Spsschap15

Page 1

‫<<<<]‪Ù]<Ø’ËÖ‬خ]‪†Â<‹Ú‬‬ ‫‪êñ^’uý]<öfßjÖ]æ<íéßÚˆÖ]<؉øŠÖ]<Øé× ‬‬ ‫‪Time Series Analysis‬‬ ‫‪and Forecasting‬‬

‫‪ .1 .15‬ﻣﻘﺪﻣﺔ‬ ‫‪ .2 .15‬ﻧﻤﺎذج ﺑﻮآﺲ‪-‬ﺟﻴﻨﻜﻨﺰ ﻟﺘﺤﻠﻴﻞ اﻟﺴﻼﺳﻞ اﻟﺰﻣﻨﻴﺔ‬ ‫‪ .3 .15‬اﻟﻄﺮق اﻟﺘﻤﻬﻴﺪﻳﺔ ﻟﻠﺘﻌﺮف ﻋﻠﻰ ﻧﻤﻮذج اﻟﺴﻼﺳﻞ اﻟﺰﻣﻨﻴﺔ‬ ‫‪ .4 .15‬ﻃﺮق آﻤﻴﺔ ﻟﺘﺤﺴﻴﻦ ﻧﻤﻮذج اﻟﺴﻼﺳﻞ اﻟﺰﻣﻨﻴﺔ اﻟﻤﻘﺘﺮح‬ ‫‪ .5 .15‬اﺧﺘﻴﺎر ﻧﻤﻮذج اﻟﺴﻼﺳﻞ اﻟﺰﻣﻨﻴﺔ ﺑﺎﺳﺘﺨﺪام ﻧﻈﺎم ‪SPSS‬‬ ‫‪ .6 .15‬ﺗﺤﻠﻴﻞ ﻧﻤﺎذج اﻟﺴﻼﺳﻞ اﻟﺰﻣﻨﻴﺔ ﻏﻴﺮ اﻟﺴﺎآﻨﺔ‬ ‫‪ .7 .15‬ﺗﺤﻠﻴﻞ اﻟﺴﻼﺳﻞ اﻟﺰﻣﻨﻴﺔ اﻟﻤﻮﺳﻤﻴﺔ‬


‫)‪ (15‬ﺘﺤﻠﻴل ﺍﻟﺴﻼﺴل ﺍﻟﺯﻤﻨﻴﺔ ﻭﺍﻟﺘﻨﺒﺅ ﺍﻹﺤﺼﺎﺌﻲ‬

‫‪516‬‬


‫)‪ (15‬ﺘﺤﻠﻴل ﺍﻟﺴﻼﺴل ﺍﻟﺯﻤﻨﻴﺔ ﻭﺍﻟﺘﻨﺒﺅ ﺍﻹﺤﺼﺎﺌﻲ‬

‫‪517‬‬

‫]‪Ù]<Ø’ËÖ‬خ]‪†Â<‹Ú‬‬ ‫‪êñ^’uý]<öfßjÖ]æ<íéßÚˆÖ]<؉øŠÖ]<Øé× ‬‬ ‫‪Time Series Analysis and Forecasting‬‬ ‫‪ .1 .15‬ﻣﻘﺪﻣﺔ ‪:‬‬ ‫ﻴﻁﻠﻕ ﻋﻠﻰ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻤﺸﺎﻫﺩﺍﺕ ﺍﻟﺘﻲ ﺘﻤﺜل ﻗﻴﺎﺴﺎﺕ ﻟﻅﺎﻫﺭﺓ ﻤﻌﻴﻨﺔ ﺨﻼل‬

‫ﻓﺘﺭﺍﺕ ﺯﻤﻨﻴﺔ ﻤﺤﺩﺩﺓ ﺘﻌﺒﻴﺭ ﺍﻟﺴﻠﺴﻠﺔ ﺍﻟﺯﻤﻨﻴﺔ ‪ ، Time Series‬ﻓﺎﻟﺴﻠﺴﻠﺔ ﺍﻟﺯﻤﻨﻴﺔ ﻫﻲ‬ ‫ﻋﺒﺎﺭﺓ ﻋﻥ ﺴﺠل ﺘﺎﺭﻴﺨﻲ ﻟﻨﺸﺎﻁ ﻤﻌﻴﻥ ﺒﻘﻴﺎﺴﺎﺕ ﻤﺄﺨﻭﺫﺓ ﻋﻠﻰ ﻓﺘﺭﺍﺕ ﺯﻤﻨﻴﺔ ﻤﺘﺴﺎﻭﻴﺔ‬

‫ﺃﻭ ﺒﺘﻌﺒﻴﺭ ﺁﺨﺭ ﻫﻲ ﻗﻴﻡ ﻟﻤﺘﻐﻴﺭ ﻤﻌﻴﻥ ﻤﺭﺘﺒﻁ ﺒﺎﻟﺯﻤﻥ‪ ،‬ﻭﻴﺠﺏ ﻓﻲ ﺠﻤﻴﻊ ﺍﻷﺤﻭﺍل ﺃﻥ‬

‫ﺘﻜﻭﻥ ﻫﺫﻩ ﺍﻟﻘﻴﺎﺴﺎﺕ ﻤﺘﻨﺎﺴﻘﺔ ﻓﻲ ﻁﺭﻴﻘﺔ ﺍﻟﻘﻴﺎﺱ ﻭﻓﻲ ﻁﺒﻴﻌﺔ ﺍﻟﻅﺎﻫﺭﺓ ﺃﻭ ﺍﻟﻨﺸﺎﻁ‪.‬‬

‫ﻭﻓﻜﺭﺓ ﺘﺤﻠﻴل ﺍﻟﺴﻼﺴل ﺍﻟﺯﻤﻨﻴﺔ ﺒﺒﺴﺎﻁﺔ ﻫﻲ ﺘﻘﺩﻴﺭ ﻨﻤﻭﺫﺝ ﺭﻴﺎﻀﻲ ﻴﻤﻜﻨﻪ ﺃﻥ‬

‫ﻴﺤﺎﻜﻲ ﺘﻘﺭﻴﺒﹰﺎ ﺍﻟﺘﺩﺭﺝ ﺍﻟﺘﺎﺭﻴﺨﻲ ﻟﺘﻠﻙ ﺍﻟﻅﺎﻫﺭﺓ ﺒﺤﻴﺙ ﻴﻤﻜﻨﻪ ﺃﻥ ﻴﻘﺩﺭ ﺒﺩﻗﺔ ﻗﻴﻡ ﺍﻟﺴﻠﺴﻠﺔ‬

‫ﺍﻟﺯﻤﻨﻴﺔ ﻭﻴﻤﻜﻥ ﺍﺴﺘﺨﺩﺍﻤﻪ ﺒﺎﻟﺘﻨﺒﺅ ﺒﻘﻴﻡ ﻤﺴﺘﻘﺒﻠﻴﺔ ﻟﻬﺫﻩ ﺍﻟﻅﺎﻫﺭﺓ‪ ،‬ﻭﻴﻌﺘﺒﺭ ﺃﺴﻠﻭﺏ ﺘﺤﻠﻴل‬ ‫ﺍﻟﺴﻠﺴﻠﺔ ﺍﻟﺯﻤﻨﻴﺔ ﻓﻘﻁ ﺃﺤﺩ ﺍﻷﺴﺎﻟﻴﺏ ﺍﻟﻤﺴﺘﺨﺩﻤﺔ ﻓﻲ ﻋﻤﻠﻴﺎﺕ ﺍﻟﺘﻨﺒﺅ ﺍﻹﺤﺼﺎﺌﻲ‪ ،‬ﻓﻬﻨﺎﻙ‬

‫ﺃﺴﺎﻟﻴﺏ ﺃﺨﺭﻯ ﻗﺩ ﻴﻜﻭﻥ ﺃﺴﺎﺴﻬﺎ ﺃﻴﻀﹰﺎ ﺃﺴﻠﻭﺏ ﺘﺤﻠﻴل ﺍﻟﺴﻼﺴل ﺍﻟﺯﻤﻨﻴﺔ ﺃﻭ ﺃﺴﻠﻭﺏ‬ ‫ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﻤﺘﻌﺩﺩ ﺃﻭ ﺃﻱ ﺃﺴﻠﻭﺏ ﺁﺨﺭ‪ ،‬ﻭﺤﻴﺙ ﺃﻨﻨﺎ ﺘﻁﺭﻗﻨﺎ ﺇﻟﻰ ﺃﺴﻠﻭﺏ ﺍﻻﻨﺤﺩﺍﺭ ﻓﻲ‬

‫ﺍﻟﻔﺼل ﺍﻟﺜﺎﻨﻲ ﻋﺸﺭ ﻤﻥ ﻫﺫﺍ ﺍﻟﻜﺘﺎﺏ ﻓﺈﻨﻨﺎ ﺍﻵﻥ ﺴﻨﻭﻀﺢ ﻁﺭﻴﻘﺔ ﺍﺴﺘﺨﺩﺍﻡ ﺃﺴﻠﻭﺏ‬ ‫ﺍﻟﺴﻼﺴل ﺍﻟﺯﻤﻨﻴﺔ ﻓﻲ ﻫﺫﺍ ﺍﻟﻔﺼل‪.‬‬

‫ﻭﺘﻘﻭﻡ ﻁﺭﻴﻘﺔ ﺘﺤﻠﻴل ﺍﻟﺴﻼﺴل ﺍﻟﺯﻤﻨﻴﺔ ﻋﻠﻰ ﻓﻜﺭﺓ ﺇﻴﺠﺎﺩ ﻨﻤﻭﺫﺝ ﺭﻴﺎﻀﻲ‬

‫ﻤﻨﺎﺴﺏ ﻟﻁﺒﻴﻌﺔ ﺍﻟﺒﻴﺎﻨﺎﺕ ﺒﺤﻴﺙ ﻴﺠﻌل ﺍﻟﺒﻭﺍﻗﻲ )ﺍﻷﺨﻁﺎﺀ( ‪) Residuals‬ﻭﻫﻲ ﺍﻟﻔﺭﻕ‬

‫ﺒﻴﻥ ﺍﻟﻘﻴﻡ ﺍﻟﺤﻘﻴﻘﻴﺔ ﻟﻠﺴﻠﺴﻠﺔ ﻭﺍﻟﻘﻴﻡ ﺍﻟﻤﻘﺩﺭﺓ ﺒﺎﺴﺘﺨﺩﺍﻡ ﺫﻟﻙ ﺍﻟﻨﻤﻭﺫﺝ ﺍﻟﺭﻴﺎﻀﻲ( ﺃﻗل ﻤﺎ‬

‫ﻴﻤﻜﻥ ﻭﻟﻴﺱ ﺒﻬﺎ ﺃﻱ ﻨﻭﻉ ﻤﻥ ﺍﻟﺘﺭﺍﺒﻁ ﺍﻟﺩﺍﺨﻠﻲ ﻓﻴﻤﺎ ﺒﻴﻨﻬﺎ‪.‬‬


‫)‪ (15‬ﺘﺤﻠﻴل ﺍﻟﺴﻼﺴل ﺍﻟﺯﻤﻨﻴﺔ ﻭﺍﻟﺘﻨﺒﺅ ﺍﻹﺤﺼﺎﺌﻲ‬

‫‪518‬‬

‫ﻭﻫﻨﺎﻙ ﺨﻁﻭﺍﺕ ﻤﺤﺩﺩﺓ ﻟﺒﻨﺎﺀ ﻨﻤﻭﺫﺝ ﺍﻟﺴﻼﺴل ﺍﻟﺯﻤﻨﻴﺔ ﻴﻤﻜﻥ ﺘﻜﺭﺍﺭﻫﺎ ﻜﻤﺎ‬ ‫ﻨﺸﺎﺀ ﻟﺤﻴﻥ ﺇﻴﺠﺎﺩ ﺍﻟﻨﻤﻭﺫﺝ ﺍﻷﻜﺜﺭ ﻤﻼﺌﻤﺔ ﻟﻁﺒﻴﻌﺔ ﺍﻟﺒﻴﺎﻨﺎﺕ ﻭﻴﺼﻑ ﺍﻟﺘﻐﻴﺭﺍﺕ ﻓﻲ‬

‫ﺍﻟﻅﺎﻫﺭﺓ ﻤﻭﻀﻭﻉ ﺍﻟﺩﺭﺍﺴﺔ ﺒﺄﻋﻠﻰ ﺩﻗﺔ ﻤﻤﻜﻨﺔ‪ ،‬ﻭﻴﻌﺘﺒﺭ ﺍﻷﺴﻠﻭﺏ ﺍﻟﺫﻱ ﺍﻜﺘﺸﻔﻪ ﺍﻟﻌﺎﻟﻤﺎﻥ‬ ‫ﺒﻭﻜﺱ ﻭﺠﻴﻨﻜﻨﺯ ‪ Box and Jenkins‬ﺃﻫﻡ ﺍﻷﺴﺎﻟﻴﺏ ﺍﻟﻤﺴﺘﺨﺩﻤﺔ ﻟﺒﻨﺎﺀ ﺍﻟﻨﻤﺎﺫﺝ ﺍﻟﻤﺨﺘﻠﻔﺔ‬

‫ﻓﻲ ﺘﺤﻠﻴل ﺍﻟﺴﻼﺴل ﺍﻟﺯﻤﻨﻴﺔ ‪ ،‬ﻭﻴﻌﺘﻤﺩ ﺃﺴﻠﻭﺏ ﺒﻭﻜﺱ‪-‬ﺠﻴﻨﻜﻨﺯ‬

‫‪Box-Jenkins‬‬

‫‪ Approach‬ﻋﻠﻰ ﻤﺠﻤﻭﻋﺔ ﻤﻥ ﺍﻷﺴﺱ ﺍﻹﺤﺼﺎﺌﻴﺔ ﺍﻟﻬﺎﻤﺔ ﻭﻴﻤﻜﻥ ﺍﺴﺘﺨﺩﺍﻤﻪ ﻓﻲ‬ ‫ﺘﺤﻠﻴل ﻋﺩﺩ ﻜﺒﻴﺭ ﺠﺩﹰﺍ ﻤﻥ ﺍﻟﺴﻼﺴل ﺍﻟﺯﻤﻨﻴﺔ ﻟﻅﻭﺍﻫﺭ ﻓﻲ ﻤﺨﺘﻠﻑ ﺍﻟﻤﻴﺎﺩﻴﻥ‪ ،‬ﻓﻬﺫﺍ‬

‫ﺍﻷﺴﻠﻭﺏ ﻴﺘﻀﻤﻥ ﻋﺩﺩ ﻜﺒﻴﺭ ﺠﺩﹰﺍ ﻤﻥ ﺍﻟﻨﻤﺎﺫﺝ ﺍﻟﺭﻴﺎﻀﻴﺔ ﺍﻟﻤﻨﺎﺴﺒﺔ ﻟﺘﻤﺜﻴل ﻅﻭﺍﻫﺭ ﻜﺜﻴﺭﺓ‬

‫ﺠﺩﹰﺍ ﻭﺍﻟﺘﻲ ﻴﻤﻜﻥ ﺍﻻﺨﺘﻴﺎﺭ ﻤﻥ ﺒﻴﻨﻬﺎ‪ ،‬ﺒﺎﻹﻀﺎﻓﺔ ﺇﻟﻰ ﺫﻟﻙ ﻓﻬﻨﺎﻙ ﻁﺭﻴﻘﺔ ﻤﻭﺤﺩﺓ ﻟﻠﺘﺤﻘﻕ‬

‫ﻤﻥ ﺩﻗﺔ ﻫﺫﺍ ﺍﻟﻨﻤﻭﺫﺝ ﻓﻲ ﺘﻤﺜﻴل ﺍﻟﺒﻴﺎﻨﺎﺕ‪ ،‬ﻓﻴﺼﺎﺤﺏ ﻫﺫﺍ ﺍﻷﺴﻠﻭﺏ ﻋﺩﺩ ﻤﻥ‬ ‫ﺍﻻﺨﺘﺒﺎﺭﺍﺕ ﺍﻹﺤﺼﺎﺌﻴﺔ ﺍﻟﺘﻲ ﻴﻤﻜﻨﻬﺎ ﺃﻥ ﺘﻤﻜﻨﻨﺎ ﻤﻥ ﺍﻟﺘﻌﺭﻑ ﻋﻠﻰ ﺍﻟﻨﻤﻭﺫﺝ ﺍﻟﻤﻨﺎﺴﺏ‬

‫ﻟﻠﺒﻴﺎﻨﺎﺕ‪ ،‬ﻋﻠﻰ ﺍﻟﻌﻜﺱ ﻤﻥ ﺍﻟﻁﺭﻕ ﺍﻟﺘﻘﻠﻴﺩﻴﺔ ﺍﻟﻤﺘﻌﺎﺭﻑ ﻋﻠﻴﻬﺎ ﺍﻟﺘﻲ ﺘﺸﻤل ﻋﺩﺩ ﻤﺤﺩﻭﺩ‬

‫ﺠﺩﹰﺍ ﻤﻥ ﺍﻟﻨﻤﺎﺫﺝ ﻭﺍﻟﺘﻲ ﻗﺩ ﻻ ﻴﻤﻜﻨﻬﺎ ﻭﺼﻑ ﺍﻟﺘﻐﻴﺭﺍﺕ ﺍﻟﻤﻌﻘﺩﺓ ﻓﻲ ﺍﻟﺴﻠﺴﻠﺔ ﺍﻟﺯﻤﻨﻴﺔ‬

‫ﻨﺎﻫﻴﻙ ﻋﻥ ﻋﺩﻡ ﻗﺩﺭﺘﻬﺎ ﻋﻠﻰ ﺍﺴﺘﺨﺩﺍﻡ ﺍﻻﺨﺘﺒﺎﺭﺍﺕ ﺍﻹﺤﺼﺎﺌﻴﺔ ﺍﻟﻤﻼﺌﻤﺔ ﻟﻠﺘﺤﻘﻕ ﻤﻥ‬ ‫ﺼﺤﺔ ﺍﻟﻨﻤﻭﺫﺝ ﺍﻟﺫﻱ ﻴﺘﻡ ﺘﻭﻓﻴﻘﻪ‪.‬‬

‫ﻭﺘﻅل ﺩﻗﺔ ﺍﻟﺒﻴﺎﻨﺎﺕ ﺍﻟﻌﺎﻤل ﺍﻷﺴﺎﺴﻲ ﻓﻲ ﻋﺩﻡ ﻓﻬﻡ ﺃﻭ ﺘﺭﺠﻤﺔ ﺃﻭ ﺩﻗﺔ ﺍﻟﻨﺘﺎﺌﺞ ﻓﻲ‬

‫ﺘﺤﻠﻴل ﺍﻟﺴﻼﺴل ﺍﻟﺯﻤﻨﻴﺔ‪ ،‬ﻓﻼ ﺒﺩ ﻤﻥ ﺍﻟﺘﺄﻜﻴﺩ ﻫﻨﺎ ﻋﻠﻰ ﻭﺠﻭﺏ ﺘﻨﺎﺴﻕ ﺍﻟﺒﻴﺎﻨﺎﺕ‬ ‫ﻭﻭﻀﻭﺤﻬﺎ ﻭﻭﻀﻭﺡ ﻜﻴﻔﻴﺔ ﺠﻤﻌﻬﺎ ﺃﻭ ﻗﻴﺎﺴﻬﺎ‪ ،‬ﻜﻤﺎ ﺃﻨﻪ ﻟﻜﻲ ﻴﻜﻭﻥ ﺍﻟﺘﺤﻠﻴل ﻭﺍﻟﺘﻨﺒﺅ‬

‫ﻑ ﻤﻥ ﺍﻟﺒﻴﺎﻨﺎﺕ‪ ،‬ﻭﺘﻌﺘﺒﺭ ﺍﻟﺴﻠﺴﻠﺔ ﺒﻘﻴﻡ‬ ‫ﺍﻹﺤﺼﺎﺌﻲ ﺩﻗﻴﻘﹰﺎ ﻻﺒﺩ ﻤﻥ ﺃﻥ ﻴﻜﻭﻥ ﻫﻨﺎﻙ ﻋﺩﺩ ﻜﺎ ٍ‬ ‫ﻋﺩﺩﻫﺎ ﻴﺘﺭﺍﻭﺡ ﻤﻥ ‪ 40‬ﺇﻟﻰ ‪ 50‬ﻗﻴﻤﺔ ﺘﻡ ﻗﻴﺎﺴﻬﺎ ﻋﻠﻰ ﻓﺘﺭﺍﺕ ﺯﻤﻨﻴﺔ ﻤﺘﺴﺎﻭﻴﺔ ﻋﺩﺩ‬

‫ﻤﻨﺎﺴﺏ ﻷﻏﺭﺍﺽ ﺍﻟﺘﻨﺒﺅ ﺍﻹﺤﺼﺎﺌﻲ ﺒﺩﻗﺔ ﻜﺎﻓﻴﺔ‪ ،‬ﻭﻓﻲ ﺒﻌﺽ ﺍﻟﺤﺎﻻﺕ ﻗﺩ ﻨﺤﺘﺎﺝ ﺇﻟﻰ‬

‫ﺇﺠﺭﺍﺀ ﺒﻌﺽ ﺍﻟﺘﻌﺩﻴﻼﺕ ﻋﻠﻰ ﺍﻟﺒﻴﺎﻨﺎﺕ ﻗﺒل ﺘﺤﻠﻴﻠﻬﺎ ﻤﺜل ﺘﻌﺩﻴل ﺍﻟﻘﻴﻡ ﺍﻟﻤﺘﻁﺭﻓﺔ ﺃﻭ‬

‫ﺍﻟﻤﻔﻘﻭﺩﺓ ﺃﻭ ﺍﺴﺘﺨﺩﺍﻡ ﺘﺤﻭﻴﻼﺕ ﻟﻭﻏﺎﺭﻴﺘﻤﻴﺔ ﺃﻭ ﻏﻴﺭﻫﺎ ﺒﺎﺴﺘﺨﺩﺍﻡ ﺍﻟﺩﻭﺍل ﺍﻟﻤﺘﺎﺤﺔ‪.‬‬


‫)‪ (15‬ﺘﺤﻠﻴل ﺍﻟﺴﻼﺴل ﺍﻟﺯﻤﻨﻴﺔ ﻭﺍﻟﺘﻨﺒﺅ ﺍﻹﺤﺼﺎﺌﻲ‬

‫‪519‬‬

‫‪ .2 .15‬ﻧﻤﺎذج ﺑﻮآﺲ‪-‬ﺟﻴﻨﻜﻨﺰ ﻟﺘﺤﻠﻴﻞ اﻟﺴﻼﺳﻞ اﻟﺰﻣﻨﻴﺔ‪:‬‬ ‫‪Box-Jenkins Approach in Time Series Analysis:‬‬ ‫ﺘﻌﺘﺒﺭ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻤﺎﺫﺝ ﺍﻟﻌﺎﻤﺔ ﻟﻠﺘﻨﺒﺅ ﺍﻟﺘﻲ ﺍﻜﺘﺸﻔﻬﺎ ﺍﻟﻌﺎﻟﻤﺎﻥ ﺒﻭﻜﺱ ﻭﺠﻴﻨﻜﻨﺯ‬

‫‪ Box and Jenkins‬ﻓﻲ ﺍﻟﻌﺎﻡ ‪ 1970‬ﻭﺍﻟﺘﻲ ﻴﻁﻠﻕ ﻋﻠﻴﻬﺎ ﺍﺴﻡ "ﻨﻤﺎﺫﺝ ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﺫﺍﺘﻲ‬ ‫ﻭﺍﻟﻤﺘﻭﺴﻁﺎﺕ ﺍﻟﻤﺘﺤﺭﻜﺔ ﺍﻟﻤﺘﻜﺎﻤﻠﺔ"‬

‫‪Auto-Regressive Integrated Moving‬‬

‫)‪ Average Models (ARIMA‬ﺃﻫﻡ ﺍﻷﺴﺎﻟﻴﺏ ﺍﻟﻤﺴﺘﺨﺩﻤﺔ ﻟﺒﻨﺎﺀ ﺍﻟﻨﻤﺎﺫﺝ ﺍﻟﻤﺨﺘﻠﻔﺔ ﻓﻲ‬ ‫ﺘﺤﻠﻴل ﺍﻟﺴﻼﺴل ﺍﻟﺯﻤﻨﻴﺔ‪ ،‬ﻫﺫﻩ ﺍﻷﺴﺎﻟﻴﺏ ﺘﻌﺩ ﺍﻤﺘﺩﺍﺩﹰﺍ ﻷﺴﻠﻭﺏ ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﺫﻱ ﺘﻡ ﺘﻨﺎﻭﻟﻪ‬

‫ﻓﻲ ﺍﻟﻔﺼل ﺍﻟﺜﺎﻨﻲ ﻋﺸﺭ ﻤﻥ ﻫﺫﺍ ﺍﻟﻜﺘﺎﺏ‪ ،‬ﻭﺠﻤﻴﻊ ﻫﺫﻩ ﺍﻟﻨﻤﺎﺫﺝ ﺘﻌﺘﺒﺭ ﻨﻤﺎﺫﺝ ﺨﻁﻴﺔ‪،‬‬ ‫ﻭﻫﻲ ﻤﺘﻌﺩﺩﺓ ﺍﻟﺠﻭﺍﻨﺏ ﻭﺴﻴﺘﻡ ﺘﻭﻀﻴﺢ ﻁﺭﻴﻘﺔ ﺍﺨﺘﻴﺎﺭ ﺍﻟﻨﻤﻭﺫﺝ ﺍﻟﻤﻼﺌﻡ ﻟﻠﺒﻴﺎﻨﺎﺕ ﻓﻴﻤﺎ‬

‫ﻴﻠﻲ‪ ،‬ﻭﻫﻨﺎﻙ ﺜﻼﺙ ﻓﺌﺎﺕ ﻋﺎﻤﺔ ﻤﻥ ﻫﺫﻩ ﺍﻟﻨﻤﺎﺫﺝ‪ ،‬ﻭﻟﺘﻭﻀﻴﺤﻬﺎ ﺴﻭﻑ ﻨﺴﺘﺨﺩﻡ ﺍﻟﺭﻤﻭﺯ‬ ‫ﺍﻟﺘﺎﻟﻴﺔ‪:‬‬

‫‪ : Xt‬ﺘﺸﻴﺭ ﺇﻟﻰ ﺍﻟﺴﻠﺴﻠﺔ ﺍﻟﺯﻤﻨﻴﺔ ﺒﻭﺠﻪ ﻋﺎﻡ ﻭﺇﻟﻰ ﻗﻴﻤﺔ ﺍﻟﻅﺎﻫﺭﺓ ﻓﻲ ﺍﻟﻔﺘﺭﺍﺕ ﺍﻟﺯﻤﻨﻴﺔ‬ ‫‪، t=1,2,.....,m‬‬

‫‪ : φ i‬ﺘﺸﻴﺭ ﺇﻟﻰ ﻤﻌﺎﻟﻡ ﻋﻭﺍﻤل ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﺫﺍﺘﻲ ‪، AR‬‬

‫‪ : θ j‬ﺘﺸﻴﺭ ﺇﻟﻰ ﻤﻌﺎﻟﻡ ﻋﻭﺍﻤل ﺍﻟﻤﺘﻭﺴﻁﺎﺕ ﺍﻟﻤﺘﺤﺭﻜﺔ ‪، MA‬‬ ‫‪ : et‬ﺘﺸﻴﺭ ﺇﻟﻰ ﺍﻷﺨﻁﺎﺀ ﻓﻲ ﺍﻟﻔﺘﺭﺍﺕ ﺍﻟﺯﻤﻨﻴﺔ ‪، t=1,2,.....,m‬‬

