NAINI BANSAL, Assoc. AIA, CMIT Architecture Portfolio, 2015-2020
Cover image: Degree Project
TABLE OF CONTENTS
Halsey Street, Newark: Intern Project at Gensler.............04 Degree Project: The Unseen Villain (Air & Water).............08 RETI Floating Learning Center.........................................14 Eaglebrook School of Arts and Sciences..........................18 Columbia University Boathouse......................................22 Chinatown Performing Arts Library.................................26 Dislocating Tension.........................................................30 Spatial Form: Unfolding Explosion..................................32 Morphology: Schwarz Surface.........................................34 Morphology: Hex Tile Module..........................................35 CES Research: Singularity Shells.....................................36
SU’ 2019
INTERN PROJECT “THE LINK” Gensler Architecture Intern Summer 2019
DISCOVER
4
EXPERIENCE
Our mission was to catalyze the evolution of Newark by actively engaging and connecting the streets, the space and the people. We worked on three scales: The City, The Street, and The Hub. To Understand Newark, The City, we learned its culture, analyzed the site, visited it, and observed its people. We used the site as an opportunity to connect Newark’s initiatives by developing underutilized spaces while considering communities. In Newark, we focused on Halsey Street to reimagine the pedestrian experience. Within Halsey Street, we created a new destination: The Link, which created an urban, casual, and energized street that linked the pedestrian and the community experience. This was a collective teamwork project where everyone’s roles merged together.
EVOLVE
Education
Work + Play
Residential
MASTER PLAN
SOFTWARE USED IN THIS PROJECT: Revit, Enscape, Lumion, Illustrator, Photoshop,
Collaboration with Seth Bilkis, Mia DiMaio, Kelsey Ryan, Juan Osorio, and Katie Teitelbaum
Existing Halsey Halsey Disconnect Proposal Site GENSLER INTERN PROJECT
SITE ANALYSIS
GENSLER INTERN PROJECT
NAINI BANSAL
6
GENSLER INTERN PROJECT
RENDERS
MASTER PLAN DIAGRAM
FACADE STUDIES
GENSLER INTERN PROJECT
NAINI BANSAL
THE UNSEEN VILLAIN Prof. Gonzalo Carbajo, Prof. Eva Perez De Vega, and Prof. Daniela Fabricius In collaboration with Anabel Baquerizo In a future where it is suffocating to breathe and potable water is extremely limited, we propose an urban network of hubs that clean air and harvest rainwater. Multiple forms of transit connect the hubs throughout our site, which is located in Mexico City. This network allows for the purification of air in different communities and replenishes their original sources of water. These hubs incorporate the cultures of their local communities and create spaces where nonhumans and humans can coexist and interact. Moving forward, we must create a symbiotic relationship between what we call the human world and the natural world. We must realize that they are one and the same. We must understand the larger context of the biosphere, and as architects we need to think of interventions with a lasting impact. We must respond to the future of climate change and its consequences. We must ask the question: how can architecture change to incorporate our need for clean air and water, two essential elements that we can no longer take for granted?
MODULAR EXPLORATIONS
(2019- 2020) SOFTWARE USED IN THIS PROJECT: Rhino, Grasshopper, Enscape, V-ray, Illustrator, Photoshop, Indesign 8
DEGREE PROJECT:
DEGREE PROJECT: THE UNSEEN VILLAIN
AIR PURIFICATION SYSTEMS AT PLAY
DEGREE PROJECT: THE UNSEEN VILLAIN
NAINI BANSAL
10
DEGREE PROJECT: THE UNSEEN VILLAIN THE ‘BIG PICTURE’
XOCHIMILCO MASTER PLAN: URBAN SCALE
DEGREE PROJECT: THE UNSEEN VILLAIN
NAINI BANSAL
SECTION
RENDER VIEWS
CONCEPT SKETCHES 12
DEGREE PROJECT: THE UNSEEN VILLAIN
DEGREE PROJECT: THE UNSEEN VILLAIN
NAINI BANSAL
SU’ 2018
RETI FLOATING LEARNING CENTER
14
An urban scale project that was heavily based on research about the site, the rising water level climate crisis, and how architecture is responding to that crisis. The studio worked with RETI center, which stands for Resilience, Education, Training, and Innovation. We conducted our own researches and developed individual responses for the client. RETI wanted a floating continued education center in New York City’s Red Hook and Sunset Park SMIA. To best serve their need, I conducted a thorough site analysis of Red Hook including income, land use, transportation, use of waterfront, ease of access, and a SWOT analysis. Based on these analyses a master plan for the area and a catalogue of amphibious structures was proposed. The floating facility was to be used as a trade school on GBX industrial site creating a relationship between the RETI Center (community educator) and GBX (industrial job provider). CATALOGUE
SOFTWARE USED IN THIS PROJECT: Rhino, V-ray, Illustrator, Photoshop
Prof. Zehra Kuz
RETI FLOATING LEARNING CENTER
RED HOOK SITE ANALYSIS
RETI FLOATING LEARNING CENTER
NAINI BANSAL
MASTER PLAN 16
RETI FLOATING LEARNING CENTER
SITE SECTION
Floating Park Job Creation
Docks
CONNECTED PROGRAMS
PLAN AND SECTIONS
Pre Fabrication Concrete Facility GBX
Swale Ferry Harbor School Other incoming vessels
EDUCATOR Trade School Learning Center Assembly Space
Floating Greenhouse
Remedial Work Floating Farm
RETI FLOATING LEARNING CENTER
Farmers Market Cafe Catering Restraunt
NAINI BANSAL
SP’ 2019
EAGLEBROOK SCHOOL OF ARTS AND SCIENCES
18
Eaglebrook School in Deerfield, Massachusetts is a boarding and day junior school. The project asks for a new school of arts and sciences on the 800-acre campus. The school wants to integrate the classes and not create a separation between the two different programs. I designed this building based on the users and the site conditions. Circulation is created as a space for interaction between the students and the architecture. Layers of materials are used such as: wood structure and roof, floor to ceiling curtain wall as a tight building envelope and a façade skin. This layering allows for porosity throughout the building. The openings on the façade are based on how the interior spaces are being used. For example, the labs require high stools therefore, the openings are on eye-level of the users.
PLAN
SOFTWARE USED IN THIS PROJECT: Rhino, V-ray, Maxwell, Illustrator, Photoshop
Prof. Lou Goodman
EAGLEBROOK SCHOOL OF ARTS AND SCIENCES
ELEVATIONS
EAGLEBROOK SCHOOL OF ARTS AND SCIENCES
NAINI BANSAL
HAND SKETCHES
EXPLODED AXON
RENDER
SECTION 20
EAGLEBROOK SCHOOL OF ARTS AND SCIENCES
RENDER VIEWS
EAGLEBROOK SCHOOL OF ARTS AND SCIENCES
NAINI BANSAL
SP’ 2018
COLUMBIA BOATHOUSE
Prof. Gonzalo Carbajo
22
Columbia University has decided to upgrade and modernize its boathouse facility on the Harlem River adjacent to Baker Field sports complex. The University wants to continue to grow its neighborhood outreach initiatives. The existing Columbia Boathouse is a privately used facility that is surrounded by public spaces and a residential community. As part of the outreach initiative, the new boathouse proposal incorporates rowing education and training programs for inter-city youth in tandem with its varsity collegiate rowing program. The outreach program is “dedicated to the belief that the sport of rowing provides unique abilities to promote personal and community growth through teamwork, discipline, and physical fitness.” Classroom and training spaces are included as part of the facility in the proposal for the outreach program along with a multipurpose room for public events.
CONCEPT DIAGRAM
SOFTWARE USED IN THIS PROJECT: Rhino, Maxwell, V-ray, Illustrator, Photoshop
In Collaboration with Gunes Kurtulan
COLUMBIA BOATHOUSE
PLANS
COLUMBIA BOATHOUSE
NAINI BANSAL
24
COLUMBIA BOATHOUSE RENDER VIEW
DIAGRAMS
WALL SECTION DETAIL
COLUMBIA BOATHOUSE
NAINI BANSAL
SP’ 2017
CHINATOWN PERFORMING ARTS LIBRARY
26
A calm and quiet place within the chaos of Chinatown. The building performs through its form, circulation, space and furniture. The design focuses on bringing light into the building in a dense manhattan site. Through a void that travel across the interior space, light is brought into the building. The library creates two co-existing worlds for the occupants to experience as they move through it. One world that encloses the searcher in books and another that encloses the readers in light.
