡ ﻴﺘﻡ ﺇﺩﺨﺎل‬ ‫ﺍﻟﺒﻴﺎﻨﺎﺕ ﻜﻤﺎ ﻭﺭﺩﺕ ﻓﻲ ﺍﻟﺸﻜل ‪ 3-12‬ﻓﻲ ﻋﻤﻭﺩﻴﻥ ﻓﻘﻁ ﻓﻲ ﻤﺤﺭﺭ ﺍﻟﺒﻴﺎﻨﺎﺕ ‪Data‬‬

‫‪ Editor‬ﻟﻨﻅﺎﻡ ‪. SPSS‬‬

‫ﻭﻟﺘﺤﻠﻴل ﻫﺫﻩ ﺍﻟﺒﻴﺎﻨﺎﺕ ﻻﺒﺩ ﻤﻥ ﺍﻟﻭﺼﻭل ﺇﻟﻰ ﻨﺎﻓﺫﺓ ﺘﺤﻠﻴل ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﺨﻁﻲ‬

‫‪ Linear Regression‬ﺒﺎﻟﻁﺭﻴﻘﺔ ﺍﻟﺘﻲ ﺘﻡ ﺘﻭﻀﻴﺤﻬﺎ ﻓﻲ ﺍﻟﺒﻨﺩ ‪ .5 .1 .12‬ﻟﺘﻔﺘﺢ ﺘﻠﻙ‬ ‫ﺍﻟﻨﺎﻓﺫﺓ‪ ،‬ﻭﻴﺘﻡ ﺒﻬﺎ ﺇﺩﺨﺎل ﺍﺴﻡ ﺍﻟﻤﺘﻐﻴﺭ ﺍﻟﺘﺎﺒﻊ ﻭﻫﻭ ﻓﻲ ﻫﺫﻩ ﺍﻟﺤﺎﻟﺔ ﻨﺘﻴﺠﺔ ﺍﻤﺘﺤﺎﻥ ﺍﻟﺠﺎﻤﻌﺔ‬

‫‪ University Exam‬ﻓﻲ ﻤﺭﺒﻊ ﺍﻟﻤﺘﻐﻴﺭ ﺍﻟﺘﺎﺒﻊ ‪ ، Dependent Variable‬ﻭﻴﺘﻡ ﺃﻴﻀﹰﺎ‬ ‫ﺇﺩﺨﺎل ﺍﺴﻡ ﺍﻟﻤﺘﻐﻴﺭ ﺍﻟﻤﺴﺘﻘل ﻓﻲ ﻤﺭﺒﻊ ﺍﻟﻤﺘﻐﻴﺭﺍﺕ ﺍﻟﻤﺴﺘﻘﻠﺔ )‪ Independent(s‬ﻭﻫﻭ‬

‫ﻓﻲ ﻫﺫﻩ ﺍﻟﺤﺎﻟﺔ ﻨﺘﻴﺠﺔ ﺍﻤﺘﺤﺎﻥ ﺍﻟﻘﺒﻭل ‪ Entrance Exam‬ﻟﺘﻅﻬﺭ ﺍﻟﻨﺎﻓﺫﺓ ﺘﻤﺎﻤﹰﺎ ﻜﻤﺎ ﻓﻲ‬ ‫ﺍﻟﺸﻜل ‪. 2-12‬‬

‫ﻭﻴﻨﺼﺢ ﺩﺍﺌﻤﺎ ﺒﻁﻠﺏ ﺤﺴﺎﺏ ﺍﻟﻤﻘﺎﻴﻴﺱ ﺍﻟﻭﺼﻔﻴﺔ ‪Descriptive Statistics‬‬

‫ﻼ ﻟﻸﺨﻁﺎﺀ ‪ ، residuals‬ﻭﻴﻤﻜﻥ ﺍﻟﺤﺼﻭل ﻋﻠﻰ‬ ‫ﻟﻠﻤﺘﻐﻴﺭﺍﺕ ﻗﻴﺩ ﺍﻟﺩﺭﺍﺴﺔ ﻭﻜﺫﻟﻙ ﺘﺤﻠﻴ ﹰ‬ ‫ﺍﻟﻤﻘﺎﻴﻴﺱ ﺍﻟﻭﺼﻔﻴﺔ ﻤﻥ ﺨﻼل ﺍﻟﻀﻐﻁ ﻋﻠﻰ ﻤﺭﺒﻊ ﺤﻭﺍﺭ ﺍﻹﺤﺼﺎﺀﺍﺕ ‪ Statistics‬ﻓﻲ‬ ‫ﺃﺴﻔل ﺍﻟﻨﺎﻓﺫﺓ ﺍﻟﺴﺎﺒﻘﺔ ﻟﺘﻅﻬﺭ ﻨﺎﻓﺫﺓ ﺍﻹﺤﺼﺎﺀﺍﺕ ‪ Linear Regression: Statistics‬ﻜﻤﺎ‬

‫ﻓﻲ ﺍﻟﺸﻜل ‪ 4-12‬ﻓﻴﺘﻡ ﺍﺨﺘﻴﺎﺭ ﺍﻹﺤﺼﺎﺀﺍﺕ ﺍﻟﻤﻁﻠﻭﺒﺔ ﻭﺃﻫﻤﻬﺎ ﻓﻲ ﻫﺫﺍ ﺍﻟﻤﺜﺎل ﺍﻟﻤﻘﺎﻴﻴﺱ‬ ‫ﺍﻟﻭﺼﻔﻴﺔ ‪ Descriptive Statistics‬ﻭﺘﻘﺩﻴﺭ ﻟﻤﻌﺎﺩﻟﺔ ﺍﻻﻨﺤﺩﺍﺭ‬

‫‪Estimates‬‬

‫ﻭﺍﻻﺨﺘﺒﺎﺭﺍﺕ ﺍﻟﻼﺯﻤﺔ ﻻﺨﺘﺒﺎﺭ ﻨﻤﻭﺫﺝ ﺍﻻﻨﺤﺩﺍﺭ ‪ Model fit‬ﺒﺎﻹﻀﺎﻓﺔ ﺇﻟﻰ ﻓﺤﺹ‬

‫ﺍﻷﺨﻁﺎﺀ ‪ Residuals‬ﺒﻬﺩﻑ ﺍﺴﺘﻜﺸﺎﻑ ﺍﻟﻤﻔﺭﺩﺍﺕ ﺒﺤﺜﹰﺎ ﻋﻥ ﺃﻱ ﻋﺩﺩ ﻤﻥ ﺍﻟﻘﻴﻡ ﺍﻟﺸﺎﺫﺓ‬

‫‪ ،Outliers‬ﺤﻴﺙ ﻴﺤﺩﺩ ﺘﻌﺭﻴﻑ ﻫﺫﻩ ﺍﻟﻘﻴﻡ ﺒﺤﻴﺙ ﺘﻜﻭﻥ ﺍﻟﻘﻴﻡ ﺍﻟﺘﻲ ﺘﺒﻌﺩ ﻋﻥ ﺍﻟﻭﺴﻁ‬ ‫ﺍﻟﺤﺴﺎﺒﻲ ‪ mean‬ﺒﻤﻘﺩﺍﺭ )‪ (3‬ﺃﻀﻌﺎﻑ ﻗﻴﻤﺔ ﺍﻻﻨﺤﺭﺍﻑ ﺍﻟﻤﻌﻴﺎﺭﻱ‬

‫‪standard‬‬

‫‪ deviations‬ﻤﻊ ﺇﻤﻜﺎﻨﻴﺔ ﺘﻐﻴﻴﺭ ﺍﻟﻘﻴﻤﺔ ‪ ، 3‬ﻭﻫﺫﺍ ﻴﺘﻡ ﻋﻥ ﻁﺭﻴﻕ ﺍﺨﺘﻴﺎﺭ ﻓﺤﺹ‬ ‫ﺍﻟﻤﻔﺭﺩﺍﺕ ‪ Casewise Diagnostics‬ﺘﺤﺕ ﺒﻨﺩ ﺍﻷﺨﻁﺎﺀ ‪ Residuals‬ﻓﻲ ﺃﺴﻔل ﻨﺎﻓﺫﺓ‬ ‫ﺍﻹﺤﺼﺎﺀﺍﺕ‪ ،‬ﻻﺤﻅ ﺃﻥ ﻫﻨﺎﻙ ﺃﻴﻀﺎ ﺇﺤﺼﺎﺀﺍﺕ ﺃﺨﺭﻯ ﻴﻤﻜﻥ ﺤﺴﺎﺒﻬﺎ ﻭﻟﻜﻨﻬﺎ ﻟﻴﺴﺕ‬

‫ﺫﺍﺕ ﺃﻫﻤﻴﺔ ﻜﺒﻴﺭﺓ ﻓﻲ ﺘﺤﻠﻴل ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﺨﻁﻲ ﺍﻟﺒﺴﻴﻁ ‪.‬‬


‫)‪ (12‬ﺘﺤﻠﻴل ﻨﻤﺎﺫﺝ ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﺨﻁﻲ‬

‫‪410‬‬

‫ﺸﻜل ‪ : 4-12‬ﻨﺎﻓﺫﺓ ﺍﻹﺤﺼﺎﺀﺍﺕ ‪ Statistics‬ﻓﻲ ﺘﺤﻠﻴل ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﺨﻁﻲ‬

‫ﺸﻜل ‪ : 5-12‬ﻨﺎﻓﺫﺓ ﺍﻟﺭﺴﻭﻤﺎﺕ ﺍﻟﺒﻴﺎﻨﻴﺔ ‪ Plots‬ﻓﻲ ﺘﺤﻠﻴل ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﺨﻁﻲ‬

‫ﻭﻴﻤﻜﻥ ﺍﻟﺤﺼﻭل ﻋﻠﻰ ﻤﻌﻠﻭﻤﺎﺕ ﺤﻭل ﺍﻷﺨﻁﺎﺀ ‪ residuals‬ﻭﻜﺫﻟﻙ ﺤﻭل ﺍﻟﻘﻴﻡ‬

‫ﺍﻟﻤﺘﻭﻗﻌﺔ ‪ Fitted Values‬ﻋﻥ ﻁﺭﻴﻕ ﺨﻴﺎﺭ ﺍﻟﺭﺴﻭﻤﺎﺕ ﺍﻟﺒﻴﺎﻨﻴﺔ ‪ Plots‬ﻓﻲ ﻨﺎﻓﺫﺓ ﺘﺤﻠﻴل‬

‫ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﺨﻁﻲ ‪) Linear Regression‬ﺸﻜل ‪ ، (2-12‬ﻭﻤﻨﻬﺎ ﺘﻅﻬﺭ ﻨﺎﻓﺫﺓ ﺨﺎﺼﺔ‬

‫ﺒﺎﻟﺭﺴﻭﻤﺎﺕ ﺍﻟﺒﻴﺎﻨﻴﺔ ‪) Linear Regression: Plots‬ﺸﻜل ‪ (5-12‬ﻴﻤﻜﻨﻨﺎ ﻤﻥ ﺨﻼﻟﻬﺎ‬

‫ﺭﺴﻡ ﺃﻱ ﻤﻥ ﺍﻷﺨﻁﺎﺀ ‪ residuals‬ﺃﻭ ﺍﻟﻘﻴﻡ ﺍﻟﻤﺘﻭﻗﻌﺔ ‪ fitted values‬ﺃﻭ ﻜﻠﻴﻬﻤﺎ ﻤﻘﺎﺒل‬


‫)‪ (12‬ﺘﺤﻠﻴل ﻨﻤﺎﺫﺝ ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﺨﻁﻲ‬

‫‪411‬‬

‫ﻗﻴﻡ ﺃﻱ ﻤﺘﻐﻴﺭ ﺁﺨﺭ ﻤﻥ ﺒﻴﻥ ﻗﺎﺌﻤﺔ ﺍﻟﻤﺘﻐﻴﺭﺍﺕ ﺍﻟﺘﻲ ﻗﺎﻡ ﺍﻟﻨﻅﺎﻡ ﺒﺤﺴﺎﺒﻬﺎ ﻋﻨﺩ ﺘﻘﺩﻴﺭ‬ ‫ﻤﻌﺎﺩﻟﺔ ﺍﻻﻨﺤﺩﺍﺭ‪ ،‬ﻭﻓﻲ ﻤﺜل ﻫﺫﻩ ﺍﻟﺤﺎﻟﺔ ﻴﻜﻭﻥ ﻤﻥ ﺍﻟﻤﻔﻴﺩ ﺭﺴﻡ ﺸﻜل ﺍﻻﻨﺘﺸﺎﺭ ﻟﻠﻘﻴﻡ‬

‫ﺍﻟﻤﻌﻴﺎﺭﻴﺔ ﻟﻸﺨﻁﺎﺀ )ﻭﻴﺸﺎﺭ ﻟﻬﺎ ﻓﻲ ﻗﺎﺌﻤﺔ ﺍﻟﻤﺘﻐﻴﺭﺍﺕ ﻓﻲ ﺍﻟﻨﺎﻓﺫﺓ ﺒﺎﻻﺴﻡ ‪(*ZRESID‬‬ ‫ﻤﻘﺎﺒل ﺍﻟﻘﻴﻡ ﺍﻟﻤﻌﻴﺎﺭﻴﺔ ﻟﻠﻘﻴﻡ ﺍﻟﻤﺘﻭﻗﻌﺔ )ﻭﻴﺸﺎﺭ ﻟﻬﺎ ﻓﻲ ﻗﺎﺌﻤﺔ ﺍﻟﻤﺘﻐﻴﺭﺍﺕ ﻓﻲ ﺍﻟﻨﺎﻓﺫﺓ‬

‫ﺒﺎﻻﺴﻡ ‪ (*ZPRED‬ﻟﻠﺘﺄﻜﺩ ﻤﻥ ﺘﺤﻘﻕ ﺼﺤﺔ ﻓﺭﻀﻴﺘﻲ ﻋﺸﻭﺍﺌﻴﺔ ﺍﻷﺨﻁﺎﺀ ﻭﺘﺠﺎﻨﺱ‬

‫ﺘﺒﺎﻴﻨﻬﺎ‪ ،‬ﻭﻜﺫﻟﻙ ﺭﺴﻡ ﺍﻟﺘﻭﺯﻴﻊ ﺍﻟﻁﺒﻴﻌﻲ ﻟﻸﺨﻁﺎﺀ ‪ Normal Probability Plot‬ﻟﻠﺘﺤﻘﻕ‬ ‫ﻤﻥ ﺼﺤﺔ ﻓﺭﻀﻴﺔ ﺍﻟﺘﻭﺯﻴﻊ ﺍﻟﻁﺒﻴﻌﻲ ﻟﻸﺨﻁﺎﺀ‪ ،‬ﻟﺘﻅﻬﺭ ﺍﻟﻨﺎﻓﺫﺓ ﺒﻌﺩ ﺇﺩﺨﺎل ﺍﻟﻤﻌﻠﻭﻤﺎﺕ‬

‫ﺍﻟﻤﻁﻠﻭﺒﺔ ﻜﻤﺎ ﻓﻲ ﺍﻟﺸﻜل ‪ ،5-12‬ﻓﺈﺫﺍ ﺘﺒﻴﻥ ﺃﻥ ﻫﻨﺎﻙ ﺍﺨﺘﺭﺍﻕ ﻜﺒﻴﺭ ﻷﻱ ﻓﺭﻀﻴﺔ ﻓﺈﻥ‬

‫ﺫﻟﻙ ﻴﻌﻨﻲ ﺃﻥ ﻨﻤﻭﺫﺝ ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﺫﻱ ﺘﻡ ﺘﻁﺒﻴﻘﻪ ﻻ ﻴﺼﻠﺢ ﻟﻬﺫﻩ ﺍﻟﺒﻴﺎﻨﺎﺕ‪.‬‬

‫ﻭﻋﻨﺩ ﺘﻨﻔﻴﺫ ﺍﻷﻤﺭ ﺴﻭﻑ ﺘﻔﺘﺢ ﺸﺎﺸﺔ ﺍﻟﻨﺘﺎﺌﺞ ‪ Output Viewer‬ﻟﺘﺨﺭﺝ ﻗﺎﺌﻤﺔ‬

‫ﻤﻥ ﺍﻟﺠﺩﺍﻭل ﻭﺍﻟﺭﺴﻭﻤﺎﺕ ﺍﻟﺒﻴﺎﻨﻴﺔ ﻓﻲ ﻫﺫﻩ ﺍﻟﺸﺎﺸﺔ ﻓﻲ ﺒﻨﻭﺩ ﺘﻅﻬﺭ ﺃﺴﻤﺎﺀﻫﺎ ﻓﻲ ﻗﺎﺌﻤﺔ‬

‫ﺒﻨﻭﺩ ﺍﻟﻨﺘﺎﺌﺞ ﻋﻠﻰ ﻴﺴﺎﺭ ﺍﻟﺸﺎﺸﺔ ﺘﺸﺒﻪ ﺍﻟﺸﻜل ‪ ،6-12‬ﻭﻴﻨﺼﺢ ﻓﻲ ﺍﻟﺒﺩﺍﻴﺔ ﺒﺎﻟﺒﺤﺙ ﻋﻥ‬ ‫ﺠﺩﻭل ﻓﺤﺹ ﺍﻟﺒﻴﺎﻨﺎﺕ ‪ Casewise Diagnostics‬ﺍﻟﺫﻱ ﻭﺠﻭﺩﻩ ﻴﻌﻨﻲ ﻭﺠﻭﺩ ﻗﻴﻡ ﺸﺎﺫﺓ‬

‫ﻗﺩ ﺘﺅﺩﻱ ﺇﻟﻰ ﺍﻟﺘﺄﺜﻴﺭ ﺒﺸﻜل ﺴﻠﺒﻲ ﻋﻠﻰ ﻨﻤﻭﺫﺝ ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﻤﺴﺘﺨﻠﺹ‪ ،‬ﻓﻭﺠﻭﺩﻩ ﻴﻌﻨﻲ‬ ‫ﻭﺠﻭﺩ ﻗﻴﻤﹰﺎ ﺸﺎﺫﺓ ‪ Outliers‬ﻓﻲ ﺍﻟﺒﻴﺎﻨﺎﺕ‪ ،‬ﻭﻴﺘﻡ ﺍﻟﺒﺤﺙ ﻋﻥ ﻫﺫﺍ ﺍﻟﺠﺩﻭل ﻓﻲ ﺍﻟﻘﺎﺌﻤﺔ‬

‫ﻋﻠﻰ ﻴﺴﺎﺭ ﺍﻟﺸﺎﺸﺔ ﻋﻥ ﺒﻨﺩ ﻓﺤﺹ ﺍﻟﺒﻴﺎﻨﺎﺕ ‪ Casewise Diagnostics‬ﻭﺍﻟﻨﻅﺭ ﺇﻟﻰ‬

‫ﺍﻟﻨﺘﺎﺌﺞ ﺇﻥ ﻭﺠﺩ ﻫﺫﺍ ﺍﻟﺠﺩﻭل‪ ،‬ﻭﻓﻲ ﻤﺜﺎﻟﻨﺎ )ﺸﻜل ‪ (7-12‬ﺴﻨﺠﺩ ﺃﻥ ﻫﻨﺎﻙ ﻗﻴﻤﺔ ﺸﺎﺫﺓ‬ ‫ﻭﺤﻴﺩﺓ ﻭﻫﻲ ﺍﻟﻤﻔﺭﺩﺓ ﺭﻗﻡ ‪ (49 ،195) 34‬ﺍﻷﻤﺭ ﺍﻟﺫﻱ ﻴﺴﺘﻭﺠﺏ ﺤﺫﻓﻬﺎ ﻤﻥ ﺍﻟﺒﻴﺎﻨﺎﺕ‪.‬‬

‫ﻭﻴﻤﻜﻥ ﺍﻻﻋﺘﻤﺎﺩ ﺃﻜﺜﺭ ﻋﻠﻰ ﻨﻤﻭﺫﺝ ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﻨﺎﺘﺞ ﺇﺫﺍ ﻟﻡ ﻴﺘﺨﻠل ﺍﻟﺒﻴﺎﻨﺎﺕ ﺃﻱ‬ ‫ﻗﻴﻤﺔ ﺸﺎﺫﺓ ﺘﻌﻜﺭ ﺼﻔﻭﻫﺎ‪ ،‬ﻟﺫﺍ ﻓﺈﻥ ﺍﻟﻤﻔﺭﺩﺓ ﺭﻗﻡ ‪ 34‬ﻗﺩ ﺍﺴﺘﺒﻌﺩﺕ ﻤﻥ ﺍﻟﺒﻴﺎﻨﺎﺕ‪ ،‬ﻭﻴﻤﻜﻥ‬ ‫ﺍﺴﺘﺒﻌﺎﺩ ﻗﻴﻤﺔ )ﺃﻭ ﺃﻜﺜﺭ( ﻤﻥ ﺍﻟﺒﻴﺎﻨﺎﺕ ﻋﻥ ﻁﺭﻴﻕ ﺤﺫﻓﻬﺎ ﻨﻬﺎﺌﻴﹰﺎ ﺃﻭ ﻋﻥ ﻁﺭﻴﻕ ﺍﺴﺘﺨﺩﺍﻡ‬

‫ﺃﻤﺭ ﺍﺨﺘﻴﺎﺭ ﺍﻟﺒﻴﺎﻨﺎﺕ ‪ Select Cases‬ﺍﻟﺫﻱ ﺘﻡ ﺍﻟﺘﻌﺎﻤل ﻤﻌﻪ ﻓﻲ ﺍﻟﻔﺼل ﺍﻟﺜﺎﻟﺙ‪ ،‬ﻭﺒﻪ ﻴﺘﻡ‬

‫ﺍﺨﺘﻴﺎﺭ ﺠﻤﻴﻊ ﺍﻟﻤﻔﺭﺩﺍﺕ ﺫﺍﺕ ﻗﻴﻤﺔ ﻟﻤﺘﻐﻴﺭ ﺩﺭﺠﺎﺕ ﺍﻟﻁﺎﻟﺏ ﻓﻲ ﺍﻟﺠﺎﻤﻌﺔ ‪Final Exam‬‬

‫ﻻ ﺘﺴﺎﻭﻱ ‪ 195‬ﻓﻲ ﻫﺫﻩ ﺍﻟﺤﺎﻟﺔ ﺃﻭ ﺃﺼﻐﺭ ﺃﻭ ﺃﻜﺒﺭ ﻤﻥ ﻗﻴﻤﺔ ﻤﻌﻴﻨﺔ ﻓﻲ ﺤﺎﻻﺕ ﺃﺨﺭﻯ‪.‬‬


‫( ﺘﺤﻠﻴل ﻨﻤﺎﺫﺝ ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﺨﻁﻲ‬12)