‫‪ : C‬ﺘﺸﻴﺭ ﺇﻟﻰ ﺜﺎﺒﺕ ﺍﻟﻨﻤﻭﺫﺝ‪.‬‬

‫ﻭﺒﺎﻟﺘﺎﻟﻲ ﻴﻤﻜﻥ ﺘﻭﻀﻴﺢ ﻓﺌﺎﺕ ﻨﻤﺎﺫﺝ ﺒﻭﻜﺱ‪-‬ﺠﻴﻨﻜﻨﺯ ﻟﻠﺴﻼﺴل ﺍﻟﺯﻤﻨﻴﺔ ﻜﻤﺎ ﻴﻠﻲ‪:‬‬ ‫‪ .1‬ﻨﻤﺎﺫﺝ ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﺫﺍﺘﻲ ‪: Autoregressive‬‬ ‫ﻴﻤﻜﻥ ﻜﺘﺎﺒﺔ ﻨﻤﻭﺫﺝ ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﺫﺍﺘﻲ ﻤﻥ ﺍﻟﺩﺭﺠﺔ ﺍﻷﻭﻟﻰ )‪ AR(1‬ﻋﻠﻰ ﺍﻟﺼﻭﺭﺓ‬

‫ﺍﻟﺘﺎﻟﻴﺔ ‪:‬‬

‫‪X t =C +φX t −1 +et‬‬


‫)‪ (15‬ﺘﺤﻠﻴل ﺍﻟﺴﻼﺴل ﺍﻟﺯﻤﻨﻴﺔ ﻭﺍﻟﺘﻨﺒﺅ ﺍﻹﺤﺼﺎﺌﻲ‬

‫‪520‬‬

‫ﻭﻴﻤﻜﻥ ﺘﻌﻤﻴﻡ ﻫﺫﺍ ﺍﻟﻨﻤﻭﺫﺝ ﻟﻴﺼﺒﺢ ﻤﻥ ﺍﻟﺩﺭﺠﺔ ‪ p‬ﻟﻴﺼﺒﺢ )‪ AR(p‬ﻭﻴﺄﺨﺫ‬ ‫ﺍﻟﺼﻭﺭﺓ ‪:‬‬ ‫‪X t =C +φ1 X t −1 +φ 2 X t −2 +.... +φ p X t − p + et‬‬

‫‪ .2‬ﻨﻤﺎﺫﺝ ﺍﻟﻤﺘﻭﺴﻁﺎﺕ ﺍﻟﻤﺘﺤﺭﻜﺔ ‪: Moving Average‬‬ ‫ﻴﻤﻜﻥ ﻜﺘﺎﺒﺔ ﻨﻤﻭﺫﺝ ﺍﻟﻤﺘﻭﺴﻁﺎﺕ ﺍﻟﻤﺘﺤﺭﻜﺔ ﻤﻥ ﺍﻟﺩﺭﺠﺔ ﺍﻷﻭﻟﻰ )‪ MA(1‬ﻋﻠﻰ‬

‫ﺍﻟﺼﻭﺭﺓ ﺍﻟﺘﺎﻟﻴﺔ ‪:‬‬

‫‪X t =C +et +θet −1‬‬

‫ﻭﻴﻤﻜﻥ ﺘﻌﻤﻴﻡ ﻫﺫﺍ ﺍﻟﻨﻤﻭﺫﺝ ﻟﻴﺼﺒﺢ ﻤﻥ ﺍﻟﺩﺭﺠﺔ ‪ q‬ﻟﻴﺼﺒﺢ )‪ MA(q‬ﻭﻴﺄﺨﺫ‬

‫ﺍﻟﺼﻭﺭﺓ ‪:‬‬

‫‪X t =C +et +θ 1et −1 +θ 2 et −2 + ..... +θ q et −q‬‬

‫‪ .3‬ﺍﻟﻨﻤﺎﺫﺝ ﺍﻟﻤﺨﺘﻠﻁﺔ ‪: Mixed Model‬‬ ‫ﻭﻫﺫﺍ ﺍﻟﻨﻤﻭﺫﺝ ﻋﺒﺎﺭﺓ ﻋﻥ ﺨﻠﻴﻁ ﻤﻥ ﺍﻟﻨﻤﻭﺫﺠﻴﻥ ﺍﻟﺴﺎﺒﻘﻴﻥ‪ ،‬ﻭﻴﻤﻜﻥ ﻜﺘﺎﺒﺔ‬ ‫ﺍﻟﻨﻤﻭﺫﺝ )‪ ARMA (p,q‬ﻋﻠﻰ ﺍﻟﺼﻭﺭﺓ ﺍﻟﻌﺎﻤﺔ ﺍﻟﺘﺎﻟﻴﺔ ‪:‬‬ ‫‪X t =C +φ1 X t −1 +φ 2 X t −2 +.... +φ p X t − p + et +θ 1et −1 +θ 2 et − 2 + ..... +θ q et − q‬‬

‫ﻭﻫﺫﺍ ﺍﻟﻨﻤﻭﺫﺝ ﻴﻤﻜﻥ ﺘﻌﻤﻴﻤﻪ ﺃﻴﻀﹰﺎ ﻟﻴﺸﻤل ﺃﺨﺫ ﺍﻟﻔﺭﻭﻕ ‪ Differencing‬ﻟﻘﻴﻡ‬ ‫ﺍﻟﺴﻠﺴﻠﺔ ﺍﻟﺯﻤﻨﻴﺔ ﻟﻠﺤﺼﻭل ﻋﻠﻰ ﺍﻟﻨﻤﻭﺫﺝ ﺍﻟﻤﺨﺘﻠﻁ ﺍﻟﻤﺘﻜﺎﻤل )‪ ARIMA(p,d,q‬ﺤﻴﺙ‬ ‫ﻴﺸﻴﺭ ﺍﻟﺤﺭﻑ ‪ I‬ﺇﻟﻰ ﺘﻌﺒﻴﺭ ﺍﻟﻤﺘﻜﺎﻤل ‪ Integrated‬ﻭﻴﺸﻴﺭ ﺍﻟﺩﻟﻴل ‪ d‬ﺇﻟﻰ ﻋﺩﺩ ﻤﺭﺍﺕ‬

‫ﺃﺨﺫ ﺍﻟﻔﺭﻭﻕ ﻟﻘﻴﻡ ﺍﻟﺴﻠﺴﻠﺔ ﺍﻟﺯﻤﻨﻴﺔ‪ ،‬ﻓﻌﻠﻰ ﺴﺒﻴل ﺍﻟﻤﺜﺎل ﻋﻨﺩﻤﺎ ﺘﻜﻭﻥ ‪ d=1‬ﻓﺈﻨﻪ ﻴﺘﻡ ﺘﻨﻔﻴﺫ‬ ‫ﺍﻟﻔﺭﻭﻕ ﻤﻥ ﺍﻟﺩﺭﺠﺔ ﺍﻷﻭﻟﻰ‪ ،‬ﻭﻋﻨﺩﻤﺎ ﺘﻜﻭﻥ ‪ d=2‬ﻓﺈﻥ ﻋﻤﻠﻴﺔ ﺍﻟﻔﺭﻭﻕ ﻟﻠﻘﻴﻡ ﻗﺩ ﺃﺠﺭﻴﺕ‬ ‫ﻤﺭﺘﻴﻥ‪ ،‬ﻭﻫﻜﺫﺍ‪..‬‬


‫)‪ (15‬ﺘﺤﻠﻴل ﺍﻟﺴﻼﺴل ﺍﻟﺯﻤﻨﻴﺔ ﻭﺍﻟﺘﻨﺒﺅ ﺍﻹﺤﺼﺎﺌﻲ‬

‫‪521‬‬

‫‪ .3 .15‬اﻟﻄﺮق اﻟﺘﻤﻬﻴﺪﻳﺔ ﻟﻠﺘﻌﺮف ﻋﻠﻰ ﻧﻤﻮذج اﻟﺴﻼﺳﻞ اﻟﺰﻣﻨﻴﺔ‪:‬‬ ‫‪Preliminary Model Identification Procedures:‬‬ ‫ﻟﻠﺘﻌﺭﻑ ﻋﻠﻰ ﺍﻟﻨﻤﻭﺫﺝ ﺍﻟﻤﻨﺎﺴﺏ ﻟﺒﻴﺎﻨﺎﺕ ﺍﻟﺴﻠﺴﻠﺔ ﺍﻟﺯﻤﻨﻴﺔ ﻻﺒﺩ ﻜﺨﻁﻭﺓ ﺃﻭﻟﻰ ﻤﻥ‬ ‫ﺘﺤﻠﻴل ﺍﻟﺒﻴﺎﻨﺎﺕ ﻤﺒﺩﺌﻴ ﹰﺎ ﺒﺎﺴﺘﺨﺩﺍﻡ ﻨﻤﻭﺫﺝ ﺒﻭﻜﺱ‪-‬ﺠﻴﻨﻜﻨﺯ ‪Box-Jenkins Analysis‬‬

‫ﺒﺤﻴﺙ ﻴﺸﻤل ﻫﺫﺍ ﺍﻟﺘﺤﻠﻴل ﺭﺴﻤﹰﺎ ﻟﻠﺴﻠﺴﻠﺔ ﺍﻟﺯﻤﻨﻴﺔ ﺍﻷﺼﻠﻴﺔ‪ ،‬ﻭﻴﺠﺏ ﺘﻌﺩﻴل ﺍﻟﺒﻴﺎﻨﺎﺕ‬ ‫ﺍﻷﺼﻠﻴﺔ ﺩﺍﺌﻤﹰﺎ ﻟﻠﺤﺼﻭل ﻋﻠﻰ ﺴﻠﺴﻠﺔ ﺴﺎﻜﻨﺔ ‪ a stationary series‬ﻤﺎ ﻟﻡ ﺘﻜﻥ ﻫﻲ‬

‫ﻼ ﺴﻠﺴﻠﺔ ﺴﺎﻜﻨﺔ )ﻭﻫﻲ ﺍﻟﺴﻠﺴﻠﺔ ﺍﻟﺘﻲ ﺘﺘﻐﻴﺭ ﻗﻴﻤﻬﺎ ﻓﻲ ﺤﺩﻭﺩ ﺜﺎﺒﺘﺔ ﻁﻭﺍل ﺍﻟﻔﺘﺭﺓ‬ ‫ﺃﺼ ﹰ‬

‫ﺍﻟﺯﻤﻨﻴﺔ‪ ،‬ﺃﻱ ﺤﺩﻭﺩ ﺘﻐﻴﺭ ﻗﻴﻡ ﺍﻟﺴﻠﺴﻠﺔ ﻻ ﻴﻌﺘﻤﺩ ﻋﻠﻰ ﺍﻟﺯﻤﻥ ﻭﻴﻤﻜﻥ ﺍﻟﺘﻌﺭﻑ ﻋﻠﻴﻬﺎ‬

‫ﺒﻭﺍﺴﻁﺔ ﺍﻟﺭﺴﻡ ﻓﻘﻁ(‪ ،‬ﻜﺫﻟﻙ ﻓﺈﻥ ﺃﻱ ﺍﺘﺠﺎﻩ ﻋﺎﻡ ﻗﺩ ﻴﻅﻬﺭ ﻋﻠﻰ ﻁﻭل ﺍﻟﺴﻠﺴﻠﺔ ﻴﻤﻜﻥ‬ ‫ﻤﻌﺎﻟﺠﺘﻪ ﻓﻲ ﺍﻟﻨﻤﻭﺫﺝ ﺒﺎﺴﺘﺨﺩﺍﻡ ﻁﺭﻴﻘﺔ ﺍﻟﻔﺭﻭﻕ ﺍﻟﻨﻅﺎﻤﻴﺔ ‪ ،regular differences‬ﻭﻫﻲ‬

‫ﻋﺒﺎﺭﺓ ﻋﻥ ﻋﻤﻠﻴﺔ ﻴﺘﻡ ﻓﻴﻬﺎ ﺤﺴﺎﺏ ﺍﻟﻔﺭﻭﻕ ﺒﻴﻥ ﺍﻟﻘﻴﻡ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ﻟﺘﻨﺘﺞ ﺴﻠﺴﻠﺔ ﻤﺴﺘﺨﻠﺼﹰﺎ‬ ‫ﻤﻨﻬﺎ ﺃﺜﺭ ﺍﻻﺘﺠﺎﻩ ﺍﻟﻌﺎﻡ‪ ،‬ﻭﺇﺫﺍ ﻟﻡ ﻴﺤﻘﻕ ﺘﻁﺒﻴﻕ ﻁﺭﻴﻘﺔ ﺍﻟﻔﺭﻭﻕ ﺴﻜﻭﻨﹰﺎ ﻟﻠﺴﻠﺴﻠﺔ ﺍﻟﺯﻤﻨﻴﺔ‬

‫ﻤﻥ ﺍﻟﻤﺭﺓ ﺍﻷﻭﻟﻰ ﻓﺈﻨﻪ ﻴﻤﻜﻥ ﺘﻜﺭﺍﺭ ﻫﺫﻩ ﺍﻟﻌﻤﻠﻴﺔ ﻋﻠﻰ ﺍﻟﺭﻏﻡ ﻤﻥ ﺃﻨﻪ ﻨﺎﺩﺭﹰﺍ ﻤﺎ ﺘﺠﺩ‬

‫ﺴﻠﺴﻠﺔ ﻻ ﺘﺤﻘﻕ ﺍﻟﺴﻜﻭﻥ ﺒﺘﻁﺒﻴﻕ ﻁﺭﻴﻘﺔ ﺍﻟﻔﺭﻭﻕ ﻤﺭﺓ ﻭﺍﺤﺩﺓ ﺃﻭ ﻤﺭﺘﻴﻥ ﻋﻠﻰ ﺍﻷﻜﺜﺭ‪،‬‬

‫ﻭﺇﺫﺍ ﺍﺴﺘﻤﺭ ﻅﻬﻭﺭ ﻋﺩﻡ ﺍﻻﻨﺘﻅﺎﻡ ﻓﻲ ﺴﻠﺴﻠﺔ ﺍﻟﻔﺭﻭﻕ ﻓﺈﻨﻪ ﻴﻤﻜﻥ ﺘﻁﺒﻴﻕ ﺃﺤﺩ ﺍﻟﺘﺤﻭﻴﻼﺕ‬ ‫ﻤﺜل ﻟﻭﻏﺎﺭﻴﺘﻡ ﻗﻴﻡ ﺍﻟﺴﻠﺴﺔ ﺍﻟﺯﻤﻨﻴﺔ ﺃﻭ ﻤﻘﻠﻭﺏ ﻫﺫﻩ ﺍﻟﻘﻴﻡ ﻟﺘﺤﻘﻴﻕ ﺍﻟﺴﻜﻭﻥ ﻟﻬﺎ ﻟﻜﻲ ﻴﺘﺒﻘﻰ‬

‫ﻓﻲ ﺍﻟﻨﻬﺎﻴﺔ ﺴﻠﺴﻠﺔ ﺒﻭﺍﻗﻲ ‪ Residuals‬ﺘﻅﻬﺭ ﻗﻴﻤﻬﺎ ﻓﻲ ﺍﻟﺭﺴﻡ ﻗﺭﻴﺒﺔ ﻤﻥ ﺍﻟﺼﻔﺭ ﻭﻻ‬

‫ﺘﻌﻜﺱ ﺃﻱ ﺘﻐﻴﺭ ﻨﻅﺎﻤﻲ‪ ،‬ﻫﺫﻩ ﺍﻟﺴﻠﺴﻠﺔ ﻟﻸﺨﻁﺎﺀ ﻴﻁﻠﻕ ﻋﻠﻴﻬﺎ ﺍﻟﺴﻠﺴﻠﺔ ﺍﻟﻌﺸﻭﺍﺌﻴﺔ ﺍﻟﻨﻘﻴﺔ‬

‫‪ Pure Random Series‬ﺃﻭ ﺴﻠﺴﻠﺔ ﺍﻟﺸﻭﺍﺌﺏ ﺍﻟﺒﻴﻀﺎﺀ ‪.White Noise‬‬

‫ﻜﻤﺎ ﺃﻨﻪ ﺇﺫﺍ ﺤﺩﺙ ﻭﻅﻬﺭﺕ ﺍﻟﺴﻠﺴﻠﺔ ﺍﻟﺯﻤﻨﻴﺔ ﺍﻷﺼﻠﻴﺔ ﺒﻼ ﺃﻱ ﺍﺘﺠﺎﻩ ﻋﺎﻡ ﺃﻭ ﺃﻱ‬ ‫ﺃﺜﺭ ﻟﻠﻤﻭﺴﻡ ﻭﻅﻬﺭﺕ ﺴﻠﺴﻠﺔ ﺍﻟﺒﻭﺍﻗﻲ ‪ Residuals‬ﻗﻴﻡ ﻗﺭﻴﺒﺔ ﺠﺩﹰﺍ ﻤﻥ ﺍﻟﺼﻔﺭ ﻓﻲ‬

‫ﺤﺩﻭﺩ ‪ 95%‬ﻓﺘﺭﺓ ﺜﻘﺔ ﻭﺒﺩﻭﻥ ﻅﻬﻭﺭ ﺃﻱ ﺘﻐﻴﺭﺍﺕ ﻤﻨﺘﻅﻤﺔ ﻓﺈﻥ ﺍﻟﺴﻠﺴﺔ ﻓﻲ ﻫﺫﻩ ﺍﻟﺤﺎﻟﺔ‬

‫ﺃﻴﻀﹰﺎ ﻫﻲ ﺴﻠﺴﻠﺔ ﻨﻘﻴﺔ ﺃﻭ ﺸﻭﺍﺌﺏ ﺒﻴﻀﺎﺀ ﻭﻟﻥ ﺘﺘﻤﻜﻥ ﺍﻟﻁﺭﻕ ﺍﻹﺤﺼﺎﺌﻴﺔ ﻤﻥ ﺘﺤﻠﻴﻠﻬﺎ‪.‬‬


‫)‪ (15‬ﺘﺤﻠﻴل ﺍﻟﺴﻼﺴل ﺍﻟﺯﻤﻨﻴﺔ ﻭﺍﻟﺘﻨﺒﺅ ﺍﻹﺤﺼﺎﺌﻲ‬

‫‪522‬‬

‫ﺇﺫﺍ ﻜﺎﻨﺕ ﺍﻟﺴﻠﺴﻠﺔ ﺍﻟﺯﻤﻨﻴﺔ )ﺃﻭ ﺃﺼﺒﺤﺕ( ﺴﻠﺴﻠﺔ ﺴﺎﻜﻨﺔ ‪ stationary‬ﻓﺈﻨﻪ ﻴﻤﻜﻥ‬ ‫ﺍﻟﺘﻌﺭﻑ ﺍﻵﻥ ﻋﻠﻰ ﺍﻟﻨﻤﻭﺫﺝ ﺍﻟﻤﺒﺩﺌﻲ ﺍﻟﻤﻤﺜل ﻟﻠﺒﻴﺎﻨﺎﺕ‪ ،‬ﻭﺘﻌﺘﺒﺭ ﺍﻟﺜﻼﺙ ﻨﻤﺎﺫﺝ ﺍﻟﺘﻲ ﺘﻡ‬

‫ﺫﻜﺭﻫﺎ ﻭﻫﻲ ‪ AR‬ﻭ ‪ MA‬ﻭﺍﻟﻨﻤﻭﺫﺝ ﺍﻟﻤﺸﺘﺭﻙ ‪ ARMA‬ﺇﻀﺎﻓﺔ ﺇﻟﻰ ﻋﻤﻠﻴﺔ ﺍﻟﻔﺭﻭﻕ‬ ‫ﺍﻟﻨﻅﺎﻤﻴﺔ )‪ Regular Differences (RD‬ﻨﻤﺎﺫﺝ ﻤﺒﺩﺌﻴﺔ ﻤﻤﻜﻨﺔ‪ ،‬ﻫﺫﻩ ﺍﻟﻨﻤﺎﺫﺝ ﺘﺠﺘﻤﻊ‬ ‫ﻤﻌﹰﺎ ﻟﺘﻜﻭﻥ ﺍﻷﺩﻭﺍﺕ ﺍﻟﺭﺌﻴﺴﻴﺔ ﻟﺘﺤﻠﻴل ﺍﻟﺴﻼﺴل ﺍﻟﺯﻤﻨﻴﺔ‪ ،‬ﻭﺇﺫﺍ ﺘﻡ ﺘﻁﺒﻴﻕ ﻁﺭﻴﻘﺔ ﺍﻟﻔﺭﻭﻕ‬

‫ﺍﻟﻨﻅﺎﻤﻴﺔ ‪ RD‬ﻤﻊ ﺃﻱ ﻤﻥ ﺍﻟﻨﻤﺎﺫﺝ ﺍﻟﺴﺎﺒﻘﺔ ﻓﺈﻨﻪ ﻴﻨﺘﺞ ﻓﻲ ﻫﺫﻩ ﺍﻟﺤﺎﻟﺔ ﻨﻤﻭﺫﺝ ‪،ARIMA‬‬ ‫ﻭﻴﻤﻜﻥ ﺘﺤﺩﻴﺩ ﺍﻟﻨﻤﻭﺫﺝ ﺍﻟﻤﺒﺩﺌﻲ ﻟﻠﺴﻠﺴﻠﺔ ﺒﺩﻗﺔ ﻋﺎﻟﻴﺔ ﻤﻥ ﺨﻼل ﺭﺴﻡ ﺩﺍﻟﺘﻲ ﺍﻟﺘﺭﺍﺒﻁ‬

‫ﺍﻟﺫﺍﺘﻲ)‪ Autocorrelation Function (ACF‬ﻭﺍﻟﺘﺭﺍﺒﻁ ﺍﻟﺫﺍﺘﻲ ﺍﻟﺠﺯﺌﻲ‬

‫‪Partial‬‬

‫)‪ ،Autocorrelation Function (PACF‬ﻓﻤﻌﺭﻭﻑ ﺃﻥ ﻤﻥ ﺨﺼﺎﺌﺹ ﻨﻤﻭﺫﺝ‬

‫ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﺫﺍﺘﻲ )‪ AR(p‬ﺃﻥ ﺩﺍﻟﺔ ‪ ACF‬ﺘﺘﻼﺸﻰ ﺘﺩﺭﻴﺠﻴﹰﺎ ﻭﺩﺍﻟﺔ ‪ PACF‬ﺘﺘﻭﻗﻑ ﻋﻨﺩ‬

‫ﺍﻟﻔﺘﺭﺓ ‪ ، p‬ﺒﻴﻨﻤﺎ ﻓﻲ ﻨﻤﻭﺫﺝ ﺍﻟﻤﺘﻭﺴﻁﺎﺕ ﺍﻟﻤﺘﺤﺭﻜﺔ )‪ MA(q‬ﺘﺘﻼﺸﻰ ﺩﺍﻟﺔ ‪PACF‬‬

‫ﺘﺩﺭﻴﺠﻴﹰﺎ ﻭ ﺘﺘﻭﻗﻑ ﺩﺍﻟﺔ ‪ ACF‬ﻋﻨﺩ ﺍﻟﻔﺘﺭﺓ ‪. q‬‬

‫ﻭﺒﺎﻹﻀﺎﻓﺔ ﺇﻟﻰ ﻭﺠﻭﺩ ﺍﻻﺘﺠﺎﻩ ﺍﻟﻌﺎﻡ ﻓﺈﻥ ﻫﻨﺎﻙ ﺍﻟﻜﺜﻴﺭ ﻤﻥ ﺍﻟﺴﻼﺴل ﺍﻟﺯﻤﻨﻴﺔ‬ ‫ﺍﻟﺴﺎﻜﻨﺔ ‪ stationary series‬ﺘﻅﻬﺭ ﺘﻐﻴﺭﺍﺕ ﻤﻭﺴﻤﻴﺔ‪ ،‬ﻓﻴﻜﻭﻥ ﻫﻨﺎﻙ ﺘﻭﺠﻪ ﻟﻤﺠﻤﻭﻋﺔ‬

‫ﻤﻥ ﺍﻟﺫﺒﺫﺒﺎﺕ ﻓﻲ ﻋﺩﺩ ﻤﺘﺘﺎﻟﻲ ﻭﻤﺤﺩﻭﺩ ﻤﻥ ﺍﻟﻘﻴﻡ ﺃﻥ ﺘﻌﻴﺩ ﻨﻔﺴﻬﺎ ﻓﻲ ﺍﻟﻤﻭﺍﺴﻡ ﺍﻟﻤﺘﺸﺎﺒﻬﺔ‪،‬‬

‫ﻭﻴﻤﻜﻥ ﺃﺤﻴﺎﻨﹰﺎ ﺃﻥ ﺘﻅﻬﺭ ﺍﻟﺘﻐﻴﺭﺍﺕ ﺍﻟﻤﻭﺴﻤﻴﺔ ﺍﺘﺠﺎﻫﹰﺎ ﻟﺘﻐﻴﺭ ﺇﻀﺎﻓﻲ ﻓﻴﺘﻐﻴﺭ ﻤﺩﻯ ﺘﻐﻴﺭﻫﺎ‬

‫ﻜﻠﻤﺎ ﺘﻘﺩﻡ ﺍﻟﺯﻤﻥ‪ ،‬ﻭﻫﻨﺎ ﺒﺎﻟﻤﺜل ﻴﻤﻜﻥ ﺘﻁﺒﻴﻕ ﻁﺭﻴﻘﺔ ﺍﻟﻔﺭﻭﻕ ﺍﻟﻤﻭﺴﻤﻴﺔ ‪Seasonal‬‬

‫)‪ Differencing (SD‬ﻹﺯﺍﻟﺔ ﻋﺩﻡ ﺍﻟﺴﻜﻭﻥ ﺍﻟﻤﻭﺴﻤﻲ ﻤﻥ ﺍﻟﺴﻠﺴﻠﺔ ﺍﻟﺯﻤﻨﻴﺔ ﺍﻟﻤﻭﺴﻤﻴﺔ‪،‬‬

‫ﻭﻜﻤﺎ ﺃﻨﻪ ﻴﻤﻜﻥ ﺍﺴﺘﺨﺩﺍﻡ ﺃﺴﻠﻭﺒﻲ ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﺫﺍﺘﻲ ‪ AR‬ﻭﺍﻟﻤﺘﻭﺴﻁﺎﺕ ﺍﻟﻤﺘﺤﺭﻜﺔ ‪MA‬‬

‫ﻜﺄﺩﻭﺍﺕ ﺭﺌﻴﺴﻴﺔ ﻟﺘﺤﻠﻴل ﺍﻟﺴﻼﺴل ﺍﻟﺯﻤﻨﻴﺔ ﺒﺼﻔﺔ ﻋﺎﻤﺔ ﻓﺈﻥ ﻫﺫﻴﻥ ﺍﻷﺴﻠﻭﺒﻴﻥ ﻴﻤﻜﻥ‬

‫ﺍﺴﺘﺨﺩﺍﻤﻬﻤﺎ ﺃﻴﻀﹰﺎ ﻟﻠﺴﻼﺴل ﺍﻟﺯﻤﻨﻴﺔ ﺍﻟﻤﻭﺴﻤﻴﺔ ﺒﺎﺴﺘﺨﺩﺍﻡ "ﻤﻌﺎﻟﻡ ﻨﻤﻭﺫﺝ ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﺫﺍﺘﻲ‬

‫ﺍﻟﻤﻭﺴﻤﻲ" )‪ Seasonal Autoregressive Parameters (SAR‬ﻭ"ﻤﻌﺎﻟﻡ ﺍﻷﻭﺴﺎﻁ‬ ‫ﺍﻟﻤﺘﺤﺭﻜﺔ ﺍﻟﻤﻭﺴﻤﻴﺔ" )‪. Seasonal Moving Average Parameters (SMA‬‬


‫)‪ (15‬ﺘﺤﻠﻴل ﺍﻟﺴﻼﺴل ﺍﻟﺯﻤﻨﻴﺔ ﻭﺍﻟﺘﻨﺒﺅ ﺍﻹﺤﺼﺎﺌﻲ‬

‫‪523‬‬

‫ﻭﺘﺘﻀﺢ ﺍﻟﺤﺎﺠﺔ ﺇﻟﻰ ﻤﻌﺎﻟﻡ ﻜل ﻤﻥ ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﺫﺍﺘﻲ ﺍﻟﻤﻭﺴﻤﻲ )‪(SAR‬‬ ‫ﻭﺍﻷﻭﺴﺎﻁ ﺍﻟﻤﺘﺤﺭﻜﺔ ﺍﻟﻤﻭﺴﻤﻴﺔ )‪ (SMA‬ﻋﻨﺩ ﻓﺤﺹ ﻨﻤﻁ ﺩﺍﻟﺔ ﺍﻟﺘﺭﺍﺒﻁ ﺍﻟﺫﺍﺘﻲ ‪ACF‬‬