CONCEPT COLLAGE: DISORIENTATION
SOFTWARE USED IN THIS PROJECT: Rhino, V-ray, Illustrator, Photoshop
Prof. Eva De Vega Perez
CHINATOWN PERFORMING ARTS LIBRARY
CIRCULATION EXPLORATIONS
SECTIONS CHINATOWN PERFORMING ARTS LIBRARY
NAINI BANSAL
ELEVATIONS
PLANS 28
CHINATOWN PERFORMING ARTS LIBRARY
DIAGRAMATIC RENDERS
PHYSICAL MODEL CHINATOWN PERFORMING ARTS LIBRARY
NAINI BANSAL
SP’ 2016
DISLOCATING TENSION
Prof. Farzam Yazdenseta
30
A first-year project where different systems such as body motion, blending shapes, and facade analysis were generated that lead to hybridization to create an architectural proposition in the Higgins Hall Plaza. Using the Steven Holl created façade of Higgins Hall, series of layered drawings were created from which emerged the hand drawing seen on the right. The architectural proposal was a hybrid of two different systems: solid and framed void. In the project, I resolved how two systems can coexist in the same space and defined their relationship where they collided.
HAND DRAWING
SOFTWARE USED IN THIS PROJECT: Rhino, V-ray, Illustrator, Photoshop
Architectural Proposition for two Occupants.
DISLOCATING TENSION
DISLOCATING TENSION NAINI BANSAL
STREET PERSPECTIVE
EXPERIMENTAL PROCESS DRAWING
PHYSICAL MODEL
FA’ 2016
SPATIAL FORM: UNFOLDING EXPLOSION
SOFTWARE USED IN THIS PROJECT: Rhino, Maya, Illustrator, Photoshop
Prof. Nathan Hume
32
This was a study of form and geometry: known versus unknown. Using Maya, a known geometry was sculpted into a spatial but unknown geometrical form. Once the form has spatial qualities, it was “caged” into a “container” that had a known geometry to bring the unknown back to the known. This process is shown by using line weights and toning to show the perspective and spatial views. Containing the form in a titled box, its irregularities were pushed in the center. Using contours, the box was unrolled, and the insides were exploded out as form continued to visually unroll.
SPATIAL FORM: UNFOLDING EXPLOSION
SPATIAL FORM: UNFOLDING EXPLOSION
NAINI BANSAL
SP’ 2019
MORPHOLOGY: SCHWARZ SURFACE
34
3D PRINTED JOINTS
Schwarz surface with 3d printed connections, wired edges, and stretched fabric for rapid assembly. This was a group project where I took on a project manager roll. I coordinated between the professors and my team to best understand the project needs, deliverables, and schedule. Once we decided on this minimal surface to develop as a prototype with minimal support frame, I created the digital model using rhino and grasshopper. I coordinated between my teammates to assign further developments of the connection nodes that were to be 3D printed and assemblage of other materials such as wire and fabric. This project really taught me the value of teamwork as it was a success only as a result of great coordination between all my peers.
DIGITAL MODEL
Collaboration with Khadeeja Boriywala, Safa Mehrjui, SeokYoung Jung, Celine Lee, Diyang Shen, and Huaiben Yang
PHYSICAL MODEL
SOFTWARE USED IN THIS PROJECT: Rhino, Grasshopper, V-ray, Illustrator, Photoshop, Cura
Dr. Haresh Lalvani and Prof. John Gulliford
MORPHOLOGY
FA’ 2018
MORPHOLOGY: HEX TILE MODULE Dr. Haresh Lalvani and Prof. John Gulliford Collaboration with SeokYoung Jung This project required us to be open to failure and learn from it to proceed. Explorations usually resulted in more problems and questions instead of solutions. We conducted multiple tessellating brick studies on doubly curved topological shells.
One big module consists of 9 identical small hex modules that connect edge to edge. The one big module can continue infinitely.
STUDY DIAGRAM
PHYSICAL MODEL
I used hexagon tiles as the tessellating bricks. Using one milled minimal surface mold, we explored multiple tiling methods to create a module and solve its edge conditions. Once a tiling method was deemed a success in a 3D study, I explored different edge conditions and possibilities of connections via 2D studies and further resolved them to make a physical final model.
MORPHOLOGY
NAINI BANSAL
(2019- 2020)
MORPHOLOGY: SINGULARITY SHELLS Center for Experimental Structures Research Assistant
36