412

Linear Regression ‫ ﻗﺎﺌﻤﺔ ﺍﻟﻨﺘﺎﺌﺞ ﻤﻥ ﺘﻨﻔﻴﺫ ﺃﻤﺭ ﺘﺤﻠﻴل ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﺨﻁﻲ‬:6-12 ‫ﺸﻜل‬

‫ ﻗﺒل‬Linear Regression ‫ ﺠﺎﻨﺏ ﻤﻥ ﻗﺎﺌﻤﺔ ﻨﺘﺎﺌﺞ ﺘﺤﻠﻴل ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﺨﻁﻲ‬: 7-12 ‫ﺸﻜل‬ .Casewise Diagnostics ‫ ﻭﺍﻟﺨﺎﺹ ﺒﻔﺤﺹ ﺍﻟﺒﻴﺎﻨﺎﺕ‬Outlier ‫ﺤﺫﻑ ﺍﻟﻘﻴﻤﺔ ﺍﻟﺸﺎﺫﺓ‬ Regression Variables Entered/Removedb

Model 1

Variables Entered

Variables Removed

Entrance a Exam

Method . Enter

a. All requested variables entered. b. Dependent Variable: University Exam

Casewise Diagnosticsa

Case Number 34

Std. Residual

University Exam

3.133

195

a. Dependent Variable: University Exam

Predicted Value 110.30

Residual 84.70


‫)‪ (12‬ﺘﺤﻠﻴل ﻨﻤﺎﺫﺝ ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﺨﻁﻲ‬

‫‪413‬‬

‫ﻭﻋﻨﺩﻤﺎ ﻴﺘﻡ ﺘﻨﻔﻴﺫ ﺃﻤﺭ ﺘﺤﻠﻴل ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﺨﻁﻲ ‪ Linear Regression‬ﻤﺭﺓ‬ ‫ﺃﺨﺭﻯ ﺒﻌﺩ ﺍﺴﺘﺒﻌﺎﺩ ﺍﻟﻘﻴﻤﺔ ﺍﻟﺸﺎﺫﺓ ﻤﻥ ﺍﻟﺒﻴﺎﻨﺎﺕ ﻟﻥ ﻴﻅﻬﺭ ﺍﻟﺠﺩﻭل ﺍﻟﺨﺎﺹ ﺒﻔﺤﺹ‬

‫ﺍﻟﺒﻴﺎﻨﺎﺕ ‪ Casewise Diagnostics‬ﻷﻨﻪ ﻟﻡ ﻴﺘﺒﻕ ﺃﻱ ﻗﻴﻡ ﺸﺎﺫﺓ ﻓﻲ ﺍﻟﺒﻴﺎﻨﺎﺕ‪ ،‬ﻭﺒﻬﺫﺍ‬

‫ﻓﺈﻨﻪ ﻴﻤﻜﻨﻨﺎ ﺍﺴﺘﻜﻤﺎل ﻓﺤﺹ ﺍﻟﻨﻤﻭﺫﺝ ﻗﺒل ﺍﻻﻋﺘﻤﺎﺩ ﻋﻠﻴﻪ ﻋﻥ ﻁﺭﻴﻕ ﻓﺤﺹ ﺍﻟﺠﺩﺍﻭل‬ ‫ﻭﺍﻟﺭﺴﻭﻤﺎﺕ ﺍﻷﺨﺭﻯ ﺍﻟﻨﺎﺘﺠﺔ‪ ،‬ﻭﺍﻟﺠﺯﺀ ﺍﻷﻭل ﻤﻥ ﻗﺎﺌﻤﺔ ﺍﻟﻨﺘﺎﺌﺞ ﻴﺘﻜﻭﻥ ﻤﻥ ﺠﺩﻭﻟﻴﻥ‬

‫ﺨﺎﺼﻴﻥ ﺒﺎﻟﻤﻘﺎﻴﻴﺱ ﺍﻟﻭﺼﻔﻴﺔ ﻟﻠﻤﺘﻐﻴﺭﺍﺕ ﻭﻤﻌﺎﻤل ﺍﻻﺭﺘﺒﺎﻁ ﺒﻴﻥ ﺍﻟﻤﺘﻐﻴﺭﻴﻥ ‪ r‬ﻭﺫﻟﻙ‬ ‫ﺒﺎﺴﺘﺨﺩﺍﻡ ‪ 33‬ﻤﻔﺭﺩﺓ ﺍﻟﻤﺘﺒﻘﻴﺔ )ﺸﻜل ‪.(8-12‬‬

‫ﻭﺍﻟﺠﺯﺀ ﺍﻟﺜﺎﻨﻲ ﻤﻥ ﺍﻟﻨﺘﺎﺌﺞ )ﺸﻜل ‪ (9-12‬ﻴﺤﺘﻭﻱ ﻋﻠﻰ ﻗﻴﻤﺔ ﺍﻻﺭﺘﺒﺎﻁ ﺍﻟﻤﺘﻌﺩﺩ‬

‫‪ ،R‬ﻭﺤﻴﺙ ﺃﻥ ﻫﻨﺎﻙ ﻤﺘﻐﻴﺭ ﻤﺴﺘﻘل ﻭﺍﺤﺩ ﻓﺈﻥ ﻗﻴﻤﺘﻪ ﻟﻥ ﺘﺨﺘﻠﻑ ﻋﻥ ﻗﻴﻤﺔ ﻤﻌﺎﻤل‬

‫ﺍﺭﺘﺒﺎﻁ ﺒﻴﺭﺴﻭﻥ ‪ r‬ﻓﻲ ﺍﻟﺠﺩﻭل ﺍﻟﻤﺒﻴﻥ ﻓﻲ ﺸﻜل ‪ 8-12‬ﺍﻟﺴﺎﺒﻕ‪ ،‬ﻭﺍﻹﺤﺼﺎﺀﺍﺕ‬ ‫ﺍﻷﺨﺭﻯ ﺍﻟﻤﺒﻴﻨﺔ ﻫﻲ ﻤﺭﺒﻊ ﻗﻴﻤﺔ ﻤﻌﺎﻤل ﺍﻻﺭﺘﺒﺎﻁ ﺍﻟﻤﺘﻌﺩﺩ ‪ (R2) R-Square‬ﻭﻫﻭ‬

‫ﻤﻌﺎﻤل ﻤﻭﺠﺏ ﺩﺍﺌﻤﺎ ﻭﻴﻭﻀﺢ ﻨﺴﺒﺔ ﺍﻟﺘﻐﻴﺭﺍﺕ ﻓﻲ ﺍﻟﻤﺘﻐﻴﺭ ﺍﻟﺘﺎﺒﻊ ‪ y‬ﺍﻟﺘﻲ ﺘﺸﺭﺤﻬﺎ‬

‫ﺍﻟﻤﺘﻐﻴﺭﺍﺕ ﺍﻟﻤﺴﺘﻘﻠﺔ ‪ x‬ﻤﻥ ﺨﻼل ﻤﻌﺎﺩﻟﺔ ﺍﻻﻨﺤﺩﺍﺭ‪ ،‬ﻭﻫﻨﺎﻙ ﻗﻴﻤﺔ ﻤﻌﺩﻟﺔ ﻟﻬﺫﺍ ﺍﻟﻤﻌﺎﻤل‬ ‫ﺃﻴﻀﹰﺎ ‪ Adjusted R-Square‬ﻭﻫﻲ ﻟﺘﺼﺤﻴﺢ ﺍﻟﺘﺤﻴﺯ ﻓﻲ ﺍﻟﻤﻌﺎﻤل ﺍﻟﺴﺎﺒﻕ )ﻟﺫﺍ ﻓﻬﻲ‬

‫ﺃﻗل ﻤﻥ ﺍﻟﻘﻴﻤﺔ ﺍﻷﻭﻟﻰ(‪ ،‬ﻭﻫﻨﺎﻙ ﺃﻴﻀ ﹰﺎ ﻗﻴﻤﺔ ﺍﻟﺨﻁﺄ ﺍﻟﻤﻌﻴﺎﺭﻱ ‪Standard Error‬‬

‫ﻟﻨﻤﻭﺫﺝ ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﺫﻱ ﺘﻡ ﺍﺴﺘﺨﻼﺼﻪ‪ ،‬ﻭﻫﻭ ﻋﺒﺎﺭﺓ ﻋﻥ ﺍﻻﻨﺤﺭﺍﻑ ﺍﻟﻤﻌﻴﺎﺭﻱ‬

‫‪ Standard Deviation‬ﻟﻸﺨﻁﺎﺀ ‪.‬‬


‫( ﺘﺤﻠﻴل ﻨﻤﺎﺫﺝ ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﺨﻁﻲ‬12)

414

Linear Regression ‫ ﺍﻟﺠﺯﺀ ﺍﻷﻭل ﻤﻥ ﻨﺘﺎﺌﺞ ﺘﺤﻠﻴل ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﺨﻁﻲ‬: 8-12 ‫ﺸﻜل‬ Descriptive Statistics Mean

Std. Deviation

N

University Exam

102.82

32.63

33

Entrance Exam

47.27

7.54

33

Correlations

Pearson Correlation Sig. (1-tailed) N

University Exam

Entrance Exam

University Exam

1.000

.729

Entrance Exam

.729

1.000

University Exam

.

.000

Entrance Exam

.000

.

University Exam

33

33

Entrance Exam

33

33

Linear Regression ‫ ﺍﻟﺠﺯﺀ ﺍﻟﺜﺎﻨﻲ ﻤﻥ ﻨﺘﺎﺌﺞ ﺘﺤﻠﻴل ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﺨﻁﻲ‬: 9-12 ‫ﺸﻜل‬ Model Summaryb

Model 1

R a

.729

R Square

Adjusted R Square

Std. Error of the Estimate

.531

.516

22.70

a. Predictors: (Constant), Entrance Exam b. Dependent Variable: University Exam

Regression ‫ﻭﻴﺤﺘﻭﻱ ﺍﻟﺠﺯﺀ ﺍﻟﺜﺎﻟﺙ ﻤﻥ ﺍﻟﻨﺘﺎﺌﺞ ﻋﻠﻰ ﺠﺩﻭل ﺘﺤﻠﻴل ﺍﻟﺘﺒﺎﻴﻥ‬

‫( ﻭﺍﻟﺫﻱ ﻤﻥ ﺨﻼﻟﻪ ﻴﺘﻡ ﺍﺨﺘﺒﺎﺭ ﻓﺭﻀﻴﺔ ﻭﺠﻭﺩ ﻋﻼﻗﺔ ﺨﻁﻴﺔ‬10-12 ‫ )ﺸﻜل‬ANOVA

‫ ﻭﺍﻟﺘﻲ ﺘﻤﺜل ﺍﻟﻨﺴﺒﺔ ﺒﻴﻥ ﻤﺘﻭﺴﻁ‬F ‫ﺤﻘﻴﻘﻴﺔ ﺒﻴﻥ ﺍﻟﻤﺘﻐﻴﺭﺍﺕ ﺒﺎﺴﺘﺨﺩﺍﻡ ﺩﺍﻟﺔ ﺍﺨﺘﺒﺎﺭ‬

‫ ﻟﺫﺍ ﻓﺈﻨﻪ ﻟﻜﻲ ﺘﻜﻭﻥ‬،‫ﺍﻟﻤﺭﺒﻌﺎﺕ ﺍﻟﺫﻱ ﻴﻌﺯﻯ ﻟﻼﻨﺤﺩﺍﺭ ﺇﻟﻰ ﻤﺘﻭﺴﻁ ﻤﺭﺒﻌﺎﺕ ﺍﻷﺨﻁﺎﺀ‬

.‫ ﻜﺒﻴﺭﺓ‬F ‫ﺍﻟﻌﻼﻗﺔ ﺍﻟﺨﻁﻴﺔ ﺤﻘﻴﻘﻴﺔ ﻭﻤﻌﻨﻭﻴﺔ ﻴﺠﺏ ﺃﻥ ﺘﻜﻭﻥ ﻗﻴﻤﺔ‬


‫)‪ (12‬ﺘﺤﻠﻴل ﻨﻤﺎﺫﺝ ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﺨﻁﻲ‬

‫‪415‬‬

‫ﺸﻜل ‪ : 10-12‬ﺍﻟﺠﺯﺀ ﺍﻟﺜﺎﻟﺙ ﻤﻥ ﻨﺘﺎﺌﺞ ﺘﺤﻠﻴل ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﺨﻁﻲ ‪Linear Regression‬‬ ‫‪ANOVAb‬‬

‫‪Sig.‬‬

‫‪F‬‬

‫‪Mean Square‬‬

‫‪df‬‬

‫‪Sum of‬‬ ‫‪Squares‬‬

‫‪.000‬‬

‫‪35.104‬‬

‫‪18096.329‬‬

‫‪1‬‬

‫‪18096.329‬‬

‫‪Regression‬‬

‫‪515.503‬‬

‫‪31‬‬

‫‪15980.580‬‬

‫‪Residual‬‬

‫‪32‬‬

‫‪34076.909‬‬

‫‪Total‬‬

‫‪a‬‬

‫‪Model‬‬ ‫‪1‬‬

‫‪a. Predictors: (Constant), Entrance Exam‬‬ ‫‪b. Dependent Variable: University Exam‬‬

‫ﻭﻓﻲ ﻫﺫﺍ ﺍﻟﻤﺜﺎل ﻴﺘﻀﺢ ﺃﻥ ﻗﻴﻤﺔ ‪ F‬ﻜﺒﻴﺭﺓ ﺠﺩﹰﺍ ﻭﻜﺫﻟﻙ ﻗﻴﻤﺔ ‪(p-value) Sig.‬‬ ‫ﺼﻐﻴﺭﺓ ﺠﺩﹰﺍ )ﺃﻗل ﻤﻥ ‪ ،(0.0005‬ﻭﻫﺫﺍ ﻴﺩل ﻋﻠﻰ ﺃﻥ ﻨﻤﻭﺫﺝ ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﺨﻁﻲ‬

‫ﻤﻌﻨﻭﻱ‪ ،‬ﺃﻱ ﺃﻥ ﻋﻼﻗﺔ ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﺨﻁﻴﺔ ﻤﻌﻨﻭﻴﺔ )‪ (p-value < 0.01‬ﻭﻟﻜﻥ ﻴﺠﺏ‬

‫ﺍﻟﺘﺄﻜﻴﺩ ﻋﻠﻰ ﺃﻨﻪ ﻻ ﻴﻤﻜﻨﻨﺎ ﺍﻟﺘﺄﻜﺩ ﻤﻥ ﺼﺤﺔ ﻭﺠﻭﺩ ﺍﻟﻌﻼﻗﺔ ﺍﻟﺨﻁﻴﺔ ﺒﻴﻥ ﺍﻟﻤﺘﻐﻴﺭﻴﻥ ﺇﻻ‬

‫ﺇﺫﺍ ﺩﻋﻤﺕ ﻫﺫﻩ ﺍﻟﻨﺘﻴﺠﺔ ﺒﻌﻼﻗﺔ ﺨﻁﻴﺔ ﺤﻘﻴﻘﻴﺔ ﻭﺍﻀﺤﺔ ﻓﻲ ﺸﻜل ﺍﻻﻨﺘﺸﺎﺭ ﺒﻴﻥ‬ ‫ﺍﻟﻤﺘﻐﻴﺭﻴﻥ‪.‬‬

‫ﺸﻜل ‪ : 11-12‬ﺍﻟﺠﺯﺀ ﺍﻟﺭﺍﺒﻊ ﻤﻥ ﻨﺘﺎﺌﺞ ﺘﺤﻠﻴل ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﺨﻁﻲ ‪Linear Regression‬‬ ‫‪Coefficientsa‬‬ ‫‪Standardized‬‬ ‫‪Coefficients‬‬ ‫‪Sig.‬‬

‫‪t‬‬

‫‪.079‬‬

‫‪-1.817‬‬

‫‪.000‬‬

‫‪5.925‬‬

‫‪Beta‬‬

‫‪.729‬‬

‫‪Unstandardized‬‬ ‫‪Coefficients‬‬ ‫‪Std.‬‬ ‫‪Error‬‬

‫‪B‬‬

‫‪25.477‬‬

‫‪-46.305‬‬

‫‪.532‬‬

‫‪3.155‬‬

‫‪Model‬‬ ‫)‪(Constant‬‬ ‫‪Entrance‬‬ ‫‪Exam‬‬

‫‪a. Dependent Variable: University Exam‬‬

‫‪1‬‬


‫)‪ (12‬ﺘﺤﻠﻴل ﻨﻤﺎﺫﺝ ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﺨﻁﻲ‬

‫‪416‬‬

‫ﻭﻴﺒﻴﻥ ﺸﻜل ‪ 11-12‬ﻨﻭﺍﺓ ﺘﺤﻠﻴل ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﺨﻁﻲ ﺤﻴﺙ ﺃﻨﻪ ﻴﺤﺘﻭﻱ ﻋﻠﻰ‬ ‫ﻤﻌﺎﺩﻟﺔ ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﺨﻁﻴﺔ ﺒﻴﻥ ﺍﻟﻤﺘﻐﻴﺭﺍﺕ‪ ،‬ﻓﻘﻴﻤﺔ ﺜﺎﺒﺕ ﺍﻻﻨﺤﺩﺍﺭ ‪ constant‬ﻭﻤﻌﺎﻤل‬ ‫ﺍﻻﻨﺤﺩﺍﺭ ‪ regression coefficient‬ﻟﻤﺘﻐﻴﺭ ﺩﺭﺠﺎﺕ ﺍﻟﻁﺎﻟﺏ ﻓﻲ ﺍﻤﺘﺤﺎﻥ ﺍﻟﻘﺒﻭل‬

‫‪ Entrance Exam‬ﻭﺫﻟﻙ ﻓﻲ ﺍﻟﻌﻤﻭﺩ ﺒﻌﻨﻭﺍﻥ ‪ B‬ﻓﻲ ﺍﻟﺠﺩﻭل‪ ،‬ﻭﻤﻥ ﻫﺫﺍ ﺍﻟﺸﻜل ﻴﻤﻜﻥ‬ ‫ﻗﺭﺍﺀﺓ ﻤﻌﺎﺩﻟﺔ ﺍﻻﻨﺤﺩﺍﺭ ﻟﻠﻤﺜﺎل ﺍﻟﺤﺎﻟﻲ ﻜﻤﺎ ﻴﻠﻲ‪:‬‬

‫‪Y = 3.15 X - 46.30‬‬

‫ﺃﻭ ‪:‬‬ ‫‪Predicted University Exam = 3.15 × (Entrance Exam) – 46.30‬‬

‫ﻭﺒﺎﻟﺘﺎﻟﻲ ﻓﺈﻨﻪ ﺇﺫﺍ ﺤﺼل ﻁﺎﻟﺏ ﻋﻠﻰ ﺩﺭﺠﺔ ﻓﻲ ﺍﻤﺘﺤﺎﻥ ﺍﻟﻘﺒﻭل ﻤﺴﺎﻭﻴﺔ ‪ 60‬ﻓﺈﻨﻪ ﻴﺘﻭﻗﻊ‬

‫ﺃﻥ ﺘﻜﻭﻥ ﺩﺭﺠﺎﺘﻪ ﻓﻲ ﺍﻟﻔﺼل ﺍﻷﻭل ﻓﻲ ﺍﻟﻜﻠﻴﺔ ﻤﺴﺎﻭﻴﺔ ‪:‬‬

‫‪3.15 × 60 – 46.30 = 142.7 ~= 143‬‬

‫ﻻﺤﻅ ﺃﻨﻪ ﻤﻥ ﻭﺍﻗﻊ ﺍﻟﺒﻴﺎﻨﺎﺕ ﺍﻟﺤﻘﻴﻘﻴﺔ ﻴﺘﺒﻴﻥ ﺃﻥ ﺍﻟﻁﺎﻟﺏ ﺍﻟﺫﻱ ﺤﺼل ﻋﻠﻰ ﺩﺭﺠﺔ ‪60‬‬

‫ﻼ ﻋﻠﻰ ﺍﻟﺩﺭﺠﺔ ‪ 145‬ﻓﻲ ﺍﻟﻔﺼل ﺍﻷﻭل ﻓﻲ ﺍﻟﻜﻠﻴﺔ‪،‬‬ ‫ﻓﻲ ﺍﻤﺘﺤﺎﻥ ﺍﻟﻘﺒﻭل ﻗﺩ ﺤﺼل ﻓﻌ ﹰ‬ ‫ﻭﺒﺎﻟﺘﺎﻟﻲ ﻴﻜﻭﻥ ﺍﻟﺨﻁﺄ ‪ residual‬ﻋﻨﺩ ﻫﺫﻩ ﺍﻟﻨﻘﻁﺔ ﻤﺴﺎﻭﻴﹰﺎ ‪. 145-143= +2 :‬‬

‫ﻭﻫﻨﺎﻙ ﺇﺤﺼﺎﺀﺍﺕ ﺃﺨﺭﻯ ﻫﺎﻤﺔ ﺘﻡ ﺤﺴﺎﺒﻬﺎ ﻓﻲ ﻨﻔﺱ ﺍﻟﺠﺩﻭل ﻓﻲ ﺸﻜل ‪11-12‬‬

‫ﻭﻫﻲ ﺍﻟﺨﻁﺄ ﺍﻟﻤﻌﻴﺎﺭﻱ ‪ Std. Error‬ﻟﻜل ﻤﻥ ﺜﺎﺒﺕ ﺍﻻﻨﺤﺩﺍﺭ ﻭﻤﻌﺎﻤل ﺍﻻﻨﺤﺩﺍﺭ‬ ‫ﺒﺎﻹﻀﺎﻓﺔ ﺇﻟﻰ ﻗﻴﻤﺔ ﺩﺍﻟﺔ ﺍﻻﺨﺘﺒﺎﺭ ‪ t‬ﻟﻜل ﻤﻨﻬﻤﺎ ﻭﻫﻤﺎ ﻻﺨﺘﺒﺎﺭ ﻤﻌﻨﻭﻴﺔ ﻜل ﻤﻥ ﺜﺎﺒﺕ‬