‫ﻭﻨﻤﻁ ﺩﺍﻟﺔ ﺍﻟﺘﺭﺍﺒﻁ ﺍﻟﺫﺍﺘﻲ ﺍﻟﺠﺯﺌﻲ ‪ PACF‬ﻟﺴﻠﺴﻠﺔ ﺯﻤﻨﻴﺔ ﺴﺎﻜﻨﺔ ‪stationary series‬‬

‫ﻋﻨﺩ ﻓﺘﺭﺍﺕ ﺘﺸﻜل ﻤﻀﺎﻋﻔﺎﺕ ﻟﻌﺩﺩ ﺍﻟﻭﺤﺩﺍﺕ ﺍﻟﺯﻤﻨﻴﺔ ﻓﻲ ﺍﻟﻤﻭﺴﻡ‪ ،‬ﻫﺫﻩ ﺍﻟﻤﻌﺎﻟﻡ ﺴﻭﻑ‬

‫ﺘﻜﻭﻥ ﺫﺍﺕ ﺃﻫﻤﻴﺔ ﻋﻨﺩﻤﺎ ﺘﻜﻭﻥ ﺩﺍﻟﺔ ﺍﻟﺘﺭﺍﺒﻁ ﺍﻟﺫﺍﺘﻲ ‪ ACF‬ﻭﺍﻟﺘﺭﺍﺒﻁ ﺍﻟﺫﺍﺘﻲ ﺍﻟﺠﺯﺌﻲ‬

‫‪ PACF‬ﻋﻨﺩ ﺍﻟﻔﺘﺭﺍﺕ ‪ s‬ﻭ ‪ 2s‬ﻭ ‪ ....‬ﺍﻟﺦ ﻏﻴﺭ ﻤﺴﺎﻭﻴﺔ ﻟﻠﺼﻔﺭ ﻭﺘﻌﻜﺱ ﻨﻤﻁﹰﺎ ﻴﺭﺘﺒﻁ‬ ‫ﺒﺎﻷﻨﻤﺎﻁ ﺍﻟﻨﻅﺭﻴﺔ ﻟﺘﻠﻙ ﺍﻟﻨﻤﺎﺫﺝ‪ ،‬ﻭﻨﺤﺘﺎﺝ ﺇﻟﻰ ﺘﻁﺒﻴﻕ ﻁﺭﻴﻘﺔ ﺍﻟﻔﺭﻭﻕ ﺍﻟﻤﻭﺴﻤﻴﺔ ﻓﻲ ﻫﺫﻩ‬

‫ﺍﻟﻨﻤﺎﺫﺝ ﺇﺫﺍ ﺘﺒﻴﻥ ﺃﻥ ﺩﺍﻟﺔ ﺍﻟﺘﺭﺍﺒﻁ ﺍﻟﺫﺍﺘﻲ ﻋﻨﺩ ﺍﻟﻔﺘﺭﺍﺕ ﺍﻟﻤﻭﺴﻤﻴﺔ ﻻ ﺘﺘﻼﺸﻰ ﺒﺴﺭﻋﺔ‪.‬‬ ‫ﻭﻴﻤﻜﻥ ﺘﻭﻀﻴﺢ ﺨﻁﻭﺍﺕ ﺒﻨﺎﺀ ﻨﻤﺎﺫﺝ ﺒﻭﻜﺱ‪-‬ﺠﻴﻨﻜﻨﺯ ﺒﺎﻟﺭﺴﻡ ﺍﻟﺘﻭﻀﻴﺤﻲ ﻓﻲ‬

‫ﺍﻟﺸﻜل ‪ 1-15‬ﺃﺩﻨﺎﻩ‪ ،‬ﻭﻓﻲ ﻫﺫﺍ ﺍﻟﺸﻜل ﻻﺒﺩ ﻤﻥ ﺍﻟﺫﻜﺭ ﺃﻥ ﺘﺒﺎﻴﻥ ﺍﻷﺨﻁﺎﺀ ﻓﻲ ﻨﻤﻭﺫﺝ‬

‫ﺒﻭﻜﺱ‪-‬ﺠﻴﻨﻜﻨﺯ ﻴﺠﺏ ﺃﻥ ﻴﻜﻭﻥ ﺜﺎﺒﺕ‪ ،‬ﻭﻫﺫﺍ ﻴﻌﻨﻲ ﺃﻥ ﺍﻟﺘﺒﺎﻴﻥ ﻓﻲ ﻜل ﻤﺠﻤﻭﻋﺎﺕ‬ ‫ﺍﻟﺒﻴﺎﻨﺎﺕ ﻴﺠﺏ ﺃﻥ ﻴﻜﻭﻥ ﻤﺘﺴﺎﻭﻱ ﻭﻻ ﻴﻌﺘﻤﺩ ﻋﻠﻰ ﺍﻟﻔﺘﺭﺓ ﺍﻟﺯﻤﻨﻴﺔ‪ ،‬ﻓﺈﺫﺍ ﺘﻡ ﺍﺨﺘﺭﺍﻕ ﻫﺫﺍ‬

‫ﺍﻟﺸﺭﻁ ﻓﻼﺒﺩ ﻤﻥ ﻤﻌﺎﻟﺠﺔ ﺍﻟﺒﻴﺎﻨﺎﺕ ﺒﺈﺠﺭﺍﺀ ﺘﺤﻭﻴﻠﺔ ﻻﺴﺘﻘﺭﺍﺭ ﺍﻟﺘﺒﺎﻴﻥ‪ ،‬ﻭﻴﺠﺏ ﺍﻟﺘﺄﻜﻴﺩ‬

‫ﻋﻠﻰ ﺃﻨﻪ ﻻ ﻴﻭﺠﺩ ﻨﻤﻁ ﻤﺤﺩﺩ ﻓﻲ ﻫﺫﻩ ﺍﻷﺨﻁﺎﺀ‪ ،‬ﻜﻤﺎ ﻴﺠﺏ ﺃﻻ ﺘﻅﻬﺭ ﻗﻴﻡ ﻤﺘﻁﺭﻓﺔ ﺃﻭ‬

‫ﺸﺎﺫﺓ ﺃﻭ ﺍﻨﺤﺭﺍﻑ ﺨﻁﻴﺭ ﻓﻲ ﺍﻟﺴﻠﺴﻠﺔ ﻴﺅﺩﻱ ﺇﻟﻰ ﻗﺴﻤﺔ ﺍﻟﺴﻠﺴﻠﺔ ﺇﻟﻰ ﺃﺠﺯﺍﺀ ﻏﻴﺭ‬

‫ﻤﺘﺠﺎﻨﺴﺔ ﺍﻷﻤﺭ ﺍﻟﺫﻱ ﻗﺩ ﻴﻌﻤل ﻋﻠﻰ ﺘﺸﻭﻴﻪ ﺍﻟﻨﻤﻭﺫﺝ ﺍﻟﺫﻱ ﻴﺘﻡ ﺍﺸﺘﻘﺎﻗﻪ‪ ،‬ﻜﻤﺎ ﺃﻨﻪ ﻻ‬

‫ﻴﺠﺏ ﺃﻥ ﻴﻅﻬﺭ ﻓﻲ ﺍﻷﺨﻁﺎﺀ ﺃﻱ ﻨﻤﻁ ﻴﺩل ﻋﻠﻰ ﻭﺠﻭﺩ ﺫﺒﺫﺒﺎﺕ ﻤﻭﺴﻤﻴﺔ ﺒﻬﺎ‪ ،‬ﻭﺍﻟﺴﺒﺏ‬

‫ﻓﻲ ﻜل ﻫﺫﻩ ﺍﻟﺸﺭﻭﻁ ﺃﻨﻪ ﺍﺨﺘﺭﺍﻗﻬﺎ ﻗﺩ ﻴﺅﺩﻱ ﺇﻟﻰ ﻅﻬﻭﺭ ﺘﻘﺩﻴﺭ ﺍﻟﺘﺭﺍﺒﻁ ﺍﻟﺫﺍﺘﻲ ‪ACF‬‬

‫ﻭﺍﻟﺘﺭﺍﺒﻁ ﺍﻟﺫﺍﺘﻲ ﺍﻟﺠﺯﺌﻲ ‪ PACF‬ﺒﺸﻜل ﻗﺩ ﻴﻔﻬﻡ ﺒﻁﺭﻴﻘﺔ ﺨﺎﻁﺌﺔ ﺃﻥ ﻫﺫﻩ ﺍﻟﺒﻴﺎﻨﺎﺕ‬

‫ﺘﺘﻁﺎﺒﻕ ﻤﻊ ﻨﻤﻭﺫﺝ ﺒﻭﻜﺱ‪-‬ﺠﻴﻨﻜﻨﺯ ﺍﻟﻤﺘﻜﺎﻤل ‪ ،ARIMA‬ﻜﻤﺎ ﺃﻥ ﻭﺠﻭﺩ ﻫﺫﻩ‬

‫ﺍﻻﺨﺘﺭﺍﻗﺎﺕ ﻗﺩ ﻴﺅﺩﻱ ﺇﻟﻰ ﺘﺸﻭﻴﺵ ﺃﻭ ﺇﺨﻔﺎﺀ ﺘﺭﻜﻴﺏ ﺍﻟﻨﻤﻭﺫﺝ ﺍﻟﺤﻘﻴﻘﻲ‪ ،‬ﻓﻭﺠﻭﺩ ﻗﻴﻤﺔ‬

‫ﻼ ﺴﻭﻑ ﻴﺅﺩﻱ ﺇﻟﻰ ﺇﺨﻔﺎﺀ ﺍﻟﻤﻼﻤﺢ ﺍﻟﻜﺎﻤﻨﺔ ﻟﻠﻨﻤﻭﺫﺝ ﺍﻟﺤﻘﻴﻘﻲ‬ ‫ﺸﺎﺫﺓ ﻭﺍﺤﺩﺓ ﻓﻘﻁ ﻤﺜ ﹰ‬ ‫ﻭﺒﺭﻭﺯ ﺘﺄﺜﻴﺭ ﻫﺫﻩ ﺍﻟﻘﻴﻤﺔ ﻓﻘﻁ‪.‬‬


‫)‪ (15‬ﺘﺤﻠﻴل ﺍﻟﺴﻼﺴل ﺍﻟﺯﻤﻨﻴﺔ ﻭﺍﻟﺘﻨﺒﺅ ﺍﻹﺤﺼﺎﺌﻲ‬

‫‪524‬‬

‫ﺸﻜل ‪ : 1-15‬ﺨﻁﻭﺍﺕ ﺒﻨﺎﺀ ﻨﻤﺎﺫﺝ ﺒﻭﻜﺱ‪-‬ﺠﻴﻨﻜﻨﺯ‬ ‫ﺃﺭﺴﻡ ﺍﻟﺴﻠﺴﻠﺔ ﺍﻟﺯﻤﻨﻴﺔ‬

‫ﻻ‬

‫ﻁﺒﻕ ﺃﺤﺩ‬

‫ﻫل ﺍﻟﺘﺒﺎﻴﻥ ﻤﺴﺘﻘﺭ ؟‬

‫ﺍﻟﺘﺤﻭﻴﻼﺕ‬ ‫ﻨﻌﻡ‬ ‫ﺍﺤﺼل ﻋﻠﻰ ﺍﻟﺘﺭﺍﺒﻁ ﺍﻟﺫﺍﺘﻲ‬ ‫ﻭﺍﻟﺘﺭﺍﺒﻁ ﺍﻟﺫﺍﺘﻲ ﺍﻟﺠﺯﺌﻲ‬

‫ﻁﺒﻕ ﻁﺭﻴﻘﺔ ﻓﺭﻭﻕ‬

‫ﻻ‬

‫ﻋﺎﺩﻴﺔ ﻭﻤﻭﺴﻤﻴﺔ‬

‫ﻫل ﺍﻟﻤﺘﻭﺴﻁ ﻤﺴﺘﻘﺭ ؟‬ ‫ﻨﻌﻡ‬

‫ﺍﺨﺘﻴﺎﺭ ﺍﻟﻨﻤﻭﺫﺝ‬

‫ﻗﺩﺭ ﻤﻌﺎﻟﻡ ﺍﻟﻨﻤﻭﺫﺝ‬

‫ﻫل ﺍﻟﺒﻭﺍﻗﻲ ﻏﻴﺭ‬

‫ﻻ‬

‫ﻋﺩل ﺍﻟﻨﻤﻭﺫﺝ‬

‫ﻤﺘﺭﺍﺒﻁﺔ ؟‬

‫ﻨﻌﻡ‬

‫ﺍﺴﺘﺨﺩﻡ ﺍﻟﻨﻤﻭﺫﺝ‬ ‫ﻓﻲ ﺍﻟﺘﻨﺒﺅ‬

‫ﻨﻌﻡ‬

‫ﻫل ﺍﻟﻤﻌﺎﻟﻡ ﻤﻌﻨﻭﻴﺔ‬ ‫ﻭﻏﻴﺭ ﻤﺘﺭﺍﺒﻁﺔ ؟‬

‫ﻻ‬


‫)‪ (15‬ﺘﺤﻠﻴل ﺍﻟﺴﻼﺴل ﺍﻟﺯﻤﻨﻴﺔ ﻭﺍﻟﺘﻨﺒﺅ ﺍﻹﺤﺼﺎﺌﻲ‬

‫‪525‬‬

‫‪ .4 .15‬ﻃﺮق آﻤﻴﺔ ﻟﺘﺤﺴﻴﻦ ﻧﻤﻮذج اﻟﺴﻼﺳﻞ اﻟﺰﻣﻨﻴﺔ اﻟﻤﻘﺘﺮح ‪:‬‬ ‫‪Improved Quantitative Identification Method:‬‬ ‫ﺜﻤﺔ ﻁﺭﻴﻘﺔ ﻤﺤﺴﻨﺔ ﻤﺘﺎﺤﺔ ﺍﻵﻥ ﻹﺠﺭﺍﺀ ﺘﺤﻠﻴل ﻟﻨﻤﺎﺫﺝ ﺒﻭﻜﺱ‪-‬ﺠﻴﻨﻜﻨﺯ‬ ‫ﺍﻟﻤﺘﻜﺎﻤﻠﺔ ‪ ARIMA‬ﻭﻤﻥ ﺸﺄﻨﻬﺎ ﺍﻟﺘﺨﻔﻴﻑ ﻤﻥ ﻤﺘﻁﻠﺒﺎﺕ ﺍﻟﻤﻨﻅﻭﺭ ﺍﻟﻤﻭﺴﻤﻲ ﻓﻲ ﺘﻘﻴﻴﻡ‬

‫ﻨﻤﻁ ﺩﺍﻟﺘﻲ ﺍﻟﺘﺭﺍﺒﻁ ﺍﻟﺫﺍﺘﻲ ‪ Autocorrelation‬ﻭﺍﻟﺘﺭﺍﺒﻁ ﺍﻟﺫﺍﺘﻲ ﺍﻟﺠﺯﺌﻲ ‪Partial‬‬

‫‪ Autocorrelation‬ﻟﻸﺨﻁﺎﺀ ﻭﺍﻟﻠﺘﻴﻥ ﻗﺩ ﺘﻜﻭﻨﺎ ﻏﺎﻤﻀﺘﻴﻥ ﺒﻬﺩﻑ ﺘﺤﺩﻴﺩ ﻨﻤﻭﺫﺝ‬ ‫ﺒﻭﻜﺱ‪-‬ﺠﻴﻨﻜﻨﺯ ﺍﻟﻤﻨﺎﺴﺏ ﻭﺍﻟﺫﻱ ﻴﻤﻜﻥ ﺍﻻﻋﺘﻤﺎﺩ ﻋﻠﻴﻪ ﻓﻲ ﺇﺠﺭﺍﺀ ﺍﻟﺘﻨﺒﺅ ﺍﻹﺤﺼﺎﺌﻲ‪.‬‬

‫)‪ : ARMA(1,0‬ﻫﺫﺍ ﺍﻟﻨﻤﻭﺫﺝ ﻻﺒﺩ ﺃﻥ ﻴﻜﻭﻥ ﺍﻟﻨﻤﻭﺫﺝ ﺍﻷﻭل ﻴﺨﻀﻊ ﻟﻼﺨﺘﺒﺎﺭ‬

‫ﻜﻨﻤﻭﺫﺝ ﻤﻨﺎﺴﺏ ﻷﻱ ﺴﻠﺴﻠﺔ ﺯﻤﻨﻴﺔ ﺴﺎﻜﻨﺔ‪ ،‬ﻭﻫﻭ ﻨﻤﻭﺫﺝ ﺒﺴﻴﻁ ﻭﻴﺤﺘﻭﻱ ﻋﻠﻰ ﻤﻌﻠﻤﺔ‬ ‫ﻼ‬ ‫ﻭﺤﻴﺩﺓ ﻟﻼﻨﺤﺩﺍﺭ ﺍﻟﺫﺍﺘﻲ ﻋﻨﺩ ﺍﻟﻔﺘﺭﺓ ﺍﻷﻭﻟﻰ‪ ،‬ﻭﻴﺠﺏ ﺍﺨﺘﺒﺎﺭ ﻤﻌﻨﻭﻴﺔ ﻨﻤﻁ ﻤﻌﺎﻤﻼﺕ ﻜ ﹰ‬

‫ﻤﻥ ﺍﻟﺘﺭﺍﺒﻁ ﺍﻟﺫﺍﺘﻲ ﻭﺍﻟﺘﺭﺍﺒﻁ ﺍﻟﺫﺍﺘﻲ ﺍﻟﺠﺯﺌﻲ ﻭﺒﺎﻟﺘﺤﺩﻴﺩ ﻗﻴﻡ ﺍﻟﻤﻌﺎﻤﻼﺕ ﺍﻷﻭﻟﻰ ﻤﻨﻬﺎ‬

‫ﻭﺭﺅﻴﺔ ﻤﺎ ﺇﺫﺍ ﻜﺎﻨﺕ ﺍﻷﺨﻁﺎﺀ ‪ residuals‬ﻏﻴﺭ ﻤﺘﺭﺍﺒﻁﺔ ﺫﺍﺘﻴﹰﺎ ‪ ،‬ﺃﻱ ﺃﻥ ﻗﻴﻡ ﻤﻌﺎﻤﻼﺕ‬ ‫ﺍﻟﺘﺭﺍﺒﻁ ﺍﻟﺫﺍﺘﻲ ﻭﺍﻟﺘﺭﺍﺒﻁ ﺍﻟﺫﺍﺘﻲ ﺍﻟﺠﺯﺌﻲ ﺘﺴﺎﻭﻱ ﺍﻟﺼﻔﺭ ﻓﻲ ﺤﺩﻭﺩ ‪ 95%‬ﻓﺘﺭﺓ ﺜﻘﺔ ﻭﻻ‬

‫ﺘﺤﺘﻭﻱ ﻫﺫﻩ ﺍﻟﻤﻌﺎﻤﻼﺕ ﻋﻠﻰ ﻨﻤﻁ ﻤﻌﻴﻥ‪ ،‬ﻭﻋﻨﺩﻤﺎ ﺘﻜﻭﻥ ﺍﻟﻘﻴﻡ ﺍﻟﻤﻘﺩﺭﺓ ﻗﺭﻴﺒﺔ ﺠﺩﹰﺍ ﻤﻥ‬ ‫ﺍﻟﻘﻴﻡ ﺍﻟﺤﻘﻴﻘﻴﺔ ﻟﻠﺴﻠﺴﻠﺔ ﺍﻟﺯﻤﻨﻴﺔ ﻓﺈﻥ ﻤﺠﻤﻭﻉ ﻤﺭﺒﻌﺎﺕ ﺍﻷﺨﻁﺎﺀ ﺴﻭﻑ ﻴﻜﻭﻥ ﺍﻗل ﻤﺎ‬

‫ﻴﻤﻜﻥ )ﻁﺭﻴﻘﺔ ﺍﻟﻤﺭﺒﻌﺎﺕ ﺍﻟﺼﻐﺭﻯ(‪ ،‬ﻭﻟﻥ ﻴﻜﻭﻥ ﻤﺘﻭﺴﻁ ﺍﻷﺨﻁﺎﺀ ﻤﺨﺘﻠﻑ ﻤﻌﻨﻭﻴﹰﺎ ﻋﻥ‬ ‫ﺍﻟﺼﻔﺭ‪ ،‬ﻭﻜﺫﻟﻙ ﻴﻤﻜﻥ ﻓﺤﺹ ﻨﻤﺎﺫﺝ ﺒﺩﻴﻠﺔ ﻭﻤﻘﺎﺭﻨﺔ ﺍﻟﺘﻁﻭﺭ ﻓﻲ ﻫﺫﻩ ﺍﻟﻌﻭﺍﻤل ﻤﻊ‬

‫ﻤﺭﺍﻋﺎﺓ ﺃﻨﻪ ﻴﻔﻀل ﻋﺎﺩﺓ ﺍﺨﺘﻴﺎﺭ ﺍﻟﻨﻤﻭﺫﺝ ﺍﻟﺫﻱ ﻴﺤﺘﻭﻱ ﻋﻠﻰ ﺃﻗل ﻋﺩﺩ ﻤﻤﻜﻥ ﻤﻥ‬

‫ﺍﻟﻤﻌﺎﻤﻼﺕ ﻭﻴﻜﻭﻥ ﻤﻨﺎﺴﺒﹰﺎ ﻟﻠﺒﻴﺎﻨﺎﺕ‪ ،‬ﻜﻤﺎ ﺃﻨﻪ ﻴﺠﺏ ﺃﻻ ﻴﻜﻭﻥ ﻫﻨﺎﻙ ﺍﺭﺘﺒﺎﻁﹰﺎ ﻤﻠﺤﻭﻅﹰﺎ‬

‫ﺒﻴﻥ ﺍﻟﻤﻌﺎﻟﻡ ﺍﻟﻤﺨﺘﻠﻔﺔ ﻟﻠﻨﻤﻭﺫﺝ‪ ،‬ﻭﻜﺫﻟﻙ ﻻ ﻴﺠﺏ ﺃﻥ ﺘﺤﺘﻭﻱ ﺤﺩﻭﺩ ﺍﻟﺜﻘﺔ ﺒﺩﺍﺨﻠﻬﺎ ﻋﻠﻰ‬ ‫ﺍﻟﺼﻔﺭ ﻤﻤﺎ ﻴﻌﻨﻲ ﺃﻨﻪ ﻴﺠﺏ ﺃﻥ ﺘﻜﻭﻥ ﺍﻟﻤﻌﺎﻟﻡ ﻤﺨﺘﻠﻔﺔ ﻤﻌﻨﻭﻴﹰﺎ ﻋﻥ ﺍﻟﺼﻔﺭ‪ ،‬ﻭﻓﻲ ﺍﻟﻨﻬﺎﻴﺔ‬

‫ﺇﺫﺍ ﺜﺒﺕ ﺃﻥ ﺍﻟﻨﻤﻭﺫﺝ ﺍﻟﺴﺎﻜﻥ ﻤﻨﺎﺴﺏ ﻟﻠﺴﻠﺴﻠﺔ ﻓﺈﻨﻪ ﻴﻤﻜﻥ ﺍﻻﻋﺘﻤﺎﺩ ﻋﻠﻴﻪ ﻓﻲ ﺍﻟﺘﻨﺒﺅ‪.‬‬


‫)‪ (15‬ﺘﺤﻠﻴل ﺍﻟﺴﻼﺴل ﺍﻟﺯﻤﻨﻴﺔ ﻭﺍﻟﺘﻨﺒﺅ ﺍﻹﺤﺼﺎﺌﻲ‬

‫‪526‬‬

‫)‪ : ARMA(2,1‬ﺇﺫﺍ ﺜﺒﺕ ﺃﻥ ﺍﻟﻨﻤﻭﺫﺝ ﺍﻟﺴﺎﺒﻕ )‪ ARMA(1,0‬ﻏﻴﺭ ﻤﻼﺌﻡ‬ ‫ﻟﺒﻴﺎﻨﺎﺕ ﺍﻟﺴﻠﺴﻠﺔ ﻤﺤل ﺍﻟﺩﺭﺍﺴﺔ ﺒﻐﻴﺎﺏ ﺍﻟﺸﺭﻭﻁ ﺍﻟﻤﻁﻠﻭﺒﺔ ﻟﺫﻟﻙ ﺍﻟﻨﻤﻭﺫﺝ ﺒﻤﻌﺎﻤﻼﺕ‬ ‫ﺍﻷﺨﻁﺎﺀ ﻗﺭﻴﺒﺔ ﻤﻥ ﺍﻟﺼﻔﺭ ﻓﺈﻨﻪ ﻴﻤﻜﻥ ﺍﻟﺘﻘﺩﻡ ﺍﻵﻥ ﺨﻁﻭﺓ ﻓﻲ ﺍﻟﻁﺭﻴﻘﺔ ﺍﻟﻤﺤﺴﻨﺔ ﻹﺠﺭﺍﺀ‬

‫ﺘﺤﻠﻴل ﻟﻨﻤﺎﺫﺝ ﺒﻭﻜﺱ‪-‬ﺠﻴﻨﻜﻨﺯ ﺍﻟﻤﺘﻜﺎﻤﻠﺔ ﻭﺫﻟﻙ ﺒﺘﻁﺒﻴﻕ ﻨﻤﻭﺫﺝ )‪ ARMA(2,1‬ﺍﻟﺫﻱ‬ ‫ﻴﺸﻤل ﻋﻠﻰ ﻤﻌﻠﻤﺘﻴﻥ ﺍﻨﺤﺩﺍﺭ ﺫﺍﺘﻲ ‪ AR‬ﻭﻤﻌﻠﻤﺔ ﻭﺍﺤﺩﺓ ﻤﺘﻭﺴﻁﺎﺕ ﻤﺘﺤﺭﻜﺔ ‪ MA‬ﺜﻡ‬

‫ﻓﺤﺹ ﻨﻤﻁ ﺍﻷﺨﻁﺎﺀ ‪ residuals‬ﻜﻤﺎ ﺴﺒﻕ ﻓﻲ ﺍﻟﻨﻤﻭﺫﺝ ﺍﻟﺴﺎﺒﻕ‪.‬‬

‫ﺍﻟﺨﻁﻭﺍﺕ ﺍﻟﺘﺎﻟﻴﺔ ‪ :‬ﻁﺎﻟﻤﺎ ﺃﻨﻪ ﺒﻔﺤﺹ ﺸﺭﻭﻁ ﻨﻤﻁ ﺍﻷﺨﻁﺎﺀ ‪ residuals‬ﻜﻤﺎ‬ ‫ﺴﺒﻕ ﺘﻭﻀﻴﺤﻬﺎ ﻓﻲ ﺍﻟﻨﻤﺎﺫﺝ ﺍﻟﺴﺎﺒﻘﺔ ﻴﺘﺒﻴﻥ ﺃﻥ ﺍﻟﻨﻤﻭﺫﺝ ﺍﻟﺫﻱ ﻴﺘﻡ ﺍﺨﺘﻴﺎﺭﻩ ﻟﻠﺴﻠﺴﻠﺔ‬

‫ﺍﻟﺯﻤﻨﻴﺔ ﻟﻴﺱ ﻤﻼﺌﻤﹰﺎ ﺒﻌﺩ ﻓﺈﻥ ﺘﺤﻠﻴل ﺒﻭﻜﺱ‪-‬ﺠﻴﻨﻜﻨﺯ ﻻﺒﺩ ﻭﺃﻥ ﻴﺴﺘﻤﺭ ﺒﺎﺨﺘﻴﺎﺭ ﻨﻤﺎﺫﺝ‬

‫ﺒﻭﻜﺱ‪-‬ﺠﻴﻨﻜﻨﺯ )‪ ARMA (n, n-1‬ﻭﺍﻟﺘﺩﺭﺝ ﻓﻲ ﺍﻟﻤﻌﻠﻤﺘﻴﻥ ‪ n, n-1‬ﻓﻲ ﺍﻟﻨﻤﻭﺫﺝ‬ ‫ﻭﺘﻁﺒﻴﻘﻪ ﻭﻤﻥ ﺜﻡ ﻓﺤﺹ ﺍﻷﺨﻁﺎﺀ ﻟﺤﻴﻥ ﺍﻟﺤﺼﻭل ﻋﻠﻰ ﻨﻤﻭﺫﺝ ﻤﻼﺌﻡ ﻟﻬﺫﻩ ﺍﻟﺴﻠﺴﻠﺔ‪،‬‬