Dr. Haresh Lalvani and Prof. John Gulliford The shell shown here is one of 8 singularity structures that are conceived as gravity-formed surfaces. These surfaces are reversed as grid shells using the method invented by Frei Otto. The render on the right show interior views of large-scale singularity grid shell and its different views. As a research assistant, I learned how to model these shells using rhino and grasshopper scripts. Throughout this project we came across problems that were not solved ever before. Therefore, a lot of innovative problem solving was required where I learned that failure is key to success. Through this research emerged a new grid that can be used in computational construction. Instead of just 3-axis grid, this is a 5-axis grid. To the right is an example of a 5-axis grid applied to a quad of a singularity grid shell.
RENDER VIEWS
SOFTWARE USED IN THIS PROJECT: Rhino, Grasshopper, Enscape, V-ray, Illustrator, Photoshop
Summer 2019-Present
MORPHOLOGY
(1,0,0,0,0)
(0,0,1,0,0)
(0,1,0,0,0)
(0,0,0,1,0)
(1,0,0,0,0)
(0,0,0,0,1)
(0,0,1,0,0)
(0,1,0,0,0)
(0,0,0,1,0)
(0,0,0,0,1)
(0,0,0,12,7) (0,0,0,13,5) (0,0,0,15,2) (0,0,0,14,3) (0,0,0,11,9) (0,0,0,15,1) (0,0,0,12,6) (0,0,0,13,4) (0,0,0,14,2) (0,0,0,11,8) (0,0,0,14,1) (0,0,0,12,5) (0,0,0,13,3)
(0,0,0,11,10)
(0,0,0,10,15) (0,0,0,10,14)
(0,0,0,15,15)
0,15,15,0,0
(0,0,0,10,13)
0,15,14,0,0
(0,0,0,15,14) 0,15,13,0,0
(0,0,0,14,15)
0,14,15,0,0
(0,0,0,15,13)
(0,0,0,10,12)
0,15,12,0,0 0,14,14,0,0
(0,0,0,15,12)
0,15,11,0,0 0,14,13,0,0
(0,0,0,13,15)
0,13,14,0,0 0,14,11,0,0 0,15,9,0,0
(0,0,0,13,14) (0,0,0,15,10)
0,14,10,0,0 0,15,8,0,0 0,13,12,0,0
(0,0,0,15,9) (0,0,0,13,12)
0,12,15,0,0
(0,0,0,15,7)
(0,0,0,12,12) (0,0,0,11,15)
0,11,15,0,0
(0,0,0,15,5)
0,12,11,0,0 0,13,8,0,0 0,15,5,0,0 0,14,6,0,0 0,12,10,0,0
0,11,14,0,0
(0,0,0,11,11) (0,0,0,10,15)
(0,0,0,12,8)
(0,0,0,11,9)
(0,0,0,15,3) (0,0,0,14,4)
0,10,15,0,0
(0,0,0,10,13)
(0,0,0,12,6) (0,0,0,13,4)
(0,0,0,11,8) (0,0,0,10,12) (0,0,0,10,11)
(0,0,0,12,4) (0,0,0,11,6)
(0,0,0,10,10) (0,0,0,10,9)
(0,0,0,9,15)
(0,0,0,10,8)
(0,0,0,9,14)
(0,0,0,15,0)
(0,0,0,15,1) (0,0,0,14,2)
(0,0,0,12,5) (0,0,0,13,3)
(0,0,0,14,1)
(0,0,0,11,7)
(0,0,0,9,13)
(0,0,0,11,5)
(0,0,0,9,11)
(0,0,0,13,0)
(0,0,0,11,3)
(0,0,0,10,5)
(0,0,0,9,9) (0,0,0,9,8)
0,9,11,0,0
(0,0,0,9,7) (0,0,0,8,15)
(0,0,0,8,14)
(0,0,0,10,1)
(0,0,0,9,4)
0,8,13,0,0
(0,0,0,10,0)
0,8,12,0,0 0,8,11,0,0 0,8,10,0,0 0,8,9,0,0 0,8,8,0,0
0,10,1,0,0
(0,0,0,9,1)
(0,0,0,9,0)
(0,0,0,8,1)
(0,0,0,8,0)
(0,0,0,7,1)
(0,0,0,7,0)
0,6,14,0,0 0,6,15,0,0
(0,0,0,5,7) (0,0,0,5,9) (0,0,0,5,10) (0,0,0,5,8) (0,0,0,5,6) (0,0,0,5,11) (0,0,0,5,5) (0,0,0,5,12) (0,0,0,5,4) (0,0,0,5,3) (0,0,0,5,2) (0,0,0,5,1) (0,0,0,4,6) (0,0,0,4,8) (0,0,0,4,9) (0,0,0,4,7) (0,0,0,4,5) (0,0,0,4,10) (0,0,0,4,4) (0,0,0,4,11) (0,0,0,4,3) (0,0,0,4,2) (0,0,0,4,12) (0,0,0,4,1) (0,0,0,4,13) (0,0,0,3,6) (0,0,0,3,7) (0,0,0,3,5) (0,0,0,3,8) (0,0,0,3,9) (0,0,0,3,4) (0,0,0,3,3) (0,0,0,3,10) (0,0,0,3,2) (0,0,0,3,11) (0,0,0,3,1) (0,0,0,3,12) (0,0,0,2,6) (0,0,0,2,7) (0,0,0,2,5) (0,0,0,3,13) (0,0,0,2,8) (0,0,0,2,4) (0,0,0,2,9) (0,0,0,2,3) (0,0,0,2,2) (0,0,0,3,14) (0,0,0,2,10) (0,0,0,2,1) (0,0,0,2,11) (0,0,0,3,15)
(0,0,0,6,0)
0,5,1,0,0
0,5,0,0,0
0,4,1,0,0
0,4,0,0,0
0,5,8,0,0 0,5,9,0,0 0,5,7,0,0 0,5,10,0,0 0,5,6,0,0 0,5,11,0,0 0,5,5,0,0 0,5,12,0,0 0,5,4,0,0 0,5,13,0,0 0,5,3,0,0 0,5,2,0,0
0,5,14,0,0
(0,0,0,5,0)
0,5,15,0,0 0,4,7,0,0 0,4,8,0,0 0,4,6,0,0 0,4,9,0,0 0,4,5,0,0 0,4,10,0,0 0,4,4,0,0 0,4,11,0,0 0,4,3,0,0 0,4,12,0,0
(0,0,0,1,5) (0,0,0,1,4) (0,0,0,1,3) (0,0,0,1,2) (0,0,0,1,1)
(0,0,0,0,6) (0,0,0,0,7) (0,0,0,0,5) (0,0,0,0,4) (0,0,0,0,8) (0,0,0,0,3) (0,0,0,0,9) (0,0,0,0,11) (0,0,0,0,2) (0,0,0,0,10) (0,0,0,0,1) (0,0,0,0,11) (0,0,0,0,12)
0,4,2,0,0
0,4,13,0,0
(0,0,0,4,0)
0,4,14,0,0
0,3,7,0,0 0,3,6,0,0 0,3,8,0,0 0,3,5,0,0 0,3,9,0,0 0,3,4,0,0 0,3,3,0,0 0,3,10,0,0 0,3,2,0,0
0,4,15,0,0
0,3,11,0,0
0,3,1,0,0
(0,0,0,1,0)
0,3,13,0,0
0,2,6,0,0 0,2,7,0,0 0,2,5,0,0 0,2,8,0,0 0,2,4,0,0 0,2,9,0,0 0,2,3,0,0 0,2,2,0,0 0,2,10,0,0
0,3,14,0,0
0,2,11,0,0
(0,0,0,2,0)
0,3,15,0,0
0,2,1,0,0
(0,0,0,7,14)
6,0,0,0,0 5,0,0,0,0 7,0,0,0,0 4,0,0,0,0 8,0,0,0,0 3,0,0,0,0 9,0,0,0,0 2,0,0,0,0 10,0,0,0,0 1,0,0,0,0
0,0,11,0,0
11,0,0,0,0
0,0,0,0,0
0,1,14,0,0
0,0,13,0,0 0,1,15,0,0
(0,0,0,0,13)
0,0,0,1,0
(0,0,0,9,1)
(0,0,0,9,0)
(0,0,0,8,2) (0,0,0,8,1)
(0,0,0,8,0)
(0,0,0,8,4) (0,0,0,8,3)