‫ﺍﻻﻨﺤﺩﺍﺭ ﻭﻤﻌﺎﻤل ﺍﻻﻨﺤﺩﺍﺭ‪ ،‬ﻭﻜل ﻗﻴﻤﺔ ﻤﻥ ﻫﺎﺘﻴﻥ ﺍﻟﻘﻴﻤﺘﻴﻥ ﻴﺘﺒﻌﻬﺎ ﻤﺴﺘﻭﻯ ﺍﻟﻤﻌﻨﻭﻴﺔ‬

‫‪ (p-value) Sig.‬ﺍﻟﺨﺎﺹ ﺒﻬﺎ ﻻﺨﺘﺒﺎﺭ ﺍﻟﻔﺭﻀﻴﺔ ﺍﻟﻌﺩﻤﻴﺔ ﺃﻥ ﺍﻟﻘﻴﻤﺔ ﺍﻟﺤﻘﻴﻘﻴﺔ ﻓﻲ‬ ‫ﺍﻟﻤﺠﺘﻤﻊ ﻤﺴﺎﻭﻴﺔ ﺍﻟﺼﻔﺭ‪ ،‬ﻭﻤﻌﻨﻭﻴﺔ ﺍﻻﺨﺘﺒﺎﺭ ﻓﻲ ﻫﺫﻩ ﺍﻟﺤﺎﻟﺔ ﺘﻌﻨﻲ ﺃﻥ ﺍﻟﻘﻴﻤﺔ ﺍﻟﺤﻘﻴﻘﻴﺔ‬

‫ﻓﻲ ﺍﻟﻤﺠﺘﻤﻊ ﻻ ﺘﺴﺎﻭﻱ ﺍﻟﺼﻔﺭ‪ ،‬ﻭﺍﻷﻜﺜﺭ ﺃﻫﻤﻴﺔ ﻫﻲ ﻤﻌﻨﻭﻴﺔ ﻤﻌﺎﻤل ﺍﻻﻨﺤﺩﺍﺭ ﺇﺫ ﺃﻥ‬ ‫ﻋﺩﻡ ﻤﻌﻨﻭﻴﺘﻪ ﻴﻌﻨﻲ ﻋﺩﻡ ﻭﺠﻭﺩ ﺍﻟﻌﻼﻗﺔ ﺒﻴﻥ ﺍﻟﻤﺘﻐﻴﺭﻴﻥ ﻏﻴﺭ ﺤﻘﻴﻘﻴﺔ‪ ،‬ﻭﻓﻲ ﻫﺫﺍ ﺍﻟﻤﺜﺎل‬

‫ﻨﺠﺩ ﺃﻥ ﻤﻌﺎﻤل ﺍﻻﻨﺤﺩﺍﺭ ﻤﻌﻨﻭﻱ ) ‪. ( t = 5.925; p-value < 0.01‬‬


‫)‪ (12‬ﺘﺤﻠﻴل ﻨﻤﺎﺫﺝ ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﺨﻁﻲ‬

‫‪417‬‬

‫ﺸﻜل ‪ :12-12‬ﺍﻟﺠﺯﺀ ﺍﻟﺨﺎﻤﺱ ﻤﻥ ﻨﺘﺎﺌﺞ ﺘﺤﻠﻴل ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﺨﻁﻲ ‪Linear Regression‬‬ ‫‪Residuals Statisticsa‬‬

‫‪N‬‬

‫‪Std.‬‬ ‫‪Deviation‬‬

‫‪Mean‬‬

‫‪Minimum Maximum‬‬

‫‪33‬‬

‫‪23.78‬‬

‫‪102.82‬‬

‫‪152.43‬‬

‫‪60.95‬‬

‫‪Predicted Value‬‬

‫‪33‬‬

‫‪22.35‬‬

‫‪1.3E-14‬‬

‫‪30.97‬‬

‫‪-54.49‬‬

‫‪Residual‬‬

‫‪33‬‬

‫‪1.000‬‬

‫‪.000‬‬

‫‪2.086‬‬

‫‪-1.761‬‬

‫‪Std. Predicted Value‬‬

‫‪33‬‬

‫‪.984‬‬

‫‪.000‬‬

‫‪1.364‬‬

‫‪-2.400‬‬

‫‪Std. Residual‬‬

‫‪a. Dependent Variable: University Exam‬‬

‫ﻻ‬ ‫ﻭﻴﺒﻴﻥ ﺍﻟﺠﺯﺀ ﺍﻟﺨﺎﻤﺱ ﻤﻥ ﻗﺎﺌﻤﺔ ﺍﻟﻨﺘﺎﺌﺞ ﻓﻲ ﺸﻜل ‪ 12-12‬ﺠﺩﻭ ﹰ‬

‫ﺒﺎﻹﺤﺼﺎﺀﺍﺕ ﺍﻟﻤﺘﻌﻠﻘﺔ ﺒﺎﻷﺨﻁﺎﺀ ‪ Residuals‬ﻭﺘﺸﻤل ﺇﺤﺼﺎﺀﺍﺕ ﺘﺘﻌﻠﻕ ﺒﺎﻟﻘﻴﻡ ﺍﻟﻤﺘﻭﻗﻌﺔ‬

‫ﺍﻟﺨﺎﻡ ‪ Predicted Value‬ﻭﺍﻷﺨﻁﺎﺀ ﺍﻟﺨﺎﻡ ‪ Residual‬ﻭﺍﻟﻘﻴﻡ ﺍﻟﻤﺘﻭﻗﻌﺔ ﺍﻟﻤﻌﻴﺎﺭﻴﺔ ‪Std.‬‬

‫‪ Predicted Value‬ﻭﺍﻷﺨﻁﺎﺀ ﺍﻟﻤﻌﻴﺎﺭﻴﺔ ‪ ،Std. Residual‬ﻫﺫﻩ ﺍﻹﺤﺼﺎﺀﺍﺕ ﺘﺘﻀﻤﻥ‬ ‫ﺍﻟﻘﻴﻤﺘﻴﻥ ﺍﻟﺼﻐﺭﻯ ﻭﺍﻟﻜﺒﺭﻯ ﻭﺍﻟﻤﺘﻭﺴﻁ ﻭﺍﻻﻨﺤﺭﺍﻑ ﺍﻟﻤﻌﻴﺎﺭﻱ ﻟﻜل ﻤﻥ ﺍﻟﻘﻴﻡ ﺍﻟﺴﺎﺒﻘﺔ‪.‬‬

‫ﻭﻴﺒﻴﻥ ﺍﻟﺠﺯﺀ ﺍﻟﺴﺎﺩﺱ ﻤﻥ ﻗﺎﺌﻤﺔ ﺍﻟﻨﺘﺎﺌﺞ )ﺸﻜل ‪ (13-12‬ﺭﺴﻤﹰﺎ ﻟﻤﻘﺎﺭﻨﺔ ﻗﻴﻡ‬ ‫ﺍﻷﺨﻁﺎﺀ ‪ residuals‬ﺒﺎﻟﺘﻭﺯﻴﻊ ﺍﻟﻁﺒﻴﻌﻲ ‪ ، Normal Probability Plot‬ﻭﻤﻥ ﻫﺫﺍ‬

‫ﺍﻟﺸﻜل ﻴﻤﻜﻥ ﺍﺨﺘﺒﺎﺭ ﻤﺎ ﺇﺫﺍ ﻜﺎﻥ ﻫﻨﺎﻙ ﺍﺨﺘﺭﺍﻕ ﺨﻁﻴﺭ ﻟﻠﻔﺭﻀﻴﺔ ﺍﻷﺴﺎﺴﻴﺔ ﻟﺘﺤﻠﻴل‬ ‫ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﺨﻁﻲ ﻭﻫﻲ ﻭﺠﻭﺏ ﺃﻥ ﺘﻜﻭﻥ ﺍﻷﺨﻁﺎﺀ ﻤﻭﺯﻋﺔ ﻁﺒﻘﹰﺎ ﻟﻠﺘﻭﺯﻴﻊ ﺍﻟﻁﺒﻴﻌﻲ‪،‬‬

‫ﻭﺍﺨﺘﺭﺍﻕ ﻫﺫﻩ ﺍﻟﻔﺭﻀﻴﺔ )ﺇﺫﺍ ﻜﺎﻥ ﻭﺍﻀﺤﹰﺎ( ﻴﻌﻨﻲ ﻋﺩﻡ ﺼﺤﺔ ﺍﻟﻨﻤﻭﺫﺝ ﺍﻟﻤﺴﺘﺨﺩﻡ‬

‫ﻭﻴﺠﺏ ﺘﺤﻭﻴل ﺍﻟﺒﻴﺎﻨﺎﺕ ﺒﺎﺴﺘﺨﺩﺍﻡ ﺼﻴﻐﺔ ﻤﺎ )ﻤﺜل ‪(Cox and Box transformation‬‬

‫ﺍﻟﺘﻲ ﻤﻥ ﺸﺄﻨﻬﺎ ﺘﺤﻘﻴﻕ ﻫﺫﻩ ﺍﻟﻔﺭﻀﻴﺔ‪ ،‬ﻭﻜﻠﻤﺎ ﻜﺎﻨﺕ ﺍﻟﻨﻘﺎﻁ ﻓﻲ ﺸﻜل ﺍﻟﺘﻭﺯﻴﻊ ﺍﻟﻁﺒﻴﻌﻲ‬ ‫ﻟﻠﺒﻴﺎﻨﺎﺕ ‪ Normal Probability Plot‬ﻗﺭﻴﺒﺔ ﻤﻥ ﺍﻟﺨﻁ ﺍﻟﻤﺴﺘﻘﻴﻡ ﻜﻠﻤﺎ ﻜﺎﻥ ﺘﻭﺯﻴﻌﻬﺎ‬ ‫ﺍﻻﺤﺘﻤﺎﻟﻲ ﺃﻗﺭﺏ ﺇﻟﻰ ﺍﻟﺘﻭﺯﻴﻊ ﺍﻟﻁﺒﻴﻌﻲ‪ ،‬ﻭﺍﻟﻤﻬﻡ ﻓﻲ ﻫﺫﺍ ﺍﻟﺸﻜل ﺃﻻ ﺘﻜﻭﻥ ﺍﻟﻨﻘﺎﻁ ﺒﻪ‬

‫ﺒﻌﻴﺩﺓ ﺠﺩﹰﺍ ﻋﻥ ﺍﻟﺨﻁ ﺍﻟﻤﺴﺘﻘﻴﻡ ﻟﻜﻲ ﻻ ﻨﺠﺯﻡ ﺒﺎﻥ ﻫﻨﺎﻙ ﺍﺨﺘﺭﺍﻕ ﺨﻁﻴﺭ ﻟﻠﻔﺭﻀﻴﺔ‪.‬‬


‫)‪ (12‬ﺘﺤﻠﻴل ﻨﻤﺎﺫﺝ ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﺨﻁﻲ‬

‫‪418‬‬

‫ﺸﻜل ‪ :13-12‬ﺍﻟﺠﺯﺀ ﺍﻟﺴﺎﺩﺱ ﻤﻥ ﻨﺘﺎﺌﺞ ﺘﺤﻠﻴل ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﺨﻁﻲ ‪Linear Regression‬‬ ‫‪Normal P-P Plot of Regression Standardized Residuals‬‬ ‫‪Dependent Variable: University Exam‬‬

‫‪.75‬‬

‫‪Expected Cum Prob‬‬

‫‪1.00‬‬

‫‪.50‬‬

‫‪.25‬‬

‫‪0.00‬‬ ‫‪1.00‬‬

‫‪.75‬‬

‫‪.50‬‬

‫‪.25‬‬

‫‪0.00‬‬

‫‪Observed Cum Prob‬‬

‫ﺃﻤﺎ ﺍﻟﺠﺯﺀ ﺍﻟﺴﺎﺒﻊ ﻭﺍﻷﺨﻴﺭ )ﺸﻜل ‪ (14-12‬ﻤﻥ ﻗﺎﺌﻤﺔ ﺍﻟﻨﺘﺎﺌﺞ ﻓﻴﺤﺘﻭﻱ ﻋﻠﻰ‬

‫ﺸﻜل ﺍﻻﻨﺘﺸﺎﺭ ‪ Scatterplot‬ﻟﻸﺨﻁﺎﺀ ﺍﻟﻤﻌﻴﺎﺭﻴﺔ ‪Standardized Residuals‬‬

‫)ﻭﺍﻟﻤﻌﺭﻓﺔ ﺒﺎﻻﺴﻡ ‪ (*ZRESID‬ﻤﻘﺎﺒل ﺍﻟﻘﻴﻡ ﺍﻟﻤﺘﻭﻗﻌﺔ ﺍﻟﻤﻌﻴﺎﺭﻴﺔ ‪Standardized‬‬

‫‪) Predicted Values‬ﻭﺍﻟﻤﻌﺭﻓﺔ ﺒﺎﺴﻡ ‪ (*ZPRED‬ﺒﻌﺩ ﺇﺠﺭﺍﺀ ﺘﻌﺩﻴﻼﺕ ﺸﻜﻠﻴﺔ ﻋﻠﻴﻪ‪،‬‬

‫ﻭﻴﻜﺸﻑ ﻫﺫﺍ ﺍﻟﺸﻜل ﻋﻥ ﺃﻱ ﺍﺘﺠﺎﻩ ﻓﻲ ﻗﻴﻡ ﺍﻷﺨﻁﺎﺀ ﺇﺫﺍ ﻜﺎﻥ ﺒﻴﻨﻬﺎ ﺃﻱ ﻋﻼﻗﺔ‪.‬‬


‫)‪ (12‬ﺘﺤﻠﻴل ﻨﻤﺎﺫﺝ ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﺨﻁﻲ‬

‫‪419‬‬

‫ﻭﻓﻲ ﺍﻟﻤﺜﺎل ﺍﻟﺤﺎﻟﻲ ﻻ ﻴﺒﺩﻭ ﺃﻥ ﻫﻨﺎﻙ ﺃﻱ ﻋﻼﻗﺔ ﻭﺍﻀﺤﺔ ﺒﻴﻥ ﻫﺫﻩ ﺍﻷﺨﻁﺎﺀ‬ ‫ﻭﻜﺫﻟﻙ ﻴﺘﻀﺢ ﺃﻥ ﻫﻨﺎﻙ ﺘﺠﺎﻨﺱ ﻓﻲ ﺘﺒﺎﻴﻥ ﺍﻷﺨﻁﺎﺀ ﻤﻤﺎ ﻴﺅﻜﺩ ﻋﺩﻡ ﻭﺠﻭﺩ ﺍﺨﺘﺭﺍﻕ‬

‫ﻟﻔﺭﻀﻴﺔ ﺃﻥ ﺍﻷﺨﻁﺎﺀ ﻫﻲ ﻤﺘﻐﻴﺭﺍﺕ ﻋﺸﻭﺍﺌﻴﺔ ﺘﺘﺒﻊ ﺍﻟﺘﻭﺯﻴﻊ ﺍﻟﻁﺒﻴﻌﻲ ﻭﺒﺘﺒﺎﻴﻥ ﺜﺎﺒﺕ‪،‬‬

‫ﻓﻠﻭ ﺍﺘﻀﺢ ﻤﻥ ﻫﺫﺍ ﺍﻟﺸﻜل ﺃﻥ ﺍﻷﺨﻁﺎﺀ ﺘﺄﻜل ﺸﻜل ﺍﻟﻘﻤﻊ ﺃﻭ ﻫﻼﻟﻴﺔ ﺍﻟﺸﻜل ﺒﻤﻌﻨﻰ ﺃﻥ‬ ‫ﺘﺒﺎﻴﻨﻬﺎ ﻤﺘﺯﺍﻴﺩ ﺃﻭ ﻤﺘﻨﺎﻗﺹ ﻓﺈﻥ ﻫﺫﺍ ﻴﺘﻁﻠﺏ ﺇﻋﺎﺩﺓ ﺍﻟﺘﺤﻠﻴل ﺒﻌﺩ ﺇﺠﺭﺍﺀ ﺒﻌﺽ ﺃﺤﺩ‬

‫ﺍﻟﺘﺤﻭﻴﻼﺕ ﻋﻠﻰ ﺍﻟﻤﺘﻐﻴﺭﺍﺕ ﻟﺘﺜﺒﻴﺕ ﺍﻟﺘﺒﺎﻴﻥ‪.‬‬

‫ﺸﻜل ‪ : 14-12‬ﺍﻟﺠﺯﺀ ﺍﻟﺴﺎﺒﻊ ﻤﻥ ﻨﺘﺎﺌﺞ ﺘﺤﻠﻴل ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﺨﻁﻲ ‪Linear Regression‬‬ ‫‪Edited Scatterplot of‬‬ ‫‪Residuals against Predicted Values‬‬

‫‪1‬‬

‫‪0‬‬

‫‪-1‬‬

‫‪-2‬‬

‫‪Regression Standardized Residual‬‬

‫‪2‬‬

‫‪-3‬‬ ‫‪3‬‬

‫‪2‬‬

‫‪1‬‬

‫‪0‬‬

‫‪-1‬‬

‫‪-2‬‬

‫‪Regression Standardized Predicted Value‬‬

‫ﻭﻫﻨﺎﻙ ﺃﺩﻭﺍﺕ ﺃﺨﺭﻯ ﻟﻠﺘﺤﻘﻕ ﻤﻥ ﺘﻭﻓﺭ ﺍﻟﺸﺭﻭﻁ ﺍﻟﻼﺯﻤﺔ ﻹﺜﺒﺎﺕ ﺼﺤﺔ‬

‫ﻭﺍﻻﻋﺘﻤﺎﺩ ﻋﻠﻰ ﻨﻤﻭﺫﺝ ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﺫﻱ ﺘﻡ ﺘﻘﺩﻴﺭﻩ‪ ،‬ﻤﻥ ﺒﻴﻥ ﻫﺫﻩ ﺍﻷﺩﻭﺍﺕ ﺸﻜل ﺍﻟﻤﺩﺭﺝ‬

‫ﺍﻟﺘﻜﺭﺍﺭﻱ ‪ Histogram‬ﻟﻸﺨﻁﺎﺀ ﺍﻟﻤﻌﻴﺎﺭﻴﺔ ‪ Standardized Residuals‬ﻓﻴﺠﺏ ﺃﻥ‬ ‫ﻴﻜﻭﻥ ﺘﻭﺯﻴﻌﻬﺎ ﻤﻌﺘﺩل ﻭﻤﺘﻤﺎﺜل ﻭﻗﺭﻴﺏ ﻤﻥ ﺍﻟﺘﻭﺯﻴﻊ ﺍﻟﻁﺒﻴﻌﻲ‪ ،‬ﻭﻴﻤﻜﻥ ﺍﻟﺤﺼﻭل ﻋﻠﻴﻪ‬ ‫ﻤﻥ ﻨﺎﻓﺫﺓ ﺍﻟﺭﺴﻭﻤﺎﺕ ﺍﻟﺒﻴﺎﻨﻴﺔ ‪) Linear Regression: Plots‬ﺸﻜل ‪.(5-12‬‬


‫)‪ (12‬ﺘﺤﻠﻴل ﻨﻤﺎﺫﺝ ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﺨﻁﻲ‬

‫‪420‬‬

‫‪ .3 .12‬اﻻﻧﺤﺪار اﻟﻤﺘﻌﺪد ‪Multiple Regression :‬‬ ‫ﺇﻥ ﻋﻤﻠﻴﺔ ﺒﻨﺎﺀ ﻨﻤﻭﺫﺝ ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﺨﻁﻲ ﺍﻟﺘﻲ ﻴﻤﻜﻥ ﺃﻥ ﺘﺴﺘﺨﺩﻡ ﻓﻲ ﺘﻘﺩﻴﺭ ﻗﻴﻡ‬

‫ﺍﻟﻤﺘﻐﻴﺭ ﺍﻟﺘﺎﺒﻊ ﻤﻥ ﺨﻼل ﻗﻴﻡ ﻤﺤﺩﺩﺓ ﻟﻠﻤﺘﻐﻴﺭ ﺍﻟﻤﺴﺘﻘل ﻴﻤﻜﻥ ﺘﻌﻤﻴﻤﻬﺎ ﻟﻠﺤﺎﻻﺕ ﺍﻟﺘﻲ‬

‫ﻴﻜﻭﻥ ﻤﺘﺎﺤﹰﺎ ﻟﺩﻴﻨﺎ ﺒﻬﺎ ﻤﻌﻠﻭﻤﺎﺕ ﻋﻥ ﻤﺘﻐﻴﺭﻴﻥ ﻤﺴﺘﻘﻠﻴﻥ ﺃﻭ ﺃﻜﺜﺭ‪ ،‬ﻓﻌﻤﻠﻴﺔ ﺒﻨﺎﺀ ﻨﻤﻭﺫﺝ‬ ‫ﺍﻻﻨﺤﺩﺍﺭ ﻋﻨﺩﻤﺎ ﻴﻜﻭﻥ ﻟﺩﻴﻨﺎ ﻤﺘﻐﻴﺭ ﺘﺎﺒﻊ ﻭﺍﺤﺩ ﻭﻤﺘﻐﻴﺭﻴﻥ ﻤﺴﺘﻘﻠﻴﻥ ﺃﻭ ﺃﻜﺜﺭ ﺘﻌﺭﻑ ﺒﺎﺴﻡ‬ ‫ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﻤﺘﻌﺩﺩ ‪. Multiple Regression‬‬ ‫ﻭﻟﺘﻭﻀﻴﺢ ﻓﻜﺭﺓ ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﻤﺘﻌﺩﺩ ﻭﻁﺭﻴﻘﺔ ﺒﻨﺎﺀ ﺍﻟﻨﻤﻭﺫﺝ ﺒﺎﺴﺘﺨﺩﺍﻡ ﻨﻅﺎﻡ ‪SPSS‬‬