‫ﻭﺃﺜﻨﺎﺀ ﺘﻁﺒﻴﻕ ﺘﻠﻙ ﺍﻟﻌﻤﻠﻴﺔ ﺇﺫﺍ ﺘﺒﻴﻥ ﺃﻥ ﻤﻌﺎﻤل ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﺫﺍﺘﻲ ‪) ϕ‬ﻓﺎﻱ ‪ (phi‬ﻴﻘﺘﺭﺏ‬ ‫ﻤﻥ ﺍﻟﺼﻔﺭ ﻓﺈﻥ ﺍﻟﻨﻤﻭﺫﺝ ﺍﻟﺘﺎﻟﻲ ﺍﻟﺫﻱ ﻻ ﺒﺩ ﻤﻥ ﺍﺨﺘﻴﺎﺭﻩ ﻭﺍﻟﺘﺤﻘﻕ ﻤﻨﻪ ﻜﻤﺎ ﺴﺒﻕ ﻴﻜﻭﻥ‬

‫)‪ ، ARMA (n-1,n-1‬ﻭﺒﺎﻟﻤﺜل ﺇﺫﺍ ﺘﺒﻴﻥ ﺃﻥ ﻤﻌﺎﻤل ﺍﻟﻤﺘﻭﺴﻁﺎﺕ ﺍﻟﻤﺘﺤﺭﻜﺔ ‪) θ‬ﺜﻴﺘﺎ‬

‫‪ (theta‬ﻴﻘﺘﺭﺏ ﻤﻥ ﺍﻟﺼﻔﺭ ﻓﺈﻥ ﺍﻟﻨﻤﻭﺫﺝ ﺍﻟﺘﺎﻟﻲ ﺍﻟﺫﻱ ﻻ ﺒﺩ ﻤﻥ ﺍﺨﺘﻴﺎﺭﻩ ﻭﺍﻟﺘﺤﻘﻕ ﻤﻨﻪ‬

‫ﻴﺠﺏ ﺃﻥ ﻴﻜﻭﻥ )‪ ، ARMA (n,n-2‬ﻭﺃﺜﻨﺎﺀ ﺘﻔﺤﺹ ﻨﻤﺎﺫﺝ ﺒﻭﻜﺱ‪-‬ﺠﻴﻨﻜﻨﺯ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ‬

‫ﻭﻓﻲ ﻟﺤﻅﺔ ﻤﻌﻴﻨﺔ ﻗﺩ ﺘﺘﻼﺸﻰ ﻤﻌﺎﻤﻼﺕ ﺃﻱ ﻤﻥ ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﺫﺍﺘﻲ ﺃﻭ ﺍﻟﻤﺘﻭﺴﻁﺎﺕ‬

‫ﺍﻟﻤﺘﺤﺭﻜﺔ‪ ،‬ﻓﻲ ﻤﺜل ﻫﺫﻩ ﺍﻟﺤﺎﻟﺔ ﺇﻥ ﻭﺼﻠﻨﺎ ﺇﻟﻴﻬﺎ ﻓﺈﻨﻪ ﻴﺠﺏ ﺍﻻﺴﺘﻤﺭﺍﺭ ﻓﻲ ﺍﺨﺘﻴﺎﺭ‬

‫ﻭﻓﺤﺹ ﺍﻟﻨﻤﺎﺫﺝ ﺍﻟﺴﺎﻜﻨﺔ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ﺒﺎﻟﻤﻌﺎﻟﻡ ﺍﻟﻤﺘﺒﻘﻴﺔ ﻭﺍﻟﺘﺤﻘﻕ ﻤﻥ ﻤﻼﺀﻤﺘﻬﺎ ﻟﺤﻴﻥ ﺃﻥ‬ ‫ﺘﻘﺘﺭﺏ ﻤﻌﺎﻤﻼﺕ ﺍﻷﺨﻁﺎﺀ ﻤﻌﻨﻭﻴﹰﺎ ﻤﻥ ﺍﻟﺼﻔﺭ ﻟﺘﻘﻊ ﺒﻴﻥ ﺤﺩﻱ ‪ 95%‬ﻓﺘﺭﺓ ﺍﻟﺜﻘﺔ ﻭﺘﺤﻘﻕ‬

‫ﺃﻴﻀﹰﺎ ﺍﻟﺸﺭﻭﻁ ﺍﻟﻤﻁﻠﻭﺒﺔ ﺍﻟﺴﺎﺒﻘﺔ ﻟﻜﻲ ﻨﺼل ﺇﻟﻰ ﺍﻟﻨﻤﻭﺫﺝ ﺍﻟﻤﻨﺎﺴﺏ‪.‬‬

‫ﻭﻴﻤﻜﻥ ﺘﻠﺨﻴﺹ ﺍﻟﺨﻁﻭﺍﺕ ﺍﻟﺴﺎﺒﻘﺔ ﺒﺎﻟﺭﺴﻡ ﺍﻟﺘﻭﻀﻴﺤﻲ ﻓﻲ ﺸﻜل ‪ 2-15‬ﺃﺩﻨﺎﻩ‪.‬‬


‫( ﺘﺤﻠﻴل ﺍﻟﺴﻼﺴل ﺍﻟﺯﻤﻨﻴﺔ ﻭﺍﻟﺘﻨﺒﺅ ﺍﻹﺤﺼﺎﺌﻲ‬15)

527

‫ﺠﻴﻨﻜﻨﺯ ﺍﻟﻤﻼﺌﻡ‬-‫ ﺨﻁﻭﺍﺕ ﺍﺨﺘﻴﺎﺭ ﻨﻤﻭﺫﺝ ﺒﻭﻜﺱ‬: 2-15 ‫ﺸﻜل‬ ARMA (1,0)?

ARMA (2,0)?

ARMA (2,1)?

ARMA (1,1)?

ARMA (0,1)?

ARMA (3,0)?

ARMA (3,2)?

ARMA (2,2)? ARMA (1,2)? ARMA (0,2)?

ARMA (n,0)?

ARMA (n,n-1)?

ARMA (n-1,n-1)?

ARMA (n-2,n-1)?

ARMA (0,n-1)?


‫)‪ (15‬ﺘﺤﻠﻴل ﺍﻟﺴﻼﺴل ﺍﻟﺯﻤﻨﻴﺔ ﻭﺍﻟﺘﻨﺒﺅ ﺍﻹﺤﺼﺎﺌﻲ‬

‫‪528‬‬

‫ﺍﻟﺘﺤﻠﻴل ﺍﻟﻤﻭﺴﻤﻲ ‪ :‬ﺒﻨﻔﺱ ﺍﻟﻁﺭﻴﻘﺔ ﺍﻟﺴﺎﺒﻘﺔ ﻓﻲ ﺘﻁﻭﺭ ﻋﻤﻠﻴﺔ ﺍﺨﺘﻴﺎﺭ ﻨﻤﻭﺫﺝ‬ ‫ﺒﻭﻜﺱ‪-‬ﺠﻴﻨﻜﻨﺯ ﺍﻟﻤﻼﺌﻡ ﻟﻠﺒﻴﺎﻨﺎﺕ ﻭﻤﺤﺎﺫﺍﺓ ﻟﺘﻠﻙ ﺍﻟﺨﻁﻭﺍﺕ ﻴﻤﻜﻥ ﺇﻀﺎﻓﺔ ﺃﻭ ﺤﺫﻑ ﺃﻱ‬

‫ﻤﻥ ﻤﻌﺎﻟﻡ ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﺫﺍﺘﻲ ﺍﻟﻤﻭﺴﻤﻲ ‪ SAR‬ﺃﻭ ﻤﻌﺎﻟﻡ ﺍﻟﻤﺘﻭﺴﻁﺎﺕ ﺍﻟﻤﺘﺤﺭﻜﺔ ﺍﻟﻤﻭﺴﻤﻴﺔ‬

‫‪ SMA‬ﺍﺴﺘﺠﺎﺒﺔ ﻟﻭﺠﻭﺩ ﺃﻭ ﻏﻴﺎﺏ ﻨﻤﻁ ﻤﻭﺴﻤﻲ ﺃﻭ ﺩﻭﺭﻱ ﻓﻲ ﻗﻴﻡ ﺍﻷﺨﻁﺎﺀ ﺃﻭ ﺃﻥ ﻗﻴﻡ‬ ‫ﺍﻟﻤﻌﺎﻟﻡ ﺘﺘﻘﺎﺭﺏ ﻤﻥ ﺍﻟﺼﻔﺭ‪.‬‬

‫ﻤﻼﺌﻤﺔ ﺍﻟﻨﻤﻭﺫﺝ ‪ :‬ﺃﺜﻨﺎﺀ ﻤﺭﺤﻠﺔ ﻤﺭﺍﺠﻌﺔ ﻨﺘﺎﺌﺞ ﺘﺤﻠﻴل ﺒﻭﻜﺱ‪-‬ﺠﻴﻨﻜﻨﺯ ﻟﻠﺴﻠﺴﻠﺔ‬

‫ﺍﻟﺯﻤﻨﻴﺔ ﻻﺒﺩ ﻤﻥ ﺃﺨﺫ ﺍﻟﺤﻴﻁﺔ ﻭﺍﻟﺤﺫﺭ ﻟﻠﺘﺄﻜﺩ ﻤﻥ ﺃﻥ ﻤﻌﺎﻟﻡ ﺍﻟﻨﻤﻭﺫﺝ ﻏﻴﺭ ﻤﺘﺭﺍﺒﻁﺔ‪ ،‬ﻜﻤﺎ‬ ‫ﺃﻨﻪ ﻴﺠﺏ ﻤﻌﺎﻴﺭﺓ ﺍﻟﻨﻤﺎﺫﺝ ﺍﻟﻤﻌﻨﻭﻴﺔ ﻭﺍﻟﺒﺩﻴﻠﺔ ﻤﻘﺎﺒل ﻫﺫﻩ ﺍﻟﺸﺭﻭﻁ ﻭﻜﺫﻟﻙ ﻤﻘﺎﺒل ﻗﻴﻤﺔ‬

‫ﻤﺭﺒﻊ ﻤﻌﺎﻤل ﺍﻻﺭﺘﺒﺎﻁ ﺍﻟﻌﺎﻡ ‪ R2‬ﻭﺍﻟﺨﻁﺄ ﺍﻟﻤﻌﻴﺎﺭﻱ ﻭﺘﻘﺎﺭﺏ ﻗﻴﻡ ﺍﻷﺨﻁﺎﺀ ﻤﻥ ﺍﻟﺼﻔﺭ‬

‫ﺒﺩﺭﺠﺔ ﺜﻘﺔ ﻤﻨﺎﺴﺒﺔ‪.‬‬

‫ﺍﻟﺘﻨﺒﺅ ﺍﻹﺤﺼﺎﺌﻲ ﺒﺎﺴﺘﺨﺩﺍﻡ ﻨﻤﻭﺫﺝ ﺒﻭﻜﺱ‪-‬ﺠﻴﻨﻜﻨﺯ ﺍﻟﺫﻱ ﺘﻡ ﺘﻁﻭﻴﺭﻩ ‪ :‬ﻟﻘﺩ ﺘﻡ‬

‫ﺍﻟﺒﺤﺙ ﻋﻥ ﺍﻟﻨﻤﻭﺫﺝ ﺍﻟﺫﻱ ﻴﻤﻜﻥ ﺃﻥ ﻴﺼﻑ ﺍﻟﺘﻐﻴﺭ ﻓﻲ ﺍﻟﺴﻠﺴﻠﺔ ﺍﻟﺯﻤﻨﻴﺔ ﻤﻥ ﺃﺠل‬ ‫ﺍﺴﺘﺨﺩﺍﻤﻬﺎ ﻓﻲ ﺍﻟﺘﻨﺒﺅ ﺒﻘﻴﻡ ﻤﺴﺘﻘﺒﻠﻴﺔ ﻗﺼﻴﺭﺓ ﻭﻤﺘﻭﺴﻁﺔ ﺍﻷﺠل‪ ،‬ﻭﻻ ﻴﺠﺏ ﺍﺴﺘﺨﺩﺍﻡ ﻤﺜل‬

‫ﻫﺫﺍ ﺍﻟﻨﻤﻭﺫﺝ ﻓﻲ ﺍﻟﺘﻨﺒﺅ ﺒﻘﻴﻡ ﻤﺴﺘﻘﺒﻠﻴﺔ ﻁﻭﻴﻠﺔ ﺍﻷﺠل‪ ،‬ﻭﻴﺤﺴﻥ ﺩﺍﺌﻤﹰﺎ ﺘﻌﺩﻴل ﺍﻟﺒﻴﺎﻨﺎﺕ ﻜﻠﻤﺎ‬ ‫ﺘﻭﻓﺭﺕ ﻤﻌﻠﻭﻤﺎﺕ ﺠﺩﻴﺩﺓ ﻋﻥ ﻓﺘﺭﺍﺕ ﺯﻤﻨﻴﺔ ﺠﺩﻴﺩﺓ ﻟﻜﻲ ﻴﺘﻡ ﺘﺨﻔﻴﺽ ﻋﺩﺩ ﺍﻟﻔﺘﺭﺍﺕ‬

‫ﺍﻟﺯﻤﻨﻴﺔ ﺍﻟﻤﺴﺘﻘﺒﻠﻴﺔ ﺍﻟﻤﻁﻠﻭﺏ ﺍﻟﺘﻨﺒﺅ ﺒﻘﻴﻡ ﺍﻟﺴﻠﺴﻠﺔ ﺒﻬﺎ‪.‬‬

‫ﻤﺭﺍﻗﺒﺔ ﺩﻗﺔ ﺍﻟﺘﻨﺒﺅ ﻋﻤﻠﻴ ﹰﺎ ‪ :‬ﻜﻠﻤﺎ ﻤﺭ ﺍﻟﻭﻗﺕ ﻓﺈﻨﻪ ﻴﺠﺏ ﻤﺭﺍﻗﺒﺔ ﻤﺩﻯ ﺩﻗﺔ ﻨﻤﻭﺫﺝ‬

‫ﺒﻭﻜﺱ‪-‬ﺠﻴﻨﻜﻨﺯ ﺍﻟﺫﻱ ﺘﻡ ﺘﻁﻭﻴﺭﻩ ﻟﻠﺴﻠﺴﻠﺔ ﺍﻟﺯﻤﻨﻴﺔ ﻓﻲ ﺍﻟﺘﻨﺒﺅ ﺒﻘﻴﻡ ﺍﻟﻅﺎﻫﺭﺓ ﺍﻟﻤﺴﺘﻘﺒﻠﻴﺔ‬

‫ﺍﻟﺘﻲ ﺃﺼﺒﺤﺕ ﺤﺎﻟﻴﺔ ﻭﻤﺸﺎﻫﺩﺓ‪ ،‬ﻓﻜﻠﻤﺎ ﻜﺎﻨﺕ ﺍﻟﻔﺘﺭﺓ ﺍﻟﻤﺴﺘﻘﺒﻠﻴﺔ ﺒﻌﻴﺩﺓ ﻜﻠﻤﺎ ﻜﺎﻥ ﻋﺎﻤل‬

‫ﺍﻟﺨﻁﺄ ﻓﻲ ﺍﻟﺘﻨﺒﺅ ﺃﻜﺒﺭ‪ ،‬ﻟﺫﻟﻙ ﻻﺒﺩ ﻤﻥ ﻤﺭﺍﻗﺒﺔ ﺘﻁﻭﺭ ﺍﻷﺨﻁﺎﺀ ﻓﻲ ﺍﻟﺘﻨﺒﺅ ﻭﺍﻟﺨﻁﺄ‬

‫ﺍﻟﻤﻌﻴﺎﺭﻱ ﻭﺍﻟﺘﺭﺍﺒﻁ ﺍﻟﺫﺍﺘﻲ ﻟﻸﺨﻁﺎﺀ‪ ،‬ﻭﺇﺫﺍ ﺘﺒﻴﻥ ﺃﻥ ﺍﻟﺴﻠﺴﻠﺔ ﺍﻟﺯﻤﻨﻴﺔ ﺒﺩﺃﺕ ﺘﺄﺨﺫ ﻨﻤﻁﹰﺎ‬

‫ﺠﺩﻴﺩﹰﺍ ﻤﻊ ﻤﺭﻭﺭ ﺍﻟﻭﻗﺕ ﻓﻼﺒﺩ ﻫﻨﺎ ﻤﻥ ﺇﻋﺎﺩﺓ ﺘﻘﺩﻴﺭ ﻤﻌﺎﻟﻡ ﺍﻟﻨﻤﻭﺫﺝ ﻤﻥ ﺠﺩﻴﺩ‪.‬‬


‫)‪ (15‬ﺘﺤﻠﻴل ﺍﻟﺴﻼﺴل ﺍﻟﺯﻤﻨﻴﺔ ﻭﺍﻟﺘﻨﺒﺅ ﺍﻹﺤﺼﺎﺌﻲ‬

‫‪529‬‬

‫‪ .5 .15‬اﺧﺘﻴﺎر ﻧﻤﻮذج اﻟﺴﻼﺳﻞ اﻟﺰﻣﻨﻴﺔ ﺑﺎﺳﺘﺨﺪام ﻧﻈﺎم ‪: SPSS‬‬ ‫‪Model Identification Using SPSS:‬‬ ‫ﻭﻟﺘﻭﻀﻴﺢ ﺍﻷﺴﺱ ﺍﻟﺴﺎﺒﻘﺔ ﺴﻨﺄﺨﺫ ﺍﻟﻤﺜﺎل ﺍﻟﺘﺎﻟﻲ ﻭﺍﻟﺫﻱ ﻴﻬﺩﻑ ﺇﻟﻰ ﺘﻭﻀﻴﺢ‬ ‫ﺍﻟﺒﻨﻭﺩ ﺍﻟﺴﺎﺒﻕ ﺫﻜﺭﻫﺎ ﺒﺎﺴﺘﺨﺩﺍﻡ ﺒﻴﺎﻨﺎﺕ ﻟﺴﻠﺴﻠﺔ ﺯﻤﻨﻴﺔ ﺘﺘﻜﻭﻥ ﻤﻥ ‪ 48‬ﻗﻴﻤﺔ ﻭﺘﻤﺜل‬

‫ﺴﻠﺴﻠﺔ ﺍﻷﺭﻗﺎﻡ ﺍﻟﻘﻴﺎﺴﻴﺔ ﺍﻟﺸﻬﺭﻴﺔ ﻷﺴﻌﺎﺭ ﺍﻟﻤﺴﺘﻬﻠﻙ ﻓﻲ ﻓﻠﺴﻁﻴﻥ ﻓﻲ ﺍﻷﺭﺒﻊ ﺴﻨﻭﺍﺕ‬ ‫‪ 2000-1997‬ﻤﺒﻴﻨﺔ ﻓﻲ ﺍﻟﺠﺩﻭل ﻓﻲ ﺸﻜل ‪ 3-15‬ﺍﻟﺘﺎﻟﻲ‪.‬‬

‫ﺸﻜل ‪ : 3-15‬ﺴﻠﺴﻠﺔ ﺯﻤﻨﻴﺔ ﺘﻤﺜل ﺍﻷﺭﻗﺎﻡ ﺍﻟﻘﻴﺎﺴﻴﺔ ﺍﻟﺸﻬﺭﻴﺔ ﻟﻠﻤﺴﺘﻬﻠﻙ ‪Monthly‬‬ ‫‪ Consumer Price Index‬ﻓﻲ ‪ 48‬ﺸﻬﺭﹰﺍ ﻟﻸﻋﻭﺍﻡ ‪ 2000-1997‬ﻓﻲ ﻓﻠﺴﻁﻴﻥ‪.‬‬ ‫) ‪( 1996 =100‬‬ ‫ﻋﺎﻡ ‪2000‬‬ ‫ﻋﺎﻡ ‪1999‬‬ ‫ﻋﺎﻡ ‪ 1997‬ﻋﺎﻡ ‪1998‬‬ ‫ﺍﻟﺸﻬﺭ‬ ‫ﻴﻨﺎﻴﺭ‬

‫‪104.74‬‬

‫‪111.86‬‬

‫‪121.76‬‬

‫‪123.73‬‬

‫ﻓﺒﺭﺍﻴﺭ‬

‫‪106.35‬‬

‫‪111.46‬‬

‫‪120.00‬‬

‫‪124.07‬‬

‫ﻤﺎﺭﺱ‬

‫‪106.25‬‬

‫‪110.62‬‬

‫‪119.79‬‬

‫‪123.79‬‬

‫ﺇﺒﺭﻴل‬

‫‪107.61‬‬

‫‪110.31‬‬

‫‪118.33‬‬

‫‪122.96‬‬

‫ﻤﺎﻴﻭ‬

‫‪106.21‬‬

‫‪111.28‬‬

‫‪118.27‬‬

‫‪132.27‬‬

‫ﻴﻭﻨﻴﻭ‬

‫‪106.77‬‬

‫‪111.19‬‬

‫‪119.77‬‬

‫‪123.30‬‬

‫ﻴﻭﻟﻴﻭ‬

‫‪107.98‬‬

‫‪111.75‬‬

‫‪119.17‬‬

‫‪123.09‬‬

‫ﺃﻏﺴﻁﺱ‬

‫‪108.54‬‬

‫‪112.39‬‬

‫‪118.56‬‬

‫‪121.95‬‬

‫ﺴﺒﺘﻤﺒﺭ‬

‫‪108.96‬‬

‫‪114.62‬‬

‫‪118.78‬‬

‫‪122.86‬‬

‫ﺃﻜﺘﻭﺒﺭ‬

‫‪108.97‬‬

‫‪117.89‬‬

‫‪120.81‬‬

‫‪122.95‬‬

‫ﻨﻭﻓﻤﺒﺭ‬

‫‪109.19‬‬

‫‪119.60‬‬

‫‪121.35‬‬

‫‪123.19‬‬

‫ﺩﻴﺴﻤﺒﺭ‬

‫‪109.43‬‬

‫‪120.57‬‬

‫‪123.55‬‬

‫‪126.25‬‬

‫ﻭﻟﺘﻭﻀﻴﺢ ﻜﻴﻔﻴﺔ ﺇﻴﺠﺎﺩ ﻨﻤﻭﺫﺝ ﺒﻭﻜﺱ‪-‬ﺠﻴﻨﻜﻨﺯ ﺍﻟﻤﻼﺌﻡ ﻟﻬﺫﻩ ﺍﻟﺴﻠﺴﻠﺔ ﻻﺒﺩ ﻓﻲ‬ ‫ﺍﻟﺒﺩﺍﻴﺔ ﻤﻥ ﺘﻤﺜﻴل ﻫﺫﻩ ﺍﻟﺴﻠﺴﻠﺔ ﺒﻴﺎﻨﻴﹰﺎ ﺒﺎﺴﺘﺨﺩﺍﻡ ﺸﻜل ﺍﻟﺴﻠﺴﻠﺔ ﺍﻟﺯﻤﻨﻴﺔ ﻋﻥ ﻁﺭﻴﻕ ﺃﻤﺭ‬

‫ﺭﺴﻡ ﺍﻟﺴﻠﺴﻠﺔ ‪ Sequence‬ﻓﻲ ﻗﺎﺌﻤﺔ ﺍﻟﺭﺴﻭﻤﺎﺕ ﺍﻟﺒﻴﺎﻨﻴﺔ ‪ Graphs‬ﻓﻲ ﻨﻅﺎﻡ ‪، SPSS‬‬ ‫ﻭﻴﺒﻴﻥ ﺍﻟﺸﻜل ‪ 4-15‬ﺍﻟﺘﺎﻟﻲ ﺭﺴﻤﹰﺎ ﻟﻬﺫﻩ ﺍﻟﺴﻠﺴﻠﺔ ﺍﻟﺯﻤﻨﻴﺔ‪.‬‬


‫)‪ (15‬ﺘﺤﻠﻴل ﺍﻟﺴﻼﺴل ﺍﻟﺯﻤﻨﻴﺔ ﻭﺍﻟﺘﻨﺒﺅ ﺍﻹﺤﺼﺎﺌﻲ‬

‫‪530‬‬

‫ﺸﻜل ‪ : 4-15‬ﺴﻠﺴﻠﺔ ﺯﻤﻨﻴﺔ ﺘﻤﺜل ﺍﻷﺭﻗﺎﻡ ﺍﻟﻘﻴﺎﺴﻴﺔ ﺍﻟﺸﻬﺭﻴﺔ ﻟﻠﻤﺴﺘﻬﻠﻙ ‪Monthly‬‬ ‫‪ Consumer Price Index‬ﻓﻲ ‪ 48‬ﺸﻬﺭﹰﺍ ﻟﻸﻋﻭﺍﻡ ‪ 2000-1997‬ﻓﻲ ﻓﻠﺴﻁﻴﻥ‪.‬‬ ‫‪Monthly Consumer Price Index in Palestine 1997-2000‬‬ ‫‪1996 = 100‬‬ ‫‪Source: Statistical Abstract of Palestine, No. (2), 2001‬‬ ‫‪PRICIND‬‬

‫‪140‬‬

‫‪130‬‬

‫‪120‬‬

‫‪110‬‬

‫‪100‬‬ ‫‪2000‬‬

‫‪1999‬‬

‫‪1998‬‬

‫‪1997‬‬

‫‪Month and Year‬‬

‫ﻭﻏﻨﻲ ﻋﻥ ﺍﻟﺒﻴﺎﻥ ﺃﻥ ﻫﺫﺍ ﺍﻟﺭﺴﻡ ﻭﺠﻤﻴﻊ ﺍﻟﺒﻨﻭﺩ ﻓﻲ ﺍﻟﺨﻁﻭﺍﺕ ﺍﻟﺘﺎﻟﻴﺔ ﻗﺩ ﺘﻤﺕ‬

‫ﺒﺎﺴﺘﺨﺩﺍﻡ ﻨﻅﺎﻡ ‪ SPSS‬ﻋﻥ ﻁﺭﻴﻕ ﺍﻷﻭﺍﻤﺭ ﺍﻟﺘﻲ ﺘﻡ ﺘﻭﻀﻴﺤﻬﺎ ﻓﻲ ﺍﻟﻔﺼﻭل ﺍﻟﺴﺎﺒﻘﺔ‬

‫ﺒﺎﺴﺘﺜﻨﺎﺀ ﺒﻌﺽ ﺍﻷﻭﺍﻤﺭ ﺍﻟﺠﺩﻴﺩﺓ ﺍﻟﺘﻲ ﺴﻴﺘﻡ ﺍﻟﺘﻌﺭﺽ ﺇﻟﻴﻬﺎ ﻓﻴﻤﺎ ﻴﻠﻲ‪.‬‬

‫ﺇﻥ ﺃﺤﺩ ﺍﻷﺩﻭﺍﺕ ﺍﻟﻬﺎﻤﺔ ﻓﻲ ﺍﺴﺘﻜﺸﺎﻑ ﺍﻟﺴﻼﺴل ﺍﻟﺯﻤﻨﻴﺔ ﻭﻓﺤﺹ ﺸﺭﻭﻁ ﺍﻟﺜﺒﺎﺕ‬

‫ﻭﺍﺴﺘﻘﺭﺍﺭ ﺍﻟﺘﺒﺎﻴﻥ ﻫﻭ ﺘﻤﺜﻴل ﻫﺫﻩ ﺍﻟﺒﻴﺎﻨﺎﺕ ﺒﺎﺴﺘﺨﺩﺍﻡ ﺃﺸﻜﺎل ﺍﻟﺼﻨﺎﺩﻴﻕ ‪، Box Plots‬‬ ‫ﻭﻫﺫﺍ ﻴﻤﻜﻥ ﺃﻥ ﻴﺘﻡ ﺒﻌﺩ ﺘﻘﺴﻴﻡ ﺍﻟﺴﻠﺴﻠﺔ ﺇﻟﻰ ﻤﺠﻤﻭﻋﺎﺕ ﻤﻥ ﺍﻟﻘﻴﻡ ﺍﻟﻤﺘﺘﺎﺒﻌﺔ )‪ 12‬ﻗﻴﻤﺔ‬ ‫ﻫﻨﺎ( ﻭﺇﻋﻁﺎﺀ ﺩﻟﻴل ﻟﻜل ﻤﺠﻤﻭﻋﺔ)ﻓﺌﺔ(‪.‬‬