(0,0,0,7,5)
13,0,0,0,0
0,0,0,0,1
0,0,14,0,0 0,0,0,2,0
(0,0,0,9,2)
(0,0,0,7,13) (0,0,0,7,11) (0,0,0,7,9) (0,0,0,7,12) (0,0,0,7,10) (0,0,0,7,8) (0,0,0,7,7) (0,0,0,7,6)
12,0,0,0,0
0,0,12,0,0
(0,0,0,10,0)
(0,0,0,9,3)
(0,0,0,8,5)
0,1,0,0,0
0,0,6,0,0 0,0,5,0,0 0,1,12,0,0 0,0,7,0,0 0,0,4,0,0 0,0,3,0,0 0,0,9,0,0 0,0,2,0,0 0,1,13,0,0 0,0,10,0,0 0,0,1,0,0
0,0,8,0,0 0,2,15,0,0
(0,0,0,10,1)
(0,0,0,9,4)
(0,0,0,8,6)
(0,0,0,7,15)
0,2,14,0,0 0,1,11,0,0
(0,0,0,0,0)
(0,0,0,10,2) (0,0,0,9,5)
(0,0,0,8,7)
0,2,0,0,0
0,2,12,0,0 0,1,6,0,0 0,1,5,0,0 0,1,7,0,0 0,1,4,0,0 0,1,8,0,0 0,1,3,0,0 0,2,13,0,0 0,1,9,0,0 0,1,2,0,0 0,1,10,0,0 0,1,1,0,0
(0,0,0,1,0)
(0,0,0,9,6)
0,3,0,0,0
0,3,12,0,0
(0,0,0,3,0)
(0,0,0,2,12) (0,0,0,2,13)
0,6,0,0,0
0,6,4,0,0 0,6,2,0,0
(0,0,0,6,1)
(0,0,0,4,14)
0,6,1,0,0
(0,0,0,8,14) (0,0,0,8,13) (0,0,0,8,12) (0,0,0,8,11) (0,0,0,8,10) (0,0,0,8,9) (0,0,0,8,8)
0,6,3,0,0
(0,0,0,6,2)
(0,0,0,4,15)
0,7,0,0,0
0,7,2,0,0
0,6,10,0,0 0,6,9,0,0 0,6,11,0,0 0,6,8,0,0 0,6,12,0,0 0,6,7,0,0 0,6,13,0,0 0,6,6,0,0 0,6,5,0,0
(0,0,0,6,3)
(0,0,0,5,13)
0,7,1,0,0
(0,0,0,8,15)
0,7,3,0,0
(0,0,0,7,2)
(0,0,0,6,4)
(0,0,0,5,14)
0,8,0,0,0
0,8,2,0,0
(0,0,0,7,3)
(0,0,0,5,15)
0,9,0,0,0
0,8,1,0,0
0,8,3,0,0
0,7,4,0,0
(0,0,0,7,4)
(0,0,0,6,15)
0,9,1,0,0
0,8,4,0,0
0,7,5,0,0
(0,0,0,11,0)
(0,0,0,10,3)
0,9,2,0,0
0,8,5,0,0
(0,0,0,11,1)
(0,0,0,9,7)
0,9,3,0,0
0,7,11,0,0 0,7,14,0,0 0,7,13,0,00,7,12,0,0 0,7,10,0,0 0,7,9,0,0 0,7,8,0,0 0,7,7,0,0 0,7,6,0,0
0,7,15,0,0
(0,0,0,8,2)
(0,0,0,6,9) (0,0,0,6,11) (0,0,0,6,7) (0,0,0,6,12) (0,0,0,6,10) (0,0,0,6,8) (0,0,0,6,13) (0,0,0,6,6) (0,0,0,6,14) (0,0,0,6,5)
0,10,0,0,0
0,9,4,0,0
(0,0,0,12,0)
(0,0,0,11,2)
(0,0,0,10,4)
0,10,2,0,0
0,9,5,0,0
(0,0,0,9,2)
(0,0,0,8,3)
(0,0,0,7,5)
(0,0,0,9,8)
0,11,0,0,0
0,10,3,0,0
0,9,6,0,0
0,8,6,0,0
(0,0,0,8,4)
(0,0,0,7,9) (0,0,0,7,10) (0,0,0,7,8) (0,0,0,7,7) (0,0,0,7,6)
0,11,1,0,0
0,10,4,0,0
0,8,7,0,0
(0,0,0,8,5) (0,0,0,7,11)
(0,0,0,7,12)
0,8,14,0,0
(0,0,0,9,3)
(0,0,0,8,6)
(0,0,0,7,13) (0,0,0,7,14)
0,8,15,0,0
(0,0,0,10,5)
(0,0,0,9,9)
0,12,0,0,0
0,11,2,0,0
0,9,7,0,0
(0,0,0,10,2) (0,0,0,9,5)
(0,0,0,8,7)
(0,0,0,7,15)
0,9,8,0,0
(0,0,0,11,0)
(0,0,0,12,1)
(0,0,0,11,3)
(0,0,0,9,10)
0,13,0,0,0
0,12,1,0,0
0,11,3,0,0
0,10,5,0,0
(0,0,0,11,4)
(0,0,0,10,6)
0,12,2,0,0
0,9,10,0,0
(0,0,0,10,3)
(0,0,0,9,6) (0,0,0,8,13) (0,0,0,8,12) (0,0,0,8,11) (0,0,0,8,10) (0,0,0,8,9) (0,0,0,8,8)
0,13,1,0,0 0,12,3,0,0
0,11,4,0,0
0,10,6,0,0 0,9,9,0,0
(0,0,0,11,1)
(0,0,0,9,11)
0,14,0,0,0
0,13,2,0,0
0,12,4,0,0
0,11,5,0,0
0,10,7,0,0
0,9,12,0,0
(0,0,0,11,2)
(0,0,0,10,4)
0,11,6,0,0
0,10,8,0,0
0,9,14,0,0
(0,0,0,9,10)
0,14,1,0,0
0,11,7,0,0
0,10,9,0,0
0,9,15,0,0
(0,0,0,12,0)
0,15,0,0,0
0,14,2,0,0
0,12,5,0,0 0,13,3,0,0
0,10,11,0,0
0,9,13,0,0
(0,0,0,12,1)
0,15,1,0,0
0,11,8,0,0
0,10,12,0,0
0,10,10,0,0
(0,0,0,13,1)
(0,0,0,12,2)
(0,0,0,10,7)
(0,0,0,9,12)
0,15,2,0,0 0,14,3,0,0
0,12,6,0,00,13,4,0,0
0,10,13,0,0
(0,0,0,13,2)
(0,0,0,12,3)
(0,0,0,11,4)
(0,0,0,10,6)
0,13,5,0,0 0,12,7,0,0
0,11,9,0,0
(0,0,0,14,0)
(0,0,0,12,2)
(0,0,0,10,7)
(0,0,0,9,12)
0,15,3,0,0 0,14,4,0,0
0,11,10,0,0
0,10,14,0,0
(0,0,0,9,13)
0,13,6,0,0 0,12,8,0,0
0,11,11,0,0
(0,0,0,11,10) (0,0,0,12,7) (0,0,0,13,5) (0,0,0,15,2) (0,0,0,14,3)
(0,0,0,10,14)
(0,0,0,10,8)
(0,0,0,9,14)
0,15,4,0,0 0,12,9,0,00,14,5,0,0
0,11,12,0,0
(0,0,0,11,12)
(0,0,0,13,0)
(0,0,0,12,3)
(0,0,0,11,5)
0,13,7,0,0
0,11,13,0,0
(0,0,0,15,4)
(0,0,0,12,9)
(0,0,0,10,9)
(0,0,0,9,15)
0,15,6,0,0 0,12,12,0,0 0,13,9,0,0 0,14,7,0,0
(0,0,0,12,10)
(0,0,0,11,13)
0,14,8,0,0 0,13,10,0,0
0,12,13,0,0
(0,0,0,15,6)
(0,0,0,12,11)
(0,0,0,11,14)
0,13,11,0,0 0,15,7,0,0
0,12,14,0,0
(0,0,0,13,11)
(0,0,0,12,13)
(0,0,0,13,1)
0,14,9,0,0
(0,0,0,15,8) (0,0,0,12,14)
(0,0,0,13,2)
(0,0,0,12,4) (0,0,0,11,6)
(0,0,0,10,10)
0,13,13,0,0
(0,0,0,13,13)
(0,0,0,12,15)
(0,0,0,14,0)
(0,0,0,11,7)
(0,0,0,10,11)
0,13,15,0,00,15,10,0,0 0,14,12,0,0
(0,0,0,15,11)
(0,0,0,15,0)
(0,0,0,7,4)
14,0,0,0,0 0,0,0,0,2
(0,0,0,0,14) 0,0,15,0,0 1,0,0,0,0
0,0,0,3,0
0,0,0,0,3
(0,0,15,0,0) (0,0,0,0,15)
(0,0,0,0,0) (0,0,0,0,1)
(0,0,0,7,3)
0,0,0,0,4
0,0,0,4,0
(0,0,1,0,0)
0,0,0,0,6 0,0,0,0,7
0,0,0,7,0
0,0,0,0,8
0,0,0,8,0
0,0,0,0,9
0,0,0,9,0 0,0,0,10,0
(0,0,0,6,15)
0,0,0,0,10
0,0,0,11,0
(1,0,0,0,0)
(0,0,1,0,0)
(0,1,0,0,0)
(0,0,0,1,0)
(0,1,0,0,0)
(0,0,0,0,1)
0,0,0,0,14
0,0,0,15,0
(1,0,0,0,0)
(0,0,0,6,2) (0,0,0,6,1)