‫ﺴﻨﻔﺘﺭﺽ ﺃﻥ ﻟﺩﻴﻨﺎ ﺒﻴﺎﻨﺎﺕ ﻋﻥ ﻤﺘﻐﻴﺭﻴﻥ ﺇﻀﺎﻓﻴﻴﻥ ﺒﺎﻹﻀﺎﻓﺔ ﺇﻟﻰ ﺍﻟﻤﺘﻐﻴﺭ ﺍﻟﺘﺎﺒﻊ ﻭﻫﻭ‬

‫ﺩﺭﺠﺎﺕ ﺍﻟﻁﺎﻟﺏ ﻓﻲ ﺍﻟﻜﻠﻴﺔ ‪ Final Exam‬ﻭﺩﺭﺠﺎﺘﻪ ﻓﻲ ﺍﻤﺘﺤﺎﻥ ﺍﻟﻘﺒﻭل ‪Entrance‬‬

‫‪ Exam‬ﻓﻲ ﺸﻜل ‪ 3-12‬ﻓﻲ ﺍﻟﻤﺜﺎل ﺍﻟﺴﺎﺒﻕ‪ ،‬ﻫﺫﻴﻥ ﺍﻟﻤﺘﻐﻴﺭﻴﻥ ﻫﻤﺎ ﻋﻤﺭ ﺍﻟﻁﺎﻟﺏ ‪Age‬‬

‫ﻭﺩﺭﺠﺎﺘﻪ ﻓﻲ ﻤﺸﺭﻭﻉ ﺃﻜﺎﺩﻴﻤﻲ ‪ ، Project‬ﻋﻠﻤﹰﺎ ﺒﺄﻥ ﺍﻟﻘﻴﻤﺔ ﺍﻟﺸﺎﺫﺓ ﺍﻟﺘﻲ ﺘﻡ ﺍﻜﺘﺸﺎﻓﻬﺎ‬

‫ﺨﻼل ﺘﺤﻠﻴل ﺍﻟﺒﻴﺎﻨﺎﺕ ﻓﻲ ﺍﻟﻤﺜﺎل ﺍﻟﺴﺎﺒﻕ ﻗﺩ ﺘﻡ ﺍﺴﺘﺒﻌﺎﺩﻫﺎ ﻭﻴﺘﺒﻘﻰ ﻟﺩﻴﻨﺎ ﺒﻴﺎﻨﺎﺕ ﻜﺎﻤﻠﺔ‬

‫ﻋﻥ ‪ 33‬ﻤﻔﺭﺩﺓ‪ ،‬ﻫﺫﻩ ﺍﻟﺒﻴﺎﻨﺎﺕ ﺘﻅﻬﺭ ﻓﻲ ﺸﻜل ‪.15-12‬‬

‫ﻭﻓﻲ ﺍﻟﻤﻨﺎﻗﺸﺔ ﺍﻟﺘﺎﻟﻴﺔ ﺴﻭﻑ ﻨﻬﺘﻡ ﺒﺠﺎﻨﺒﻴﻥ ﺃﺴﺎﺴﻴﻴﻥ ﻫﻤﺎ‪:‬‬ ‫‪ .1‬ﻫل ﻴﺤﺴﻥ ﺇﻀﺎﻓﺔ ﻤﺘﻐﻴﺭﺍﺕ ﻤﺴﺘﻘﻠﺔ ﺠﺩﻴﺩﺓ ﺇﻟﻰ ﻨﻤﻭﺫﺝ ﺍﻻﻨﺤﺩﺍﺭ ﻤﻥ ﺩﺭﺠﺔ‬ ‫ﺍﻟﺩﻗﺔ ﻓﻲ ﺍﻟﺘﻨﺒﺅ ﺒﻘﻴﻡ ﺍﻟﻤﺘﻐﻴﺭ ﺍﻟﺘﺎﺒﻊ ﺩﺭﺠﺎﺕ ﺍﻟﻁﺎل ﻓﻲ ﺍﻟﺠﺎﻤﻌﺔ؟‬

‫‪ .2‬ﻤﺒﻴﻥ ﺒﻴﻥ ﻫﺅﻻﺀ ﺍﻟﻤﺘﻐﻴﺭﺍﺕ ﺍﻟﻤﺴﺘﻘﻠﺔ ﺍﻟﺠﺩﻴﺩﺓ ﻫل ﻫﻨﺎﻙ ﻤﺘﻐﻴﺭﺍﺕ ﺃﻜﺜﺭ‬ ‫ﻓﺎﺌﺩﺓ ﻤﻥ ﺍﻷﺨﺭﻯ ﻓﻲ ﺘﺤﺴﻴﻥ ﺍﻟﺩﻗﺔ ﻓﻲ ﺍﻟﺘﻨﺒﺅ؟‬

‫ﻭﺴﻭﻑ ﻨﺭﻯ ﺃﻥ ﺍﻹﺠﺎﺒﺔ ﻋﻠﻰ ﺍﻟﺴﺅﺍل ﺍﻷﻭل ﺩﺍﺌﻤﹰﺎ ﻫﻭ ﺍﻹﻴﺠﺎﺏ‪ ،‬ﺒﻴﻨﻤﺎ ﺍﻹﺠﺎﺒﺔ‬

‫ﻋﻠﻰ ﺍﻟﺴﺅﺍل ﺍﻟﺜﺎﻨﻲ ﻴﺸﻭﺒﻪ ﺍﻟﺨﻼﻑ‪ ،‬ﻓﻼ ﻴﻭﺠﺩ ﺃﻱ ﻤﻥ ﺍﻟﻁﺭﻕ ﺍﻟﻤﺘﺎﺤﺔ ﻤﺎ ﻴﻤﻜﻨﻬﺎ ﻤﻥ‬ ‫ﺇﻋﻁﺎﺀ ﺇﺠﺎﺒﺔ ﺩﻗﻴﻘﺔ ﻭﺸﺎﻓﻴﻪ ﻋﻠﻴﻪ‪.‬‬


‫)‪ (12‬ﺘﺤﻠﻴل ﻨﻤﺎﺫﺝ ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﺨﻁﻲ‬

‫‪421‬‬

‫ﺸﻜل ‪ : 15-12‬ﺒﻴﺎﻨﺎﺕ ﻋﻥ ﻤﺠﻤﻭﻉ ﺩﺭﺠﺎﺕ ﺍﻟﻁﻠﺒﺔ ﻓﻲ ﺍﻻﻤﺘﺤﺎﻥ ﺍﻟﻨﻬﺎﺌﻲ ‪Final Univ.‬‬ ‫‪ Exam‬ﻓﻲ ﺍﻟﻜﻠﻴﺔ ﻭﻤﺠﻤﻭﻉ ﺩﺭﺠﺎﺘﻬﻡ ﻓﻲ ﺍﻤﺘﺤﺎﻥ ﺍﻟﻘﺒﻭل ‪ Entrance Score‬ﻟﻠﻜﻠﻴﺔ‬ ‫ﻭﺃﻋﻤﺎﺭﻫﻡ ‪ Age‬ﻭﻜﺫﻟﻙ ﺩﺭﺠﺎﺘﻬﻡ ﻓﻲ ﺃﺤﺩ ﺍﻟﻤﺸﺎﺭﻴﻊ ﺍﻷﻜﺎﺩﻴﻤﻴﺔ ‪Project‬‬

‫‪Final‬‬ ‫‪Final‬‬ ‫‪Entrance Age Project‬‬ ‫‪Entrance Age Project‬‬ ‫‪Exam‬‬ ‫‪Exam‬‬

‫‪53‬‬

‫‪22.3‬‬

‫‪48‬‬

‫‪103‬‬

‫‪50‬‬

‫‪21.9‬‬

‫‪44‬‬

‫‪38‬‬

‫‪72‬‬

‫‪21.8‬‬

‫‪43‬‬

‫‪105‬‬

‫‪75‬‬

‫‪22.6‬‬

‫‪40‬‬

‫‪49‬‬

‫‪69‬‬

‫‪21.4‬‬

‫‪55‬‬

‫‪106‬‬

‫‪54‬‬

‫‪21.8‬‬

‫‪43‬‬

‫‪61‬‬

‫‪50‬‬

‫‪21.6‬‬

‫‪48‬‬

‫‪107‬‬

‫‪60‬‬

‫‪22.5‬‬

‫‪42‬‬

‫‪65‬‬

‫‪68‬‬

‫‪22.8‬‬

‫‪49‬‬

‫‪112‬‬

‫‪82‬‬

‫‪21.9‬‬

‫‪44‬‬

‫‪69‬‬

‫‪72‬‬

‫‪22.1‬‬

‫‪46‬‬

‫‪114‬‬

‫‪65‬‬

‫‪21.8‬‬

‫‪46‬‬

‫‪73‬‬

‫‪60‬‬

‫‪21.9‬‬

‫‪41‬‬

‫‪114‬‬

‫‪61‬‬

‫‪22.2‬‬

‫‪34‬‬

‫‪74‬‬

‫‪74‬‬

‫‪22.5‬‬

‫‪49‬‬

‫‪117‬‬

‫‪68‬‬

‫‪22.5‬‬

‫‪37‬‬

‫‪76‬‬

‫‪70‬‬

‫‪21.9‬‬

‫‪63‬‬

‫‪125‬‬

‫‪60‬‬

‫‪21.5‬‬

‫‪41‬‬

‫‪78‬‬

‫‪77‬‬

‫‪22.2‬‬

‫‪52‬‬

‫‪140‬‬

‫‪69‬‬

‫‪22.4‬‬

‫‪53‬‬

‫‪81‬‬

‫‪79‬‬

‫‪21.4‬‬

‫‪56‬‬

‫‪142‬‬

‫‪64‬‬

‫‪21.9‬‬

‫‪47‬‬

‫‪86‬‬

‫‪84‬‬

‫‪21.6‬‬

‫‪60‬‬

‫‪145‬‬

‫‪78‬‬

‫‪22.0‬‬

‫‪45‬‬

‫‪91‬‬

‫‪60‬‬

‫‪22.1‬‬

‫‪55‬‬

‫‪150‬‬

‫‪68‬‬

‫‪22.2‬‬

‫‪41‬‬

‫‪94‬‬

‫‪76‬‬

‫‪21.9‬‬

‫‪54‬‬

‫‪152‬‬

‫‪70‬‬

‫‪21.7‬‬

‫‪39‬‬

‫‪95‬‬

‫‪84‬‬

‫‪23.0‬‬

‫‪58‬‬

‫‪164‬‬

‫‪65‬‬

‫‪22.2‬‬

‫‪40‬‬

‫‪98‬‬

‫‪65‬‬

‫‪21.2‬‬

‫‪62‬‬

‫‪169‬‬

‫‪75‬‬

‫‪39.3‬‬

‫‪37‬‬

‫‪100‬‬

‫‪65‬‬

‫‪21.0‬‬

‫‪48‬‬

‫‪100‬‬


‫)‪ (12‬ﺘﺤﻠﻴل ﻨﻤﺎﺫﺝ ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﺨﻁﻲ‬

‫‪422‬‬

‫ﻫﻨﺎﻙ ﺍﻟﻌﺩﻴﺩ ﻤﻥ ﺍﻟﻤﺸﺎﻜل ﻓﻲ ﻫﺫﺍ ﺍﻟﺴﻴﺎﻕ‪ ،‬ﻭﻟﻜﻥ ﻤﻌﻅﻤﻬﺎ ﻴﻤﻜﻥ ﺇﺠﻤﺎﻟﻪ ﻓﻲ‬ ‫ﺍﻟﻌﺒﺎﺭﺓ ﺍﻟﺸﻬﻴﺭﺓ ﺍﻟﺘﺎﻟﻴﺔ‪ :‬ﺍﻻﺭﺘﺒﺎﻁ ﺒﻴﻥ ﺍﻟﻤﺘﻐﻴﺭﺍﺕ ﻻ ﻴﻌﻨﻲ ﺒﺎﻟﻀﺭﻭﺭﺓ ﺍﻟﺴﺒﺒﻴﺔ‪ ،‬ﻭﻓﻲ‬ ‫ﺍﻟﺤﺎﻻﺕ ﺍﻟﺘﻲ ﻴﺭﺘﺒﻁ ﻓﻴﻬﺎ ﻜل ﻤﺘﻐﻴﺭ ﻤﻥ ﺍﻟﻤﺘﻐﻴﺭﺍﺕ ﺍﻟﻤﺴﺘﻘﻠﺔ ﺒﺠﻤﻴﻊ ﺍﻟﻤﺘﻐﻴﺭﺍﺕ‬

‫ﺍﻷﺨﺭﻯ ﻻ ﻴﻤﻜﻥ ﺃﻥ ﻴﻌﺯﻯ ﺍﻟﺘﻐﻴﺭ ﻓﻲ ﺍﻟﻤﺘﻐﻴﺭ ﺍﻟﺘﺎﺒﻊ ﺒﻭﻀﻭﺡ ﺇﻟﻰ ﺃﻱ ﻤﺘﻐﻴﺭ ﺒﻌﻴﻨﻪ‬

‫ﻤﻥ ﺍﻟﻤﺘﻐﻴﺭﺍﺕ ﺍﻟﻤﺴﺘﻘﻠﺔ‪.‬‬

‫ﻓﻲ ﻤﻌﺎﺩﻟﺔ ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﻤﺘﻌﺩﺩ ﻴﻁﻠﻕ ﻋﻠﻰ ﻤﻌﺎﻤﻼﺕ ﺍﻟﻤﺘﻐﻴﺭﺍﺕ ﺍﻟﻤﺴﺘﻘﻠﺔ ﺍﺴﻡ‬ ‫ﻤﻌﺎﻤﻼﺕ ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﺠﺯﺌﻴﺔ ‪ ، partial regression coefficients‬ﻭﻴﻌﻨﻲ ﺃﻨﻬﺎ ﺘﻌﺒﺭ‬

‫ﻋﻥ ﺍﻹﻀﺎﻓﺔ ﻓﻲ ﺍﻟﻤﺘﻐﻴﺭ ﺍﻟﺘﺎﺒﻊ ﺍﻟﻨﺎﺘﺠﺔ ﻋﻥ ﺇﻀﺎﻓﺔ ﻭﺤﺩﺓ ﻭﺍﺤﺩﺓ ﻤﻭﺠﺒﺔ ﻓﻲ ﺫﻟﻙ‬ ‫ﺍﻟﻤﺘﻐﻴﺭ ﺍﻟﻤﺴﺘﻘل ﻤﻊ ﺍﻓﺘﺭﺍﺽ ﺜﺒﺎﺕ ﺃﺜﺭ ﺠﻤﻴﻊ ﺍﻟﻤﺘﻐﻴﺭﺍﺕ ﺍﻟﻤﺴﺘﻘﻠﺔ ﺍﻷﺨﺭﻯ ﻋﻠﻰ ﻜل‬ ‫ﻤﻥ ﺍﻟﻤﺘﻐﻴﺭ ﺍﻟﺘﺎﺒﻊ ﻭﺫﻟﻙ ﺍﻟﻤﺘﻐﻴﺭ ﺍﻟﻤﺴﺘﻘل‪.‬‬

‫ﺇﺫﺍ ﺘﻡ ﺇﻴﺠﺎﺩ ﺍﻟﻘﻴﻡ ﺍﻟﻤﻌﻴﺎﺭﻴﺔ ﻟﺠﻤﻴﻊ ﺍﻟﻘﻴﻡ ﻓﻲ ﺠﻤﻴﻊ ﺍﻟﻤﺘﻐﻴﺭﺍﺕ ﻓﻲ ﻤﻌﺎﺩﻟﺔ‬

‫ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﻤﺘﻌﺩﺩ )ﺒﻁﺭﺡ ﻤﺘﻭﺴﻁ ﺍﻟﻤﺘﻐﻴﺭ ﻤﻥ ﻜل ﻗﻴﻤﺔ ﻤﻥ ﻗﻴﻤﻪ ﻭﻗﺴﻤﺔ ﺍﻟﻨﺎﺘﺞ ﻋﻠﻰ‬ ‫ﺍﻻﻨﺤﺭﺍﻑ ﺍﻟﻤﻌﻴﺎﺭﻱ ﻟﺫﻟﻙ ﺍﻟﻤﺘﻐﻴﺭ( ﻓﺈﻥ ﺜﺎﺒﺕ ﺍﻻﻨﺤﺩﺍﺭ ﺴﻭﻑ ﻴﺨﺘﻔﻲ ﻤﻥ ﺍﻟﻤﻌﺎﺩﻟﺔ‬

‫ﻭﺴﻭﻑ ﻴﺸﺎﺭ ﻟﻜل ﻤﻌﺎﻤل ﺍﻨﺤﺩﺍﺭ ﻓﻲ ﻫﺫﻩ ﺍﻟﺤﺎﻟﺔ ﺒﺎﻟﻭﺯﻥ ﺒﻴﺘﺎ ‪ beta weight‬ﻟﺘﻌﺒﺭ‬

‫ﻋﻥ ﺍﻟﺘﻐﻴﺭ ﻓﻲ ﺍﻟﻤﺘﻐﻴﺭ ﺍﻟﺘﺎﺒﻊ )ﻤﻘﺎﺴﹰﺎ ﺒﻤﻀﺎﻋﻔﺎﺕ ﺍﻨﺤﺭﺍﻓﻪ ﺍﻟﻤﻌﻴﺎﺭﻱ( ﺍﻟﻨﺎﺘﺞ ﻋﻥ‬ ‫ﺇﻀﺎﻓﺔ ﻭﺤﺩﺓ ﺍﻨﺤﺭﺍﻑ ﻤﻌﻴﺎﺭﻱ ﻤﻭﺠﺒﺔ ﻭﺍﺤﺩﺓ ﻤﻥ ﺍﻟﻤﺘﻐﻴﺭ ﺍﻟﻤﺴﺘﻘل ﻗﻴﺩ ﺍﻻﻫﺘﻤﺎﻡ‪.‬‬

‫ﻓﻲ ﻫﺫﺍ ﺍﻟﻘﺴﻡ ﺴﻭﻑ ﻨﻬﺘﻡ ﺒﻁﺭﻴﻘﺘﻴﻥ ﻤﻥ ﻁﺭﻕ ﺍﺨﺘﻴﺎﺭ ﻨﻤﻭﺫﺝ ﺍﻻﻨﺤﺩﺍﺭ‬

‫ﺍﻟﻤﺘﻌﺩﺩ‪ ،‬ﻭﻜل ﻤﻥ ﻫﺎﺘﻴﻥ ﺍﻟﻁﺭﻴﻘﺘﻴﻥ )ﺒﺎﻹﻀﺎﻓﺔ ﺇﻟﻰ ﺍﻟﻁﺭﻕ ﺍﻷﺨﺭﻯ ﺍﻟﻤﺘﺎﺤﺔ( ﻴﺸﻭﺒﻪ‬ ‫ﺍﻟﻌﺩﻴﺩ ﻤﻥ ﺍﻟﻤﺸﺎﻜل ﺤﻴﺙ ﻻ ﻴﻭﺠﺩ ﻁﺭﻴﻘﺔ ﻤﺤﺩﺩﺓ ﺘﺼﻠﺢ ﻟﻜل ﺍﻟﺤﺎﻻﺕ‪ ،‬ﻓﻔﻲ ﺍﻟﻁﺭﻴﻘﺔ‬

‫ﺍﻷﻭﻟﻰ ﻭﻫﻲ ﻁﺭﻴﻘﺔ ﺍﻹﺩﺨﺎل ﺍﻟﻤﺘﺯﺍﻤﻥ ‪Simultaneous Selection Procedure‬‬

‫ﺘﺩﺨل ﺠﻤﻴﻊ ﺍﻟﻤﺘﻐﻴﺭﺍﺕ ﺍﻟﻤﺴﺘﻘل ﺇﻟﻰ ﻤﻌﺎﺩﻟﺔ ﺍﻻﻨﺤﺩﺍﺭ ﻤﺒﺎﺸﺭﺓ‪ ،‬ﻭﻓﻲ ﺍﻟﻁﺭﻴﻘﺔ ﺍﻟﺜﺎﻨﻴﺔ‬

‫ﻭﻫﻲ ﻁﺭﻴﻘﺔ ﺍﻻﺨﺘﻴﺎﺭ ﺍﻟﺘﺩﺭﻴﺠﻲ ‪ Stepwise Selection Procedure‬ﺘﺩﺨل‬

‫ﺍﻟﻤﺘﻐﻴﺭﺍﺕ ﺍﻟﻤﺴﺘﻘﻠﺔ ﺇﻟﻰ ﻨﻤﻭﺫﺝ ﺍﻻﻨﺤﺩﺍﺭ )ﻭﺘﺤﺫﻑ( ﻭﺍﺤﺩﺍ ﺘﻠﻭ ﺍﻵﺨﺭ‪ ،‬ﻭﻴﻜﻭﻥ ﺘﺭﺘﻴﺏ‬


‫)‪ (12‬ﺘﺤﻠﻴل ﻨﻤﺎﺫﺝ ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﺨﻁﻲ‬

‫‪423‬‬

‫ﺍﻟﻤﺘﻐﻴﺭﺍﺕ ﻓﻲ ﺍﻟﺩﺨﻭل ﺇﻟﻰ ﺍﻟﻨﻤﻭﺫﺝ ﺘﺒﻌﹰﺎ ﻻﻋﺘﺒﺎﺭﺍﺕ ﺇﺤﺼﺎﺌﻴﺔ ‪ ،‬ﻭﻋﻠﻰ ﺍﻟﺭﻏﻡ ﻤﻥ‬ ‫ﺃﻥ ﺍﻟﻁﺭﻴﻘﺔ ﺍﻟﺜﺎﻨﻴﺔ ﺘﺒﺩﻭ ﺃﻜﺜﺭ ﻤﻨﻁﻘﻴﺔ ﺇﻻ ﺃﻥ ﻫﻨﺎﻙ ﺍﻨﺘﻘﺎﺩﺍﺕ ﺘﺘﻌﻠﻕ ﺒﺤﻘﻴﻘﺔ ﺃﻥ ﺍﻟﻤﺘﻐﻴﺭ‬

‫ﺍﻟﺫﻱ ﻴﻀﺎﻑ ﺇﻟﻰ ﺍﻟﻨﻤﻭﺫﺝ ﺴﻴﻜﻭﻥ ﻟﻪ ﺃﺜﺭ ﻋﻠﻰ ﺘﺄﺜﻴﺭ ﺠﻤﻴﻊ ﺍﻟﻤﺘﻐﻴﺭﺍﺕ ﺍﻟﻤﻭﺠﻭﺩﺓ‬ ‫ﻤﺴﺒﻘﹰﺎ ﻓﻲ ﺍﻟﻨﻤﻭﺫﺝ ﻋﻠﻰ ﺍﻟﻤﺘﻐﻴﺭ ﺍﻟﺘﺎﺒﻊ‪.‬‬

