Frequency Domain Photoacoustic Imaging in Biomedicine

Page 1

Frequency Domain Photoacoustic Imaging in Biomedicine Natalie Baddour Department of Mechanical Engineering, University of Ottawa, nbaddour@uottawa.ca

Abstract Photoacoustic imaging is a relatively new modality that has the capability to image organs, such as the breast and brain, with high contrast and high spatial resolution. In this article, the use of this modality for tomography is investigated by considering the obtainable information in the Fourier domain. 1. Introduction Photoacoustic signal generation is a new technique which has demonstrated great potential for non-invasive medical tomography. With this technique, a shortpulsed laser source is used to irradiate the sample. The energy absorbed produces a small temperature rise which induces a pressure inside the sample through thermal expansion. This pressure acts as an acoustic source and generates further acoustic waves which can be detected by ultrasound transducers positioned outside the sample. Since there is a large difference in optical absorption between blood and surrounding tissue, the laser irradiation induces an ultrasound wave on the inhomogeneities within the investigated volume. Hence, the acquired photoacoustic signals carry information about the optical absorption property of the tissue and in particular about the inhomogeneities in the sample volume. This approach is thus suitable for the imaging of the micro-vascular system or for tissue characterization [1]. Futhermore, this imaging technique has contrast similar to that of pure optical imaging and spatial resolution similar to that of pure ultrasonic imaging. It therefore combines the advantages of two imaging modalities in a single modality. 2. Equations in the Frequency Domain The physical principle behind this imaging modality is the photoacoustic effect. This entails the generation of an acoustic wave as a result of the absorption of light pulse. While optical energy can be converted to mechanical energy through various pathways, it is often the case that thermal expansion is the dominant mechanism. In pulsed photoacoustic tomography, the pulse duration is so short that the thermal conduction time is greater than the thermo-acoustic transit time and the effect of thermal conduction can be ignored [2].

The equation describing the thermoacoustic wave propagation with a thermal expansion source term is given in the temporal frequency domain by [3]

∇ 2 p (r, ω ) + k s2 p (r, ω ) = −

β s iω Cp

H (r, ω ) . (1)

Here, p is the pressure of the acoustic wave, Cp is the specific heat, H is the heating function defined as the thermal energy deposited by the energy source per unit time and volume, βs is the coefficient of thermal volume expansion and k s = ω 2

2

cs2 , where cs is the

speed of sound. The heating function can be written as the product of a spatial absorption function and a temporal illumination function of the source as

H ( r , ω ) = I o A ( r )η (ω ) ,

(2)

where Io is a scaling factor proportional to the incident radiation intensity and A describes the absorption properties of the medium -- essentially the inhomogeneity whose image is sought. The function η(ω) is the temporal Fourier transform of η(t), which describes the shape of the irradiating pulse and is a nonnegative function whose integration over time equals the pulse energy. 3. Geometry As for standard diffraction tomography theory [4], we assume a background medium infinite in extent and an inhomogeneity structure of finite extent. The previously-given equations for the pressure field are the most general form of the forward problem, valid for all points outside the inhomogeneity and for arbitrary source-detector configurations. Although the assumption of an infinite domain may not be the most physically realistic assumption, it is the simplest case for physical insight and can later be modified for different geometries. As it is also the assumption made for standard acoustic diffraction tomography, as well as for diffuse photonic wave tomography, this assumption allows for straightforward comparisons. We further specialize our formulation to the case where the acoustic wave is measured by a plane of detectors. We are thus interested in the Fourier transforms of the wave measured in the z = zd plane.


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.