(0,0,0,6,0)
(0,0,0,6,3)
0,0,0,0,13
0,0,0,14,0
(1,0,0,0,0)
(0,0,0,7,0)
(0,0,0,6,4)
0,0,0,0,12
0,0,0,13,0
(0,15,0,0,0)
(0,0,0,7,1)
0,0,0,0,11
0,0,0,12,0
(15,0,0,0,0)
(0,0,0,7,2)
(0,0,0,6,10) (0,0,0,6,8) (0,0,0,6,12) (0,0,0,6,11) (0,0,0,6,9) (0,0,0,6,7) (0,0,0,6,13) (0,0,0,6,6) (0,0,0,6,14) (0,0,0,6,5)
0,0,0,0,5
0,0,0,5,0 0,0,0,6,0
0,0,0,0,15
(0,0,1,0,0)
(0,1,0,0,0)
(0,0,0,1,0)
(0,15,15,0,0)
(0,0,0,0,1)
(0,14,15,0,0)
(0,15,14,0,0)
(0,15,15,0,0)
(0,14,15,0,0)
(0,15,14,0,0)
(0,14,14,0,0)
(0,13,15,0,0)
(0,13,14,0,0)
(0,12,15,0,0)
(0,0,0,5,4) (0,0,0,5,2)
(0,0,0,4,5)
(0,0,0,5,0)
(0,0,0,4,3)
(0,13,11,0,0)
(0,12,11,0,0)
(0,11,11,0,0)
(0,0,0,4,2)
(0,12,10,0,0)
(0,11,10,0,0)
(0,8,12,0,0)
(0,7,13,0,0)
(0,10,10,0,0)
(0,9,11,0,0)
(0,13,9,0,0)
(0,12,9,0,0)
(0,12,8,0,0)
(0,13,7,0,0)
(0,0,0,2,5)
(0,4,15,0,0)
(0,0,0,3,1)
(0,10,7,0,0)
(0,9,6,0,0)
(0,10,5,0,0)
(0,0,0,2,1)
(0,0,13,1,0)
(0,0,0,2,0)
(0,0,10,0,0)
(0,5,7,0,0)
(0,8,6,0,0)
(0,7,6,0,0)
(0,6,6,0,0)
(0,11,2,0,0) (0,9,3,0,0)
(0,3,8,0,0)
(0,4,7,0,0)
(0,5,6,0,0)
(0,2,9,0,0) (0,4,6,0,0)
(0,3,7,0,0)
(0,6,5,0,0)
(0,5,5,0,0)
(0,7,4,0,0)
(0,0,5,0,0) (0,0,0,1,1) (0,0,0,1,0)
(0,0,0,0,2)
(0,2,7,0,0)
(0,4,5,0,0)
(0,5,4,0,0)
(0,6,3,0,0)
(0,11,1,0,0) (0,10,1,0,0)
(0,9,1,0,0) (0,7,2,0,0)
(0,1,8,0,0)
(0,13,1,0,0)
(0,6,15,0,0)
(0,15,0,0,0) (0,14,0,0,0)
(0,7,3,0,0) (0,8,2,0,0)
(0,3,6,0,0)
(0,8,1,0,0)
(0,13,0,0,0) (0,12,0,0,0)
(0,10,0,0,0)
(0,0,0,0,0)
(0,0,0,1,0)
(0,0,0,0,1)
(0,0,1,0,0) (0,0,0,0,0)
(0,0,0,5,14) (0,0,0,3,13)
(0,0,0,4,14) (0,0,0,5,15)
(3,0,0,0,13) (5,0,0,0,14) (0,0,0,2,13) (6,0,0,0,15) (2,0,0,0,13) (0,0,0,1,13) (1,0,0,0,13) (0,0,0,0,13) (4,0,0,0,14)
(5,0,0,0,15)
(0,0,0,3,14)
(3,0,0,0,14)
(0,0,0,2,14) (0,0,0,4,15)
(0,5,0,0,0)
(0,1,0,0,0)
(0,15,8,0,0)
(2,0,0,0,14) (1,0,0,0,14) (0,0,0,0,14)
(0,0,0,1,14)
(0,0,0,3,15)
(4,0,0,0,15)
(3,0,0,0,15)
(0,0,0,2,15)
(0,14,8,0,0)
(0,11,10,0,0)
(0,12,9,0,0)
(0,13,8,0,0)
(0,14,7,0,0) (0,15,6,0,0)
(0,11,9,0,0)
(0,12,8,0,0)
(0,13,7,0,0) (0,14,6,0,0)
(0,5,15,0,0)
(0,9,10,0,0)
(0,8,11,0,0)
(0,7,12,0,0)
(0,10,9,0,0)
(0,11,8,0,0)
(0,15,5,0,0)
(0,12,7,0,0)
(0,6,13,0,0)
(0,13,6,0,0)
(0,5,14,0,0)
0,0,14,3,0
(0,0,0,6,15)
(1,0,0,0,0)
(0,14,9,0,0)
(0,13,9,0,0)
(0,6,14,0,0)
(1,13,0,0,0)
(1,120,0,0) (0,0,12,1,0) (0,3,5,0,0) (0,4,4,0,0) (0,5,3,0,0) (0,2,6,0,0) (0,6,2,0,0) (0,9,0,0,0) (0,0,9,0,0) (1,11,0,0,0) (0,0,11,1,0) (2,15,0,0,0) (0,1,7,0,0) (0,7,1,0,0) (2,14,0,0,0) (1,10,0,0,0) (0,0,10,1,0) (0,8,0,0,0) (0,0,8,0,0) (0,0,13,2,0) (2,13,0,0,0) (0,2,5,0,0) (0,3,4,0,0) (0,4,3,0,0) (0,5,2,0,0) (0,1,6,0,0) (0,6,1,0,0) (0,0,12,2,0) (2,12,0,0,0) (1,9,0,0,0) (0,0,9,1,0) (0,7,0,0,0) (0,0,7,0,0) (0,0,11,2,0) (2,11,0,0,0) (0,3,3,0,0) (0,4,2,0,0) (1,8,0,0,0) (0,0,8,1,0) (0,0,10,2,0) (0,1,5,0,0) (0,2,4,0,0) (0,5,1,0,0) (2,10,0,0,0) (3,15,0,0,0) (0,0,6,0,0) (0,6,0,0,0) (3,14,0,0,0) (0,0,9,2,0) 0,0,13,3,0 (2,9,0,0,0) (1,7,0,0,0) (3,13,0,0,0) (0,0,7,1,0) 0,0,12,3,0 (3,12,0,0,0) (0,1,4,0,0) (0,2,3,0,0) (0,3,2,0,0) (0,4,1,0,0) (0,5,0,0,0) (0,0,8,2,0) 0,0,11,3,0 (2,8,0,0,0) (0,0,5,0,0) (3,11,0,0,0) (1,6,0,0,0) (0,0,6,1,0) 0,0,10,3,0 (3,10,0,0,0) (0,0,7,2,0) (2,7,0,0,0) 0,0,9,3,0 (3,9,0,0,0) (0,1,3,0,0) (0,2,2,0,0) (0,3,1,0,0) (0,4,0,0,0) (1,5,0,0,0) (0,0,4,0,0) 0,0,15,4,0 0,0,14,4,0 0,0,13,4,0 0,0,8,3,0 4,14,0,0,0 4,15,0,0,0 (0,0,6,2,0)(0,0,5,1,0) (3,8,0,0,0) (2,6,0,0,0) 0,0,12,4,0 4,12,0,0,04,13,0,0,0 0,0,11,4,0 4,11,0,0,0 0,0,7,3,0 0,0,10,4,0 (3,7,0,0,0) 4,10,0,0,0 (0,0,5,2,0)(0,0,4,1,0) (0,0,3,0,0) 0,0,9,4,0 (0,1,2,0,0) (0,2,1,0,0) (0,3,0,0,0) (1,4,0,0,0)(2,5,0,0,0) (4,9,0,0,0) 0,0,6,3,0 (3,6,0,0,0) 0,0,8,4,0 (4,8,0,0,0) 0,0,0,15,1 0,0,0,15,2 15,0,0,0,1 0,0,7,4,0 15,0,0,0,2 4,7,0,0,0 0,0,5,3,0 (0,0,4,2,0)(0,0,3,1,0) (1,3,0,0,0)(2,4,0,0,0)(3,5,0,0,0) 0,0,13,5,0 0,0,12,5,0 0,0,11,5,0 000150 0,0,0,15,0 (15,0,0,0,0) 5,13,0,0,05,14,0,0,0 5,12,0,0,0 5,11,0,0,0 0,0,15,5,0 0,0,14,5,0 0,0,10,5,0 (0,0,2,0,0) 0,0,6,4,0 0,0,0,15,3 5,15,0,0,0 5,10,0,0,0 (0,1,1,0,0) (0,2,0,0,0) 0,0,9,5,0 5,9,0,0,0 15,0,0,0,3 4,6,0,0,0 0,0,8,5,0 0,0,4,3,0 (0,0,3,2,0) 5,8,0,0,0 0,0,5,4,0 (2,3,0,0,0)(3,4,0,0,0) 0,0,7,5,0 0,0,1,15,0 4,5,0,0,0 5,7,0,0,0 (1,2,0,0,0) (0,0,2,1,0) 0,0,0,14,1 0,0,6,5,0 0,0,0,15,4 0,0,0,14,2 5,6,0,0,0 14,0,0,0,1 (14,0,0,0,0) 0,0,0,14,0 15,0,0,0,4 0,0,4,4,00,0,3,3,0 14,0,0,0,2 (0,1,0,0,0) (0,0,1,0,0) (4,4,0,0,0) 