‫ﻭﻋﻭﺩﺓ ﺇﻟﻰ ﺍﻟﻤﺜﺎل ﺍﻟﺤﺎﻟﻲ ﻭﺍﻟﻤﺘﻌﻠﻕ ﺒﺎﻟﺒﻴﺎﻨﺎﺕ ﻓﻲ ﺸﻜل ‪ ،15-12‬ﻓﻨﻌﻠﻡ ﺍﻵﻥ‬

‫ﻜﻴﻑ ﻴﻤﻜﻥ ﺇﺩﺨﺎل ﻫﺫﻩ ﺍﻟﺒﻴﺎﻨﺎﺕ ﺇﻟﻰ ﻤﺤﺭﺭ ﺍﻟﺒﻴﺎﻨﺎﺕ ‪ Data Editor‬ﻭﺤﻔﻅﻬﺎ )ﻜﻤﺎ ﺘﻡ‬

‫ﺘﻭﻀﻴﺤﻪ ﻓﻲ ﺍﻟﻔﺼل ﺍﻟﺜﺎﻨﻲ( ﻭﺴﻨﻔﺘﺭﺽ ﺍﻵﻥ ﺃﻥ ﻫﺫﻩ ﺍﻟﺒﻴﺎﻨﺎﺕ ﻗﺩ ﺠﻬﺯﺕ ﻟﻠﺘﺤﻠﻴل‬ ‫ﺍﻹﺤﺼﺎﺌﻲ‪ ،‬ﻭﺒﻬﺫﺍ ﻴﻤﻜﻨﻨﺎ ﺃﻴﻀﹰﺎ ﻓﺘﺢ ﻨﺎﻓﺫﺓ ﺘﺤﻠﻴل ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﺨﻁﻲ‬

‫‪Linear‬‬

‫‪ Regression‬ﻜﻤﺎ ﺘﻡ ﻭﺼﻔﻪ ﻓﻲ ﺍﻟﻘﺴﻡ ‪ .5.1.12‬ﻓﻲ ﺒﺩﺍﻴﺔ ﻫﺫﺍ ﺍﻟﻔﺼل‪ ،‬ﻭﺴﻨﺒﺩﺃ ﺍﻵﻥ‬ ‫ﺍﻟﺘﺤﻠﻴل ﺒﺎﺴﺘﺨﺩﺍﻡ ﻁﺭﻴﻘﺔ ﺍﻹﺩﺨﺎل ﺍﻟﻤﺘﺯﺍﻤﻥ‬

‫‪Simultaneous Selection‬‬

‫‪ Procedure‬ﻜﻤﺎ ﻴﻠﻲ‪:‬‬

‫ﻓﻲ ﻨﺎﻓﺫﺓ ﺘﺤﻠﻴل ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﺨﻁﻲ ‪) Linear Regression‬ﺸﻜل ‪ (2-12‬ﺍﻨﻘل‬

‫ﺃﺴﻤﺎﺀ ﺍﻟﻤﺘﻐﻴﺭﺍﺕ ﺍﻤﺘﺤﺎﻥ ﺍﻟﻘﺒﻭل ‪ Entrance Exam‬ﻭﺍﻟﻌﻤﺭ ‪ Age‬ﻭﺩﺭﺠﺔ ﺍﻟﻤﺸﺭﻭﻉ‬ ‫‪ Project Mark‬ﺇﻟﻰ ﻤﺭﺒﻊ ﺍﻟﻤﺘﻐﻴﺭﺍﺕ ﺍﻟﻤﺴﺘﻘﻠﺔ ‪ Independent Variables‬ﻭﺍﻨﻘل‬ ‫ﻜﺫﻟﻙ ﺍﺴﻡ ﺍﻟﻤﺘﻐﻴﺭ ﺍﻟﺘﺎﺒﻊ ﺍﻤﺘﺤﺎﻥ ﺍﻟﻜﻠﻴﺔ ‪ University Exam‬ﺇﻟﻰ ﻤﺭﺒﻊ ﺍﻟﻤﺘﻐﻴﺭ ﺍﻟﺘﺎﺒﻊ‬

‫‪ ، Dependent Variable‬ﻭﻻﺤﻅ ﻭﺠﻭﺩ ﻜﻠﻤﺔ ﺩﺨﻭل ‪ Enter‬ﺍﻟﻤﻌﺒﺭﺓ ﻋﻥ ﻁﺭﻴﻘﺔ‬ ‫ﺍﻹﺩﺨﺎل ﺍﻟﻤﺘﺯﺍﻤﻥ ﻓﻲ ﻤﺭﺒﻊ ﺤﻭﺍﺭ ﺍﻟﻁﺭﻴﻘﺔ ‪ ، Method‬ﺜﻡ ﺍﻀﻐﻁ ﻋﻠﻰ ﻤﻔﺘﺎﺡ ﺍﻟﺘﻨﻔﻴﺫ‬

‫‪ OK‬ﻟﺘﻨﻔﻴﺫ ﺍﻷﻤﺭ‪.‬‬

‫ﻭﻴﺒﻴﻥ ﺸﻜل ‪ 16-12‬ﺍﻟﺠﺯﺀ ﺍﻷﻭل ﻤﻥ ﻗﺎﺌﻤﺔ ﻨﺘﺎﺌﺞ ﺘﺤﻠﻴل ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﻤﺘﻌﺩﺩ‬ ‫ﺒﺎﺴﺘﺨﺩﺍﻡ ﻁﺭﻴﻘﺔ ﺍﻹﺩﺨﺎل ﺍﻟﻤﺘﺯﺍﻤﻥ‪ ،‬ﻭﻴﺒﻴﻥ ﻫﺫﺍ ﺍﻟﺸﻜل ﺃﻥ ﻗﻴﻤﺔ ﻤﻌﺎﻤل ﺍﻻﺭﺘﺒﺎﻁ‬

‫ﺍﻟﻤﺘﻌﺩﺩ )‪ (R‬ﻤﺴﺎﻭﻴﺔ ‪. 0.77‬‬


‫( ﺘﺤﻠﻴل ﻨﻤﺎﺫﺝ ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﺨﻁﻲ‬12)

424

Multiple Regression ‫ ﺍﻟﺠﺯﺀ ﺍﻷﻭل ﻤﻥ ﻨﺘﺎﺌﺞ ﺘﺤﻠﻴل ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﻤﺘﻌﺩﺩ‬:16-12 ‫ﺸﻜل‬ Simultaneous Selection Procedure ‫ﺒﺎﺴﺘﺨﺩﺍﻡ ﻁﺭﻴﻘﺔ ﺍﻹﺩﺨﺎل ﺍﻟﻤﺘﺯﺍﻤﻥ‬ Variables Entered/Removedb Model 1

Variables Entered

Variables Removed

Project Mark, Age, a Entrance Exam

Method . Enter

a. All requested variables entered. b. Dependent Variable: University Exam

Model Summary

Model 1

R .766

R Square

Adjusted R Square

Std. Error of the Estimate

.587

.544

22.03

a

a. Predictors: (Constant), Project Mark, Age, Entrance Exam

Multiple Regression ‫ ﺍﻟﺠﺯﺀ ﺍﻟﺜﺎﻨﻲ ﻤﻥ ﻨﺘﺎﺌﺞ ﺘﺤﻠﻴل ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﻤﺘﻌﺩﺩ‬:17-12 ‫ﺸﻜل‬

Simultaneous Selection Procedure ‫ﺒﺎﺴﺘﺨﺩﺍﻡ ﻁﺭﻴﻘﺔ ﺍﻹﺩﺨﺎل ﺍﻟﻤﺘﺯﺍﻤﻥ‬ Coefficientsa Unstandardized Coefficients Model 1

(Constant)

B

Std. Error

-117.9

46.421

Standardized Coefficients Beta

t

Sig.

-2.540

.017

Entrance Exam 3.089

.573

.714

5.387

.000

Age

1.423

1.376

.133

1.035

.309

Project Mark

.628

.461

.176

1.363

.183

a. Dependent Variable: University Exam


‫)‪ (12‬ﺘﺤﻠﻴل ﻨﻤﺎﺫﺝ ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﺨﻁﻲ‬

‫‪425‬‬

‫ﻭﺇﺫﺍ ﺘﺫﻜﺭﻨﺎ ﺃﻨﻪ ﻋﻨﺩﻤﺎ ﺍﺴﺘﺨﺩﻡ ﻤﺘﻐﻴﺭ ﻤﺴﺘﻘل ﻭﺍﺤﺩ ﻭﻫﻭ ﺩﺭﺠﺎﺕ ﺍﻟﻁﺎﻟﺏ ﻓﻲ‬ ‫ﺍﻤﺘﺤﺎﻥ ﺍﻟﻘﺒﻭل ‪ Entrance Exam‬ﻓﻲ ﻨﻤﻭﺫﺝ ﺍﻻﻨﺤﺩﺍﺭ ﻟﻠﺘﻨﺒﺅ ﺒﺎﻟﻤﺘﻐﻴﺭ ﺍﻟﺘﺎﺒﻊ ﺩﺭﺠﺎﺕ‬

‫ﺍﻟﻁﺎﻟﺏ ﻓﻲ ﺍﻟﺠﺎﻤﻌﺔ ‪ University Exam‬ﻜﺎﻨﺕ ﻗﻴﻤﺔ ﻤﻌﺎﻤل ﺍﻻﺭﺘﺒﺎﻁ ﺍﻟﻤﺘﻌﺩﺩ )‪(R‬‬ ‫ﻤﺴﺎﻭﻴﺔ ‪ ، 0.73‬ﻭﺒﻘﻴﻤﺔ )‪ (R‬ﻤﺴﺎﻭﻴﺔ ‪ 0.77‬ﺴﺘﻜﻭﻥ ﺍﻹﺠﺎﺒﺔ ﻋﻠﻰ ﺍﻟﺴﺅﺍل ﺍﻟﻤﺘﻌﻠﻕ ﺒﻤﺎ‬

‫ﺇﺫﺍ ﻜﺎﻥ ﺇﻀﺎﻓﺔ ﻤﺘﻐﻴﺭﺍﺕ ﻤﺴﺘﻘﻠﺔ ﺃﺨﺭﻯ ﺴﻴﻀﻴﻑ ﺇﻟﻰ ﻗﻭﺓ ﺍﻟﺘﻨﺒﺅ ﻟﻨﻤﻭﺫﺝ ﺍﻻﻨﺤﺩﺍﺭ‬ ‫ﻫﻲ ﺍﻹﻴﺠﺎﺏ ﺭﻏﻡ ﺃﻥ ﻫﺫﻩ ﺍﻹﻀﺎﻓﺔ ﻓﻲ ﻫﺫﺍ ﺍﻟﻤﺜﺎل ﻟﻴﺴﺕ ﻋﻅﻴﻤﺔ‪.‬‬

‫ﻭﻟﻜﻥ ﻤﺎﺫﺍ ﺒﺎﻟﻨﺴﺒﺔ ﻟﻠﺴﺅﺍل ﺍﻟﺜﺎﻨﻲ؟ ﻫل ﻜﻼ ﺍﻟﻤﺘﻐﻴﺭﻴﻥ ﻴﺴﺎﻫﻤﺎﻥ ﻓﻲ ﺯﻴﺎﺩﺓ ﻗﻭﺓ‬ ‫ﺍﻟﺘﻨﺒﺅ ﻟﻨﻤﻭﺫﺝ ﺍﻻﻨﺤﺩﺍﺭ ﺃﻭ ﺃﻨﻪ ﻴﻤﻜﻥ ﺍﻻﺴﺘﻐﻨﺎﺀ ﻋﻥ ﺃﻱ ﻤﻨﻬﻤﺎ؟‬ ‫ﻤﻥ ﺍﻟﻌﻤﻭﺩ ﺒﻌﻨﻭﺍﻥ ‪ B‬ﻓﻲ ﺍﻟﻘﺴﻡ ﺒﻌﻨﻭﺍﻥ ﺍﻟﻤﻌﺎﻤﻼﺕ ﻏﻴﺭ ﺍﻟﻤﻌﻴﺎﺭﻴﺔ‬

‫‪ Unstandardized Coefficients‬ﻓﻲ ﺠﺩﻭل ﺍﻟﺨﺎﺹ ﺒﻤﻌﺎﻤﻼﺕ ﺍﻻﻨﺤﺩﺍﺭ ﻓﻲ ﻗﺎﺌﻤﺔ‬

‫ﺍﻟﻨﺘﺎﺌﺞ ﻓﻲ ﺸﻜل ‪ 17-12‬ﻴﻤﻜﻨﻨﺎ ﺍﺴﺘﻨﺒﺎﻁ ﻤﻌﺎﺩﻟﺔ ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﻤﺘﻌﺩﺩ ﻟﻤﺘﻐﻴﺭ ﺍﻟﺩﺭﺠﺔ ﻓﻲ‬

‫ﺍﻟﺠﺎﻤﻌﺔ )‪ (Y‬ﻋﻠﻰ ﺍﻟﻤﺘﻐﻴﺭﺍﺕ ﺩﺭﺠﺔ ﺍﻤﺘﺤﺎﻥ ﺍﻟﻘﺒﻭل )‪ (X1‬ﻭﺩﺭﺠﺔ ﺍﻟﻤﺸﺭﻭﻉ )‪(X2‬‬ ‫ﻭﺍﻟﻌﻤﺭ )‪ (X3‬ﻋﻠﻰ ﺍﻟﺼﻭﺭﺓ ‪:‬‬

‫‪Y’ = 3.09 X1 + 0.63 X2 + 1.42 X3 –117.91‬‬

‫ﺤﻴﺙ '‪ Y‬ﻫﻲ ﺍﻟﻘﻴﻤﺔ ﺍﻟﻤﺘﻭﻗﻌﺔ ﻟﺩﺭﺠﺔ ﺍﻟﻁﺎﻟﺏ ﻓﻲ ﺍﻟﺠﺎﻤﻌﺔ‪.‬‬ ‫ﻭﻓﻲ ﺍﻟﻘﺴﻡ ﺒﻌﻨﻭﺍﻥ ﺍﻟﻤﻌﺎﻤﻼﺕ ﺍﻟﻤﻌﻴﺎﺭﻴﺔ ‪ Standardized Coefficients‬ﻓﻲ‬

‫ﺍﻟﺠﺩﻭل )ﻓﻲ ﺍﻟﻌﻤﻭﺩ ﺒﻌﻨﻭﺍﻥ ﺃﻭﺯﺍﻥ ﺒﻴﺘﺎ ‪ (Beta‬ﻴﻤﻜﻥ ﺍﺴﺘﻨﺒﺎﻁ ﺒﻌﺽ ﺍﻟﻤﻌﻠﻭﻤﺎﺕ‬

‫ﺍﻹﻀﺎﻓﻴﺔ‪ ،‬ﺇﺫ ﺘﻭﻀﺢ ﻫﺫﻩ ﺍﻟﻘﻴﻡ ﺃﻥ ﺩﺭﺠﺔ ﺍﻟﻁﺎﻟﺏ ﻓﻲ ﺍﻤﺘﺤﺎﻥ ﺍﻟﻘﺒﻭل ‪Entrance‬‬

‫‪ Exam‬ﺘﻘﺩﻡ ﺃﻜﺜﺭ ﺇﻀﺎﻓﺔ ﻓﻲ ﺸﺭﺡ ﺍﻟﺘﻐﻴﺭﺍﺕ ﻓﻲ ﺍﻟﻤﺘﻐﻴﺭ ﺍﻟﺘﺎﺒﻊ‪ ،‬ﺇﺫ ﻜﻤﺎ ﺃﺴﻠﻔﻨﺎ ﻓﺈﻥ‬

‫ﻫﺫﻩ ﺍﻟﻘﻴﻡ ﺍﻟﻤﻌﻴﺎﺭﻴﺔ ﺘﻌﻨﻲ ﺃﻥ ﺘﻐﻴﺭﹰﺍ ﺒﻤﻘﺩﺍﺭ ﺍﻨﺤﺭﺍﻑ ﻤﻌﻴﺎﺭﻱ ﻭﺍﺤﺩ ﻓﻲ ﻤﺘﻐﻴﺭ ﺩﺭﺠﺔ‬

‫ﺍﻤﺘﺤﺎﻥ ﺍﻟﻘﺒﻭل ﺴﻭﻑ ﻴﻨﺘﺞ ﻋﻨﻪ ﺘﻐﻴﺭﹰﺍ ﻓﻲ ﻤﺘﻐﻴﺭ ﺩﺭﺠﺔ ﺍﻟﻁﺎﻟﺏ ﻓﻲ ﺍﻟﺠﺎﻤﻌﺔ ﺒﻤﻘﺩﺍﺭ‬

‫‪ 0.71‬ﻤﻥ ﺍﻻﻨﺤﺭﺍﻑ ﺍﻟﻤﻌﻴﺎﺭﻱ ﻟﻤﺘﻐﻴﺭ ﺩﺭﺠﺔ ﺍﻟﻁﺎﻟﺏ ﻓﻲ ﺍﻟﺠﺎﻤﻌﺔ‪ ،‬ﺒﻴﻨﻤﺎ ﺘﻐﻴﺭﹰﺍ‬

‫ﺒﻤﻘﺩﺍﺭ ﺍﻨﺤﺭﺍﻑ ﻤﻌﻴﺎﺭﻱ ﻭﺍﺤﺩ ﻓﻲ ﺩﺭﺠﺔ ﺍﻟﻤﺸﺭﻭﻉ ﺴﻭﻑ ﻴﻨﺘﺞ ﻋﻨﻪ ﺘﻐﻴﺭﹰﺍ ﻓﻲ ﻤﺘﻐﻴﺭ‬


‫)‪ (12‬ﺘﺤﻠﻴل ﻨﻤﺎﺫﺝ ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﺨﻁﻲ‬

‫‪426‬‬

‫ﺩﺭﺠﺔ ﺍﻟﻁﺎﻟﺏ ﻓﻲ ﺍﻟﺠﺎﻤﻌﺔ ﺒﻤﻘﺩﺍﺭ ‪ 0.18‬ﻤﻥ ﺍﻻﻨﺤﺭﺍﻑ ﺍﻟﻤﻌﻴﺎﺭﻱ ﻟﻤﺘﻐﻴﺭ ﺩﺭﺠﺔ‬ ‫ﺍﻟﻁﺎﻟﺏ ﻓﻲ ﺍﻟﺠﺎﻤﻌﺔ‪ ،‬ﻭﻫﻜﺫﺍ ﻓﺈﻥ ﺘﻐﻴﺭﹰﺍ ﺒﻤﻘﺩﺍﺭ ﺍﻨﺤﺭﺍﻑ ﻤﻌﻴﺎﺭﻱ ﻭﺍﺤﺩ ﻓﻲ ﻋﻤﺭ‬

‫ﺍﻟﻁﺎﻟﺏ ﺴﻭﻑ ﻴﻨﺘﺞ ﻋﻨﻪ ﺘﻐﻴﺭﹰﺍ ﻓﻲ ﻤﺘﻐﻴﺭ ﺩﺭﺠﺔ ﺍﻟﻁﺎﻟﺏ ﻓﻲ ﺍﻟﺠﺎﻤﻌﺔ ﺒﻤﻘﺩﺍﺭ ‪0.13‬‬ ‫ﻤﻥ ﺍﻻﻨﺤﺭﺍﻑ ﺍﻟﻤﻌﻴﺎﺭﻱ ﻟﻤﺘﻐﻴﺭ ﺩﺭﺠﺔ ﺍﻟﻁﺎﻟﺏ ﻓﻲ ﺍﻟﺠﺎﻤﻌﺔ‪ ،‬ﻫﺫﺍ ﺍﻟﺘﺭﺘﻴﺏ ﻟﻘﻴﻡ ﺃﻭﺯﺍﻥ‬

‫ﺒﻴﺘﺎ ﺘﺅﻜﺩﻩ ﻗﻴﻡ ﻤﻌﺎﻤﻼﺕ ﺍﻻﺭﺘﺒﺎﻁ ﺒﻴﻥ ﺍﻟﻤﺘﻐﻴﺭ ﺍﻟﺘﺎﺒﻊ ﻭﻜل ﻤﻥ ﺍﻟﻤﺘﻐﻴﺭﺍﺕ ﺍﻟﻤﺴﺘﻘﻠﺔ‬

‫ﺍﻟﺜﻼﺜﺔ ﻓﻲ ﺠﺩﻭل ﻤﻌﺎﻤﻼﺕ ﺍﻻﺭﺘﺒﺎﻁ ﻓﻲ ﺸﻜل ‪. 18-12‬‬

‫ﻓﺸﻜل ‪ 18-2‬ﻴﺒﻴﻥ ﻗﻴﻡ ﻤﻌﺎﻤل ﺍﻻﺭﺘﺒﺎﻁ ﺒﻴﻥ ﺍﻟﻤﺘﻐﻴﺭ ﺍﻟﺘﺎﺒﻊ ﺩﺭﺠﺔ ﺍﻟﻁﺎﻟﺏ ﻓﻲ‬ ‫ﺍﻟﺠﺎﻤﻌﺔ ﻭﻜل ﻤﻥ ﺍﻟﻤﺘﻐﻴﺭﺍﺕ ﺍﻟﻤﺴﺘﻘﻠﺔ‪ :‬ﺍﻟﺩﺭﺠﺔ ﻓﻲ ﺍﻤﺘﺤﺎﻥ ﺍﻟﻘﺒﻭل ﻭﺩﺭﺠﺔ ﺍﻟﻤﺸﺭﻭﻉ‬

‫ﻭﺍﻟﻌﻤﺭ‪ ،‬ﻭﻫﻲ ﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ ﺍﻟﺘﺎﻟﻲ ‪ 0.73‬ﻭ ‪ 0.41‬ﻭ ‪ ، -0.03‬ﺃﻱ ﺃﻥ ﻫﺫﻩ‬

‫ﺍﻟﻤﻌﺎﻤﻼﺕ ﻟﻬﺎ ﻨﻔﺱ ﺘﺭﺘﻴﺏ ﻗﻴﻡ ﺃﻭﺯﺍﻥ ﺒﻴﺘﺎ ‪.‬‬

‫ﺸﻜل ‪ :18-12‬ﺍﻟﺠﺯﺀ ﺍﻟﺜﺎﻟﺙ ﻤﻥ ﻨﺘﺎﺌﺞ ﺘﺤﻠﻴل ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﻤﺘﻌﺩﺩ ‪Multiple Regression‬‬

‫ﺒﺎﺴﺘﺨﺩﺍﻡ ﻁﺭﻴﻘﺔ ﺍﻹﺩﺨﺎل ﺍﻟﻤﺘﺯﺍﻤﻥ ‪Simultaneous Selection Procedure‬‬ ‫‪Correlations‬‬ ‫‪University‬‬ ‫‪Exam‬‬ ‫‪1.000‬‬ ‫‪.729‬‬ ‫‪-.033‬‬ ‫‪.405‬‬ ‫‪.‬‬