‫ﻭﻴﻭﻀﺢ ﺍﻟﺸﻜل ‪ 5-15‬ﺍﻟﺘﺎﻟﻲ ﺃﺸﻜﺎل ﺍﻟﺼﻨﺎﺩﻴﻕ ‪ Box plot‬ﻟﻬﺫﻩ ﺍﻟﺴﻠﺴﻠﺔ‪،‬‬

‫ﻓﻴﺘﻀﺢ ﻤﻨﻪ ﻭﻤﻥ ﺍﻟﺸﻜل ﺍﻟﺴﺎﺒﻕ ﺃﻨﻪ ﻻ ﻴﻭﺠﺩ ﺤﻘﻴﻘﺔ ﺍﺘﺠﺎﻩ ﻋﺎﻡ ﺨﻁﻲ ‪Linear Trend‬‬


‫)‪ (15‬ﺘﺤﻠﻴل ﺍﻟﺴﻼﺴل ﺍﻟﺯﻤﻨﻴﺔ ﻭﺍﻟﺘﻨﺒﺅ ﺍﻹﺤﺼﺎﺌﻲ‬

‫‪531‬‬

‫ﻓﻲ ﻫﺫﻩ ﺍﻟﺴﻠﺴﺔ ﺒل ﻴﻤﻜﻥ ﺃﻥ ﻨﺼﻑ ﺍﻟﺘﻐﻴﺭ ﻓﻲ ﻫﺫﻩ ﺍﻟﻘﻴﻡ ﺍﻟﻤﺭﺘﺒﻁ ﺒﺎﻟﺯﻤﻥ ﺒﺄﻨﻪ ﺍﺘﺠﺎﻩ‬ ‫ﻋﺎﻡ ﻴﺄﺨﺫ ﺸﻜل ﻤﻨﺤﻨﻰ ﻤﻥ ﺍﻟﺩﺭﺠﺔ ﺍﻟﺜﺎﻨﻴﺔ ‪ Quadratic Curve‬ﺃﻭ ﺒﺸﻜل ﺃﺩﻕ ﻴﻤﻜﻥ‬ ‫ﺃﻥ ﻴﻭﺼﻑ ﺒﺄﻨﻪ ﺘﺤﻭل ﻤﻔﺎﺠﺊ ‪ a step change‬ﻓﻲ ﻤﻨﺘﺼﻑ ﺍﻟﺴﻠﺴﻠﺔ‪ ،‬ﻟﺫﻟﻙ ﺴﻭﻑ‬ ‫ﻨﻘﻭﻡ ﺒﺘﺠﺎﻫل ﻭﺠﻭﺩﻩ ﻓﻲ ﻫﺫﻩ ﺍﻟﻤﺭﺤﻠﺔ ‪.‬‬

‫ﺸﻜل ‪ : 5-15‬ﺃﺸﻜﺎل ﺍﻟﺼﻨﺎﺩﻴﻕ ‪ Box Plots‬ﻟﺴﻠﺴﻠﺔ ﺍﻷﺭﻗﺎﻡ ﺍﻟﻘﻴﺎﺴﻴﺔ ﺍﻟﺸﻬﺭﻴﺔ‬ ‫ﻟﻠﻤﺴﺘﻬﻠﻙ ‪ Consumer Price Index‬ﻟﻸﻋﻭﺍﻡ ‪ 2000-1997‬ﻓﻲ ﻓﻠﺴﻁﻴﻥ‪.‬‬ ‫‪Box plot for monthly consumer price index in Palestine 1997-2000‬‬ ‫‪1996 = 100‬‬

‫‪41‬‬

‫‪130‬‬ ‫‪48‬‬

‫‪120‬‬

‫‪Monthly Consumer Price Index‬‬

‫‪140‬‬

‫‪110‬‬

‫‪100‬‬ ‫‪12‬‬

‫‪12‬‬

‫‪12‬‬

‫‪12‬‬

‫‪2000‬‬

‫‪1999‬‬

‫‪1998‬‬

‫‪1997‬‬

‫=‪N‬‬

‫‪Year‬‬

‫ﻭﻻﺴﺘﻜﺸﺎﻑ ﺍﻟﻨﻤﻭﺫﺝ ﺍﻟﻤﻨﺎﺴﺏ ﻟﻬﺫﻩ ﺍﻟﺴﻠﺴﻠﺔ ﻻ ﺒﺩ ﻤﻥ ﺭﺴﻡ ﺩﺍﻟﺘﻲ ﺍﻟﺘﺭﺍﺒﻁ‬

‫ﺍﻟﺫﺍﺘﻲ ‪ ACF‬ﻭﺍﻟﺘﺭﺍﺒﻁ ﺍﻟﺫﺍﺘﻲ ﺍﻟﺠﺯﺌﻲ ‪ PACF‬ﻜﻤﺎ ﻓﻲ ﺸﻜل ‪ 6-15‬ﺃﺩﻨﺎﻩ‪.‬‬

‫ﻴﺘﻀﺢ ﻤﻥ ﻨﻤﻁ ﺩﺍﻟﺘﻲ ﺍﻟﺘﺭﺍﺒﻁ ﺍﻟﺫﺍﺘﻲ ‪ ACF‬ﻭﺍﻟﺘﺭﺍﺒﻁ ﺍﻟﺫﺍﺘﻲ ﺍﻟﺠﺯﺌﻲ ‪PACF‬‬

‫ﻓﻲ ﺍﻟﺸﻜل ﺍﻟﺘﺎﻟﻲ ﺃﻥ ﻨﻤﻭﺫﺝ ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﺫﺍﺘﻲ ﻤﻥ ﺍﻟﺩﺭﺠﺔ ﺍﻷﻭﻟﻰ )‪ AR(1‬ﻫﻭ ﺍﻟﻨﻤﻭﺫﺝ‬

‫ﺍﻷﻜﺜﺭ ﻤﻼﺌﻤﺔ ﻟﻬﺫﻩ ﺍﻟﺒﻴﺎﻨﺎﺕ ﺤﻴﺙ ﺃﻥ ﺩﺍﻟﺔ ﺍﻟﺘﺭﺍﺒﻁ ﺍﻟﺫﺍﺘﻲ ‪ ACF‬ﺘﺘﻼﺸﻰ ﺘﺩﺭﻴﺠﻴﹰﺎ‬

‫ﺒﻴﻨﻤﺎ ﺩﺍﻟﺔ ﺍﻟﺘﺭﺍﺒﻁ ﺍﻟﺫﺍﺘﻲ ﺍﻟﺠﺯﺌﻲ ‪ PACF‬ﺘﺘﻭﻗﻑ ﺒﻌﺩ ﺍﻟﺩﺭﺠﺔ ﺍﻷﻭﻟﻰ‪.‬‬


‫( ﺘﺤﻠﻴل ﺍﻟﺴﻼﺴل ﺍﻟﺯﻤﻨﻴﺔ ﻭﺍﻟﺘﻨﺒﺅ ﺍﻹﺤﺼﺎﺌﻲ‬15)

532

.‫ ﻟﻠﺴﻠﺴﻠﺔ‬PACF ‫ ﻭﺍﻟﺘﺭﺍﺒﻁ ﺍﻟﺫﺍﺘﻲ ﺍﻟﺠﺯﺌﻲ‬ACF ‫ ﺩﺍﻟﺘﻲ ﺍﻟﺘﺭﺍﺒﻁ ﺍﻟﺫﺍﺘﻲ‬: 6-15 ‫ﺸﻜل‬ ACF

Monthly Consumer Price Index 1.0

.5

0.0

-.5

Confidence Limits

Coefficient

-1.0 1

3 2

5 4

7 6

9 8

11 10

13 12

15 14

16

Lag Number

Partial ACF

Monthly Consumer Price Index 1.0

.5

0.0

-.5

Confidence Limits

Coefficient

-1.0 1

3 2

5 4

7 6

9 8

11 10

13 12

15 14

16

Lag Number


‫)‪ (15‬ﺘﺤﻠﻴل ﺍﻟﺴﻼﺴل ﺍﻟﺯﻤﻨﻴﺔ ﻭﺍﻟﺘﻨﺒﺅ ﺍﻹﺤﺼﺎﺌﻲ‬

‫‪533‬‬

‫ﻭﻴﺠﺩﺭ ﺒﺎﻟﺫﻜﺭ ﺃﻥ ﺒﻴﺎﻨﺎﺕ ﺍﻟﺴﻠﺴﻠﺔ ﺍﻟﺯﻤﻨﻴﺔ ﺘﺩﺨل ﻋﺎﺩﺓ ﻓﻲ ﻨﻅﺎﻡ ‪ SPSS‬ﺩﺍﺌﻤﹰﺎ‬ ‫ﺒﺎﺴﻡ ﻤﺘﻐﻴﺭ ﻭﺍﺤﺩ ﻓﻲ ﻋﻤﻭﺩ ﻭﺍﺤﺩ ﻓﻘﻁ ﻟﺫﺍ ﻻ ﺒﺩ ﻤﻥ ﺇﺩﺨﺎل ﺒﻴﺎﻨﺎﺕ ﺍﻟﺴﻠﺴﻠﺔ ﻓﻲ ﺍﻟﺸﻜل‬ ‫‪ 3-15‬ﺍﻟﺴﺎﺒﻕ ﻓﻲ ﻋﻤﻭﺩ ﻭﺍﺤﺩ ﺤﺴﺏ ﺍﻟﺘﺩﺭﺝ ﺍﻟﺯﻤﻨﻲ‪ ،‬ﻭﻴﻤﻜﻥ ﺍﻟﺤﺼﻭل ﻋﻠﻰ ﺭﺴﻡ‬

‫ﺍﻟﺴﻠﺴﻠﺔ ﺍﻟﺯﻤﻨﻴﺔ )ﺸﻜل ‪ (5-15‬ﻤﻥ ﺨﻼل ﺃﻤﺭ ﺭﺴﻡ ﺍﻟﺴﻠﺴﻠﺔ ‪ Sequence‬ﻓﻲ ﻗﺎﺌﻤﺔ‬ ‫ﺍﻟﺭﺴﻭﻤﺎﺕ ﺍﻟﺒﻴﺎﻨﻴﺔ ‪ Graphs‬ﻓﻲ ﺍﻟﻘﺎﺌﻤﺔ ﺍﻟﺭﺌﻴﺴﻴﺔ ﻟﻠﻨﻅﺎﻡ ‪ ،‬ﺃﻱ ‪:‬‬ ‫‪Sequence .‬‬

‫‪Graphs ----Æ‬‬

‫ﻭﺫﻟﻙ ﻜﻤﺎ ﻓﻲ ﺸﻜل ‪ 7-15‬ﻟﺘﻔﺘﺢ ﻨﺎﻓﺫﺓ ﺭﺴﻡ ﺍﻟﺴﻠﺴﻠﺔ ‪ Sequence‬ﻓﻴﺘﻡ ﺒﻬﺎ‬

‫ﺇﺩﺨﺎل ﺍﺴﻡ ﺍﻟﻤﺘﻐﻴﺭ ﺍﻟﺫﻱ ﻴﺤﺘﻭﻱ ﻋﻠﻰ ﺒﻴﺎﻨﺎﺕ ﺍﻟﺴﻠﺴﻠﺔ ﺍﻟﺯﻤﻨﻴﺔ‪ ،‬ﻭﻴﻤﻜﻥ ﺃﻴﻀﹰﺎ ﺇﺩﺨﺎل‬ ‫ﻤﺘﻐﻴﺭ ﺁﺨﺭ ﻴﺤﺘﻭﻱ ﻋﻠﻰ ﺍﻟﻭﺤﺩﺍﺕ ﺍﻟﺯﻤﻨﻴﺔ ﻟﺘﻌﺭﻴﻑ ﺍﻟﻤﺤﻭﺭ ﺍﻷﻓﻘﻲ ﻓﻲ ﺍﻟﺸﻜل ﺇﻻ ﺃﻥ‬

‫ﻫﺫﺍ ﻟﻴﺱ ﻀﺭﻭﺭﻱ ﺇﺫ ﻴﻘﻭﻡ ﺍﻟﻨﻅﺎﻡ ﺒﺘﻤﺜﻴل ﺍﻟﻘﻴﻡ ﺒﻴﺎﻨﻴﹰﺎ ﺒﺎﻟﺘﺴﻠﺴل ﺍﻟﺯﻤﻨﻲ ﺍﻟﻁﺒﻴﻌﻲ ‪.‬‬

‫ﻜﻤﺎ ﺃﻨﻪ ﻴﻤﻜﻥ ﺃﻴﻀﹰﺎ ﺍﻟﺤﺼﻭل ﻋﻠﻰ ﺩﺍﻟﺘﻲ ﺍﻟﺘﺭﺍﺒﻁ ﺍﻟﺫﺍﺘﻲ ‪ ACF‬ﻭﺍﻟﺘﺭﺍﺒﻁ‬

‫ﺍﻟﺫﺍﺘﻲ ﺍﻟﺠﺯﺌﻲ ‪ PACF‬ﻟﻬﺫﻩ ﺍﻟﺴﻠﺴﻠﺔ ﺒﺎﺴﺘﺨﺩﺍﻡ ﻨﻅﺎﻡ ‪ SPSS‬ﻋﻥ ﻁﺭﻴﻕ ﺃﻤﺭ ﺭﺴﻡ‬

‫ﺍﻟﺴﻼﺴل ﺍﻟﺯﻤﻨﻴﺔ ‪ ،Time Series Plot‬ﻓﻴﻤﻜﻥ ﺍﻟﺤﺼﻭل ﻋﻠﻰ ﺍﻟﺭﺴﻤﻴﻥ ﻓﻲ ﺍﻟﺸﻜل‬ ‫‪ 6-15‬ﺒﺎﺨﺘﻴﺎﺭ ﻗﺎﺌﻤﺔ ﺍﻟﺭﺴﻭﻤﺎﺕ ﺍﻟﺒﻴﺎﻨﻴﺔ ‪ Graphs‬ﻓﻲ ﺍﻟﻘﺎﺌﻤﺔ ﺍﻟﺭﺌﻴﺴﻴﺔ ﻟﻠﻨﻅﺎﻡ ﻭﻤﻨﻬﺎ‬

‫ﻴﺘﻡ ﺍﺨﺘﻴﺎﺭ ﺃﻭﺍﻤﺭ ﺍﻟﺴﻼﺴل ﺍﻟﺯﻤﻨﻴﺔ ‪ Time Series‬ﻭﻤﻥ ﺜﻡ ﻨﺨﺘﺎﺭ ﺃﻤﺭ ﺍﻟﺘﺭﺍﺒﻁ ﺍﻟﺫﺍﺘﻲ‬

‫‪) Autocorrelations‬ﻜﻤﺎ ﻓﻲ ﺸﻜل ‪ ،(7-15‬ﺃﻱ ‪:‬‬

‫‪Time Series --Æ Autocorrelations‬‬

‫‪Graphs --Æ‬‬

‫ﻟﺘﻔﺘﺢ ﻨﺎﻓﺫﺓ ﺍﻟﺘﺭﺍﺒﻁ ﺍﻟﺫﺍﺘﻲ ‪ Autocorrelations‬ﻓﻴﺘﻡ ﺒﻬﺎ ﺇﺩﺨﺎل ﺍﺴﻡ ﺍﻟﻤﺘﻐﻴﺭ ﺍﻟﺫﻱ‬

‫ﻴﺤﺘﻭﻱ ﻋﻠﻰ ﺒﻴﺎﻨﺎﺕ ﺍﻟﺴﻠﺴﻠﺔ ﺍﻟﺯﻤﻨﻴﺔ ﻓﻘﻁ‪.‬‬

‫ﻜﺫﻟﻙ ﻴﻤﻜﻥ ﺘﻭﻓﻴﻕ ﻨﻤﻭﺫﺝ ﺍﻟﺴﻼﺴل ﺍﻟﺯﻤﻨﻴﺔ ﺍﻟﻤﻘﺘﺭﺡ )‪ AR(1‬ﺃﻭ ﺃﻱ ﻤﻥ ﻨﻤﺎﺫﺝ‬

‫ﺒﻭﻜﺱ‪-‬ﺠﻴﻨﻜﻨﺯ ﻟﻠﺴﻼﺴل ﺍﻟﺯﻤﻨﻴﺔ ﻋﻥ ﻁﺭﻴﻕ ﻗﺎﺌﻤﺔ ﺍﻟﺘﺤﻠﻴل ﺍﻹﺤﺼﺎﺌﻲ ‪) Analyze‬ﺃﻭ‬

‫‪ Statistics‬ﻓﻲ ﺇﺼﺩﺍﺭ ‪ (8.0‬ﻭﻤﻨﻬﺎ ﺍﺨﺘﻴﺎﺭ ﺃﻭﺍﻤﺭ ﺍﻟﺴﻼﺴل ﺍﻟﺯﻤﻨﻴﺔ ‪Time Series‬‬

‫ﻭﻤﻥ ﺜﻡ ﺍﻷﻤﺭ ‪) ARIMA‬ﺸﻜل ‪ (8-15‬ﺍﻟﺘﺎﻟﻲ ‪.‬‬


‫)‪ (15‬ﺘﺤﻠﻴل ﺍﻟﺴﻼﺴل ﺍﻟﺯﻤﻨﻴﺔ ﻭﺍﻟﺘﻨﺒﺅ ﺍﻹﺤﺼﺎﺌﻲ‬

‫‪534‬‬

‫ﺸﻜل ‪ : 7-15‬ﺍﻟﺤﺼﻭل ﻋﻠﻰ ﺩﺍﻟﺘﻲ ﺍﻟﺘﺭﺍﺒﻁ ﺍﻟﺫﺍﺘﻲ ‪ ACF‬ﻭﺍﻟﺘﺭﺍﺒﻁ ﺍﻟﺫﺍﺘﻲ ﺍﻟﺠﺯﺌﻲ‬ ‫‪ PACF‬ﻟﻠﺴﻠﺴﻠﺔ ﺍﻟﺯﻤﻨﻴﺔ ﻤﻥ ﻗﺎﺌﻤﺔ ﺍﻟﺭﺴﻭﻤﺎﺕ ﺍﻟﺒﻴﺎﻨﻴﺔ ‪.Ghraphs‬‬

‫ﺸﻜل ‪ : 8-15‬ﺘﺤﻠﻴل ﻟﻠﺴﻠﺴﻠﺔ ﺍﻟﺯﻤﻨﻴﺔ ﺒﺎﺴﺘﺨﺩﺍﻡ ﻨﻤﺎﺫﺝ ﺒﻭﻜﺱ‪-‬ﺠﻴﻨﻜﻨﺯ ‪.ARIMA‬‬

‫ﻭﺒﺎﺨﺘﻴﺎﺭ ﺃﻤﺭ ﺍﻟﺴﻼﺴل ﺍﻟﺯﻤﻨﻴﺔ ‪ Time Series‬ﻭﻤﻥ ﺜﻡ ﺍﻷﻤﺭ ‪) ARIMA‬ﻜﻤﺎ‬

‫ﺴﺒﻕ ﺘﻭﻀﻴﺤﻪ( ﺴﻭﻑ ﺘﻔﺘﺢ ﻨﺎﻓﺫﺓ ﺘﺤﻠﻴل ﺍﻟﺴﻼﺴل ﺍﻟﺯﻤﻨﻴﺔ ‪ ARIMA‬ﺍﻟﻤﻭﻀﺤﺔ ﻓﻲ‬

‫ﺍﻟﺸﻜل ‪ 9-15‬ﺃﺩﻨﺎﻩ‪ ،‬ﻓﻴﺘﻡ ﺇﻋﻁﺎﺀ ﺍﺴﻡ ﺍﻟﻤﺘﻐﻴﺭ ﺍﻟﺫﻱ ﻴﺤﺘﻭﻱ ﻋﻠﻰ ﻗﻴﻡ ﺍﻟﺴﻠﺴﻠﺔ ﺍﻟﺯﻤﻨﻴﺔ‬ ‫ﻓﻘﻁ ﻓﻲ ﻤﺭﺒﻊ ﺃﺴﻤﺎﺀ ﺍﻟﻤﺘﻐﻴﺭﺍﺕ ﺍﻟﺘﺎﺒﻌﺔ ‪ ، Dependent‬ﺜﻡ ﻴﺘﻡ ﺘﺤﺩﻴﺩ ﻗﻴﻡ ‪p, d, q‬‬

‫ﻭﻫﻲ ﺭﺘﺒﺔ ﻨﻤﻭﺫﺝ )‪ ARIMA (p, d, q‬ﻭﻫﻲ ﻫﻨﺎ ‪ 1‬ﻭ ‪ 0‬ﻭ ‪ 0‬ﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ‪.‬‬


‫)‪ (15‬ﺘﺤﻠﻴل ﺍﻟﺴﻼﺴل ﺍﻟﺯﻤﻨﻴﺔ ﻭﺍﻟﺘﻨﺒﺅ ﺍﻹﺤﺼﺎﺌﻲ‬

‫‪535‬‬

‫ﺸﻜل ‪ : 9-15‬ﻨﺎﻓﺫﺓ ﻨﻤﺎﺫﺝ ﺒﻭﻜﺱ‪-‬ﺠﻴﻨﻜﻨﺯ ‪ ARIMA‬ﻟﺘﺤﻠﻴل ﺍﻟﺴﻼﺴل ﺍﻟﺯﻤﻨﻴﺔ‪.‬‬

‫ﻱ ﻤﻥ ﺍﻟﻤﺘﻐﻴﺭﺍﺕ ﺍﻟﻨﺎﺘﺠﺔ‬ ‫ﺇﻀﺎﻓﺔ ﺇﻟﻰ ﺫﻟﻙ ﻴﻤﻜﻥ ﻓﻲ ﺍﻟﻨﺎﻓﺫﺓ ﺍﻟﺴﺎﺒﻘﺔ ﺘﺤﺩﻴﺩ ﺃ ٍ‬

‫ﻟﻴﻘﻭﻡ ﺍﻟﻨﻅﺎﻡ ﺒﺘﺨﺯﻴﻨﻬﺎ ﻭﻋﺭﻀﻬﺎ ﻓﻲ ﻤﺤﺭﺭ ﺍﻟﺒﻴﺎﻨﺎﺕ ﻹﺠﺭﺍﺀ ﺘﺤﻠﻴل ﺇﻀﺎﻓﻲ ﻋﻠﻴﻬﺎ‬

‫ﻭﺫﻟﻙ ﻤﻥ ﺨﻼل ﺍﻟﻀﻐﻁ ﻋﻠﻰ ﻤﻔﺘﺎﺡ ﺤﻭﺍﺭ ﺍﻟﺘﺨﺯﻴﻥ ‪ Save‬ﺍﻟﺫﻱ ﺴﻴﻘﻭﻡ ﺒﻔﺘﺢ ﻨﺎﻓﺫﺓ‬ ‫ﺘﺨﺯﻴﻥ ﺍﻟﻤﺘﻐﻴﺭﺍﺕ ﺍﻟﻨﺎﺘﺠﺔ ‪ Save‬ﻭﺫﻟﻙ ﻜﻤﺎ ﻓﻲ ﺍﻟﺸﻜل ‪ 10-15‬ﺃﺩﻨﺎﻩ‪.‬‬

‫ﺸﻜل ‪ :10-15‬ﻨﺎﻓﺫﺓ ﺤﻔﻅ ﺍﻟﻨﺘﺎﺌﺞ ‪ Save‬ﻓﻲ ﻨﻤﺎﺫﺝ ‪ ARIMA‬ﻟﺘﺤﻠﻴل ﺍﻟﺴﻼﺴل ﺍﻟﺯﻤﻨﻴﺔ‪.‬‬


‫( ﺘﺤﻠﻴل ﺍﻟﺴﻼﺴل ﺍﻟﺯﻤﻨﻴﺔ ﻭﺍﻟﺘﻨﺒﺅ ﺍﻹﺤﺼﺎﺌﻲ‬15)

536

:‫ﻭﺘﻨﻔﻴﺫ ﻫﺫﺍ ﺍﻷﻤﺭ ﺴﻭﻑ ﻴﻌﻁﻲ ﺍﻟﻨﺘﺎﺌﺞ ﺍﻟﺘﺎﻟﻴﺔ‬ MODEL:

MOD_2

Model Description: ‫ﺠﻴﻨﻜﻨﺯ ﺍﻟﺫﻱ ﺘﻡ ﺘﻭﻓﻴﻘﻪ‬-‫ﻤﻌﻠﻭﻤﺎﺕ ﻋﺎﻤﺔ ﻋﻥ ﻨﻤﻭﺫﺝ ﺒﻭﻜﺱ‬ Variable: PRICIND Regressors: NONE Non-seasonal differencing: 0 No seasonal component in model. Parameters: AR1 _______ <value originating from estimation > CONSTANT ________ <value originating from estimation > 95.00 percent confidence intervals will be generated. Split group number: 1 Series length: 48 No missing data. Melard's algorithm will be used for estimation.

: ‫ﻤﻌﻠﻭﻤﺎﺕ ﻋﻥ ﺍﻟﻤﺭﺍﺤل ﺍﻟﺘﻲ ﻤﺭ ﺒﻬﺎ ﺍﻟﺒﺭﻨﺎﻤﺞ ﻟﻠﻭﺼﻭل ﺇﻟﻰ ﺍﻟﻨﺘﺎﺌﺞ ﺍﻟﻨﻬﺎﻴﺔ‬ Termination criteria: Parameter epsilon: .001 Maximum Marquardt constant: 1.00E+09 SSQ Percentage: .001 Maximum number of iterations: 10 Initial values: AR1 .89332 CONSTANT 116.1333 Marquardt constant = .001 Adjusted sum of squares = 266.21919 Iteration 1

Iteration History: Adj. Sum of Squares 251.40466

Marquardt Constant .00100000

Conclusion of estimation phase. Estimation terminated at iteration number 2 because: Sum of squares decreased by less than .001 percent.


537

‫( ﺘﺤﻠﻴل ﺍﻟﺴﻼﺴل ﺍﻟﺯﻤﻨﻴﺔ ﻭﺍﻟﺘﻨﺒﺅ ﺍﻹﺤﺼﺎﺌﻲ‬15)

FINAL PARAMETERS:

(‫ )ﺍﻟﺠﺎﻨﺏ ﺍﻷﻜﺜﺭ ﺃﻫﻤﻴﺔ‬: ‫ﺍﻟﻨﺘﺎﺌﺞ ﺍﻟﻨﻬﺎﺌﻴﺔ‬

Number of residuals Standard error Log likelihood AIC SBC

48 2.2739019

‫ﺴﻴﺘﻡ ﺘﻭﻀﻴﺢ ﻫﺫﺍ ﺍﻟﻤﻘﺩﺍﺭ ﻻﺤﻘ ﹰﺎ‬

-107.85164 219.70328 223.44568

Analysis of Variance: DF Adj. Sum of Squares Residuals 46 251.40351 Variables in the Model: B SEB AR1 .96440 .0355705 CONSTANT 115.89946 6.3193339

‫ﺘﺤﻠﻴل ﺍﻟﺘﺒﺎﻴﻥ ﻟﻠﻨﻤﻭﺫﺝ‬ Residual Variance 5.1706297

AR(1) ‫ﻤﻌﺎﻟﻡ ﻨﻤﻭﺫﺝ‬ T-RATIO APPROX.PROB. 27.112420 .0000000 18.340455 .0000000

Covariance Matrix: AR1 AR1 .00126526 Correlation Matrix: AR1 AR1 1.0000000 Regressor Covariance Matrix: CONSTANT CONSTANT 39.933981 Regressor Correlation Matrix: CONSTANT CONSTANT 1.0000000

: ‫ﺍﻟﻤﺘﻐﻴﺭﺍﺕ ﺍﻟﺠﺩﻴﺩﺓ ﺍﻟﺘﻲ ﺘﻡ ﺇﻀﺎﻓﺘﻬﺎ ﺇﻟﻰ ﻤﺤﺭﺭ ﺍﻟﺒﻴﺎﻨﺎﺕ‬ The following new variables are being created: Name Label FIT_1 Fit for PRICIND from ARIMA, MOD_2 CON ERR_1 Error for PRICIND from ARIMA, MOD_2 CON LCL_1 95% LCL for PRICIND from ARIMA, MOD_2 CON UCL_1 95% UCL for PRICIND from ARIMA, MOD_2 CON SEP_1 SE of fit for PRICIND from ARIMA, MOD_2 CON 12 new cases have been added.