0,0,10,6,0 0,0,11,6,0 (3,3,0,0,0) 0,0,9,6,0 0,0,12,6,0 0,0,5,5,0 6,10,0,0,0 6,11,0,0,0 6,9,0,0,0 0,0,8,6,0 6,12,0,0,0 5,5,0,0,0 0,0,2,2,0 0,0,13,6,0 6,8,0,0,0 (2,2,0,0,0) 6,13,0,0,0 0,0,0,14,3 0,0,1,14,0 0,0,7,6,0 0,0,14,6,0 6,7,0,0,0 6,14,0,0,0 14,0,0,0,3 0,0,6,6,0 0,0,4,5,00,0,3,4,0 0,0,15,6,0 (5,4,0,0,0) 6,6,0,0,0 (4,3,0,0,0) 6,15,0,0,0 (1,1,0,0,0) 0,0,0,15,5 (0,0,1,1,0) 0,0,0,13,1 0,0,5,6,0 0,0,2,3,0 0,0,0,13,0 6,5,0,0,0(13,0,0,0,0) (3,2,0,0,0) 15,0,0,0,5 13,0,0,0,1 0,0,0,13,2 0,0,1,13,0 0,0,0,14,4 0,0,3,5,0 0,0,4,6,0 0,0,8,7,0 0,0,9,7,0 0,0,7,7,0 (5,3,0,0,0) 13,0,0,0,2 (6,4,0,0,0) 7,7,0,0,0 0,0,1,2,0 0,0,10,7,0 7,8,0,0,0 7,9,0,0,0 0,0,6,7,0 0,0,2,4,0 (2,1,0,0,0) 14,0,0,0,4 7,10,0,0,0 0,0,11,7,0 7,6,0,0,0 (4,2,0,0,0) 0,0,5,7,0 7,11,0,0,0 0,0,0,12,0 (7,5,0,0,0) 0,0,12,7,0 0,0,0,13,3 0,0,3,6,0 0,0,0,12,1 (12,0,0,0,0) 7,12,0,0,0 0,0,1,12,0 0,0,4,7,0 (6,3,0,0,0) 13,0,0,0,3 (7,4,0,0,0) 0,0,2,5,0 0,0,1,3,0 0,0,13,7,0 (3,1,0,0,0) (5,2,0,0,0) 7,13,0,0,0 12,0,0,0,1 0,0,0,15,6 (0,0,0,1,0) 0,0,3,7,0 0,0,0,12,2 0,0,6,8,0 0,0,5,8,0 (7,3,0,0,0) 0,0,7,8,0 (1,0,0,0,0) 0,0,0,14,5 0,0,14,7,0 0,0,4,8,0 (8,6,0,0,0) (8,5,0,0,0) 15,0,0,0,6 0,0,2,6,0 0,0,1,4,0 0,0,8,8,00,0,1,11,0 (8,7,0,0,0) 7,14,0,0,0 (8,4,0,0,0) 0,0,0,11,0 0,0,3,8,0 14,0,0,0,5 (8,8,0,0,0) 12,0,0,0,2 0,0,9,8,0 (4,1,0,0,0) (6,2,0,0,0) (11,0,0,0,0) (8,3,0,0,0) 0,0,2,7,0 0,0,0,13,4 (8,9,0,0,0) 0,0,3,9,0 0,0,2,10,0 (0,0,0,2,0) 0,0,0,11,1 0,0,4,9,0 0,0,15,7,0 (7,2,0,0,0) 0,0,10,8,0 0,0,5,9,0 0,0,2,8,0 0,0,1,10,0 0,0,3,10,0 0,0,2,9,0 13,0,0,0,4 0,0,1,5,0 (2,0,0,0,0) 7,15,0,0,0 0,0,0,12,3 (8,10,0,0,0) (8,2,0,0,0) (5,1,0,0,0) 11,0,0,0,1 0,0,11,8,0 0,0,6,9,0 0,0,4,10,0 0,0,1,9,0 0,0,0,10,0 0,0,1,6,0 (8,11,0,0,0) (0,0,0,3,0) 12,0,0,0,3 (9,1,0,0,0) 0,0,7,9,0 (10,0,0,0,0) 0,0,0,11,2 (6,1,0,0,0) 0,0,1,8,0 0,0,1,7,0 (3,0,0,0,0) 0,0,5,10,0 0,0,12,8,0 (8,1,0,0,0) (7,1,0,0,0) (8,12,0,0,0) 0,0,0,10,1 0,0,8,9,0 0,0,0,9,0 0,0,0,13,5 0,0,0,4,0 11,0,0,0,2 0,0,0,15,7 0,0,0,14,6 (9,0,0,0,0) (4,0,0,0,0) 0,0,6,10,0 0,0,13,8,0 0,0,0,12,4 0,0,9,9,0 15,0,0,0,7 14,0,0,0,6 10,0,0,0,1 0,0,0,5,0 0,0,0,8,0 (8,13,0,0,0) 13,0,0,0,5 (5,0,0,0,0) 0,0,0,11,3 0,0,0,6,0 (8,0,0,0,0) 0,0,0,7,0 0,0,0,9,1 0,0,7,10,0 0,0,0,10,2 0,0,0,1,1 0,0,10,9,0 12,0,0,0,4 (6,0,0,0,0) (7,0,0,0,0) 0,0,14,8,0 (0,0,0,0,1) 11,0,0,0,3 (8,14,0,0,0) 0,0,0,2,1 9,0,0,0,1 10,0,0,0,2 1,0,0,0,1 0,0,8,10,0 0,0,11,9,0 0,0,0,8,1 0,0,0,3,1 2,0,0,0,1 0,0,15,8,0 0,0,0,9,2 0,0,0,7,1 0,0,0,12,5 8,0,0,0,1 (8,15,0,0,0) 0,0,0,4,1 0,0,0,10,3 0,0,0,11,4 0,0,9,10,0 0,0,12,9,0 0,0,0,13,6 0,0,0,14,7 0,0,0,6,1 0,0,0,5,1 3,0,0,0,1 0,0,0,15,8 9,0,0,0,2 7,0,0,0,1 13,0,0,0,6 14,0,0,0,7 12,0,0,0,5 4,0,0,0,1 15,0,0,0,8 10,0,0,0,3 11,0,0,0,4 6,0,0,0,1 5,0,0,0,1 0,0,0,8,2 0,0,13,9,0 0,0,10,10,0 (9,13,0,0,0) 8,0,0,0,2 0,0,0,9,3 0,0,0,7,2 0,0,11,10,0 0,0,0,10,4 0,0,14,9,0 0,0,0,1,2 0,0,0,11,5 9,0,0,0,3 0,0,0,12,6 0,0,0,6,2 (9,14,0,0,0) 7,0,0,0,2 0,0,0,2,2 0,0,0,5,2 10,0,0,0,4 0,0,0,3,2 0,0,0,13,7 (0,0,0,0,2) 0,0,0,4,2 1,0,0,0,2 11,0,0,0,5 0,0,0,8,3 0,0,0,14,8 0,0,12,10,0 6,0,0,0,2 12,0,0,0,6 13,0,0,0,7 2,0,0,0,2 0,0,0,15,9 14,0,0,0,8 5,0,0,0,2 3,0,0,0,2 0,0,15,9,0 4,0,0,0,2 8,0,0,0,3 15,0,0,0,9 (9,15,0,0,0) 0,0,0,9,4 0,0,0,7,3 0,0,13,10,0 0,0,0,10,5 9,0,0,0,4 (10,13,0,0,0) 0,0,0,11,6 7,0,0,0,3 0,0,0,6,3 0,0,0,12,7 10,0,0,0,5 0,0,0,8,4 11,0,0,0,6 0,0,0,5,3 0,0,14,10,0 6,0,0,0,3 0,0,0,13,8 12,0,0,0,7 (10,14,0,0,0) 0,0,0,4,3 0,0,0,14,9 8,0,0,0,4 13,0,0,0,8 0,0,0,1,3 0,0,0,3,3 0,0,0,2,3 5,0,0,0,3 0,0,0,9,5 0,0,0,15,10 14,0,0,0,9 4,0,0,0,3 0,0,0,7,4 (0,0,0,0,3) 15,0,0,0,10 1,0,0,0,3 3,0,0,0,3 2,0,0,0,3 0,0,0,10,6 9,0,0,0,5 0,0,15,10,0 (10,15,0,0,0) 7,0,0,0,4 0,0,0,11,7 10,0,0,0,6 0,0,0,6,4 0,0,0,12,8 0,0,0,8,5 11,0,0,0,7 6,0,0,0,4 0,0,0,5,4 0,0,0,13,9 12,0,0,0,8 8,0,0,0,5 0,0,0,9,60,0,0,4,4 (11,14,0,0,0) 0,0,0,14,10 13,0,0,0,9 0,0,0,7,5 14,0,0,0,105,0,0,0,4 0,0,0,15,11 9,0,0,0,6 0,0,0,10,7 0,0,0,3,4 0,0,0,2,4 0,0,0,1,415,0,0,0,11 4,0,0,0,47,0,0,0,5 3,0,0,0,4 0,0,0,11,8 10,0,0,0,7 2,0,0,0,4 1,0,0,0,4 (0,0,0,0,4) (11,15,0,0,0) 0,0,0,6,5 0,0,0,8,6 0,0,0,12,9 11,0,0,0,8 6,0,0,0,5 8,0,0,0,6 12,0,0,0,9 0,0,0,13,10 0,0,0,5,5 0,0,0,9,7 (12,14,0,0,0) 13,0,0,0,10 0,0,0,14,11 0,0,0,7,6 0,0,0,15,12 14,0,0,0,11 5,0,0,0,5 0,0,0,4,5 9,0,0,0,7 0,0,0,10,8 15,0,0,0,12 4,0,0,0,5 7,0,0,0,6 