‫‪University Exam‬‬

‫‪Pearson Correlation‬‬

‫‪Entrance Exam‬‬ ‫‪Age‬‬ ‫‪Project Mark‬‬ ‫‪University Exam‬‬

‫‪.000‬‬

‫‪Entrance Exam‬‬

‫‪.428‬‬

‫‪Age‬‬

‫‪.010‬‬

‫‪Project Mark‬‬

‫)‪Sig. (1-tailed‬‬


‫)‪ (12‬ﺘﺤﻠﻴل ﻨﻤﺎﺫﺝ ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﺨﻁﻲ‬

‫ﻭﺍﻵﻥ ﻴﻤﻜﻨﻨﺎ ﺃﻴﻀﹰﺎ ﺍﺴﺘﺨﺩﺍﻡ ﻁﺭﻴﻘﺔ ﺍﻻﺨﺘﻴﺎﺭ ﺍﻟﺘﺩﺭﻴﺠﻲ‬

‫‪427‬‬

‫‪Stepwise‬‬

‫‪ Selection Procedure‬ﻓﻲ ﺘﺤﻠﻴل ﺍﻟﺒﻴﺎﻨﺎﺕ ﺍﻟﺴﺎﺒﻘﺔ ﻭﺍﺴﺘﻨﺒﺎﻁ ﺃﻓﻀل ﻨﻤﻭﺫﺝ ﺍﻨﺤﺩﺍﺭ‬

‫ﺒﻬﺫﻩ ﺍﻟﻁﺭﻴﻘﺔ‪ ،‬ﻭﺘﺤﻠﻴل ﺍﻟﺒﻴﺎﻨﺎﺕ ﺒﻬﺫﻩ ﺍﻟﻁﺭﻴﻘﺔ ﺒﺎﺴﺘﺨﺩﺍﻡ ﻨﻅﺎﻡ ‪ SPSS‬ﻴﺘﻡ ﺒﻨﻔﺱ‬ ‫ﺍﻟﻁﺭﻴﻘﺔ ﺍﻟﺴﺎﺒﻘﺔ ﺘﻤﺎﻤﹰﺎ ﺒﺎﺴﺘﺜﻨﺎﺀ ﺃﻨﻪ ﻓﻲ ﻤﺭﺒﻊ ﺤﻭﺍﺭ ﺍﻟﻁﺭﻴﻘﺔ ‪ Method‬ﻓﻲ ﻨﺎﻓﺫﺓ‬

‫ﺘﺤﻠﻴل ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﺨﻁﻲ ‪) Linear Regression‬ﺸﻜل ‪ (2-12‬ﻻﺒﺩ ﻤﻥ ﺍﺨﺘﻴﺎﺭ ﻁﺭﻴﻘﺔ‬ ‫ﻻ ﻤﻥ ﻁﺭﻴﻘﺔ ﺍﻹﺩﺨﺎل ﺍﻟﻤﺘﺯﺍﻤﻥ ‪ ، Enter‬ﻭﻓﻲ ﻫﺫﻩ‬ ‫ﺍﻻﺨﺘﻴﺎﺭ ﺍﻟﺘﺩﺭﻴﺠﻲ ‪ Stepwise‬ﺒﺩ ﹰ‬

‫ﺍﻟﻁﺭﻴﻘﺔ ﺘﻀﺎﻑ ﺍﻟﻤﺘﻐﻴﺭﺍﺕ ﺍﻟﻤﺴﺘﻘﻠﺔ ﻭﺍﺤﺩﹰﺍ ﺘﻠﻭ ﺍﻵﺨﺭ ﻭﻴﻤﻜﻥ ﺃﻥ ﺘﺤﺫﻑ ﺒﺎﻟﺘﺘﺎﻟﻲ‬ ‫ﺃﻴﻀﹰﺎ ﺇﺫﺍ ﺘﺒﻴﻥ ﺃﻥ ﻤﺴﺎﻫﻤﺘﻬﺎ ﻟﻘﻭﺓ ﻨﻤﻭﺫﺝ ﺍﻻﻨﺤﺩﺍﺭ ﻏﻴﺭ ﻤﻌﻨﻭﻴﺔ‪) ،‬ﻻﺤﻅ ﺃﻥ ﻫﻨﺎﻙ‬

‫ﺃﻴﻀﹰﺎ ﻁﺭﻴﻘﺔ ﺨﻠﻔﻴﺔ ‪ Backward Selection Procedure‬ﻻﺨﺘﻴﺎﺭ ﺃﻓﻀل ﻨﻤﻭﺫﺝ‬

‫ﺍﻨﺤﺩﺍﺭ ﻭﺘﺘﻀﻤﻥ ﺒﻨﺎﺀ ﻨﻤﻭﺫﺝ ﻜﺎﻤل ﺒﻜل ﺍﻟﻤﺘﻐﻴﺭﺍﺕ ﺍﻟﻤﺴﺘﻘﻠﺔ ﻭﺤﺫﻑ ﺘﻠﻙ ﺍﻟﻤﺘﻐﻴﺭﺍﺕ‬

‫ﺫﺍﺕ ﺍﻟﻤﺴﺎﻫﻤﺔ ﻏﻴﺭ ﺍﻟﻤﻌﻨﻭﻴﺔ ﻭﺍﺤﺩﹰﺍ ﺘﻠﻭ ﺍﻵﺨﺭ‪ ،‬ﻭﻫﻨﺎﻙ ﺃﻴﻀﹰﺎ ﻁﺭﻴﻘﺔ ﺃﻤﺎﻤﻴﺔ‬ ‫‪ Forward Selection Procedure‬ﻻﺨﺘﻴﺎﺭ ﺃﻓﻀل ﻨﻤﻭﺫﺝ ﺍﻨﺤﺩﺍﺭ ﺤﻴﺙ ﺘﻀﺎﻑ‬

‫ﺍﻟﻤﺘﻐﻴﺭﺍﺕ ﺍﻟﻤﺴﺘﻘﻠﺔ ﺇﻟﻰ ﺍﻟﻨﻤﻭﺫﺝ ﺒﺎﻟﺘﺘﺎﻟﻲ ﻁﺎﻟﻤﺎ ﺘﺤﻘﻕ ﺸﺭﻁ ﺇﺤﺼﺎﺌﻲ ﻤﻌﻴﻥ ﻭﺘﺴﺘﻘﺭ‬

‫ﺒﻌﺩ ﺫﻟﻙ ﻓﻲ ﺍﻟﻨﻤﻭﺫﺝ ﺩﻭﻥ ﺤﺫﻑ(‪ ،‬ﻭﺒﺫﻟﻙ ﺘﻜﻭﻥ ﻁﺭﻴﻘﺔ ﺍﻻﺨﺘﻴﺎﺭ ﺍﻟﺘﺩﺭﻴﺠﻲ‬ ‫‪ Stepwise Selection Procedure‬ﻋﺒﺎﺭﺓ ﻋﻥ ﻤﺯﻴﺞ ﻤﻥ ﺍﻟﻁﺭﻴﻘﺘﻴﻥ ﺍﻟﺴﺎﺒﻘﺘﻴﻥ‪(.‬‬

‫ﻭﺍﻟﺸﻜﻠﻴﻥ ‪ 19-12‬ﻭ ‪ 20-12‬ﻴﻭﻀﺤﺎﻥ ﺍﻷﺠﺯﺍﺀ ﺍﻟﻤﻬﻤﺔ ﻤﻥ ﻨﺘﺎﺌﺞ ﺘﻁﺒﻴﻕ‬

‫ﻁﺭﻴﻘﺔ ﺍﻻﺨﺘﻴﺎﺭ ﺍﻟﺘﺩﺭﻴﺠﻲ ‪ Stepwise Selection Procedure‬ﻋﻠﻰ ﺒﻴﺎﻨﺎﺕ ﺍﻟﻤﺜﺎل‬

‫ﺍﻟﺴﺎﺒﻕ‪ ،‬ﻭﺃﻜﺜﺭ ﺍﻟﻨﺘﺎﺌﺞ ﻭﻀﻭﺤﹰﺎ ﻫﻲ ﻗﻴﻤﺔ ﻤﻌﺎﻤل ﺍﻻﺭﺘﺒﺎﻁ ﺍﻟﻤﺘﻌﺩﺩ ﻟﻨﻤﻭﺫﺝ ﺍﻻﻨﺤﺩﺍﺭ‬

‫ﺍﻟﻨﺎﺘﺞ ﺒﻬﺫﻩ ﺍﻟﻁﺭﻴﻘﺔ ﻭﺍﻟﺫﻱ ﻴﺴﺎﻭﻱ ‪ ، 0.729‬ﻭﻫﻲ ﻗﻴﻤﺔ ﺍﻗل ﻤﻥ ﺍﻟﻘﻴﻤﺔ ﺍﻟﺘﻲ ﺤﺼﻠﻨﺎ‬

‫ﻋﻠﻴﻬﺎ ﺒﺎﻟﻁﺭﻴﻘﺔ ﺍﻟﺴﺎﺒﻘﺔ )‪ (0.77‬ﺤﻴﺙ ﺍﺤﺘﻭﻯ ﺍﻟﻨﻤﻭﺫﺝ ﺍﻟﻤﺴﺘﻨﺒﻁ ﺒﺎﻟﻁﺭﻴﻘﺔ ﺍﻟﺴﺎﺒﻘﺔ‬

‫ﻋﻠﻰ ﺠﻤﻴﻊ ﺍﻟﻤﺘﻐﻴﺭﺍﺕ ﺍﻟﻤﺴﺘﻘﻠﺔ‪ ،‬ﻭﻫﺫﺍ ﻴﺩل ﻋﻠﻰ ﺃﻥ ﺇﻀﺎﻓﺔ ﺍﻟﻤﺘﻐﻴﺭﻴﻥ ﺩﺭﺠﺔ‬ ‫ﺍﻟﻤﺸﺭﻭﻉ ﻭﺍﻟﻌﻤﺭ ﻻ ﻴﺴﺎﻫﻤﺎﻥ ﻤﻌﻨﻭﻴﹰﺎ ﻓﻲ ﻗﻴﻤﺔ ﻤﻌﺎﻤل ﺍﻻﺭﺘﺒﺎﻁ ﺍﻟﻤﺘﻌﺩﺩ )‪ ،(R‬ﻭﻟﺫﺍ‬

‫ﺘﻘﺭﺭ ﺍﺴﺘﺒﻌﺎﺩﻫﻤﺎ ﻤﻥ ﺍﻟﻨﻤﻭﺫﺝ ﺍﻟﻨﻬﺎﺌﻲ‪.‬‬


‫( ﺘﺤﻠﻴل ﻨﻤﺎﺫﺝ ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﺨﻁﻲ‬12)

428

Multiple Regression ‫ ﺍﻟﺠﺯﺀ ﺍﻷﻭل ﻤﻥ ﻨﺘﺎﺌﺞ ﺘﺤﻠﻴل ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﻤﺘﻌﺩﺩ‬:19-12 ‫ﺸﻜل‬ Stepwise Selection Procedure ‫ﺒﺎﺴﺘﺨﺩﺍﻡ ﻁﺭﻴﻘﺔ ﺍﻻﺨﺘﻴﺎﺭ ﺍﻟﺘﺩﺭﻴﺠﻲ‬ Model Summary

Model 1

R

R Square

Adjusted R Square

Std. Error of the Estimate

.531

.516

22.70

a

.729

a. Predictors: (Constant), Entrance Exam

Coefficientsa Unstandardized Coefficients

(Constant) Entrance Exam

B

Std. Error

-46.305

25.477

3.155

.532

Standardized Coefficients Beta .729

t

Sig.

-1.817

.079

5.925

.000

a. Dependent Variable: University Exam

Multipl Regression ‫ ﺍﻟﺠﺯﺀ ﺍﻟﺜﺎﻨﻲ ﻤﻥ ﻨﺘﺎﺌﺞ ﺘﺤﻠﻴل ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﻤﺘﻌﺩﺩ‬:20-12 ‫ﺸﻜل‬ Stepwise Selection Procedure ‫ﺒﺎﺴﺘﺨﺩﺍﻡ ﻁﺭﻴﻘﺔ ﺍﻻﺨﺘﻴﺎﺭ ﺍﻟﺘﺩﺭﻴﺠﻲ‬ Excluded Variablesb

Model 1

t

Sig.

Partial Correlation

a

1.416

.167

.250

.926

a

1.686

.102

.294

.915

Beta In Age Project Mark

Collinearit y Statistics

.178 .211

a. Predictors in the Model: (Constant), Entrance Exam b. Dependent Variable: University Exam

Tolerance


‫)‪ (12‬ﺘﺤﻠﻴل ﻨﻤﺎﺫﺝ ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﺨﻁﻲ‬

‫‪429‬‬

‫ﻭﻤﻥ ﺘﻠﻙ ﺍﻟﻨﺘﺎﺌﺞ ﻴﺘﻀﺢ ﺃﻥ ﺃﻓﻀل ﻨﻤﻭﺫﺝ ﺍﻨﺤﺩﺍﺭ ﻴﻤﻜﻥ ﺍﺴﺘﻨﺒﺎﻁﻪ ﺒﻁﺭﻴﻘﺔ‬ ‫ﺍﻻﺨﺘﻴﺎﺭ ﺍﻟﺘﺩﺭﻴﺠﻲ ‪ Stepwise Selection Procedure‬ﻗﺩ ﺍﺸﺘﻤل ﻋﻠﻰ ﻤﺘﻐﻴﺭ ﻤﺴﺘﻘل‬

‫ﻭﺍﺤﺩ ﻭﻫﻭ ﺩﺭﺠﺔ ﺍﻟﻁﺎﻟﺏ ﻓﻲ ﺍﻤﺘﺤﺎﻥ ﺍﻟﻘﺒﻭل ‪ Entrance Exam‬ﻭﺫﻟﻙ ﻟﻠﺘﻨﺒﺅ ﺒﺩﺭﺠﺎﺕ‬ ‫ﺍﻟﻁﺎﻟﺏ ﻓﻲ ﺍﻟﺠﺎﻤﻌﺔ ‪ ، University Exam‬ﻭﻜﺎﻥ ﺍﻟﻘﺭﺍﺭ ﺒﺎﺴﺘﺒﻌﺎﺩ ﻜﻼ ﺍﻟﻤﺘﻐﻴﺭﻴﻥ‬

‫ﺩﺭﺠﺔ ﺍﻟﻤﺸﺭﻭﻉ ﻭﺍﻟﻌﻤﺭ ﻷﻥ ﻗﻴﻤﺔ ‪ p-value‬ﻓﻲ ﺍﻟﻌﻤﻭﺩ ﺒﻌﻨﻭﺍﻥ ‪ Sig.‬ﺍﻟﻤﻘﺎﺒﻠﺔ ﻟﻬﻤﺎ‬

‫ﺃﻜﺒﺭ ﻤﻥ ‪) 0.05‬ﺸﻜل ‪ ،(20-12‬ﻭﺒﺎﻟﺘﺎﻟﻲ ﻨﺴﺘﻨﺘﺞ ﺃﻥ ﺍﻟﻤﺘﻐﻴﺭ ﺍﻟﻭﺤﻴﺩ ﺍﻟﺫﻱ ﻴﻤﻜﻥ‬

‫ﺍﻻﻋﺘﻤﺎﺩ ﻋﻠﻴﻪ ﻓﻲ ﺍﻟﺘﻨﺒﺅ ﺒﻘﻴﻡ ﺩﺭﺠﺎﺕ ﺍﻟﻁﺎﻟﺏ ﻓﻲ ﺍﻟﺠﺎﻤﻌﺔ ﻫﻭ ﻤﺘﻐﻴﺭ ﺩﺭﺠﺎﺕ ﺍﻟﻁﺎﻟﺏ‬

‫ﻓﻲ ﺍﻤﺘﺤﺎﻥ ﺍﻟﻘﺒﻭل‪.‬‬ ‫ﻭﺍﻵﻥ‪ ،‬ﻟﻨﻔﺘﺭﺽ ﺃﻥ ﺍﻟﺒﺎﺤﺙ ﺍﻋﺘﻘﺩ ﺃﻥ ﻫﻨﺎﻙ ﻤﺘﻐﻴﺭﺍﺕ ﺃﺨﺭﻯ ﻴﻤﻜﻥ ﺇﺩﺨﺎﻟﻬﺎ ﻓﻲ‬

‫ﻨﻤﻭﺫﺝ ﺍﻻﻨﺤﺩﺍﺭ ﻭﺭﺒﻤﺎ ﺘﻤﻜﻥ ﻤﻥ ﺍﻟﺤﺼﻭل ﻋﻠﻰ ﻨﻤﻭﺫﺝ ﺍﻨﺤﺩﺍﺭ ﺃﻜﺜﺭ ﻗﻭﺓ ﻓﻲ ﺍﻟﺘﻨﺒﺅ‬

‫ﺒﻘﻴﻡ ﺍﻟﻤﺘﻐﻴﺭ ﺍﻟﺘﺎﺒﻊ ﻤﻥ ﺍﻟﻨﻤﻭﺫﺝ ﺍﻟﺴﺎﺒﻕ‪ ،‬ﻭﺘﻤﻜﻥ ﻤﻥ ﺠﻤﻊ ﺒﻴﺎﻨﺎﺕ ﻋﻥ ﻤﺘﻐﻴﺭ ﺠﺩﻴﺩ‬

‫ﻭﻫﻭ ﻨﺘﻴﺠﺔ ﺍﻤﺘﺤﺎﻥ ﺍﻟﺠﺯﺀ ﺍﻟﺸﻔﻭﻱ ﻤﻥ ﺍﺨﺘﺒﺎﺭ ﺍﻟﺫﻜﺎﺀ ﺍﻟﻤﺴﻤﻰ ‪ IQ‬ﻟﺠﻤﻴﻊ ﺍﻟﻁﻼﺏ ﻓﻲ‬

‫ﺍﻟﻌﻴﻨﺔ ﻭﺘﻡ ﺭﺼﺩﻫﺎ ﻓﻲ ﺸﻜل ‪ ،21-12‬ﻭﻴﺘﻭﻗﻊ ﺃﻥ ﺇﻀﺎﻓﺔ ﻫﺫﺍ ﺍﻟﻤﺘﻐﻴﺭ )ﺍﻟﺫﻱ ﺴﻨﻁﻠﻕ‬ ‫ﻋﻠﻴﻪ ‪ (IQ‬ﺴﻭﻑ ﻴﺤﺴﻥ ﻤﻥ ﺩﻗﺔ ﻨﻤﻭﺫﺝ ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﻤﺘﻌﺩﺩ ﻓﻲ ﺍﻟﺘﻨﺒﺅ ﺒﻘﻴﻡ ﺩﺭﺠﺎﺕ‬

‫ﺍﻟﻁﺎﻟﺏ ﻓﻲ ﺍﻟﺠﺎﻤﻌﺔ‪ ،‬ﻭﻋﻨﺩ ﺇﻀﺎﻓﺔ ﺍﻟﻤﺘﻐﻴﺭ ﺍﻟﺠﺩﻴﺩ ﺇﻟﻰ ﺍﻟﻤﺘﻐﻴﺭﺍﺕ ﺍﻟﻤﺴﺘﻘﻠﺔ ﺍﻟﻤﻭﺠﻭﺩﺓ‬

‫ﻤﺴﺒﻘﹰﺎ ﻭﺇﻋﺎﺩﺓ ﺒﻨﺎﺀ ﻨﻤﻭﺫﺝ ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﻤﺘﻌﺩﺩ ﻴﺭﻏﺏ ﺍﻟﺒﺎﺤﺙ ﻓﻲ ﺍﺨﺘﺒﺎﺭ ﺍﻟﻔﺭﻀﻴﺔ ﺃﻥ‬

‫ﺍﻟﻤﺘﻐﻴﺭ ‪ IQ‬ﻴﺤﺴﻥ ﻤﻥ ﺩﻗﺔ ﻨﻤﻭﺫﺝ ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﻤﺘﻌﺩﺩ ﻓﻲ ﺍﻟﺘﻨﺒﺅ ﺒﻘﻴﻡ ﺩﺭﺠﺎﺕ ﺍﻟﻁﺎﻟﺏ‬

‫ﻓﻲ ﺍﻟﺠﺎﻤﻌﺔ‪.‬‬

‫ﻭﻴﻤﻜﻥ ﻟﻠﻘﺎﺭﺉ ﺍﻟﺘﺩﺭﺏ ﻋﻠﻰ ﺇﺩﺨﺎل ﺍﻟﺒﻴﺎﻨﺎﺕ ﺍﻟﺠﺩﻴﺩﺓ )ﻜﻤﺎ ﻓﻲ ﺠﺩﻭل ‪(21-12‬‬ ‫ﻭﺇﻋﺎﺩﺓ ﺍﻟﺘﺤﻠﻴل ﺒﻁﺭﻴﻘﺘﻲ ﺍﻹﺩﺨﺎل ﺍﻟﻤﺘﺯﺍﻤﻥ ‪Simultaneous Selection Procedure‬‬

‫ﻭﺍﻻﺨﺘﻴﺎﺭ ﺍﻟﺘﺩﺭﻴﺠﻲ ‪ ،Stepwise Selection Procedure‬ﻭﺴﻴﺠﺩ ﺃﺠﺯﺍﺀ ﻤﺨﺘﺎﺭﺓ‬

‫ﻫﺎﻤﺔ ﻤﻥ ﻨﺘﺎﺌﺞ ﻫﺫﺍ ﺍﻟﺘﺤﻠﻴل ﻓﻲ ﺍﻷﺸﻜﺎل ‪ 22-12‬ﻭ ‪ 23-12‬ﻭ ‪ 24-12‬ﻭ ‪.25-12‬‬


‫)‪ (12‬ﺘﺤﻠﻴل ﻨﻤﺎﺫﺝ ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﺨﻁﻲ‬

‫‪430‬‬

‫ﺸﻜل ‪ : 21-12‬ﺒﻴﺎﻨﺎﺕ ﻋﻥ ﻤﺠﻤﻭﻉ ﺩﺭﺠﺎﺕ ﺍﻟﻁﻠﺒﺔ ﻓﻲ ﺍﻻﻤﺘﺤﺎﻥ ﺍﻟﻨﻬﺎﺌﻲ ‪Final Exam‬‬ ‫ﻓﻲ ﺍﻟﻜﻠﻴﺔ ﻭﻤﺠﻤﻭﻉ ﺩﺭﺠﺎﺘﻬﻡ ﻓﻲ ﺍﻤﺘﺤﺎﻥ ﺍﻟﻘﺒﻭل ﻟﻠﻜﻠﻴﺔ ‪ Entrance Score‬ﻭﺃﻋﻤﺎﺭﻫﻡ‬