‫)‪ (15‬ﺘﺤﻠﻴل ﺍﻟﺴﻼﺴل ﺍﻟﺯﻤﻨﻴﺔ ﻭﺍﻟﺘﻨﺒﺅ ﺍﻹﺤﺼﺎﺌﻲ‬

‫‪538‬‬

‫ﻭﺒﺎﻟﻨﻅﺭ ﺇﻟﻰ ﻤﻌﺎﻟﻡ ﺍﻟﻨﻤﻭﺫﺝ )‪ AR(1‬ﺍﻟﺫﻱ ﺘﻡ ﺘﻭﻓﻴﻘﻪ ﻟﻠﺒﻴﺎﻨﺎﺕ ﻓﻲ ﻗﺎﺌﻤﺔ ﺍﻟﻨﺘﺎﺌﺞ‬ ‫ﻴﺘﻀﺢ ﺃﻥ ﻫﺫﺍ ﺍﻟﻨﻤﻭﺫﺝ ﻴﺄﺨﺫ ﺍﻟﺼﻭﺭﺓ ﺍﻟﺘﺎﻟﻴﺔ‪:‬‬ ‫‪X t = 115.89946 + 0.96440 X t −1 + et‬‬

‫ﻭﻫﺫﺍ ﺍﻟﻨﻤﻭﺫﺝ ﻫﻭ ﺍﻟﺫﻱ ﻴﻤﻜﻥ ﺍﺴﺘﺨﺩﺍﻤﻪ ﻓﻲ ﺍﻟﺘﻨﺒﺅ ﺍﻹﺤﺼﺎﺌﻲ‪ ،‬ﻭﻴﺩل ﻋﻠﻰ ﺃﻨﻪ‬

‫ﺒﻤﻌﺭﻓﺔ ﻗﻴﻤﺔ ﻭﺤﻴﺩﺓ ﻓﻲ ﺍﻟﺴﻠﺴﻠﺔ )ﺒﺎﺴﺘﺨﺩﺍﻡ ﻤﺜل ﻫﺫﺍ ﺍﻟﻨﻤﻭﺫﺝ( ﻨﺴﺘﻁﻴﻊ ﺍﻟﺘﻨﺒﺅ ﺒﺎﻟﻘﻴﻤﺔ‬ ‫ﺍﻟﺘﻲ ﺘﻠﻴﻬﺎ ﻤﺒﺎﺸﺭﺓ ﻭﻤﻥ ﺜﻡ ﺍﻟﻘﻴﻡ ﺍﻟﻤﺴﺘﻘﺒﻠﻴﺔ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ﺒﻤﻌﺩل ﺨﻁﺄ ﺒﺴﻴﻁ‪ ،‬ﻭﻟﻜﻥ ﻗﺒل‬

‫ﺫﻟﻙ ﻴﻨﺒﻐﻲ ﺍﻟﺘﺤﻘﻕ ﻤﻥ ﻤﻼﺌﻤﺔ ﻫﺫﺍ ﺍﻟﻨﻤﻭﺫﺝ ﻟﺒﻴﺎﻨﺎﺕ ﺍﻟﺴﻠﺴﻠﺔ ﺍﻟﺯﻤﻨﻴﺔ‪ ،‬ﻭﺒﺎﻟﻨﻅﺭ ﺇﻟﻰ‬

‫ﺍﻟﻨﺘﺎﺌﺞ ﺍﻟﺴﺎﺒﻘﺔ ﻴﺘﻀﺢ ﺃﻨﻪ ﻻ ﻴﻭﺠﺩ ﻤﺸﻜﻠﺔ ﻭﺍﻀﺤﺔ ﺘﺩل ﻋﻠﻰ ﻋﺩﻡ ﻤﻼﺌﻤﺔ ﺍﻟﻨﻤﻭﺫﺝ‬

‫ﻟﻠﺒﻴﺎﻨﺎﺕ‪ ،‬ﻭﻟﻜﻥ ﻟﻠﺘﺄﻜﺩ ﻤﻥ ﺫﻟﻙ ﻻ ﺒﺩ ﻤﻥ ﺍﻟﺘﺤﻘﻕ ﻤﻥ ﺍﻷﺨﻁﺎﺀ ‪ residuals‬ﺒﺤﺜﹰﺎ ﻋﻥ‬

‫ﺃﻱ ﺍﻨﺘﻬﺎﻙ ﻟﻠﺸﺭﻭﻁ ﺍﻟﻤﻁﻠﻭﺒﺔ ﻟﺼﺤﺔ ﻫﺫﺍ ﺍﻟﻨﻤﻭﺫﺝ‪ ،‬ﻭﺃﻫﻡ ﻫﺫﻩ ﺍﻟﺸﺭﻭﻁ ﻫﻭ ﺃﻥ ﻫﺫﻩ‬

‫ﺍﻷﺨﻁﺎﺀ ﻴﺠﺏ ﺃﻥ ﺘﻜﻭﻥ ﻏﻴﺭ ﻤﺘﺭﺍﺒﻁﺔ )ﺃﻱ ﻻ ﻴﻅﻬﺭ ﺒﻬﺎ ﺃﻱ ﻨﻤﻁ ﻤﻌﻴﻥ ﻴﺩل ﻋﻥ ﺃﻨﻬﺎ‬

‫ﻤﺘﺭﺍﺒﻁﺔ ﺫﺍﺘﻴﹰﺎ ‪ ،(autocorrelated‬ﻭﻓﻲ ﻤﺜل ﻫﺫﻩ ﺍﻟﺤﺎﻟﺔ ﻴﺤﺴﻥ ﺍﻟﺘﺤﻘﻕ ﻤﻥ ﻋﺩﻡ‬

‫ﻭﺠﻭﺩ ﻤﻌﺎﻤﻼﺕ ﻤﻌﻨﻭﻴﺔ ﻓﻲ ﺤﺩﻭﺩ ﺜﻘﺔ ‪ 95%‬ﻓﻲ ﻜل ﻤﻥ ﺩﺍﻟﺘﻲ ﺍﻟﺘﺭﺍﺒﻁ ﺍﻟﺫﺍﺘﻲ ‪ACF‬‬

‫ﻭﺍﻟﺘﺭﺍﺒﻁ ﺍﻟﺫﺍﺘﻲ ﺍﻟﺠﺯﺌﻲ ‪. PACF‬‬

‫ﻭﻴﻤﻜﻥ ﺭﺴﻡ ﺩﺍﻟﺘﻲ ﺍﻟﺘﺭﺍﺒﻁ ﺍﻟﺫﺍﺘﻲ ‪ ACF‬ﻭﺍﻟﺘﺭﺍﺒﻁ ﺍﻟﺫﺍﺘﻲ ﺍﻟﺠﺯﺌﻲ ‪PACF‬‬

‫ﻟﺴﻠﺴﻠﺔ ﺍﻷﺨﻁﺎﺀ ﺒﻨﻔﺱ ﻁﺭﻴﻘﺔ ﺭﺴﻤﻬﻤﺎ ﻟﻠﺴﻠﺴﻠﺔ ﺍﻷﺼﻠﻴﺔ )ﻜﻤﺎ ﻓﻲ ﺍﻟﺸﻜل ‪ (6-15‬ﻋﻥ‬

‫ﻁﺭﻴﻕ ﺃﻤﺭ ﺭﺴﻡ ﺍﻟﺴﻼﺴل ﺍﻟﺯﻤﻨﻴﺔ ‪ Time Series Plot‬ﻤﻥ ﻗﺎﺌﻤﺔ ﺍﻟﺭﺴﻭﻤﺎﺕ ﺍﻟﺒﻴﺎﻨﻴﺔ‬ ‫‪Graphs‬‬

‫ﻓﻲ‬

‫ﺍﻟﻘﺎﺌﻤﺔ‬

‫ﺍﻟﺭﺌﻴﺴﻴﺔ‬

‫ﻟﻠﻨﻅﺎﻡ‬

‫ﻭﺍﺨﺘﻴﺎﺭ‬

‫ﺃﻤﺭ‬

‫ﺍﻟﺘﺭﺍﺒﻁ‬

‫ﺍﻟﺫﺍﺘﻲ‬

‫‪ ، Autocorrelations‬ﻭﻟﻜﻥ ﺍﻟﻤﺘﻐﻴﺭ ﺍﻟﺫﻱ ﻴﺠﺏ ﺃﻥ ﻴﺩﺨل ﻓﻲ ﻨﺎﻓﺫﺓ ﺍﻟﺘﺭﺍﺒﻁ ﺍﻟﺫﺍﺘﻲ‬ ‫‪ Autocorrelations‬ﻟﻠﺭﺴﻡ ﻓﻲ ﻫﺫﻩ ﺍﻟﺤﺎﻟﺔ ﻫﻭ ﻤﺘﻐﻴﺭ ﺍﻷﺨﻁﺎﺀ ‪ Residuals‬ﺍﻟﺫﻱ ﺘﻡ‬ ‫ﺤﺴﺎﺒﻪ ﻓﻲ ﺍﻟﺨﻁﻭﺓ ﺍﻟﺴﺎﺒﻘﺔ ﻭﺘﻡ ﺘﺨﺯﻴﻨﻪ ﺒﺎﺴﻡ ‪ ، ERR_1‬ﻭﺒﺘﻁﺒﻴﻕ ﺫﻟﻙ ﻓﻲ ﻫﺫﺍ ﺍﻟﻤﺜﺎل‬

‫ﻓﺈﻨﻨﺎ ﺴﻨﺤﺼل ﻋﻠﻰ ﺭﺴﻡ ﻟﻨﻤﻁ ﻫﺎﺘﻴﻥ ﺍﻟﺩﺍﻟﺘﻴﻥ ﻜﻤﺎ ﻓﻲ ﺸﻜل ‪ 11-15‬ﺃﺩﻨﺎﻩ‪.‬‬


‫( ﺘﺤﻠﻴل ﺍﻟﺴﻼﺴل ﺍﻟﺯﻤﻨﻴﺔ ﻭﺍﻟﺘﻨﺒﺅ ﺍﻹﺤﺼﺎﺌﻲ‬15)

539

.‫ ﻟﻸﺨﻁﺎﺀ‬PACF ‫ ﻭﺍﻟﺘﺭﺍﺒﻁ ﺍﻟﺫﺍﺘﻲ ﺍﻟﺠﺯﺌﻲ‬ACF ‫ ﺩﺍﻟﺘﻲ ﺍﻟﺘﺭﺍﺒﻁ ﺍﻟﺫﺍﺘﻲ‬: 11-15 ‫ﺸﻜل‬ ACF

Error for PRICIND from ARIMA, MOD_2 CON 1.0

.5

0.0

-.5

Confidence Limits

Coefficient

-1.0 1

3 2

5 4

7 6

9 8

11 10

13 12

15 14

16

Lag Number

Partial ACF

Error for PRICIND from ARIMA, MOD_2 CON 1.0

.5

0.0

-.5

Confidence Limits

Coefficient

-1.0 1

3 2

5 4

7 6

9 8

11 10

13 12

15 14

16

Lag Number


‫)‪ (15‬ﺘﺤﻠﻴل ﺍﻟﺴﻼﺴل ﺍﻟﺯﻤﻨﻴﺔ ﻭﺍﻟﺘﻨﺒﺅ ﺍﻹﺤﺼﺎﺌﻲ‬

‫‪540‬‬

‫ﻴﺘﻀﺢ ﺒﺎﻟﻨﻅﺭ ﺇﻟﻰ ﺭﺴﻡ ﺩﺍﻟﺘﻲ ﺍﻟﺘﺭﺍﺒﻁ ﺍﻟﺫﺍﺘﻲ ‪ ACF‬ﻭﺍﻟﺘﺭﺍﺒﻁ ﺍﻟﺫﺍﺘﻲ ﺍﻟﺠﺯﺌﻲ‬ ‫‪ PACF‬ﻟﺴﻠﺴﻠﺔ ﺍﻷﺨﻁﺎﺀ ﻓﻲ ﺸﻜل ‪ 11-15‬ﺍﻟﺴﺎﺒﻕ ﺃﻨﻪ ﻻ ﻴﻭﺠﺩ ﺃﻱ ﺍﺨﺘﺭﺍﻕ ﻟﻔﺭﻭﺽ‬ ‫ﺍﻟﻨﻤﻭﺫﺝ ﺍﻟﺫﻱ ﺘﻡ ﺘﻭﻓﻴﻘﻪ ﻟﻠﺒﻴﺎﻨﺎﺕ‪ ،‬ﻭﺒﺫﻟﻙ ﻴﻤﻜﻨﻨﺎ ﺍﻟﺤﻜﻡ ﻋﻠﻰ ﺃﻥ ﺍﻟﻨﻤﻭﺫﺝ ﺍﻟﺫﻱ ﺘﻡ‬

‫ﺘﻭﻓﻴﻘﻪ ﻤﻼﺌﻡ ﻟﺒﻴﺎﻨﺎﺕ ﺍﻟﺴﻠﺴﻠﺔ ﺍﻟﺯﻤﻨﻴﺔ ﻭﺒﺎﻟﺘﺎﻟﻲ ﻓﺈﻨﻪ ﻴﻤﻜﻨﻨﺎ ﺃﻥ ﻨﻌﺘﻤﺩ ﻋﻠﻰ ﻫﺫﺍ ﺍﻟﻨﻤﻭﺫﺝ‬ ‫ﻓﻲ ﺍﻟﺘﻨﺒﺅ ﺒﻘﻴﻡ ﻤﺴﺘﻘﺒﻠﻴﺔ‪.‬‬

‫ﺸﻜل ‪ : 12-15‬ﺭﺴﻡ ﻟﺒﻴﺎﻨﺎﺕ ﺍﻟﺴﻠﺴﻠﺔ ﺍﻟﺯﻤﻨﻴﺔ ﺍﻷﺼﻠﻴﺔ ﻭﺍﻟﺴﻠﺴﻠﺔ ﺍﻟﻤﺘﻭﻗﻌﺔ ﺒﺎﺴﺘﺨﺩﺍﻡ‬ ‫ﺍﻟﻨﻤﻭﺫﺝ )‪ AR(1‬ﺍﻟﺫﻱ ﺘﻡ ﺘﻭﻓﻴﻘﻪ ﻭﺤﺩﻭﺩ ﺍﻟﺜﻘﺔ ﻟﻠﻘﻴﻡ ﺍﻟﻤﺘﻭﻗﻌﺔ‪.‬‬ ‫‪Observed monthly consumer price index, predicted values‬‬ ‫‪and 95% confidence interval of the predicted values.‬‬

‫‪130‬‬ ‫‪Monthly Consumer Pri‬‬ ‫‪ce Index‬‬

‫‪120‬‬

‫‪Fit for PRICIND from‬‬ ‫‪ARIMA, MOD_2 CON‬‬

‫‪110‬‬

‫‪95% LCL for PRICIND‬‬ ‫‪from ARIMA, MOD_2 CO‬‬

‫‪100‬‬

‫‪95% UCL for PRICIND‬‬ ‫‪from ARIMA, MOD_2 CO‬‬ ‫‪2001‬‬

‫‪Year‬‬

‫‪2000‬‬

‫‪1999‬‬

‫‪1998‬‬

‫‪90‬‬ ‫‪1997‬‬

‫‪Consumer Price Index‬‬

‫‪140‬‬


‫)‪ (15‬ﺘﺤﻠﻴل ﺍﻟﺴﻼﺴل ﺍﻟﺯﻤﻨﻴﺔ ﻭﺍﻟﺘﻨﺒﺅ ﺍﻹﺤﺼﺎﺌﻲ‬

‫‪541‬‬

‫ﻭﺃﺨﻴﺭﺍﹰ‪ ،‬ﻓﻘﺩ ﺘﻡ ﺇﻋﻁﺎﺀ ﺍﻟﻨﻅﺎﻡ ﻓﻲ ﻫﺫﺍ ﺍﻟﻤﺜﺎل ﺃﻤﺭ ﺒﺎﻟﺘﻨﺒﺅ ﺒِـ ‪ 12‬ﻗﻴﻤﺔ‬ ‫ﻤﺴﺘﻘﺒﻠﻴﺔ ﻟﺴﻠﺴﻠﺔ ﺍﻷﺭﻗﺎﻡ ﺍﻟﻘﻴﺎﺴﻴﺔ ﺍﻟﺸﻬﺭﻴﺔ ﻟﻠﻤﺴﺘﻬﻠﻙ ﻓﻲ ﻓﻠﺴﻁﻴﻥ )ﺃﻱ ﻟﻠﻌﺎﻡ ‪2001‬‬

‫ﺒﻜﺎﻤﻠﻪ(‪ ،‬ﻭﻜﻤﺎ ﻴﺘﻀﺢ ﻤﻥ ﻗﺎﺌﻤﺔ ﺍﻟﻨﺘﺎﺌﺞ ﺍﻟﺴﺎﺒﻘﺔ ﻓﺈﻥ ﻫﺫﻩ ﺍﻟﻘﻴﻡ ﺘﻅﻬﺭ ﻋﺎﺩﺓ ﻓﻲ ﺼﻔﺤﺔ‬

‫ﻤﺤﺭﺭ ﺍﻟﺒﻴﺎﻨﺎﺕ ﻓﻲ ﻋﻤﻭﺩ ﻤﺴﺘﻘل ﺒﺎﺴﻡ ‪ ،FIT_1‬ﻜﻤﺎ ﺃﻨﻪ ﻴﻤﻜﻥ ﺘﻭﻀﻴﺢ ﻫﺫﻩ ﺍﻟﻘﻴﻡ‬

‫ﺒﺎﻟﺭﺴﻡ ﺇﻀﺎﻓﺔ ﺇﻟﻰ ﺠﻤﻴﻊ ﺍﻟﻘﻴﻡ ﺍﻟﻤﻘﺩﺭﺓ ﺒﻭﺍﺴﻁﺔ ﺍﻟﻨﻤﻭﺫﺝ ﻓﻲ ﺸﻜل ﻭﺍﺤﺩ ﻤﻊ ﺍﻟﻘﻴﻡ‬

‫ﺍﻷﺼﻠﻴﺔ ﻟﻠﺴﻠﺴﻠﺔ ﻭﺤﺩﻱ ﺍﻟﺜﻘﺔ ﻟﻠﻘﻴﻡ ﺍﻟﻤﻘﺩﺭﺓ ﻭﺍﻟﻤﺘﻨﺒﺄ ﺒﻬﺎ ﻜﻤﺎ ﻓﻲ ﺸﻜل ‪ 12-15‬ﺃﻋﻼﻩ‪،‬‬ ‫ﻭﺭﻏﻡ ﺍﺨﺘﻔﺎﺀ ﺍﻷﻟﻭﺍﻥ ﻓﻲ ﺍﻟﻁﺒﺎﻋﺔ ﺇﻻ ﺃﻨﻪ ﻴﻤﻜﻨﻨﺎ ﺃﻥ ﻨﻤﻴﺯ ﺒﻴﻥ ﺍﻟﺴﻼﺴل ﺍﻷﺭﺒﻊ‬

‫ﺒﺴﻬﻭﻟﺔ‪ ،‬ﺤﻴﺙ ﺘﻅﻬﺭ ﺤﺩﻭﺩ ﺍﻟﺜﻘﺔ ﺍﻷﺩﻨﻰ ﻭﺍﻷﻋﻠﻰ ﻟﻠﻘﻴﻡ ﺍﻟﻤﺘﻭﻗﻌﺔ ﻓﻲ ﺨﻁﻭﻁ ﻜل ﻤﻥ‬

‫ﺍﻟﺴﻠﺴﻠﺔ ﺍﻟﺴﻔﻠﻴﺔ ﻭﺍﻟﺴﻠﺴﻠﺔ ﺍﻟﻌﻠﻭﻴﺔ‪ ،‬ﻴﺘﻭﺴﻁﻬﻤﺎ ﺍﻟﺴﻠﺴﻠﺔ ﺍﻟﺯﻤﻨﻴﺔ ﺍﻷﺼﻠﻴﺔ )ﺍﻟﻘﺼﻴﺭﺓ(‬

‫ﺒﺎﻹﻀﺎﻓﺔ ﺇﻟﻰ ﺴﻠﺴﻠﺔ ﺍﻟﻘﻴﻡ ﺍﻟﻤﺘﻭﻗﻌﺔ ﺍﻟﻤﻤﺘﺩﺓ ﺇﻟﻰ ﺍﻟﻘﻴﻡ ﺍﻟﻤﺴﺘﻘﺒﻠﻴﺔ ﺍﻟﻤﺘﻨﺒﺄ ﺒﻬﺎ‪ ،‬ﻻﺤﻅ ﺃﻥ‬ ‫ﻫﺎﺘﻴﻥ ﺍﻟﺴﻠﺴﻠﺘﻴﻥ ﻤﺘﻘﺎﺭﺒﺘﻴﻥ ﻓﻲ ﺍﻟﻘﻴﻡ ﻤﻤﺎ ﻴﺩل ﻋﻠﻰ ﺩﻗﺔ ﺘﻤﺜﻴل ﺍﻟﻨﻤﻭﺫﺝ ﻟﻠﺒﻴﺎﻨﺎﺕ‪.‬‬ ‫ﻭﻫﻨﺎﻙ ﺒﻌﺽ ﺍﻟﻤﻼﺤﻅﺎﺕ ﻋﻠﻰ ﻫﺫﺍ ﺍﻟﻤﺜﺎل ﻨﻭﺭﺩﻫﺎ ﻓﻴﻤﺎ ﻴﻠﻲ‪:‬‬

‫‪ .1‬ﻟﻘﺩ ﺍﺨﺘﻴﺭﺕ ﻫﺫﻩ ﺍﻟﺴﻠﺴﻠﺔ ﻓﻲ ﻫﺫﺍ ﺍﻟﻤﺜﺎل ﺒﺎﻟﺘﺤﺩﻴﺩ ﻫﻨﺎ ﻷﻨﻬﺎ ﺴﻠﺴﻠﺔ ﺯﻤﻨﻴﺔ ﺤﻘﻴﻘﻴﺔ‬ ‫ﻭﻨﻅﺭﹸﺍ ﻹﻤﻜﺎﻨﻴﺔ ﺍﺴﺘﺨﺩﺍﻤﻬﺎ ﻓﻲ ﺘﻭﻀﻴﺢ ﺨﻁﻭﺍﺕ ﺘﺤﻠﻴل ﺍﻟﺴﻼﺴل ﺍﻟﺯﻤﻨﻴﺔ ﺒﺴﻬﻭﻟﺔ‬

‫ﻭﻭﻀﻭﺡ‪ ،‬ﻭﻗﺩ ﺘﺒﻴﻥ ﺃﻥ ﻤﻌﻅﻡ ﺍﻟﺴﻼﺴل ﺍﻟﺯﻤﻨﻴﺔ ﺍﻟﻤﺘﻌﻠﻘﺔ ﺒﺎﻷﺭﻗﺎﻡ ﺍﻟﻘﻴﺎﺴﻴﺔ‬

‫ﺍﻟﺸﻬﺭﻴﺔ ﻟﻠﻤﺴﺘﻬﻠﻙ ﻓﻲ ﺍﻟﻜﺜﻴﺭ ﻤﻥ ﺍﻟﺒﻠﺩﺍﻥ ﺘﺄﺨﺫ ﻨﻔﺱ ﻨﻤﻁ ﺍﻟﻨﻤﻭﺫﺝ ﺍﻟﺴﺎﺒﻕ ﻭﻴﻤﻜﻥ‬

‫ﺃﻥ ﻴﺴﺘﺨﺩﻡ ﻫﺫﺍ ﺍﻟﻨﻤﻭﺫﺝ )ﺍﻨﻅﺭ ﻋﻠﻰ ﺴﺒﻴل ﺍﻟﻤﺜﺎل ‪Bowerman & O'Connell,‬‬

‫‪ ، (1993‬ﻭﻴﻤﻜﻥ ﺍﻟﺘﺩﺭﺏ ﻋﻠﻰ ﺒﻴﺎﻨﺎﺕ ﺍﻟﻌﺩﻴﺩ ﻤﻥ ﺍﻟﺴﻼﺴل ﺍﻟﺯﻤﻨﻴﺔ ﺍﻟﻤﺘﻭﻓﺭﺓ ﻤﻊ‬ ‫ﻨﻅﺎﻡ ‪ SPSS‬ﺫﺍﺘﻪ ﻓﻲ ﻤﻠﻑ ﺍﻟﺒﻴﺎﻨﺎﺕ ‪.Data‬‬

‫‪ .2‬ﻴﺘﻀﺢ ﻤﻥ ﻫﺫﺍ ﺍﻟﻤﺜﺎل ﺃﻥ ﺍﻟﺨﻁﻭﺓ ﺍﻷﻭﻟﻰ ﺍﻟﻬﺎﻤﺔ ﻓﻲ ﺘﺤﻠﻴل ﺍﻟﺴﻼﺴل ﺍﻟﺯﻤﻨﻴﺔ ﺒﻌﺩ‬

‫ﺭﺴﻡ ﺍﻟﺴﻠﺴﻠﺔ ﻫﻲ ﺘﺤﺩﻴﺩ ﺍﻟﻨﻤﻭﺫﺝ ﺍﻟﻤﺒﺩﺌﻲ ﻤﻥ ﺨﻼل ﻓﺤﺹ ﺩﺍﻟﺘﻲ ﺍﻟﺘﺭﺍﺒﻁ ﺍﻟﺫﺍﺘﻲ‬

‫‪ ACF‬ﻭﺍﻟﺘﺭﺍﺒﻁ ﺍﻟﺫﺍﺘﻲ ﺍﻟﺠﺯﺌﻲ ‪ ، PACF‬ﻭﻤﻥ ﺨﻼﻟﻬﻤﺎ ﻴﻤﻜﻨﻨﺎ ﺒﺴﻬﻭﻟﺔ ﺍﻗﺘﺭﺍﺡ‬ ‫ﻨﻤﻭﺫﺝ ﺒﻭﻜﺱ‪-‬ﺠﻴﻨﻜﻨﺯ ‪ ARIMA‬ﻟﻨﺒﺩﺃ ﺒﻪ‪.‬‬


‫)‪ (15‬ﺘﺤﻠﻴل ﺍﻟﺴﻼﺴل ﺍﻟﺯﻤﻨﻴﺔ ﻭﺍﻟﺘﻨﺒﺅ ﺍﻹﺤﺼﺎﺌﻲ‬

‫‪542‬‬

‫‪ .3‬ﻓﻲ ﻗﺎﺌﻤﺔ ﺍﻟﻨﺘﺎﺌﺞ ﻓﻲ ﻨﻅﺎﻡ ‪ SPSS‬ﺘﻅﻬﺭ ﻨﺘﺎﺌﺞ ﻜﺜﻴﺭﺓ ﻤﻥ ﺒﻴﻨﻬﺎ ﺍﻟﺘﻘﺩﻴﺭﺍﺕ ﺍﻟﻤﺒﺩﺌﻴﺔ‬ ‫ﻟﻠﻨﻤﻭﺫﺝ ﺍﻟﻤﻁﻠﻭﺏ ﻭﻤﺭﺍﺤل ﺘﻁﻭﺭﻩ‪ ،‬ﻭﻴﻤﻜﻥ ﺘﺠﺎﻫل ﻜل ﻫﺫﻩ ﺍﻟﻤﻌﻠﻭﻤﺎﺕ‬ ‫ﻭﺍﻻﻫﺘﻤﺎﻡ ﻓﻘﻁ ﺒﺎﻟﻨﺘﺎﺌﺞ ﺍﻟﻨﻬﺎﺌﻴﺔ ‪. FINAL ESTIMATES‬‬