0,0,0,3,5 10,0,0,0,8 0,0,0,11,9 0,0,0,2,5 (12,15,0,0,0) 0,0,0,8,7 0,0,0,6,6 3,0,0,0,5 0,0,0,12,10 0,0,0,1,5 2,0,0,0,5 11,0,0,0,9 1,0,0,0,5 8,0,0,0,7 6,0,0,0,6 12,0,0,0,10 0,0,0,13,11 0,0,0,0,5 (13,14,0,0,0) 0,0,0,9,8 0,0,0,5,6 13,0,0,0,11 0,0,0,14,12 0,0,0,7,7 9,0,0,0,8 0,0,0,15,1314,0,0,0,12 5,0,0,0,6 0,0,0,10,9 15,0,0,0,13 0,0,0,4,6 7,0,0,0,7 10,0,0,0,9 0,0,0,11,10 (13,15,0,0,0) 4,0,0,0,6 0,0,0,3,6 0,0,0,8,8 0,0,0,12,11 0,0,0,6,7 11,0,0,0,10 0,0,0,2,6 3,0,0,0,6 (14,14,0,0,0) 8,0,0,0,8 0,0,0,1,6 12,0,0,0,11 6,0,0,0,7 2,0,0,0,6 0,0,0,9,90,0,0,13,12 13,0,0,0,12 0,0,0,14,13 1,0,0,0,6 0,0,0,0,6 0,0,0,5,7 14,0,0,0,13) 0,0,0,15,14 9,0,0,0,9 0,0,0,7,8 0,0,0,10,10 15,0,0,0,14 ,0,0 (14,15,0,0,0) 5,0,0,0,7 7,0,0,0,8 ,0 0,0,0,4,7 10,0,0,0,10 0,0,0,11,11 0,0,0,12,12 0,0,0,8,9 5,14 4,0,0,0,7 11,0,0,0,11 0,0,0,6,8 0,0,0,3,7 (1 0,0,0,13,13 12,0,0,0,12 8,0,0,0,9 0,0,0,2,7 6,0,0,0,8 3,0,0,0,7 0,0,0,14,14 13,0,0,0,13 0,0,0,9,10 0,0,0,1,7 14,0,0,0,14 0,0,0,15,15 (15,15,0,0,0) 2,0,0,0,7 9,0,0,0,10 0,0,0,5,8 15,0,0,0,15 0,0,0,10,11 0,0,0,7,9 1,0,0,0,7 0,0,0,0,7 5,0,0,0,8 0,0,0,11,12 10,0,0,0,11 7,0,0,0,9 0,0,0,12,13 0,0,0,4,8 11,0,0,0,12 0,0,0,8,10 0,0,0,13,14 12,0,0,0,13 4,0,0,0,8 0,0,0,6,9 0,0,0,14,15 13,0,0,0,14 8,0,0,0,10 14,0,0,0,15 0,0,0,9,11 0,0,0,3,8 3,0,0,0,8 6,0,0,0,9 0,0,0,2,8 9,0,0,0,11 0,0,0,10,12 0,0,0,1,8 0,0,0,5,9 0,0,0,7,10 2,0,0,0,8 0,0,0,11,13 10,0,0,0,12 0,0,0,12,14 1,0,0,0,8 5,0,0,0,9 7,0,0,0,10 0,0,0,0,8 11,0,0,0,13 0,0,0,13,15 12,0,0,0,14 0,0,0,8,11 13,0,0,0,15 0,0,0,4,9 (8,0,0,0,11) 0,0,0,6,10 (4,0,0,0,9) 0,0,0,9,12 (0,0,0,3,9) (3,0,0,0,9)(6,0,0,0,10) 0,0,0,10,13 (9,0,0,0,12) 0,0,0,11,14 0,0,0,12,15 (0,0,0,2,9) (10,0,0,0,13) (2,0,0,0,9) 0,0,0,7,11 0,0,0,5,10 11,0,0,0,14 12,0,0,0,15 (0,0,0,1,9) (1,0,0,0,9) 7,0,0,0,11 (5,0,0,0,10) (0,0,0,0,9) (0,0,0,8,12) (0,0,0,4,10) (8,0,0,0,12) 0,0,0,9,13 0,0,0,6,11 (4,0,0,0,10)(9,0,0,0,13) 0,0,0,10,14 0,0,0,11,15 (6,0,0,0,11) (0,0,0,3,10) 10,0,0,0,14 11,0,0,0,15 (3,0,0,0,10) (0,0,0,7,12) (0,0,0,5,11) (0,0,0,2,10) (2,0,0,0,10) (7,0,0,0,12) (0,0,0,1,10)(1,0,0,0,10) (0,0,0,8,13) (5,0,0,0,11) 0,0,0,9,14 (8,0,0,0,13) 0,0,0,10,15 (0,0,0,0,10) (0,0,0,4,11) 9,0,0,0,14 0,0,0,6,12 10,0,0,0,15 (4,0,0,0,11) (6,0,0,0,12) (0,0,0,3,11) (0,0,0,7,13) (3,0,0,0,11) (7,0,0,0,13) 0,0,0,8,14(0,0,0,5,12) (0,0,0,2,11) 0,0,0,9,15 8,0,0,0,14 9,0,0,0,15 (2,0,0,0,11) (5,0,0,0,12) (0,0,0,1,11) (1,0,0,0,11) (0,0,0,6,13) (0,0,0,0,11) (0,0,0,4,12) 6,0,0,0,13 (4,0,0,0,12) (0,0,0,7,14) (0,0,0,8,15) (7,0,0,0,14) (0,0,0,3,12) (8,0,0,0,15) (0,0,0,5,13) (3,0,0,0,12) (0,0,0,2,12) (5,0,0,0,13) (2,0,0,0,12) (0,0,0,1,12) (1,0,0,0,12) (0,0,0,6,14) (6,0,0,0,14) (0,0,0,4,13) (0,0,0,7,15) (0,0,0,0,12) (4,0,0,0,13) (7,0,0,0,15)
(0,12,10,0,0)
(0,10,10,0,0)
(0,9,11,0,0)
(0,8,12,0,0)
(0,7,13,0,0)
(1,15,0,0,0) (1,14,0,0,0)
(0,11,0,0,0)
(0,10,11,0,0)
(0,9,12,0,0)
(0,8,13,0,0)
(0,7,14,0,0)
(0,8,10,0,0)
(0,7,11,0,0)
(0,6,12,0,0)
(0,4,15,0,0) (0,5,13,0,0)
(0,9,9,0,0)
(0,8,9,0,0)
(0,7,10,0,0)
(0,6,11,0,0)
(0,4,14,0,0)
(0,10,8,0,0)
(0,14,5,0,0)
(0,11,7,0,0)
(0,12,6,0,0)
(0,10,7,0,0)
(0,11,6,0,0)
(0,14,4,0,0) (0,12,5,0,0)
(0,4,13,0,0)
(0,8,8,0,0)
(0,9,7,0,0)
(0,2,14,0,0)
(0,6,9,0,0)
(0,5,10,0,0)
(0,7,8,0,0)
(0,4,11,0,0)
(0,3,12,0,0)
(0,6,8,0,0)
(0,5,9,0,0)
(0,8,7,0,0)
(0,7,7,0,0)
(0,2,13,0,0)
(0,9,6,0,0)
(0,10,5,0,0)
(0,4,9,0,0)
(0,1,12,0,0)
(0,0,14,0,0)
(0,0,14,1,0) (0,0,13,1,0)
(0,4,8,0,0)
(0,0,12,0,0)
(0,6,7,0,0)
(0,0,11,0,0)
(0,5,7,0,0)
(0,7,6,0,0)
(0,6,6,0,0)
(0,8,5,0,0)
(0,4,7,0,0)
(0,2,9,0,0) (0,2,8,0,0)
(0,3,7,0,0)
(0,1,9,0,0) (0,2,7,0,0)
(0,5,6,0,0)
(0,12,2,0,0)
(0,10,3,0,0) (0,7,5,0,0)
(0,6,5,0,0)
(0,8,4,0,0)
(0,7,4,0,0)
(0,11,2,0,0)
(0,4,6,0,0) (0,5,5,0,0) (0,6,4,0,0)
(0,7,3,0,0)
(0,8,2,0,0)
(0,13,1,0,0)
(0,11,1,0,0)
(0,15,0,0,0) (0,14,0,0,0) (0,13,0,0,0)
(0,12,0,0,0)
(0,10,1,0,0) (0,9,1,0,0)
(0,7,2,0,0)
(0,15,1,0,0) (0,14,1,0,0)
(0,12,1,0,0)
(0,10,2,0,0) (0,8,3,0,0) (0,9,2,0,0)
(0,3,6,0,0) (0,4,5,0,0) (0,5,4,0,0) (0,6,3,0,0)
(0,13,2,0,0)
(0,11,3,0,0) (0,9,4,0,0)
(0,9,3,0,0)
(0,3,8,0,0)
(0,1,10,0,0)
(0,15,2,0,0) (0,14,2,0,0)
(0,12,3,0,0)
(0,9,5,0,0)
(0,3,9,0,0)
(0,2,10,0,0)
(0,1,11,0,0)
(0,0,13,0,0) (0,0,15,1,0)
(0,5,8,0,0)
(0,3,10,0,0)
(0,2,11,0,0)
(0,1,13,0,0)
(0,0,15,0,0)
(0,13,3,0,0)
(0,11,4,0,0) (0,8,6,0,0)
(0,10,4,0,0)
(0,3,11,0,0)