‫‪ Age‬ﻭﺩﺭﺠﺎﺘﻬﻡ ﻓﻲ ﺃﺤﺩ ﺍﻟﻤﺸﺎﺭﻴﻊ ﺍﻷﻜﺎﺩﻴﻤﻴﺔ ‪ Project‬ﻭﺩﺭﺠﺎﺘﻬﻡ ﻓﻲ ﺍﺨﺘﺒﺎﺭ ﺍﻟﺫﻜﺎﺀ ‪IQ‬‬ ‫‪IQ‬‬

‫‪Final‬‬ ‫‪Entr. Age Proj.‬‬ ‫‪Exam‬‬

‫‪IQ‬‬

‫‪Final‬‬ ‫‪Entr. Age Proj.‬‬ ‫‪Exam‬‬

‫‪134‬‬

‫‪53‬‬

‫‪22.3‬‬

‫‪48‬‬

‫‪103‬‬

‫‪110‬‬

‫‪50‬‬

‫‪21.9‬‬

‫‪44‬‬

‫‪38‬‬

‫‪140‬‬

‫‪72‬‬

‫‪21.8‬‬

‫‪43‬‬

‫‪105‬‬

‫‪120‬‬

‫‪75‬‬

‫‪22.6‬‬

‫‪40‬‬

‫‪49‬‬

‫‪127‬‬

‫‪69‬‬

‫‪21.4‬‬

‫‪55‬‬

‫‪106‬‬

‫‪119‬‬

‫‪54‬‬

‫‪21.8‬‬

‫‪43‬‬

‫‪61‬‬

‫‪135‬‬

‫‪50‬‬

‫‪21.6‬‬

‫‪48‬‬

‫‪107‬‬

‫‪125‬‬

‫‪60‬‬

‫‪22.5‬‬

‫‪42‬‬

‫‪65‬‬

‫‪132‬‬

‫‪68‬‬

‫‪22.8‬‬

‫‪49‬‬

‫‪112‬‬

‫‪121‬‬

‫‪82‬‬

‫‪21.9‬‬

‫‪44‬‬

‫‪69‬‬

‫‪135‬‬

‫‪72‬‬

‫‪22.1‬‬

‫‪46‬‬

‫‪114‬‬

‫‪140‬‬

‫‪65‬‬

‫‪21.8‬‬

‫‪46‬‬

‫‪73‬‬

‫‪135‬‬

‫‪60‬‬

‫‪21.9‬‬

‫‪41‬‬

‫‪114‬‬

‫‪122‬‬

‫‪61‬‬

‫‪22.2‬‬

‫‪34‬‬

‫‪74‬‬

‫‪129‬‬

‫‪74‬‬

‫‪22.5‬‬

‫‪49‬‬

‫‪117‬‬

‫‪123‬‬

‫‪68‬‬

‫‪22.5‬‬

‫‪37‬‬

‫‪76‬‬

‫‪140‬‬

‫‪70‬‬

‫‪21.9‬‬

‫‪63‬‬

‫‪125‬‬

‫‪133‬‬

‫‪60‬‬

‫‪21.5‬‬

‫‪41‬‬

‫‪78‬‬

‫‪134‬‬

‫‪77‬‬

‫‪22.2‬‬

‫‪52‬‬

‫‪140‬‬

‫‪100‬‬

‫‪69‬‬

‫‪22.4‬‬

‫‪53‬‬

‫‪81‬‬

‫‪134‬‬

‫‪79‬‬

‫‪21.4‬‬

‫‪56‬‬

‫‪142‬‬

‫‪120‬‬

‫‪64‬‬

‫‪21.9‬‬

‫‪47‬‬

‫‪86‬‬

‫‪132‬‬

‫‪84‬‬

‫‪21.6‬‬

‫‪60‬‬

‫‪145‬‬

‫‪115‬‬

‫‪78‬‬

‫‪22.0‬‬

‫‪45‬‬

‫‪91‬‬

‫‪135‬‬

‫‪60‬‬

‫‪22.1‬‬

‫‪55‬‬

‫‪150‬‬

‫‪124‬‬

‫‪68‬‬

‫‪22.2‬‬

‫‪41‬‬

‫‪94‬‬

‫‪135‬‬

‫‪76‬‬

‫‪21.9‬‬

‫‪54‬‬

‫‪152‬‬

‫‪135‬‬

‫‪70‬‬

‫‪21.7‬‬

‫‪39‬‬

‫‪95‬‬

‫‪149‬‬

‫‪84‬‬

‫‪23.0‬‬

‫‪58‬‬

‫‪164‬‬

‫‪132‬‬

‫‪65‬‬

‫‪22.2‬‬

‫‪40‬‬

‫‪98‬‬

‫‪135‬‬

‫‪65‬‬

‫‪21.2‬‬

‫‪62‬‬

‫‪169‬‬

‫‪128‬‬

‫‪75‬‬

‫‪39.3‬‬

‫‪37‬‬

‫‪100‬‬

‫‪130‬‬

‫‪65‬‬

‫‪21.0‬‬

‫‪48‬‬

‫‪100‬‬


‫( ﺘﺤﻠﻴل ﻨﻤﺎﺫﺝ ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﺨﻁﻲ‬12)

431

‫ ﺒﺎﺴﺘﺨﺩﺍﻡ ﻁﺭﻴﻘﺔ‬R ‫ ﺍﻟﻤﺘﻐﻴﺭﺍﺕ ﺍﻟﺘﻲ ﺍﺸﺘﻤل ﻋﻠﻴﻬﺎ ﻨﻤﻭﺫﺝ ﺍﻻﻨﺤﺩﺍﺭ ﻭﻗﻴﻤﺔ‬: 22-12 ‫ﺸﻜل‬ . 21-12 ‫ ﻟﺒﻴﺎﻨﺎﺕ ﺸﻜل‬Simultaneous Selection Procedure ‫ﺍﻹﺩﺨﺎل ﺍﻟﻤﺘﺯﺍﻤﻥ‬ Variables Entered/Removedb Model 1

Variables Entered

Variables Removed

IQ, Age, Projecta Mark, Entrance Exam

Method . Enter

a. All requested variables entered. b. Dependent Variable: University Exam

Model Summary

Model 1

R

R Square

Adjusted R Square

Std. Error of the Estimate

.765

.731

16.92

a

.874

a. Predictors: (Constant), IQ, Age, Project Mark, Entrance Exam

‫ ﺒﺎﺴﺘﺨﺩﺍﻡ ﻁﺭﻴﻘﺔ‬Regression coefficients ‫ ﻤﻌﺎﻤﻼﺕ ﺍﻻﻨﺤﺩﺍﺭ‬: 23-12 ‫ﺸﻜل‬ . 21-12 ‫ ﻟﺒﻴﺎﻨﺎﺕ ﺸﻜل‬Simultaneous Selection Procedure ‫ﺍﻹﺩﺨﺎل ﺍﻟﻤﺘﺯﺍﻤﻥ‬ Coefficientsa Unstandardized Coefficients Model 1

B

Std. Error

(Constant)

-272.1

48.936

Entrance Exam

2.494

.459

Age

1.244

Project Mark IQ

Standardized Coefficients t

Sig.

-5.561

.000

.576

5.434

.000

1.057

.116

1.177

.249

.504

.355

.141

1.419

.167

1.510

.328

.447

4.601

.000

a. Dependent Variable: University Exam

Beta


‫)‪ (12‬ﺘﺤﻠﻴل ﻨﻤﺎﺫﺝ ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﺨﻁﻲ‬

‫‪432‬‬

‫ﻭﻴﻤﻜﻨﻨﺎ ﺃﻥ ﻨﻼﺤﻅ ﻤﻥ ﺍﻟﺸﻜل ‪ 22-12‬ﺃﻥ ﺇﻀﺎﻓﺔ ﺍﻟﻤﺘﻐﻴﺭ ‪ IQ‬ﻗﺩ ﺤﺴﻥ ﻤﻥ‬ ‫ﻗﻭﺓ ﺍﻟﺘﻨﺒﺅ ﻟﻨﻤﻭﺫﺝ ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﻤﺘﻌﺩﺩ‪ ،‬ﺤﻴﺙ ﺃﻋﻁﻰ ﻗﻴﻤﺔ ﻟﻤﻌﺎﻤل ﺍﻻﻨﺤﺩﺍﺭ ‪ R‬ﻤﺴﺎﻭﻴﺔ‬

‫‪ 0.87‬ﻭﺍﻟﺘﻲ ﺘﺯﻴﺩ ﺒﺸﻜل ﻤﻠﺤﻭﻅ ﻋﻥ ﺴﺎﺒﻘﺘﻬﺎ ﺒﺩﻭﻥ ﺇﺩﺨﺎل ﺫﻟﻙ ﺍﻟﻤﺘﻐﻴﺭ )ﺤﻴﺙ ﻜﺎﻨﺕ‬ ‫‪ 0.77‬ﺒﺩﻭﻥ ﺍﻟﻤﺘﻐﻴﺭ ‪.(IQ‬‬

‫ﻭﺒﺎﻟﻨﻅﺭ ﺇﻟﻰ ﺍﻟﻤﻌﺎﻤﻼﺕ ﺍﻟﻤﻌﻴﺎﺭﻴﺔ ‪) Standardized coefficients‬ﺃﻭﺯﺍﻥ‬

‫ﺒﻴﺘﺎ ‪ (Beta weights‬ﻓﻲ ﻗﺎﺌﻤﺔ ﺍﻟﻨﺘﺎﺌﺞ ﻓﻲ ﺸﻜل ‪ 23-12‬ﺴﻭﻑ ﻨﻼﺤﻅ ﺃﻥ ﺇﻀﺎﻓﺔ‬

‫ﺒﻤﻘﺩﺍﺭ ﺍﻨﺤﺭﺍﻑ ﻤﻌﻴﺎﺭﻱ ﻭﺍﺤﺩ ﺇﻟﻰ ﻤﺘﻐﻴﺭ ﻨﺘﻴﺠﺔ ﺍﻤﺘﺤﺎﻥ ﺍﻟﺩﺨﻭل ﺴﻭﻑ ﻴﻨﺘﺞ ﻋﻨﻬﺎ‬ ‫ﺇﻀﺎﻓﺔ ﺒﻤﻘﺩﺍﺭ ‪ 0.58‬ﻤﻥ ﺍﻻﻨﺤﺭﺍﻑ ﺍﻟﻤﻌﻴﺎﺭﻱ ﻟﻤﺘﻐﻴﺭ ﻨﺘﻴﺠﺔ ﺍﻤﺘﺤﺎﻥ ﺍﻟﺠﺎﻤﻌﺔ‪ ،‬ﻭﻜﺫﻟﻙ‬

‫ﺇﻀﺎﻓﺔ ﻤﻘﺩﺍﺭ ﺍﻨﺤﺭﺍﻑ ﻤﻌﻴﺎﺭﻱ ﻭﺍﺤﺩ ﺇﻟﻰ ﻤﺘﻐﻴﺭ ﻨﺘﻴﺠﺔ ﺍﻤﺘﺤﺎﻥ ﺍﻟﺩﺨﻭل ﺴﻭﻑ ﻴﻨﺘﺞ‬

‫ﻋﻨﻬﺎ ﺇﻀﺎﻓﺔ ﺒﻤﻘﺩﺍﺭ ‪ 0.45‬ﻤﻥ ﺍﻻﻨﺤﺭﺍﻑ ﺍﻟﻤﻌﻴﺎﺭﻱ ﻟﻠﻤﺘﻐﻴﺭ ‪ ، IQ‬ﻭﻫﺫﻩ ﺘﻌﺩ ﺇﻀﺎﻓﺔ‬

‫ﺠﻭﻫﺭﻴﺔ ﻤﻘﺎﺭﻨﺔ ﺒﺎﻹﻀﺎﻓﺔ ﺍﻟﺘﻲ ﻴﻘﺩﻤﻬﺎ ﻜل ﻤﻥ ﺍﻟﻤﺘﻐﻴﺭﻴﻥ ﺩﺭﺠﺔ ﺍﻟﻤﺸﺭﻭﻉ ﻭﺍﻟﻌﻤﺭ‪.‬‬

‫ﻻ ﺒﺎﻟﻤﺘﻐﻴﺭﻴﻥ ﻭﻜﺫﻟﻙ ﺒﺎﻟﻘﺎﻋﺩﺓ ﺍﻹﺤﺼﺎﺌﻴﺔ ﻹﺩﺨﺎل‬ ‫ﻭﻴﻘﺩﻡ ﺸﻜل ‪ 24-12‬ﺠﺩﻭ ﹰ‬

‫ﻜل ﻤﻨﻬﻤﺎ )ﻨﻤﻭﺫﺝ ‪ 1‬ﻭ ‪ (2‬ﻟﻨﻤﻭﺫﺝ ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﻤﺘﻌﺩﺩ ﺒﺎﺴﺘﺨﺩﺍﻡ ﻁﺭﻴﻘﺔ ﺍﻻﺨﺘﻴﺎﺭ‬ ‫ﺍﻟﺘﺩﺭﻴﺠﻲ ﻟﻨﻤﻭﺫﺝ ﺍﻻﻨﺤﺩﺍﺭ ‪. Stepwise Selection Procedure‬‬ ‫ﺸﻜل ‪ : 24-12‬ﺍﻟﻤﺘﻐﻴﺭﻴﻥ ﺍﻟﺫﻴﻥ ﺍﺸﺘﻤل ﻋﻠﻴﻬﻤﺎ ﻨﻤﻭﺫﺝ ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﻤﺘﻌﺩﺩ ﺒﺎﺴﺘﺨﺩﺍﻡ ﻁﺭﻴﻘﺔ‬ ‫ﺍﻻﺨﺘﻴﺎﺭ ﺍﻟﺘﺩﺭﻴﺠﻲ ‪ Stepwise Selection Procedure‬ﻟﺒﻴﺎﻨﺎﺕ ﺸﻜل ‪. 21-12‬‬ ‫‪Variables Entered/Removeda‬‬ ‫‪Variables‬‬ ‫‪Removed‬‬

‫‪Method‬‬

‫‪Variables‬‬ ‫‪Entered‬‬

‫‪Stepwise (Criteria:‬‬ ‫‪. Probability-of-F-to-enter <= .050,‬‬ ‫‪Probability-of-F-to-remove >= .100).‬‬

‫‪Entrance‬‬ ‫‪Exam‬‬

‫‪Stepwise (Criteria:‬‬ ‫‪. Probability-of-F-to-enter <= .050,‬‬ ‫‪Probability-of-F-to-remove >= .100).‬‬

‫‪IQ‬‬

‫‪Model‬‬ ‫‪1‬‬

‫‪2‬‬

‫‪a. Dependent Variable: University Exam‬‬


‫)‪ (12‬ﺘﺤﻠﻴل ﻨﻤﺎﺫﺝ ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﺨﻁﻲ‬

‫‪433‬‬

‫ﻭﻴﺒﻴﻥ ﺍﻟﺸﻜل ﺍﻟﺴﺎﺒﻕ )‪ (24-12‬ﺃﻥ ﺍﻟﺨﻁﻭﺓ ﺍﻷﻭﻟﻰ )ﺍﻟﻨﻤﻭﺫﺝ ‪ (1‬ﻜﺎﻨﺕ ﺇﺩﺨﺎل‬ ‫ﺍﻟﻤﺘﻐﻴﺭ ﻨﺘﻴﺠﺔ ﺍﻤﺘﺤﺎﻥ ﺍﻟﻘﺒﻭل ‪ Entrance Exam‬ﺇﻟﻰ ﻨﻤﻭﺫﺝ ﺍﻻﻨﺤﺩﺍﺭ ﻭﺘﺒﻌﻪ ﺇﺩﺨﺎل‬

‫ﺍﻟﻤﺘﻐﻴﺭ ‪ IQ‬ﻜﺨﻁﻭﺓ ﺜﺎﻨﻴﺔ )ﺍﻟﻨﻤﻭﺫﺝ ‪ ،(2‬ﻻﺤﻅ ﺃﻥ ﻁﺭﻴﻘﺔ ﺍﻻﺨﺘﻴﺎﺭ ﺍﻟﺘﺩﺭﻴﺠﻲ ﻗﺩ‬ ‫ﺘﻭﻗﻔﺕ ﺤﻴﻨﺌ ٍﺫ ﻭﺒﺩﻭﻥ ﻤﺤﺎﻭﻟﺔ ﺇﺩﺨﺎل ﺍﻟﻤﺘﻐﻴﺭﻴﻥ ﻨﺘﻴﺠﺔ ﺍﻟﻤﺸﺭﻭﻉ ﻭﺍﻟﻌﻤﺭ‪.‬‬

‫ﻭﻴﻭﻀﺢ ﺍﻟﺸﻜل ‪ 25-12‬ﺍﻟﻤﺘﻐﻴﺭﺍﺕ ﺍﻟﺘﻲ ﺍﺴﺘﺒﻌﺩﺕ ﻓﻲ ﻜل ﺨﻁﻭﺓ ﻤﻥ‬

‫ﺍﻟﺨﻁﻭﺍﺕ ﺍﻟﺴﺎﺒﻘﺔ‪ ،‬ﻓﻔﻲ ﺍﻟﺨﻁﻭﺓ ﺍﻷﻭﻟﻰ )ﺍﻟﻨﻤﻭﺫﺝ ‪ (1‬ﻗﺩ ﺩﺨل ﻤﺘﻐﻴﺭ ﻤﺴﺘﻘل ﻭﺍﺤﺩ‬

‫ﻭﺍﺴﺘﺒﻌﺩﺕ ﺜﻼﺙ ﻤﺘﻐﻴﺭﺍﺕ ﻭﻫﻡ ﺍﻟﻌﻤﺭ ﻭﺩﺭﺠﺔ ﺍﻟﻤﺸﺭﻭﻉ ﻭ ‪ ، IQ‬ﻭﻟﻜﻥ ﺤﻴﺙ ﺃﻥ ﻗﻴﻤﺔ‬

‫ﻼ‬ ‫‪ p-value‬ﻟﻤﻌﻨﻭﻴﺔ ﺍﻟﻤﺘﻐﻴﺭ ‪ IQ‬ﺃﺼﻐﺭ ﻤﻥ ‪ 0.05‬ﻓﺈﻥ ﻫﺫﺍ ﺍﻟﻤﺘﻐﻴﺭ ﺃﺼﺒﺢ ﻤﺅﻫ ﹰ‬ ‫ﻟﻠﺩﺨﻭل ﻓﻲ ﺍﻟﺨﻁﻭﺓ ﺍﻟﺜﺎﻨﻴﺔ )ﺍﻟﻨﻤﻭﺫﺝ ‪ ،(2‬ﻭﺍﻟﻤﺘﻐﻴﺭﺍﺕ ﺍﻟﺘﻲ ﺍﺴﺘﺒﻌﺩﺕ ﻓﻲ ﺍﻟﺨﻁﻭﺓ‬

‫ﺍﻟﺜﺎﻨﻴﺔ )ﺍﻟﻨﻤﻭﺫﺝ ‪ (2‬ﻭﻫﻤﺎ ﺍﻟﻌﻤﺭ ﻭﺩﺭﺠﺔ ﺍﻟﻤﺸﺭﻭﻉ ﺒﻘﻴﺎ ﻤﺴﺘﺒﻌﺩﻴﻥ ﻷﻥ ﻗﻴﻤﺔ ‪p-value‬‬

‫ﻟﻤﻌﻨﻭﻴﺘﻬﻤﺎ ﺒﻘﻴﺘﺎ ﺃﻜﺒﺭ ﻤﻥ ‪ ، 0.05‬ﻭﻟﻬﺫﺍ ﺘﻭﻗﻑ ﺍﻟﻨﻤﻭﺫﺝ ﻫﻨﺎ‪.‬‬

‫ﺸﻜل ‪ : 25-12‬ﺍﻟﻤﺘﻐﻴﺭﺍﺕ ﺍﻟﻤﺴﺘﺒﻌﺩﺓ ﻤﻥ ﻨﻤﻭﺫﺝ ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﻤﺘﻌﺩﺩ ﻨﺘﻴﺠﺔ ﻻﺴﺘﺨﺩﺍﻡ ﻁﺭﻴﻘﺔ‬ ‫ﺍﻻﺨﺘﻴﺎﺭ ﺍﻟﺘﺩﺭﻴﺠﻲ ‪ Stepwise Selection Procedure‬ﻟﺒﻴﺎﻨﺎﺕ ﺸﻜل ‪. 21-12‬‬ ‫‪Excluded Variablesc‬‬ ‫‪Collinearit‬‬ ‫‪y Statistics‬‬

‫‪Partial‬‬ ‫‪Correlation‬‬

‫‪Sig.‬‬

‫‪t‬‬

‫‪.926‬‬

‫‪.250‬‬

‫‪.167‬‬

‫‪1.416‬‬

‫‪a‬‬

‫‪.915‬‬

‫‪.294‬‬

‫‪.102‬‬

‫‪1.686‬‬

‫‪a‬‬

‫‪.898‬‬

‫‪.646‬‬

‫‪.000‬‬

‫‪4.631‬‬

‫‪a‬‬

‫‪.923‬‬

‫‪.279‬‬

‫‪.129‬‬

‫‪1.565‬‬

‫‪b‬‬

‫‪.908‬‬

‫‪.312‬‬

‫‪.088‬‬

‫‪1.766‬‬

‫‪b‬‬

‫‪Tolerance‬‬

‫‪Beta In‬‬ ‫‪.178‬‬ ‫‪.211‬‬ ‫‪.467‬‬ ‫‪.152‬‬ ‫‪.171‬‬

‫‪Age‬‬

‫‪Model‬‬ ‫‪1‬‬

‫‪Project Mark‬‬ ‫‪IQ‬‬ ‫‪Age‬‬ ‫‪Project Mark‬‬ ‫‪IQ‬‬

‫‪a. Predictors in the Model: (Constant), Entrance Exam‬‬ ‫‪b. Predictors in the Model: (Constant), Entrance Exam, IQ‬‬ ‫‪c. Dependent Variable: University Exam‬‬