‫‪ .4‬ﻫﻨﺎﻙ ﺒﻌﺽ ﺍﻟﻤﻘﺎﻴﻴﺱ ﺍﻟﻬﺎﻤﺔ ﻭﺍﻟﺘﻲ ﺘﻅﻬﺭ ﻓﻲ ﻗﺎﺌﻤﺔ ﺍﻟﻨﺘﺎﺌﺞ ﻭﻴﻤﻜﻥ ﺍﺴﺘﺨﺩﺍﻤﻬﺎ ﻓﻲ‬ ‫ﺍﻟﺘﺤﻘﻕ ﻤﻥ ﻤﺩﻯ ﻤﻼﺌﻤﺔ ﺍﻟﻨﻤﻭﺫﺝ ﺍﻟﺫﻱ ﺘﻡ ﺘﻭﻓﻴﻘﻪ ﻟﻠﺴﻠﺴﻠﺔ‪ ،‬ﻫﺫﻩ ﺍﻟﻤﻘﺎﻴﻴﺱ ﻫﻲ‬

‫ﻤﺠﻤﻭﻉ ﻤﺭﺒﻌﺎﺕ ﺍﻷﺨﻁﺎﺀ ‪ residual sum of squares‬ﻭﻟﻭﻏﺎﺭﻴﺘﻡ ﺩﺍﻟﺔ‬

‫ﺍﻷﺭﺠﺤﻴﺔ ‪ log likelihood function‬ﻓﻜﻠﻤﺎ ﻜﺎﻨﺕ ﻗﻴﻤﺘﻲ ﻫﺫﻴﻥ ﺍﻟﻤﻘﻴﺎﺴﻴﻥ‬ ‫ﺼﻐﻴﺭﺘﻴﻥ ﻜﻠﻤﺎ ﻜﺎﻥ ﺍﻟﻨﻤﻭﺫﺝ ﺃﺠﻭﺩ ﻟﻠﺒﻴﺎﻨﺎﺕ‪ ،‬ﻭﺒﻌﺩ ﺫﻟﻙ ﻴﻤﻜﻥ ﺍﻟﻨﻅﺭ ﺇﻟﻰ ﻤﻌﻴﺎﺭ‬

‫ﻤﻌﻠﻭﻤﺎﺕ ﺃﻜﺎﻜﻲ )‪ ، Akaike’s Information Criterion (AIC‬ﻭﻤﻌﻴﺎﺭ‬

‫ﻤﻌﻠﻭﻤﺎﺕ ﺸﻴﻭﺍﺭﺯ ﺍﻟﻤﻌﺘﻤﺩ ﻋﻠﻰ ﺃﺴﻠﻭﺏ ﺒﻴﺯ ‪Schwarz Bayesian Information‬‬

‫)‪ ، Criterion (SBC‬ﻭﻴﻌﺘﻤﺩ ﺤﺴﺎﺏ ﻫﺫﻴﻥ ﺍﻟﻤﻌﻴﺎﺭﻴﻥ ﻋﻠﻰ ﻗﻴﻤﺔ ﻤﺭﺒﻊ ﻤﻌﺎﻤل‬ ‫ﺍﻻﺭﺘﺒﺎﻁ ‪ ، R2‬ﺇﻻ ﺃﻨﻬﻤﺎ ﻴﺄﺨﺫﺍﻥ ﻓﻲ ﺍﻻﻋﺘﺒﺎﺭ ﻋﻭﺍﻤل ﺃﺨﺭﻯ ﺇﻀﺎﻓﻴﺔ‪ ،‬ﻭﻟﻜﻥ ﻴﺠﺏ‬

‫ﺍﻷﺨﺫ ﻓﻲ ﺍﻻﻋﺘﺒﺎﺭ ﺃﻥ ﻫﺫﻴﻥ ﺍﻟﻤﻌﻴﺎﺭﻴﻥ ﻨﺴﺒﻴﻴﻥ ﻭﻴﻌﺘﻤﺩﺍﻥ ﻋﻠﻰ ﻗﻴﻡ ﺍﻟﺒﻴﺎﻨﺎﺕ ﻭﻟﺫﺍ‬ ‫ﻴﻤﻜﻥ ﺍﺴﺘﺨﺩﺍﻤﻬﻤﺎ ﻓﻘﻁ ﻓﻲ ﺍﻟﻤﻘﺎﺭﻨﺔ ﺒﻴﻥ ﺍﻟﻨﻤﺎﺫﺝ ﺍﻟﻤﺨﺘﻠﻔﺔ ﻟﻨﻔﺱ ﺍﻟﺴﻠﺴﻠﺔ ﺍﻟﺯﻤﻨﻴﺔ‪،‬‬ ‫ﻭﺍﻟﻨﻤﻭﺫﺝ ﺍﻷﻓﻀل ﻫﻭ ﺍﻟﺫﻱ ﻴﺼﺎﺤﺒﻪ ﻗﻴﻤﺘﻴﻥ ﺃﺼﻐﺭ ﻟﻬﺫﻴﻥ ﺍﻟﻤﻌﻴﺎﺭﻴﻥ ‪.‬‬

‫‪ .5‬ﻻﺒﺩ ﺃﻴﻀﹰﺎ ﻤﻥ ﻓﺤﺹ ﻤﻌﻨﻭﻴﺔ ﻤﻌﺎﻤﻼﺕ ﺍﻟﻨﻤﻭﺫﺝ ﻗﺒل ﺇﺼﺩﺍﺭ ﺍﻟﺤﻜﻡ ﺍﻟﻨﻬﺎﺌﻲ ﻋﻠﻴﻪ‪،‬‬

‫ﻓﻴﺠﺏ ﺃﻻ ﻴﻜﻭﻥ ﺃﻱ ﻤﻥ ﻫﺫﻩ ﺍﻟﻤﻌﺎﻤﻼﺕ ﻤﺴﺎﻭﻴﹰﺎ ﻤﻌﻨﻭﻴﹰﺎ ﻟﻠﺼﻔﺭ ﻭﺇﻻ ﻴﺠﺏ ﺤﺫﻓﻪ‬ ‫ﻤﻥ ﺍﻟﻨﻤﻭﺫﺝ‪ ،‬ﻭﻴﻤﻜﻥ ﺍﺨﺘﺒﺎﺭ ﻤﻌﻨﻭﻴﺔ ﺍﻟﻤﻌﺎﻤﻼﺕ ﺒﺎﺴﺘﺨﺩﺍﻡ ﻗﻴﻤﺔ ‪p-value‬‬

‫ﺍﻟﻤﺭﺍﻓﻘﺔ ﻟﻜل ﻤﻌﺎﻤل ﻓﻲ ﻗﺎﺌﻤﺔ ﺍﻟﻨﺘﺎﺌﺞ‪.‬‬

‫‪ .6‬ﻴﺠﺏ ﻓﺤﺹ ﺍﻷﺨﻁﺎﺀ ‪ residuals‬ﺃﻴﻀﹰﺎ ﻋﻥ ﻁﺭﻴﻕ ﺭﺴﻤﻬﺎ ﻓﻲ ﺸﻜل ﺍﻨﺘﺸﺎﺭ‬ ‫ﻤﻘﺎﺒل ﺍﻟﻘﻴﻡ ﺍﻟﻤﺘﻭﻗﻌﺔ ‪ fitted value‬ﺒﺎﻹﻀﺎﻓﺔ ﺇﻟﻰ ﺭﺴﻡ ﺩﺍﻟﺘﻲ ﺍﻟﺘﺭﺍﺒﻁ ﺍﻟﺫﺍﺘﻲ‬

‫‪ ACF‬ﻭﺍﻟﺘﺭﺍﺒﻁ ﺍﻟﺫﺍﺘﻲ ﺍﻟﺠﺯﺌﻲ ‪ PACF‬ﻟﻸﺨﻁﺎﺀ ﻭﺍﻟﻠﺘﻴﻥ ﻴﺠﺏ ﺃﻥ ﺘﻅﻬﺭﺍ ﻋﺩﻡ‬ ‫ﻭﺠﻭﺩ ﻤﻌﺎﻤﻼﺕ ﻤﻌﻨﻭﻴﺔ ﻓﻲ ﻫﺎﺘﻴﻥ ﺍﻟﺩﺍﻟﺘﻴﻥ‪.‬‬


‫)‪ (15‬ﺘﺤﻠﻴل ﺍﻟﺴﻼﺴل ﺍﻟﺯﻤﻨﻴﺔ ﻭﺍﻟﺘﻨﺒﺅ ﺍﻹﺤﺼﺎﺌﻲ‬

‫‪543‬‬

‫‪ .7‬ﻴﻔﻀل ﺩﺍﺌﻤﹰﺎ ﺘﺠﺭﺒﺔ ﺃﻜﺜﺭ ﻤﻥ ﻨﻤﻭﺫﺝ ﻭﺍﺤﺩ ﻤﻥ ﻨﻤﺎﺫﺝ ﺒﻭﻜﺱ‪-‬ﺠﻴﻨﻜﻨﺯ ‪ARIMA‬‬ ‫ﻭﺫﻟﻙ ﺒﺄﺨﺫ ﻨﻤﺎﺫﺝ ﺒﻤﻌﺎﻤﻼﺕ ﺇﻀﺎﻓﻴﺔ ﺠﺩﻴﺩﺓ ﻭ ﻨﻤﺎﺫﺝ ﻨﺘﺠﺕ ﻤﻥ ﺤﺫﻑ ﻤﻌﺎﻤﻼﺕ‬

‫ﻤﻭﺠﻭﺩﺓ ﻓﻲ ﺍﻟﻨﻤﻭﺫﺝ ﺍﻷﺼﻠﻲ ﻭﺍﻟﻤﻘﺎﺭﻨﺔ ﺒﻴﻥ ﺠﻤﻴﻊ ﺍﻟﻨﻤﺎﺫﺝ ﺍﻟﻨﺎﺘﺠﺔ‪ ،‬ﻭﺒﺎﻟﺘﺎﻟﻲ‬

‫ﻻﺒﺩ ﻤﻥ ﺍﺨﺘﻴﺎﺭ ﺍﻟﻨﻤﻭﺫﺝ ﺍﻷﻜﺜﺭ ﺠﻭﺩﺓ ﺒﻨﺎﺀ ﻋﻠﻰ ﺍﻟﻤﻌﺎﻴﻴﺭ ﺍﻟﺴﺎﺒﻘﺔ‪.‬‬

‫ﻭﺭﻏﻡ ﺃﻥ ﺍﻟﻨﻤﻭﺫﺝ ﺍﻟﺴﺎﺒﻕ ﻴﺒﺩﻭ ﻤﻼﺌﻡ ﻟﺒﻴﺎﻨﺎﺕ ﺍﻟﺴﻠﺴﻠﺔ ﺍﻟﺯﻤﻨﻴﺔ ﺇﻻ ﺃﻨﻪ ﺒﺴﺒﺏ‬

‫ﻭﺠﻭﺩ ﺍﻟﺘﻐﻴﺭ ﺍﻟﻤﻔﺎﺠﺊ ﻓﻲ ﺍﻟﺴﻠﺴﻠﺔ ‪ Step Change‬ﻴﻤﻜﻥ ﺘﺤﺴﻴﻥ ﺍﻟﻨﻤﻭﺫﺝ ﻭﺍﻟﺤﺼﻭل‬

‫ﻋﻠﻰ ﻨﻤﻭﺫﺝ ﺃﻓﻀل ﻤﻥ ﺍﻟﻨﻤﻭﺫﺝ ﺍﻟﺴﺎﺒﻕ ﻋﻥ ﻁﺭﻴﻕ ﺇﺩﺨﺎل ﻤﺎ ﻴﻁﻠﻕ ﻋﻠﻴﻪ ﺒﺎﻟﻤﺘﻐﻴﺭ‬ ‫ﺍﻻﺼﻁﻨﺎﻋﻲ ‪ Dummy Variable‬ﻋﻨﺩ ﺍﻟﻘﻴﻤﺔ ﺭﻗﻡ ‪ 26‬ﻓﻲ ﺍﻟﺴﻠﺴﻠﺔ‪ ،‬ﻭﻴﻤﻜﻥ ﺇﻀﺎﻓﺔ‬

‫ﻫﺫﺍ ﺍﻟﻤﺘﻐﻴﺭ ﺍﻻﺼﻁﻨﺎﻋﻲ ﺇﻟﻰ ﻤﺤﺭﺭ ﺍﻟﺒﻴﺎﻨﺎﺕ ﻋﻥ ﻁﺭﻴﻕ ﺃﻤﺭ ﺍﻟﺘﺼﻨﻴﻑ ‪ Recode‬ﻓﻲ‬

‫ﻗﺎﺌﻤﺔ ﺘﺤﻭﻴل ﺍﻟﻤﺘﻐﻴﺭﺍﺕ ‪ Transform‬ﻓﻲ ﺍﻟﻘﺎﺌﻤﺔ ﺍﻟﺭﺌﻴﺴﻴﺔ ﻟﻤﺤﺭﺭ ﺍﻟﺒﻴﺎﻨﺎﺕ‪ ،‬ﺜﻡ ﻴﺘﻡ‬

‫ﺇﺩﺨﺎل ﻫﺫﺍ ﺍﻟﻤﺘﻐﻴﺭ ﻓﻲ ﺘﺤﻠﻴل ﺍﻟﺴﻠﺴﻠﺔ ﺍﻟﺯﻤﻨﻴﺔ ﻜﻤﺘﻐﻴﺭ ﺘﻌﺭﻴﻑ ‪Indicator Variable‬‬

‫ﻋﻨﺩ ﺘﻭﻓﻴﻕ ﻨﻤﻭﺫﺝ )‪. AR(1‬‬

‫‪ .6 .15‬ﺗﺤﻠﻴﻞ ﻧﻤﺎذج اﻟﺴﻼﺳﻞ اﻟﺰﻣﻨﻴﺔ ﻏﻴﺮ اﻟﺴﺎآﻨﺔ ‪:‬‬ ‫‪Analysis of Non Stationary Series :‬‬ ‫ﺇﺫﺍ ﺘﺒﻴﻥ ﺃﻥ ﻫﻨﺎﻙ ﺃﺜﺭ ﻭﺍﻀﺢ ﻟﻼﺘﺠﺎﻩ ﺍﻟﻌﺎﻡ ‪ Trend‬ﻓﻲ ﺍﻟﺴﻠﺴﻠﺔ ﺍﻟﺯﻤﻨﻴﺔ‪،‬‬

‫ﺍﻷﻤﺭ ﺍﻟﺫﻱ ﻴﻌﻠﻥ ﻋﻨﻪ ﺍﻟﺭﺴﻡ ﻓﻲ ﺸﻜل ﺍﻟﺴﻠﺴﻠﺔ ‪ Sequence Plot‬ﺃﻭ ﻴﻭﻀﺤﻪ ﺸﻜل‬

‫ﺍﻟﺼﻨﺎﺩﻴﻕ ‪ Box Plot‬ﺃﻭ ﻗﻴﻡ ﻤﻌﺎﻤﻼﺕ ﺩﺍﻟﺔ ﺍﻟﺘﺭﺍﺒﻁ ﺍﻟﺫﺍﺘﻲ ﺍﻟﺠﺯﺌﻲ ‪PACF‬‬

‫ﺍﻟﻤﺘﻌﺎﻅﻤﺔ ﻓﺈﻨﻪ ﻻﺒﺩ ﻤﻥ ﺤﺴﺎﺏ ﺴﻠﺴﻠﺔ ﺍﻟﻔﺭﻭﻕ ﻟﻠﺴﻠﺴﻠﺔ ﺍﻟﺯﻤﻨﻴﺔ ﺍﻷﺼﻠﻴﺔ‪ ،‬ﻭﺍﻟﺘﻲ ﻴﻤﻜﻥ‬ ‫ﺍﻟﺘﻌﺒﻴﺭ ﻋﻨﻬﺎ ﺒﺎﻟﻨﻤﻭﺫﺝ ‪ ، Zt = Xt - Xt-1‬ﻭﻴﻤﻜﻥ ﺍﻟﺘﻌﺒﻴﺭ ﻋﻥ ﻨﻤﻭﺫﺝ ﺒﻭﻜﺱ‪-‬ﺠﻴﻨﻜﻨﺯ‬

‫ﻓﻲ ﻫﺫﺍ ﺍﻟﺤﺎﻟﺔ ﺒﺎﻟﻨﻤﻭﺫﺝ )‪ ، ARIMA(p,I,q‬ﺤﻴﺙ ‪ I‬ﻫﻲ ﻋﺩﺩ ﻤﺭﺍﺕ ﺃﺨﺫ ﺍﻟﻔﺭﻕ‬ ‫ﻭﻫﻲ ﺍﺨﺘﺼﺎﺭﹰﺍ ﻟﻜﻠﻤﺔ ﺍﻟﻤﺘﻜﺎﻤل ‪ Integrated‬ﻟﻨﻤﻭﺫﺝ ﺒﻭﻜﺱ‪-‬ﺠﻴﻨﻜﻨﺯ ‪.‬‬


‫)‪ (15‬ﺘﺤﻠﻴل ﺍﻟﺴﻼﺴل ﺍﻟﺯﻤﻨﻴﺔ ﻭﺍﻟﺘﻨﺒﺅ ﺍﻹﺤﺼﺎﺌﻲ‬

‫‪544‬‬

‫ﻭﻟﺘﻭﻀﻴﺢ ﻜﻴﻔﻴﺔ ﺍﻟﺘﻌﺎﻤل ﻓﻲ ﻨﻅﺎﻡ ‪ SPSS‬ﻤﻊ ﻨﻤﺎﺫﺝ ﺒﻭﻜﺱ‪-‬ﺠﻴﻨﻜﻨﺯ ﺍﻟﻤﺘﻜﺎﻤﻠﺔ‬ ‫‪ ARIMA‬ﻭﺍﻟﺘﻲ ﺘﺤﺘﻭﻱ ﻋﻠﻰ ﺃﺜﺭ ﻟﻼﺘﺠﺎﻩ ﺍﻟﻌﺎﻡ ﺴﻨﺘﻨﺎﻭل ﺍﻟﻤﺜﺎل ﺍﻟﺘﺎﻟﻲ ﻭﺍﻟﺫﻱ ﻴﺘﻀﻤﻥ‬ ‫ﺒﻴﺎﻨﺎﺕ ﺤﻘﻴﻘﻴﺔ ﺃﻴﻀﺎﹰ‪ ،‬ﻭﻫﺫﻩ ﺍﻟﺴﻠﺴﻠﺔ ﺘﻡ ﺘﺤﻠﻴﻠﻬﺎ ﻭﻨﺸﺭ ﻨﺘﺎﺌﺞ ﺍﻟﺘﺤﻠﻴل ﻓﻲ ﺍﻟﻌﺩﻴﺩ ﻤﻥ‬

‫ﺍﻟﻜﺘﺏ ﻭﺍﻷﺒﺤﺎﺙ ﺍﻟﻌﻠﻤﻴﺔ ﻭﺘﺘﻀﻤﻥ ﺃﻋﺩﺍﺩ ﺤﻘﻭل ﺍﻟﺒﺘﺭﻭل ﺍﻟﻨﺸﻁﺔ ﻓﻲ ﺍﻟﻭﻻﻴﺎﺕ ﺍﻟﻤﺘﺤﺩﺓ‬ ‫ﺍﻷﻤﺭﻴﻜﻴﺔ ﻓﻲ ‪ 50‬ﺸﻬﺭﹰﺍ ﻤﺘﺘﺎﻟﻴﺎﹰ‪ ،‬ﻭﻟﻥ ﻨﻌﺭﺽ ﻫﻨﺎ ﺴﻠﺴﻠﺔ ﻟﻠﺒﻴﺎﻨﺎﺕ ﺒﻬﺩﻑ ﻋﺩﻡ ﺍﻟﺘﺭﻜﻴﺯ‬

‫ﻋﻠﻰ ﺍﻟﻨﻭﺍﺤﻲ ﺍﻹﺠﺭﺍﺌﻴﺔ ﻓﻲ ﻨﻅﺎﻡ ‪ SPSS‬ﻓﻨﺄﻤل ﺃﻥ ﻴﻜﻭﻥ ﻫﺫﺍ ﻭﺍﻀﺤﹰﺎ ﻓﻲ ﻫﺫﻩ‬

‫ﺍﻟﻤﺭﺤﻠﺔ‪ ،‬ﺒل ﻨﺭﻜﺯ ﺍﻻﻫﺘﻤﺎﻡ ﺍﻵﻥ ﻋﻠﻰ ﻁﺭﻴﻘﺔ ﺍﺨﺘﻴﺎﺭ ﻨﻤﻭﺫﺝ ﺒﻭﻜﺱ‪-‬ﺠﻴﻨﻜﻨﺯ‬ ‫ﺍﻟﻤﺘﻜﺎﻤل ‪ ARIMA‬ﺍﻋﺘﻤﺎﺩﹰﺍ ﻋﻠﻰ ﺍﻟﺭﺴﻭﻤﺎﺕ ﺍﻟﺒﻴﺎﻨﻴﺔ ﺍﻟﺘﻲ ﻴﻤﻜﻨﻨﺎ ﺍﻟﻨﻅﺎﻡ ﻤﻥ ﺇﺠﺭﺍﺀﻫﺎ‬

‫ﺒﺴﻬﻭﻟﺔ‪ ،‬ﻭﺍﻟﺘﺤﻠﻴل ﺍﻟﻤﺒﺩﺌﻲ ﻟﻬﺫﻩ ﺍﻟﺴﻠﺴﻠﺔ ﻴﻌﻁﻲ ﺍﻷﺸﻜﺎل ﺍﻟﺘﺎﻟﻴﺔ ﻟﻜل ﻤﻥ ﻨﻤﻁ ﺍﻟﺘﻐﻴﺭ‬

‫ﻓﻲ ﺍﻟﺴﻠﺴﻠﺔ )ﺸﻜل ‪ (13-15‬ﻭﺸﻜل ﺍﻟﺼﻨﺎﺩﻴﻕ ‪) Box plot‬ﺸﻜل ‪ (14-15‬ﻜﻤﺎ ﻴﻠﻲ‪.‬‬

‫ﺸﻜل ‪ : 13-15‬ﺴﻠﺴﻠﺔ ﺯﻤﻨﻴﺔ ﺘﻤﺜل ﻋﺩﺩ ﺁﺒﺎﺭ ﺍﻟﺒﺘﺭﻭل ﺍﻟﻨﺸﻁﺔ ‪ Active Oil Wells‬ﻓﻲ‬ ‫‪ 50‬ﺸﻬﺭﹰﺍ ﻓﻲ ﺍﻟﻭﻻﻴﺎﺕ ﺍﻟﻤﺘﺤﺩﺓ ﺍﻷﻤﺭﻴﻜﻴﺔ‪.‬‬ ‫‪700000‬‬

‫‪600000‬‬

‫‪500000‬‬

‫‪400000‬‬

‫‪10 13 16 19 22 25 28 31 34 37 40 43 46 49‬‬

‫‪7‬‬

‫‪4‬‬

‫‪1‬‬

‫‪Sequence number‬‬

‫‪WELLS‬‬

‫‪300000‬‬


‫)‪ (15‬ﺘﺤﻠﻴل ﺍﻟﺴﻼﺴل ﺍﻟﺯﻤﻨﻴﺔ ﻭﺍﻟﺘﻨﺒﺅ ﺍﻹﺤﺼﺎﺌﻲ‬

‫‪545‬‬

‫ﺸﻜل ‪ : 14-15‬ﺃﺸﻜﺎل ﺍﻟﺼﻨﺎﺩﻴﻕ ‪ Box Plots‬ﻟﺴﻠﺴﻠﺔ ﻋﺩﺩ ﺁﺒﺎﺭ ﺍﻟﺒﺘﺭﻭل ﺍﻟﻨﺸﻁﺔ‬ ‫‪ Active Oil Wells‬ﻓﻲ ‪ 50‬ﺸﻬﺭﹰﺍ ﻓﻲ ﺍﻟﻭﻻﻴﺎﺕ ﺍﻟﻤﺘﺤﺩﺓ ﺍﻷﻤﺭﻴﻜﻴﺔ‪.‬‬ ‫‪700000‬‬

‫‪50‬‬

‫‪600000‬‬

‫‪500000‬‬

‫‪400000‬‬

‫‪14‬‬

‫‪12‬‬

‫‪12‬‬

‫‪12‬‬

‫‪4.00‬‬

‫‪3.00‬‬

‫‪2.00‬‬

‫‪1.00‬‬

‫‪WELLS‬‬

‫‪300000‬‬ ‫=‪N‬‬

‫‪VAR00002‬‬

‫ﻭﻴﺘﻀﺢ ﻤﻥ ﺸﻜل ﺍﻟﺴﻠﺴﻠﺔ ﺍﻟﺯﻤﻨﻴﺔ ﺍﻟﺴﺎﺒﻕ )ﺸﻜل ‪ (13-15‬ﻭﺠﻭﺩ ﺃﺜﺭ ﻟﻼﺘﺠﺎﻩ‬

‫ﺍﻟﻌﺎﻡ ‪ Trend‬ﻭﺍﻟﺫﻱ ﻴﺅﻜﺩﻩ ﻨﻤﻁ ﺃﺸﻜﺎل ﺍﻟﺼﻨﺎﺩﻴﻕ )ﺸﻜل ‪ (14-15‬ﺍﻷﻤﺭ ﺍﻟﺫﻱ ﻴﺅﺩﻱ‬

‫ﺇﻟﻰ ﺍﻻﺴﺘﻨﺘﺎﺝ ﺒﻀﺭﻭﺭﺓ ﺤﺴﺎﺏ ﺴﻠﺴﻠﺔ ﺍﻟﻔﺭﻭﻕ ‪ Differencing‬ﻤﻥ ﺍﻟﺴﻠﺴﺔ ﺍﻟﺯﻤﻨﻴﺔ‬ ‫ﺍﻷﺼﻠﻴﺔ‪ ،‬ﻭﻓﻲ ﻫﺫﻩ ﺍﻟﺤﺎﻟﺔ ﻨﺒﺩﺃ ﺒﺘﺠﺭﺒﺔ ﺍﻟﻔﺭﻭﻕ ﻋﻨﺩ ﻓﺘﺭﺓ ‪ lag‬ﻭﺍﺤﺩﺓ‪ ،‬ﻭﻟﻠﺘﺄﻜﺩ ﻤﻥ ﺃﻥ‬

‫ﻫﺫﻩ ﺍﻟﺘﺤﻭﻴﻠﺔ ﻗﺩ ﺃﻋﻁﺕ ﺍﻟﻨﺘﺎﺌﺞ ﺍﻟﻤﺭﺠﻭﺓ ﺒﺈﺯﺍﻟﺔ ﺍﻻﺘﺠﺎﻩ ﺍﻟﻌﺎﻡ ‪ Trend‬ﻤﻥ ﺍﻟﺴﻠﺴﻠﺔ‬

‫ﺍﻟﺯﻤﻨﻴﺔ ﻴﺤﺴﻥ ﺃﻥ ﻨﺴﺘﻜﺸﻑ ﻨﻤﻁ ﻜل ﻤﻥ ﺩﺍﻟﺔ ﺍﻟﺘﺭﺍﺒﻁ ﺍﻟﺫﺍﺘﻲ ‪ ACF‬ﻭﺩﺍﻟﺔ ﺍﻟﺘﺭﺍﺒﻁ‬ ‫ﺍﻟﺫﺍﺘﻲ ﺍﻟﺠﺯﺌﻲ ‪) PACF‬ﻭﺍﻟﺘﻴﻥ ﺘﻡ ﺭﺴﻤﻬﻤﺎ ﻓﻲ ﺸﻜل ‪.(15-15‬‬