(0,2,12,0,0)
(0,1,14,0,0)
(0,14,3,0,0)
(0,12,4,0,0)
(0,4,10,0,0) (0,1,15,0,0)
(0,15,3,0,0)
(0,13,4,0,0)
(0,10,6,0,0) (0,11,5,0,0)
(0,4,12,0,0)
(0,3,13,0,0)
(0,2,15,0,0)
(0,7,9,0,0)
(0,6,10,0,0) (0,5,11,0,0)
(0,3,14,0,0)
(0,15,4,0,0) (0,13,5,0,0)
(0,9,8,0,0)
(0,5,12,0,0) (0,3,15,0,0)
(0,0,0,0,0)
(0,0,0,0,1)
(0,15,9,0,0)
(0,15,7,0,0)
(0,15,1,0,0) (0,14,1,0,0)
(0,12,1,0,0)
(0,10,2,0,0) (0,8,3,0,0) (0,9,2,0,0)
(0,6,4,0,0)
(0,2,8,0,0)
(0,1,9,0,0)
(0,13,2,0,0) (0,12,2,0,0)
(0,10,3,0,0)
(0,0,14,2,0)
(0,0,0,1,2)
(0,14,10,0,0)
(0,13,10,0,0)
(0,7,15,0,0)
(0,14,2,0,0)
(0,12,3,0,0) (0,11,3,0,0)
(0,9,4,0,0)
(0,8,4,0,0)
(0,11,11,0,0)
(0,10,12,0,0)
(0,9,13,0,0)
(0,8,14,0,0)
(0,15,2,0,0)
(0,0,15,2,0)
0,0,15,3,0
(5,0,0,0,0)
(0,13,3,0,0)
(0,9,5,0,0)
(0,8,5,0,0)
(0,7,5,0,0)
(0,3,9,0,0)
(0,2,10,0,0)
(0,1,10,0,0)
(0,0,11,0,0)
(0,0,14,1,0)
(0,12,11,0,0)
(0,15,3,0,0) (0,14,3,0,0)
(0,12,4,0,0)
(0,10,4,0,0) (0,6,7,0,0)
(0,5,8,0,0)
(0,4,8,0,0)
(0,1,11,0,0)
(0,0,12,0,0)
(0,0,15,1,0)
(0,8,15,0,0)
(0,14,4,0,0)
(0,13,4,0,0)
(0,10,6,0,0)
(0,11,4,0,0) (0,7,7,0,0)
(0,6,8,0,0)
(0,5,9,0,0)
(0,4,9,0,0) (0,3,10,0,0)
(0,1,12,0,0)
(0,0,13,0,0)
(0,0,0,0,3)
(0,8,7,0,0)
(0,4,10,0,0)
(0,1,13,0,0)
(0,0,0,0,4)
(0,6,9,0,0)
(0,3,11,0,0)
(0,2,11,0,0)
(0,0,14,0,0)
(0,0,0,1,3)
(0,7,8,0,0)
(0,4,11,0,0) (0,3,12,0,0)
(0,2,12,0,0)
(0,0,15,0,0)
(0,0,0,1,4)
(0,9,7,0,0)
(0,11,5,0,0)
(0,5,10,0,0)
(0,2,13,0,0)
(0,1,14,0,0)
(0,9,14,0,0)
(0,15,4,0,0)
(0,11,6,0,0)
(0,11,12,0,0)
(0,10,13,0,0)
(0,12,5,0,0) (0,8,8,0,0)
(0,7,9,0,0)
(0,6,10,0,0) (0,5,11,0,0) (0,4,12,0,0)
(0,3,13,0,0)
(0,1,15,0,0)
(0,0,0,2,2)
(0,0,0,0,5)
(0,14,5,0,0)
(0,13,5,0,0)
(0,9,8,0,0)
(0,8,9,0,0)
(0,7,10,0,0)
(0,6,11,0,0)
(0,4,13,0,0)
(0,2,14,0,0)
(0,0,0,3,0)
(0,0,0,2,3)
(0,15,10,0,0)
(0,15,5,0,0)
(0,12,7,0,0)
(0,11,7,0,0)
(0,5,12,0,0)
(0,0,0,2,4)
(0,0,0,1,5)
(0,11,8,0,0)
(0,10,8,0,0)
(0,12,6,0,0)
(0,5,13,0,0) (0,4,14,0,0)
(0,2,15,0,0)
(0,14,11,0,0)
(0,13,11,0,0)
(0,13,6,0,0) (0,9,9,0,0)
(0,8,10,0,0)
(0,7,11,0,0)
(0,3,14,0,0)
(0,13,12,0,0)
(0,12,12,0,0)
(0,11,13,0,0)
(0,10,14,0,0)
(0,9,15,0,0)
(0,14,6,0,0) (0,10,9,0,0)
(0,9,10,0,0)
(0,8,11,0,0)
(0,7,12,0,0)
(0,6,12,0,0)
(0,3,15,0,0)
(0,12,13,0,0)
(0,11,14,0,0)
(0,10,15,0,0)
(0,14,8,0,0)
(0,13,8,0,0) (0,15,6,0,0)
(0,11,9,0,0)
(0,6,13,0,0)
(0,0,0,4,0)
(0,15,11,0,0)
(0,15,8,0,0)
(0,6,14,0,0) (0,5,15,0,0)
(0,0,0,3,2)
(0,14,12,0,0)
(0,15,9,0,0)
(0,14,9,0,0)
(0,14,7,0,0)
(0,5,14,0,0)
(0,0,0,3,3)
(0,13,13,0,0)
(0,12,14,0,0)
(0,11,15,0,0)
(0,14,10,0,0)
(0,13,10,0,0)
(0,15,7,0,0) (0,10,11,0,0)
(0,9,12,0,0)
(0,6,15,0,0)
(0,0,0,4,1)
(0,15,12,0,0)
(0,15,10,0,0)
(0,7,15,0,0) (0,8,13,0,0)
(0,0,0,3,4)
(0,14,13,0,0)
(0,15,11,0,0)
(0,14,11,0,0)
(0,7,14,0,0)
(0,0,0,3,5)
(0,13,14,0,0)
(0,12,15,0,0) (0,14,12,0,0)
(0,12,12,0,0)
(0,10,12,0,0)
(0,9,13,0,0)
(0,8,14,0,0)
(0,15,12,0,0)
(0,13,12,0,0)
(0,11,12,0,0)
(0,10,13,0,0)
(0,9,14,0,0)
(0,8,15,0,0)
(0,11,13,0,0)
(0,10,14,0,0)
(0,9,15,0,0)
(0,0,0,5,1)
(0,0,0,4,4)
(0,12,13,0,0)
(0,11,14,0,0)
(0,10,15,0,0)
(0,15,13,0,0)
(0,15,13,0,0)
(0,14,13,0,0)
(0,13,13,0,0)
(0,12,14,0,0)
(0,11,15,0,0)
(0,0,0,5,3)
RESEARCH STUDY DIAGRAMS
(0,14,14,0,0)
(0,13,15,0,0)
(0,0,0,5,5)
(0,11,0,0,0) (0,10,0,0,0)
(1,15,0,0,0) (1,14,0,0,0)
(1,13,0,0,0)
(0,8,1,0,0) (0,1,8,0,0) (0,0,10,0,0) (0,0,12,1,0) (1,120,0,0) (0,3,5,0,0) (0,4,4,0,0) (0,5,3,0,0) (0,9,0,0,0) (0,2,6,0,0) (0,6,2,0,0) (0,0,15,2,0) (0,0,11,1,0) (1,11,0,0,0) (2,15,0,0,0) (0,0,9,0,0) (0,1,7,0,0) (0,7,1,0,0) (0,0,14,2,0) (2,14,0,0,0) (0,8,0,0,0)(1,10,0,0,0) (0,0,10,1,0) (0,0,13,2,0) (0,3,4,0,0) (0,4,3,0,0) (2,13,0,0,0) (0,2,5,0,0) (0,0,8,0,0) (0,5,2,0,0) (0,0,12,2,0) (0,1,6,0,0) (0,6,1,0,0) (0,0,9,1,0) (2,12,0,0,0) (0,7,0,0,0) (1,9,0,0,0) (0,0,11,2,0) (2,11,0,0,0) (1,8,0,0,0) (0,0,8,1,0) (0,0,7,0,0) (0,0,10,2,0) (0,1,5,0,0) (0,2,4,0,0) (0,3,3,0,0) (0,4,2,0,0) (0,5,1,0,0) (2,10,0,0,0) 0,0,15,3,0 (0,6,0,0,0) (3,15,0,0,0) 0,0,14,3,0 (3,14,0,0,0) (0,0,9,2,0) 0,0,13,3,0 (0,0,7,1,0)(0,0,6,0,0) (1,7,0,0,0) (2,9,0,0,0) (3,13,0,0,0) 0,0,12,3,0 (3,12,0,0,0) (0,0,8,2,0) (0,5,0,0,0) (0,1,4,0,0) (0,2,3,0,0) (0,3,2,0,0) (0,4,1,0,0) 0,0,11,3,0 (2,8,0,0,0) (3,11,0,0,0) (0,0,6,1,0) (0,0,5,0,0) (1,6,0,0,0) 0,0,10,3,0 (3,10,0,0,0)
(2,0,0,0,15)
(0,0,0,1,15) (1,0,0,0,15) (0,0,0,0,15)
MORPHOLOGY
NAINI BANSAL
https://nbansal.myportfolio.com