‫‪2‬‬


‫)‪ (12‬ﺘﺤﻠﻴل ﻨﻤﺎﺫﺝ ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﺨﻁﻲ‬

‫‪434‬‬

‫ﺇﻥ ﺍﻻﻓﺘﻘﺎﺭ ﺇﻟﻰ ﺃﻫﻤﻴﺔ ﻨﺴﺒﻴﺔ ﻟﻠﻤﺘﻐﻴﺭﻴﻥ ﺍﻟﺫﻴﻥ ﺘﻡ ﺍﺴﺘﺒﻌﺎﺩﻫﻤﺎ ﻤﻥ ﻨﺎﺤﻴﺔ ﺃﺜﺭﻫﻤﺎ‬ ‫ﻋﻠﻰ ﻗﻭﺓ ﺍﻟﺘﻨﺒﺅ ﺒﺎﻟﻤﺘﻐﻴﺭ ﺍﻟﺘﺎﺒﻊ ﺩﺭﺠﺎﺕ ﺍﻟﻁﺎﻟﺏ ﻓﻲ ﺍﻤﺘﺤﺎﻥ ﺍﻟﺠﺎﻤﻌﺔ ﻗﺩ ﺃﻜﺩﺘﻬﺎ ﻗﻴﻡ ﻜل‬ ‫ﻤﻥ ﻤﻌﺎﻤل ﺍﻻﺭﺘﺒﺎﻁ ‪ R‬ﻭﻤﺭﺒﻌﻪ ‪) R2‬ﺍﻟﺫﻱ ﻴﻁﻠﻕ ﻋﻠﻴﻪ ﻤﻌﺎﻤل ﺍﻟﺘﺤﺩﻴﺩ ‪Coefficient‬‬

‫‪ (of Determination‬ﻭﺍﻟﻠﺘﺎﻥ ﺘﺘﻀﺤﺎﻥ ﻤﻥ ﺸﻜل ‪ ،26-12‬ﻓﻘﻴﻤﺔ ‪ R‬ﻗﺩ ﺃﺼﺒﺤﺕ‬

‫‪) 0.852‬ﺍﻟﻨﻤﻭﺫﺝ ‪ (2‬ﻭﻫﻲ ﻗﺭﻴﺒﺔ ﻤﻥ ﺍﻟﻘﻴﻤﺔ ‪ 0.874‬ﺍﻟﺘﻲ ﺤﺼﻠﻨﺎ ﻋﻠﻴﻬﺎ ﻤﻥ ﺇﺩﺨﺎل‬ ‫ﺍﻟﻤﺘﻐﻴﺭﺍﺕ ﺍﻟﻤﺴﺘﻘﻠﺔ ﺍﻷﺭﺒﻊ ﺠﻤﻴﻌﻬﺎ )ﺸﻜل ‪.(22-12‬‬

‫ﺸﻜل ‪ : 26-12‬ﻗﻴﻤﺘﻲ ‪ R‬ﻭ ‪ R2‬ﻟﻠﺨﻁﻭﺘﻴﻥ )ﻓﻲ ﺍﻟﻨﻤﻭﺫﺠﻴﻥ ‪ 1‬ﻭ ‪ (2‬ﺒﺎﺴﺘﺨﺩﺍﻡ ﻁﺭﻴﻘﺔ‬ ‫ﺍﻻﺨﺘﻴﺎﺭ ﺍﻟﺘﺩﺭﻴﺠﻲ ‪ Stepwise Selection Procedure‬ﻟﺒﻴﺎﻨﺎﺕ ﺸﻜل ‪. 21-12‬‬ ‫‪Model Summary‬‬ ‫‪Std. Error of‬‬ ‫‪the Estimate‬‬

‫‪Adjusted‬‬ ‫‪R Square‬‬

‫‪R Square‬‬

‫‪22.70‬‬

‫‪.516‬‬

‫‪.531‬‬

‫‪a‬‬

‫‪17.62‬‬

‫‪.708‬‬

‫‪.727‬‬

‫‪b‬‬

‫‪R‬‬

‫‪Model‬‬

‫‪.729‬‬ ‫‪.852‬‬

‫‪1‬‬ ‫‪2‬‬

‫‪a. Predictors: (Constant), Entrance Exam‬‬ ‫‪b. Predictors: (Constant), Entrance Exam, IQ‬‬

‫ﻭﺸﻜل ‪ 27-12‬ﻴﻌﺭﺽ ﻗﻴﻡ ﻤﻌﺎﻤﻼﺕ ﺍﻻﻨﺤﺩﺍﺭ ‪Regression Coefficients‬‬

‫ﻟﻨﻤﻭﺫﺝ ﺍﻻﻨﺤﺩﺍﺭ ﺍﻷﻭﻟﻲ )ﺍﻟﻨﻤﻭﺫﺝ ‪ (1‬ﻭﺍﻟﻨﻬﺎﺌﻲ )ﺍﻟﻨﻤﻭﺫﺝ ‪ (2‬ﺍﻟﺫﻴﻥ ﺘﻡ ﺘﻭﻓﻴﻘﻬﻤﺎ‬ ‫ﺒﺎﺴﺘﺨﺩﺍﻡ ﻁﺭﻴﻘﺔ ﺍﻻﺨﺘﻴﺎﺭ ﺍﻟﺘﺩﺭﻴﺠﻲ ‪. Stepwise Selection Procedure‬‬

‫ﻭﺃﺨﻴﺭﹰﺍ ‪ ،‬ﺘﺒﺭﺯ ﺍﻟﻨﺘﺎﺌﺞ ﺍﻟﺴﺎﺒﻘﺔ ﻤﻼﺤﻅﺔ ﻫﺎﻤﺔ ﺘﺘﻌﻠﻕ ﺒﺎﺴﺘﺨﺩﺍﻤﺎﺕ ﺍﻻﻨﺤﺩﺍﺭ‬ ‫ﺍﻟﻤﺘﻌﺩﺩ ﻜﻭﺴﻴﻠﺔ ﻟﻠﺒﺤﺙ‪ ،‬ﻓﺈﻀﺎﻓﺔ ﻤﺘﻐﻴﺭﺍﺕ ﻤﺴﺘﻘﻠﺔ ﺠﺩﻴﺩﺓ ﻟﻨﻤﻭﺫﺝ ﺍﻻﻨﺤﺩﺍﺭ ﻴﻤﻜﻥ ﺃﻥ‬

‫ﻴﺅﺜﺭ ﺒﺸﺩﺓ ﻋﻠﻰ ﺍﻷﻫﻤﻴﺔ ﺍﻟﻨﺴﺒﻴﺔ ﻟﻠﻤﺘﻐﻴﺭﺍﺕ ﺍﻟﻤﺴﺘﻘﻠﺔ ﺍﻟﻤﻭﺠﻭﺩﺓ ﻤﺴﺒﻘﹰﺎ ‪ ،‬ﻓﻌﻨﺩ ﺍﻟﺘﺨﻁﻴﻁ‬ ‫ﻟﺒﻨﺎﺀ ﻨﻤﻭﺫﺝ ﺍﻨﺤﺩﺍﺭ ﻤﺘﻌﺩﺩ ﻭﺍﺨﺘﻴﺎﺭ ﻤﺘﻐﻴﺭﺍﺕ ﻤﺴﺘﻘﻠﺔ ﻻﺒﺩ ﺃﻥ ﻴﺄﺨﺫ ﺍﻟﺒﺎﺤﺙ ﻓﻲ‬ ‫ﺍﻋﺘﺒﺎﺭﻩ ﺍﻷﺴﺱ ﺍﻟﻨﻅﺭﻴﺔ ﺍﻷﺴﺎﺴﻴﺔ ﻟﻤﻭﻀﻭﻉ ﺍﻟﺒﺤﺙ‪ ،‬ﺇﺫ ﻻ ﻴﻤﻜﻥ ﻟﻠﻨﻤﻭﺫﺝ ﺍﻹﺤﺼﺎﺌﻲ‬

‫ﺒﻤﻔﺭﺩﻩ ﺘﺭﺠﻤﺔ ﻨﺘﺎﺌﺞ ﻨﻤﻭﺫﺝ ﺍﻻﻨﺤﺩﺍﺭ ﺩﻭﻥ ﺍﻷﺨﺫ ﻓﻲ ﺍﻻﻋﺘﺒﺎﺭ ﺍﻟﻌﻼﻗﺎﺕ ﺍﻟﺴﺒﺒﻴﺔ‪.‬‬


‫)‪ (12‬ﺘﺤﻠﻴل ﻨﻤﺎﺫﺝ ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﺨﻁﻲ‬

‫‪435‬‬

‫ﺸﻜل ‪ : 27-12‬ﻤﻌﺎﻤﻼﺕ ﺍﻻﻨﺤﺩﺍﺭ ‪ Regression coefficients‬ﺒﺎﺴﺘﺨﺩﺍﻡ ﻁﺭﻴﻘﺔ‬ ‫ﺍﻻﺨﺘﻴﺎﺭ ﺍﻟﺘﺩﺭﻴﺠﻲ ‪ Stepwise Selection Procedure‬ﻟﺒﻴﺎﻨﺎﺕ ﺸﻜل ‪. 21-12‬‬ ‫‪Coefficientsa‬‬ ‫‪Standardized‬‬ ‫‪Coefficients‬‬ ‫‪Beta‬‬

‫‪Sig.‬‬

‫‪t‬‬

‫‪.079‬‬

‫‪-1.817‬‬

‫‪.000‬‬

‫‪5.925‬‬

‫‪.000‬‬

‫‪-5.188‬‬

‫‪.000‬‬

‫‪5.750‬‬

‫‪.579‬‬

‫‪.000‬‬

‫‪4.631‬‬

‫‪.467‬‬

‫‪.729‬‬

‫‪Unstandardized‬‬ ‫‪Coefficients‬‬ ‫‪Std. Error‬‬

‫‪B‬‬

‫‪25.477‬‬

‫‪-46.305‬‬

‫‪.532‬‬

‫‪3.155‬‬

‫‪42.225‬‬

‫‪-219.068‬‬

‫‪.436‬‬

‫‪2.508‬‬

‫‪Entrance Exam‬‬

‫‪.340‬‬

‫‪1.576‬‬

‫‪IQ‬‬

‫)‪(Constant‬‬

‫‪Model‬‬ ‫‪1‬‬

‫‪Entrance Exam‬‬ ‫‪IQ‬‬ ‫)‪(Constant‬‬

‫‪2‬‬

‫‪a. Dependent Variable: University Exam‬‬

‫‪ .4 .12‬ﺷﻜﻞ اﻻﻧﺘﺸﺎر وﺧﻂ اﻻﻧﺤﺪار ‪:‬‬ ‫‪Scatterplots and Regression Lines :‬‬ ‫ﻭﻴﻤﻜﻥ ﺭﺴﻡ ﺨﻁ ﺍﻻﻨﺤﺩﺍﺭ ﺒﺴﻬﻭﻟﺔ ﻓﻲ ﺸﻜل ﺍﻻﻨﺘﺸﺎﺭ ‪ Scatter plot‬ﺍﻟﺫﻱ ﺘﻡ‬

‫ﺍﻟﺘﻌﺭﻑ ﻋﻠﻰ ﺃﻫﻤﻴﺘﻪ ﻓﻲ ﺘﺤﻠﻴل ﺍﻻﺭﺘﺒﺎﻁ ﻭﺍﻻﻨﺤﺩﺍﺭ ﻭﻁﺭﻴﻘﺔ ﺭﺴﻤﻪ ﻓﻲ ﺍﻟﻔﺼل‬ ‫ﺍﻟﺴﺎﺒﻕ ﻭﺫﻟﻙ ﻜﻤﺎ ﻴﻠﻲ ‪:‬‬

‫• ﺒﻌﺩ ﺭﺴﻡ ﺸﻜل ﺍﻻﻨﺘﺸﺎﺭ ﺒﺎﻟﻁﺭﻴﻘﺔ ﺍﻟﻤﻌﺭﻭﻓﺔ ﺒﺈﺩﺨﺎل ﺍﻟﻤﻌﻠﻭﻤﺎﺕ ﺍﻟﻤﻁﻠﻭﺒﺔ‬ ‫ﻟﻨﺎﻓﺫﺓ ﺸﻜل ﺍﻻﻨﺘﺸﺎﺭ ﺍﻟﺒﺴﻴﻁ ‪ Simple Scatterplot‬ﻴﻤﻜﻥ ﻓﻲ ﺸﺎﺸﺔ ﺍﻟﻨﺘﺎﺌﺞ‬

‫‪ Output Viewer‬ﺍﻟﻨﻘﺭ ﺍﻟﻤﺯﺩﻭﺝ ﻭﺍﻟﻤﺘﺘﺎﻟﻲ ﺒﺎﻟﻔﺄﺭﺓ ﻓﻲ ﺃﻱ ﻤﻜﺎﻥ ﻋﻠﻰ ﺍﻟﺭﺴﻡ‬ ‫ﺍﻟﻨﺎﺘﺞ ﻟﺘﻔﻌﻴل ﻤﺤﺭﺭ ﺍﻟﺭﺴﻭﻤﺎﺕ ‪.Chart Editor‬‬

‫• ﻴﻤﻜﻥ ﺘﻌﺩﻴل ﺍﻟﺸﻜل ﺒﺎﻟﻁﺭﻴﻘﺔ ﺍﻟﻤﺭﻏﻭﺒﺔ )ﻤﺜل ﺘﻐﻴﻴﺭ ﺍﻷﻟﻭﺍﻥ ﺃﻭ ﺍﻟﻌﻨﻭﺍﻥ ﺃﻭ‬ ‫ﺤﺠﻡ ﺍﻟﺨﻁ(‪.‬‬


‫)‪ (12‬ﺘﺤﻠﻴل ﻨﻤﺎﺫﺝ ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﺨﻁﻲ‬

‫‪436‬‬

‫• ﻹﻀﺎﻓﺔ ﺨﻁ ﺍﻻﻨﺤﺩﺍﺭ ﺇﻟﻰ ﺍﻟﺸﻜل ﺍﻟﻨﺎﺘﺞ ﺍﺫﻫﺏ ﺇﻟﻰ ﻗﺎﺌﻤﺔ ﺍﻟﺭﺴﻭﻤﺎﺕ‬ ‫‪ Chart‬ﻭﻤﻨﻬﺎ ﺃﻤﺭ ﺍﻟﺨﻴﺎﺭﺍﺕ ‪ Options‬ﻟﻔﺘﺢ ﻨﺎﻓﺫﺓ ﺨﻴﺎﺭﺍﺕ ﺸﻜل ﺍﻻﻨﺘﺸﺎﺭ‬

‫‪) Scatterplot Options‬ﺸﻜل ‪ (28-12‬ﻭﺤﺩﺩ ﺨﻴﺎﺭ ﺍﻟﻤﺠﻤﻭﻉ ‪ Total‬ﻓﻲ‬ ‫ﻫﺫﻩ ﺍﻟﻨﺎﻓﺫﺓ ﻓﻲ ﻗﺴﻡ ﺘﻭﻓﻴﻕ ﺍﻟﺨﻁ ﺍﻟﻤﺴﺘﻘﻴﻡ ‪ Fit Line‬ﻭﺒﺎﻟﻨﻘﺭ ﻋﻠﻰ ﻤﺭﺒﻊ‬

‫ﺨﻴﺎﺭﺍﺕ ﺍﻟﺘﻭﻓﻴﻕ ‪ Fit Options‬ﺴﻭﻑ ﻴﺘﻡ ﺘﻔﻌﻴل ﻨﺎﻓﺫﺓ ﺨﻴﺎﺭﺍﺕ ﺍﻟﺘﻭﻓﻴﻕ ‪Fit‬‬

‫‪. Options‬‬

‫ﺸﻜل ‪ : 28-12‬ﻨﺎﻓﺫﺓ ﺍﻟﺨﻴﺎﺭﺍﺕ ‪ Options‬ﻓﻲ ﺃﻤﺭ ﺭﺴﻡ ﺸﻜل ﺍﻻﻨﺘﺸﺎﺭ ‪Scatterplot‬‬ ‫ﻭﺒﺎﺨﺘﻴﺎﺭ ﺍﻟﻤﺠﻤﻭﻉ ‪ Total‬ﻓﻲ ﺨﻴﺎﺭﺍﺕ ﺭﺴﻡ ﺍﻟﺨﻁ ﺍﻟﻤﺴﺘﻘﻴﻡ ﺃﻭ ﺍﻟﻤﻨﺤﻨﻰ ‪.Fit Options‬‬

‫• ﺍﻟﻀﻐﻁ ﻋﻠﻰ ﻤﺭﺒﻊ ﺨﻴﺎﺭﺍﺕ ﺍﻟﺘﻭﻓﻴﻕ ‪ Fit Options‬ﺴﻴﻔﺘﺢ ﻨﺎﻓﺫﺓ‬ ‫ﺨﻴﺎﺭﺍﺕ ﺍﻟﺨﻁ ﺍﻟﻤﺴﺘﻘﻴﻡ ‪) Fit Line‬ﺸﻜل ‪. (29-12‬‬

‫• ﻫﻨﺎ ﻴﻤﻜﻥ ﺍﺨﺘﻴﺎﺭ ﺸﻜل ﺍﻟﺨﻁ ﺍﻟﻤﺴﺘﻘﻴﻡ ﺃﻭ ﺸﻜل ﻤﻨﺤﻨﻰ ﻤﻥ ﺩﺭﺠﺔ ﺃﻋﻠﻰ‬ ‫ﻤﻥ ﺨﻼل ﻤﺭﺒﻊ ﻁﺭﻴﻘﺔ ﺍﻟﺘﻭﻓﻴﻕ ‪ Fit Method‬ﻓﻲ ﻫﺫﻩ ﺍﻟﻨﺎﻓﺫﺓ ‪ ،‬ﻜﺫﻟﻙ ﻴﻤﻜﻥ‬

‫ﺍﺨﺘﻴﺎﺭ ﺭﺴﻡ ﺤﺩﻭﺩ ﺍﻟﺜﻘﺔ ‪ Confidence Limits‬ﻟﻤﺘﻭﺴﻁﺎﺕ ﺍﻟﻘﻴﻡ ﺃﻭ ﺍﻟﻘﻴﻡ‬

‫ﺍﻟﻤﺘﻭﻗﻌﺔ ﻤﻥ ﺨﻼل ﻤﺭﺒﻊ ﺨﻁﻭﻁ ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﻤﺘﻭﻗﻌﺔ‬

‫‪Regression‬‬


‫)‪ (12‬ﺘﺤﻠﻴل ﻨﻤﺎﺫﺝ ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﺨﻁﻲ‬

‫‪437‬‬

‫‪ ، Prediction Lines‬ﻭﻴﻤﻜﻥ ﺃﻴﻀﹰﺎ ﻜﺘﺎﺒﺔ ﻗﻴﻤﺔ ﻤﻌﺎﻤل ﺍﻟﺘﺤﺩﻴﺩ‬ ‫)‪ Coefficient of determination (R2‬ﺒﺠﺎﻨﺏ ﺸﻜل ﺍﻻﻨﺘﺸﺎﺭ ﻋﻥ ﻁﺭﻴﻕ‬

‫ﺍﻟﻀﻐﻁ ﻋﻠﻰ ﻤﺭﺒﻊ ﺇﻅﻬﺎﺭ ﻗﻴﻤﺔ ﻤﻌﺎﻤل ﺍﻟﺘﺤﺩﻴﺩ ﻓﻲ ﺨﺭﻴﻁﺔ ﺍﻟﺸﻜل ‪Display‬‬

‫‪. R-squared in legend‬‬

‫ﺸﻜل ‪ : 29-12‬ﻨﺎﻓﺫﺓ ﺨﻴﺎﺭﺍﺕ ﺭﺴﻡ ﺍﻟﻤﻨﺤﻨﻰ)ﺃﻭ ﺍﻟﺨﻁ ﺍﻟﻤﺴﺘﻘﻴﻡ( ‪ Fit Line‬ﻓﻲ ﺃﻤﺭ ﺭﺴﻡ‬ ‫ﺸﻜل ﺍﻻﻨﺘﺸﺎﺭ ‪ Scatterplot‬ﻭﺒﺎﺨﺘﻴﺎﺭ ﺍﻟﺨﻁ ﺍﻟﻤﺴﺘﻘﻴﻡ ‪. Linear Regression‬‬

‫• ﻭﺃﺨﻴﺭﹰﺍ ﺍﻀﻐﻁ ﻋﻠﻰ ﺃﻤﺭ ﺍﻻﺴﺘﻤﺭﺍﺭ ‪ Continue‬ﻓﻲ ﻫﺫﻩ ﺍﻟﻨﺎﻓﺫﺓ‬ ‫ﻹﻏﻼﻗﻬﺎ ﻭﻤﻥ ﺜﻡ ﻋﻠﻰ ﺃﻤﺭ ﺍﻟﺘﻨﻔﻴﺫ ‪ OK‬ﻓﻲ ﻨﺎﻓﺫﺓ ﺨﻴﺎﺭﺍﺕ ﺸﻜل ﺍﻻﻨﺘﺸﺎﺭ‬

‫‪ Scatterplot Options‬ﻟﺘﻨﻔﻴﺫ ﺍﻷﻤﺭ ﻭﻅﻬﻭﺭ ﺍﻟﺨﻁ ﺍﻟﻤﺴﺘﻘﻴﻡ ﻓﻲ ﺸﻜل‬ ‫ﺍﻻﻨﺘﺸﺎﺭ ﻜﻤﺎ ﻓﻲ ﺍﻟﺸﻜل ‪ 30-12‬ﺃﺩﻨﺎﻩ‪.‬‬


‫)‪ (12‬ﺘﺤﻠﻴل ﻨﻤﺎﺫﺝ ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﺨﻁﻲ‬

‫‪438‬‬

‫ﺸﻜل ‪ : 30-12‬ﺸﻜل ﺍﻻﻨﺘﺸﺎﺭ ‪ Scatter Plot‬ﻭﺒﺈﻀﺎﻓﺔ ﺍﻟﺨﻁ ﺍﻟﻤﺴﺘﻘﻴﻡ ﻟﻠﺒﻴﺎﻨﺎﺕ ‪.‬‬

‫‪160‬‬ ‫‪140‬‬ ‫‪120‬‬ ‫‪100‬‬ ‫‪80‬‬ ‫‪60‬‬ ‫‪40‬‬ ‫‪20‬‬ ‫‪70‬‬

‫‪60‬‬

‫‪Entrance Exam‬‬

‫‪50‬‬

‫‪40‬‬

‫‪30‬‬

‫‪University Exam‬‬

‫‪180‬‬


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.