‫ﻭﻜﻤﺎ ﻴﺘﻀﺢ ﻤﻥ ﻨﻤﻁ ﺩﺍﻟﺔ ﺍﻟﺘﺭﺍﺒﻁ ﺍﻟﺫﺍﺘﻲ ‪ ACF‬ﻭﺩﺍﻟﺔ ﺍﻟﺘﺭﺍﺒﻁ ﺍﻟﺫﺍﺘﻲ ﺍﻟﺠﺯﺌﻲ‬

‫‪) PACF‬ﺸﻜل ‪ (15-15‬ﻓﺈﻥ ﺍﻟﻌﻤﻠﻴﺔ ﺍﻟﺴﺎﺒﻘﺔ ﻟﻡ ﺘﺘﻤﻜﻥ ﻤﻥ ﺇﺯﺍﻟﺔ ﺃﺜﺭ ﺍﻻﺘﺠﺎﻩ ﺍﻟﻌﺎﻡ‬

‫ﻜﻠﻪ ﻤﻥ ﺍﻟﺴﻠﺴﻠﺔ‪ ،‬ﻭﻫﺫﺍ ﻴﻘﺘﺭﺡ ﺘﻜﺭﺍﺭ ﺤﺴﺎﺏ ﺴﻠﺴﻠﺔ ﺍﻟﻔﺭﻭﻕ ‪ Differencing‬ﻭﺭﺴﻡ‬

‫ﺩﺍﻟﺔ ﺍﻟﺘﺭﺍﺒﻁ ﺍﻟﺫﺍﺘﻲ ‪ ACF‬ﻭﺩﺍﻟﺔ ﺍﻟﺘﺭﺍﺒﻁ ﺍﻟﺫﺍﺘﻲ ﺍﻟﺠﺯﺌﻲ ‪ PACF‬ﻟﻠﺴﻠﺴﻠﺔ ﺍﻟﺠﺩﻴﺩﺓ‬ ‫)ﻭﻓﻲ ﻫﺫﺍ ﺍﻟﻤﺜﺎل ﺸﻜل ‪ (16-15‬ﻟﺤﻴﻥ ﺍﻟﺤﺼﻭل ﻋﻠﻰ ﺴﻠﺴﻠﺔ ﺨﺎﻟﻴﺔ ﻤﻥ ﺍﻻﺘﺠﺎﻩ ﺍﻟﻌﺎﻡ‪.‬‬


‫( ﺘﺤﻠﻴل ﺍﻟﺴﻼﺴل ﺍﻟﺯﻤﻨﻴﺔ ﻭﺍﻟﺘﻨﺒﺅ ﺍﻹﺤﺼﺎﺌﻲ‬15)

546

PACF ‫ ﻭﺍﻟﺘﺭﺍﺒﻁ ﺍﻟﺫﺍﺘﻲ ﺍﻟﺠﺯﺌﻲ‬ACF ‫ ﻨﻤﻁ ﺩﺍﻟﺘﻲ ﺍﻟﺘﺭﺍﺒﻁ ﺍﻟﺫﺍﺘﻲ‬: 15 -15 ‫ﺸﻜل‬ Active Oil Wells ‫ﻟﺴﻠﺴﻠﺔ ﺍﻟﻔﺭﻭﻕ ﻤﺭﺓ ﻭﺍﺤﺩﺓ ﻤﻥ ﺴﻠﺴﻠﺔ ﻋﺩﺩ ﺁﺒﺎﺭ ﺍﻟﺒﺘﺭﻭل ﺍﻟﻨﺸﻁﺔ‬ .‫ﻓﻲ ﺍﻟﻭﻻﻴﺎﺕ ﺍﻟﻤﺘﺤﺩﺓ ﺍﻷﻤﺭﻴﻜﻴﺔ‬

WELLS 1.0

.5

0.0

ACF

-.5

Confidence Limits

Coefficient

-1.0 1

3 2

5 4

7 6

9 8

11 10

13 12

15 14

16

Lag Number Transforms: difference (1)

WELLS 1.0

.5

Partial ACF

0.0

-.5

Confidence Limits

-1.0

Coefficient 1

3 2

5 4

7 6

Lag Number Transforms: difference (1)

9 8

11 10

13 12

15 14

16


‫( ﺘﺤﻠﻴل ﺍﻟﺴﻼﺴل ﺍﻟﺯﻤﻨﻴﺔ ﻭﺍﻟﺘﻨﺒﺅ ﺍﻹﺤﺼﺎﺌﻲ‬15)

547

PACF ‫ ﻭﺍﻟﺘﺭﺍﺒﻁ ﺍﻟﺫﺍﺘﻲ ﺍﻟﺠﺯﺌﻲ‬ACF ‫ ﻨﻤﻁ ﺩﺍﻟﺘﻲ ﺍﻟﺘﺭﺍﺒﻁ ﺍﻟﺫﺍﺘﻲ‬: 16 -15 ‫ﺸﻜل‬ Active Oil ‫ﻟﺴﻠﺴﻠﺔ ﺍﻟﻔﺭﻭﻕ ﻤﺭﺘﻴﻥ ﻤﺘﺘﺎﻟﻴﺘﻴﻥ ﻤﻥ ﺴﻠﺴﻠﺔ ﻋﺩﺩ ﺁﺒﺎﺭ ﺍﻟﺒﺘﺭﻭل ﺍﻟﻨﺸﻁﺔ‬ .‫ ﻓﻲ ﺍﻟﻭﻻﻴﺎﺕ ﺍﻟﻤﺘﺤﺩﺓ ﺍﻷﻤﺭﻴﻜﻴﺔ‬Wells

WELLS 1.0

.5

0.0

ACF

-.5

Confidence Limits

-1.0

Coefficient 1

3 2

5 4

7 6

9 8

11 10

13 12

15 14

16

Lag Number Transforms: difference (2)

WELLS 1.0

.5

Partial ACF

0.0

-.5

Confidence Limits

-1.0

Coefficient 1

3 2

5 4

7 6

Lag Number Transforms: difference (2)

9 8

11 10

13 12

15 14

16


548

‫( ﺘﺤﻠﻴل ﺍﻟﺴﻼﺴل ﺍﻟﺯﻤﻨﻴﺔ ﻭﺍﻟﺘﻨﺒﺅ ﺍﻹﺤﺼﺎﺌﻲ‬15)

‫ ﻓﻲ ﺍﻟﺸﻜل ﺍﻟﺴﺎﺒﻕ ﺘﺘﻭﻗﻑ ﻋﻨﺩ ﺍﻟﻔﺘﺭﺓ‬ACF ‫ﻭﺤﻴﺙ ﺃﻥ ﺩﺍﻟﺔ ﺍﻟﺘﺭﺍﺒﻁ ﺍﻟﺫﺍﺘﻲ‬ ‫ ﺘﺩﺭﻴﺠﻴﹰﺎ ﺘﻘﺭﻴﺒﹰﺎ ﻓﺈﻥ ﻫﺫﺍ‬PACF ‫ﺍﻟﺜﺎﻨﻴﺔ ﺒﻴﻨﻤﺎ ﺘﺘﻼﺸﻰ ﺩﺍﻟﺔ ﺍﻟﺘﺭﺍﺒﻁ ﺍﻟﺫﺍﺘﻲ ﺍﻟﺠﺯﺌﻲ‬ ‫ ﻜﻨﻤﻭﺫﺝ ﻤﺒﺩﺌﻲ ﻟﻠﺴﻠﺴﻠﺔ‬ARIMA (0,2,2) ‫ﺠﻴﻨﻜﻨﺯ‬-‫ﻴﻘﺘﺭﺡ ﺃﺨﺫ ﻨﻤﻭﺫﺝ ﺒﻭﻜﺱ‬

.‫ ﺍﻟﻨﺎﺘﺠﺔ‬Residuals ‫ ﻟﺫﺍ ﺴﻭﻑ ﻨﻘﻭﻡ ﺒﺘﻭﻓﻴﻕ ﻫﺫﺍ ﺍﻟﻨﻤﻭﺫﺝ ﻭﻓﺤﺹ ﺍﻷﺨﻁﺎﺀ‬،‫ﺍﻟﺯﻤﻨﻴﺔ‬

‫ ﻟﺒﻴﺎﻨﺎﺕ ﺍﻟﺴﻠﺴﻠﺔ ﺍﻟﺯﻤﻨﻴﺔ ﺒﺎﺴﺘﺨﺩﺍﻡ‬ARIMA(0,2,2) ‫ﻭﺒﺘﻭﻓﻴﻕ ﻫﺫﺍ ﺍﻟﻨﻤﻭﺫﺝ‬

: ‫ ﺴﻭﻑ ﻨﺤﺼل ﻋﻠﻰ ﺍﻟﻨﺘﺎﺌﺞ ﺍﻟﺘﺎﻟﻴﺔ‬SPSS ‫ﻨﻅﺎﻡ‬

Model Description: Variable: WELLS Regressors: NONE Non-seasonal differencing: 2 No seasonal component in model. 95.00 percent confidence intervals will be generated. Split group number: 1 Series length: 50 Number of cases skipped at end because of missing values: 10 Melard's algorithm will be used for estimation. Termination criteria: Parameter epsilon: .001 Maximum Marquardt constant: 1.00E+09 SSQ Percentage: .001 Maximum number of iterations: 10

Initial values: MA1 .63781 MA2 -.37588 CONSTANT 295.0479

Marquardt constant = .001 Adjusted sum of squares = 4661182951.2


‫( ﺘﺤﻠﻴل ﺍﻟﺴﻼﺴل ﺍﻟﺯﻤﻨﻴﺔ ﻭﺍﻟﺘﻨﺒﺅ ﺍﻹﺤﺼﺎﺌﻲ‬15)

549

Iteration History: Iteration

Adj. Sum of Squares

Marquardt Constant

1 2 3 4 5 6

4441938081.4 4340471313.1 4323324857.5 4320922537.6 4320444357.3 4320360325.9

.00100000 .00010000 .00001000 .00000100 .00000010 .0000000

Conclusion of estimation phase. Estimation terminated at iteration number 7 because: Sum of squares decreased by less than .001 percent.

FINAL PARAMETERS: Number of residuals Standard error Log likelihood AIC SBC

48 9717.243 -507.70576 1021.4115 1027.0251

Analysis of Variance: DF Adj. Sum of Squares Residuals 45 4320343657.9

Variables in the Model: B SEB MA1 MA2 CONSTANT

.86031 .13937 -.37266 .14103 317.04973 721.98652

Residual Variance 94424811.9

T-RATIO

APPROX. PROB.

6.1728357 -2.6423294 .4391352

.00000016 .01128646 .66266502

‫ ﻭﺩﺍﻟﺔ‬ACF ‫ ﺍﻟﺘﺎﻟﻲ ﻨﻤﻁ ﻜل ﻤﻥ ﺩﺍﻟﺔ ﺍﻟﺘﺭﺍﺒﻁ ﺍﻟﺫﺍﺘﻲ‬17-15 ‫ﻭﻴﻭﻀﺢ ﺸﻜل‬

‫ ﻭﻫﺫﺍ ﺍﻟﺸﻜل ﻴﺒﻴﻥ ﺃﻥ‬،residuals ‫ ﻟﺴﻠﺴﻠﺔ ﺍﻷﺨﻁﺎﺀ‬PACF ‫ﺍﻟﺘﺭﺍﺒﻁ ﺍﻟﺫﺍﺘﻲ ﺍﻟﺠﺯﺌﻲ‬

‫ﺍﻟﻨﻤﻭﺫﺝ ﺍﻟﻤﻘﺘﺭﺡ ﻤﻨﺎﺴﺏ ﻟﺒﻴﺎﻨﺎﺕ ﺘﻠﻙ ﺍﻟﺴﻠﺴﻠﺔ ﺍﻟﺯﻤﻨﻴﺔ ﻭﺫﻟﻙ ﻟﻌﺩﻡ ﻭﺠﻭﺩ ﻤﻌﺎﻤﻼﺕ‬ . 95% ‫ﻤﻌﻨﻭﻴﺔ ﻓﻲ ﻜل ﻤﻥ ﺍﻟﺩﺍﻟﺘﻴﻥ ﺒﺩﺭﺠﺔ ﺜﻘﺔ‬


‫( ﺘﺤﻠﻴل ﺍﻟﺴﻼﺴل ﺍﻟﺯﻤﻨﻴﺔ ﻭﺍﻟﺘﻨﺒﺅ ﺍﻹﺤﺼﺎﺌﻲ‬15)

550

‫ ﻟﺴﻠﺴﻠﺔ‬PACF ‫ ﻭﺍﻟﺘﺭﺍﺒﻁ ﺍﻟﺫﺍﺘﻲ ﺍﻟﺠﺯﺌﻲ‬ACF ‫ ﺩﺍﻟﺘﻲ ﺍﻟﺘﺭﺍﺒﻁ ﺍﻟﺫﺍﺘﻲ‬: 17 -15 ‫ﺸﻜل‬ ‫ ﻟﻠﺴﻠﺴﺔ ﺍﻟﺯﻤﻨﻴﺔ ﺍﻟﺴﺎﺒﻘﺔ‬ARIMA(0,2,2) ‫ ﻟﻨﻤﻭﺫﺝ ﺒﻭﻜﺱ ﺠﻴﻨﻜﻨﺯ‬residuals ‫ﺍﻷﺨﻁﺎﺀ‬

Error for WELLS from ARIMA, MOD_16 CON 1.0

.5

0.0

ACF

-.5

Confidence Limits

Coefficient

-1.0 1

3 2

5 4

7 6

9 8

11 10

13 12

15 14

16

Lag Number

Error for WELLS from ARIMA, MOD_16 CON 1.0

.5

Partial ACF

0.0

-.5

Confidence Limits

-1.0

Coefficient 1

3 2

5 4

Lag Number

7 6

9 8

11 10

13 12

15 14

16


‫)‪ (15‬ﺘﺤﻠﻴل ﺍﻟﺴﻼﺴل ﺍﻟﺯﻤﻨﻴﺔ ﻭﺍﻟﺘﻨﺒﺅ ﺍﻹﺤﺼﺎﺌﻲ‬

‫‪551‬‬

‫ﻭﺒﺭﺴﻡ ﺸﻜل ﺍﻟﺴﻠﺴﻠﺔ ﺍﻟﺯﻤﻨﻴﺔ ﺍﻷﺼﻠﻴﺔ ﻤﻊ ﺴﻠﺴﻠﺔ ﺍﻟﻘﻴﻡ ﺍﻟﻤﺘﻭﻗﻌﺔ ﺒﺎﻻﻋﺘﻤﺎﺩ‬ ‫ﻋﻠﻰ ﺍﻟﻨﻤﻭﺫﺝ ﺍﻟﺫﻱ ﺘﻡ ﺘﻘﺩﻴﺭﻩ )‪ ARIMA(0,2,2‬ﺒﺎﻹﻀﺎﻓﺔ ﺍﻟﺘﻲ ﺴﻠﺴﻠﺘﻲ ﺤﺩﻱ ﺍﻟﺜﻘﺔ‬

‫ﺍﻟﺴﻔﻠﻴﺔ ﻭﺍﻟﻌﻠﻭﻴﺔ ﻟﻠﻘﻴﻡ ﺍﻟﻤﺘﻭﻗﻌﺔ ﻨﺤﺼل ﻋﻠﻰ ﺸﻜل ‪ 18-15‬ﺍﻟﺘﺎﻟﻲ‪ ،‬ﻭﻫﺫﻩ ﺍﻟﺸﻜل‬

‫ﻴﻭﻀﺢ ﻤﺩﻯ ﺍﻟﺩﻗﺔ ﻓﻲ ﺘﻤﺜﻴل ﺍﻟﻨﻤﻭﺫﺝ ﺍﻟﻤﻘﺘﺭﺡ ﻟﺒﻴﺎﻨﺎﺕ ﺍﻟﺴﻠﺴﻠﺔ ﺍﻟﺯﻤﻨﻴﺔ ﺍﻟﺘﻲ ﺘﻤﺜل‬

‫ﺃﻋﺩﺍﺩ ﺤﻘﻭل ﺍﻟﻨﻔﻁ ﺍﻟﻌﺎﻤﻠﺔ ﻓﻲ ‪ 50‬ﺸﻬﺭﹰﺍ ﻓﻲ ﺍﻟﻭﻻﻴﺎﺕ ﺍﻟﻤﺘﺤﺩﺓ ﺍﻷﻤﺭﻴﻜﻴﺔ ﺤﻴﺙ‬ ‫ﺘﺘﻘﺎﺭﺏ ﻜل ﻤﻥ ﺍﻟﺴﻠﺴﻠﺔ ﺍﻟﺯﻤﻨﻴﺔ ﺍﻷﺼﻠﻴﺔ ﻤﻊ ﺴﻠﺴﻠﺔ ﺍﻟﻘﻴﻡ ﺍﻟﻤﺘﻭﻗﻌﺔ‪.‬‬

‫ﺸﻜل ‪ : 18-15‬ﺍﻟﺴﻠﺴﻠﺔ ﺍﻟﺯﻤﻨﻴﺔ ﺍﻷﺼﻠﻴﺔ ﻭﺴﻠﺴﻠﺔ ﺍﻟﻘﻴﻡ ﺍﻟﻤﺘﻭﻗﻌﺔ ﻭﺍﻟﻤﺘﻨﺒﺄ ﺒﻬﺎ ﺒﺎﻻﻋﺘﻤﺎﺩ‬ ‫ﻋﻠﻰ ﺍﻟﻨﻤﻭﺫﺝ )‪ ARIMA(0,2,2‬ﻭﻜﺫﻟﻙ ﺴﻠﺴﻠﺘﻲ ﺤﺩﻱ ﺍﻟﺜﻘﺔ ﻟﻠﻘﻴﻡ ﺍﻟﻤﺘﻭﻗﻌﺔ ﻭﺍﻟﻤﺘﻨﺒﺄ ﺒﻬﺎ‬ ‫‪1200000‬‬

‫‪1000000‬‬

‫‪800000‬‬

‫‪WELLS‬‬ ‫‪Fit for WELLS from A‬‬ ‫‪RIMA, MOD_16 CON‬‬

‫‪600000‬‬

‫‪95% LCL for WELLS fr‬‬ ‫‪om ARIMA, MOD_16 CON‬‬

‫‪400000‬‬

‫‪95% UCL for WELLS fr‬‬ ‫‪om ARIMA, MOD_16 CON‬‬

‫‪200000‬‬ ‫‪55‬‬ ‫‪58‬‬

‫‪49‬‬ ‫‪52‬‬

‫‪43‬‬ ‫‪46‬‬

‫‪37‬‬ ‫‪40‬‬

‫‪31‬‬ ‫‪34‬‬

‫‪25‬‬ ‫‪28‬‬

‫‪19‬‬ ‫‪22‬‬

‫‪13‬‬ ‫‪16‬‬

‫‪7‬‬ ‫‪10‬‬

‫‪1‬‬ ‫‪4‬‬

‫‪Sequence number‬‬


‫)‪ (15‬ﺘﺤﻠﻴل ﺍﻟﺴﻼﺴل ﺍﻟﺯﻤﻨﻴﺔ ﻭﺍﻟﺘﻨﺒﺅ ﺍﻹﺤﺼﺎﺌﻲ‬

‫‪552‬‬

‫‪ .7 .15‬ﺗﺤﻠﻴﻞ اﻟﺴﻼﺳﻞ اﻟﺰﻣﻨﻴﺔ اﻟﻤﻮﺳﻤﻴﺔ ‪:‬‬ ‫‪Analysis of Seasonal Time Series :‬‬ ‫ﻭﻓﻲ ﺍﻟﻨﻬﺎﻴﺔ‪ ،‬ﻓﺈﻥ ﻓﻜﺭﺓ ﺘﻭﻓﻴﻕ ﻨﻤﻭﺫﺝ ﺒﻭﻜﺱ‪-‬ﺠﻴﻨﻜﻨﺯ )‪ ARIMA(p,I,q‬ﻴﻤﻜﻥ‬ ‫ﺒﺒﺴﺎﻁﺔ ﺘﻁﻭﻴﺭﻫﺎ ﻟﺘﺸﻤل ﺘﺤﻠﻴل ﺍﻟﺴﻼﺴل ﺍﻟﺯﻤﻨﻴﺔ ﺍﻟﻤﻭﺴﻤﻴﺔ ‪Seasonal time Series‬‬

‫ﺒﺎﺴﺘﺨﺩﺍﻡ ﻨﻤﺎﺫﺝ ﺒﻭﻜﺱ‪-‬ﺠﻴﻨﻜﻨﺯ ‪ ARIMA‬ﺍﻟﻤﻭﺴﻤﻴﺔ ﻭﺫﻟﻙ ﺒﺎﺴﺘﺨﺩﺍﻡ ﺍﻟﻨﻤﻭﺫﺝ‬

‫‪ ARIMA(p,I,q)(P,I,Q)s‬ﺤﻴﺙ ‪ P‬ﻭ ‪ Q‬ﻫﻤﺎ ﻋﺎﻤﻠﻲ ﺍﻻﻨﺤﺩﺍﺭ ﺍﻟﺫﺍﺘﻲ ﻭﺍﻟﻤﺘﻭﺴﻁﺎﺕ‬ ‫ﺍﻟﻤﺘﺤﺭﻜﺔ ﺍﻟﻤﻭﺴﻤﻴﻴﻥ ﻭ‪ s‬ﻫﻲ ﻋﺩﺩ ﺍﻟﻔﺼﻭل ﺍﻟﻤﻭﺴﻤﻴﺔ‪.‬‬

‫ﻭﻴﺴﺘﻁﻴﻊ ﺍﻟﻘﺎﺭﺉ ﺘﻁﺒﻴﻕ ﻨﻤﺎﺫﺝ ﺍﻟﺴﻼﺴل ﺍﻟﺯﻤﻨﻴﺔ ﺍﻟﻤﻭﺴﻤﻴﺔ ‪Seasonal time‬‬

‫‪ Series‬ﺍﻟﺴﺎﺒﻘﺔ ﺍﻟﺫﻜﺭ ﻋﻠﻰ ﺍﻟﺴﻼﺴل ﺍﻟﺯﻤﻨﻴﺔ ﺍﻟﻤﻭﺴﻤﻴﺔ ﺒﻌﺩ ﺍﺴﺘﻴﻌﺎﺏ ﺃﺩﻭﺍﺕ ﺍﻟﺘﻌﺭﻑ‬ ‫ﻋﻠﻰ ﺍﻟﻨﻤﺎﺫﺝ ﺍﻟﻤﺨﺘﻠﻔﺔ ﺍﻟﺴﻼﺴل ﺍﻟﺯﻤﻨﻴﺔ ﻭﺘﻨﻔﻴﺫ ﺍﻷﻭﺍﻤﺭ ﺍﻟﺨﺎﺼﺔ ﺒﻨﻅﺎﻡ ‪ SPSS‬ﺒﺩﻗﺔ‪،‬‬ ‫ﻭﻟﻜﻨﻨﺎ ﻟﻥ ﻨﺨﻭﺽ ﻓﻲ ﺘﻔﺎﺼﻴل ﺇﻀﺎﻓﻴﺔ ﻫﻨﺎ‪.‬‬

‫ﻜﻤﺎ ﺃﻨﻪ ﻴﻤﻜﻥ ﺘﺤﻠﻴل ﺍﻟﺴﻼﺴل ﺍﻟﺯﻤﻨﻴﺔ ﺍﻟﻤﻭﺴﻤﻴﺔ ﺒﻁﺭﻴﻘﺔ ﺍﻟﺘﺤﻠﻴل ﺇﻟﻰ‬

‫ﺍﻟﻤﺭﻜﺒﺎﺕ ﺍﻷﺴﺎﺴﻴﺔ ‪) Decomposition‬ﻟﻠﺘﻔﺎﺼﻴل ﺃﻨﻅﺭ ﻋﻜﺎﺸﺔ‪ ،(2001 ،‬ﻭﻫﺫﻩ‬

‫ﻁﺭﻴﻘﺔ ﺴﻬﻠﺔ ﺍﻟﺘﻁﺒﻴﻕ ﺭﻏﻡ ﺃﻨﻬﺎ ﺘﻔﺘﻘﺭ ﺇﻟﻰ ﺍﻟﺩﻗﺔ ﺃﺤﻴﺎﻨﹰﺎ ﻭﺍﻟﻤﺭﻭﻨﺔ ﻓﻲ ﺍﺨﺘﻴﺎﺭ ﺍﻟﻨﻤﻭﺫﺝ‬ ‫ﺍﻟﻤﻨﺎﺴﺏ ﺒﺎﻹﻀﺎﻓﺔ ﺇﻟﻰ ﻋﺩﻡ ﺇﻤﻜﺎﻨﻴﺔ ﺍﺴﺘﺨﺩﺍﻡ ﺃﺩﻭﺍﺕ ﺍﻻﺴﺘﻨﺘﺎﺝ ﺍﻹﺤﺼﺎﺌﻲ ﻋﻠﻰ‬ ‫ﻨﺘﺎﺌﺠﻬﺎ‪ ،‬ﻭﻟﻜﻲ ﻴﺘﻡ ﺍﺴﺘﺨﺩﺍﻡ ﻫﺫﻩ ﺍﻟﻁﺭﻴﻘﺔ ﻻ ﺒﺩ ﻓﻲ ﺍﻟﺒﺩﺍﻴﺔ ﻤﻥ ﺘﻌﺭﻴﻑ ﻤﺘﻐﻴﺭ ﺘﺎﺭﻴﺦ‬

‫‪ Date variable‬ﻋﻥ ﻁﺭﻴﻕ ﺍﺨﺘﻴﺎﺭ ﺃﻤﺭ ﺘﻌﺭﻴﻑ ﺘﺎﺭﻴﺦ ‪ Define Dates‬ﻤﻥ ﻗﺎﺌﻤﺔ‬ ‫ﺍﻟﺒﻴﺎﻨﺎﺕ ‪ Data‬ﻭﺍﺨﺘﻴﺎﺭ ﺸﻜل ﺍﻟﺘﺎﺭﻴﺦ ‪ Date Format‬ﺍﻟﺫﻱ ﻴﻨﺎﺴﺏ ﺍﻟﺴﻠﺴﻠﺔ ﺍﻟﺯﻤﻨﻴﺔ‪،‬‬

‫ﺜﻡ ﺒﻌﺩ ﺫﻟﻙ ﺍﺨﺘﺎﺭ ﺃﻤﺭ ﺍﻟﺘﺤﻠﻴل ﺇﻟﻰ ﺍﻟﻤﺭﻜﺒﺎﺕ ﺍﻷﺴﺎﺴﻴﺔ ‪ Decomposition‬ﻤﻥ‬ ‫ﺍﻟﻘﺎﺌﻤﺔ ﺍﻟﻔﺭﻋﻴﺔ ﻟﻠﺴﻼﺴل ﺍﻟﺯﻤﻨﻴﺔ ‪ Time Series‬ﻓﻲ ﻗﺎﺌﻤﺔ ﺍﻟﺘﺤﻠﻴل ﺍﻹﺤﺼﺎﺌﻲ‬

‫ﺍﻟﺭﺌﻴﺴﻴﺔ ﻟﺘﻔﺘﺢ ﺍﻟﻨﺎﻓﺫﺓ ﺍﻟﺨﺎﺼﺔ ﺒﺎﻟﺘﺤﻠﻴل ﺇﻟﻰ ﺍﻟﻤﺭﻜﺒﺎﺕ ﺍﻷﺴﺎﺴﻴﺔ ‪.Decomposition‬‬ ‫ﻭﺭﻏﻡ ﺃﻥ ﻫﺫﻩ ﺍﻟﻁﺭﻴﻘﺔ ﻤﺒﺎﺸﺭﺓ ﻭﺘﻌﻁﻲ ﻨﺘﺎﺌﺞ ﻴﺴﻬل ﺍﻟﺘﻌﺎﻤل ﻤﻌﻬﺎ ﻭﺘﻔﺴﻴﺭﻫﺎ‬

‫ﺇﻻ ﺃﻨﻨﺎ ﻟﻥ ﻨﺨﻭﺽ ﻓﻲ ﺘﻔﺎﺼﻴل ﺃﻜﺜﺭ ﻤﻥ ﺫﻟﻙ ﻭﺫﻟﻙ ﻟﻸﺴﺒﺎﺏ ﺍﻟﺴﺎﺒﻘﺔ ﺍﻟﺫﻜﺭ‪.‬‬


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.