9. Soluciones de la ecuación de Schrödinger
9. SOLUCIONES DE LA ECUACIÓN DE SCHRÖDINGER Introducción En este Capítulo aplicaremos el formalismo de Schrödinger de la Mecánica Cuántica para estudiar las soluciones de algunos problemas sencillos en una dimensión. El propósito de estos ejemplos es que el lector se familiarice con las técnicas de cálculo y que vea el origen de algunas de las curiosas propiedades de las soluciones de la ecuación de Schrödinger. Comenzaremos por el caso más sencillo, que es la partícula libre. Luego consideraremos el potencial escalón y la barrera de potencial, para poner en evidencia un importante fenómeno que es puramente cuántico: la penetración de una barrera o “efecto túnel”. Finalmente trataremos el oscilador armónico simple y mostraremos que sus niveles de energía están cuantificados, de una forma ligeramente diferente de la que resulta del Postulado de Planck de la Teoría Cuántica Antigua. En todos los casos vamos a emplear la representación coordenadas.
La partícula libre El Hamiltoniano de una partícula libre en una dimensión espacial x es H=
p2 2m
(9.1)
Claramente p conmuta con H, de modo que el impulso es constante del movimiento. La ecuación de Schrödinger independiente del tiempo es −
h 2 d 2ψ = Eψ 2m dx
(9.2)
y como sabemos tiene soluciones para cualquier valor de E ≥ 0. Por lo tanto el espectro de autovalores de H es continuo y las correspondientes autofunciones de la energía (normalizadas a la delta de Dirac) son las ondas planas
ψ E,k =
1 ikx e 2π
,
E=
h 2 k 2 p2 = 2m 2m
(9.3)
Las correspondientes funciones de onda son
ΨE, k = e − iEt / hψ E, k =
1 i( kx −ωt ) e 2π
,
ω=
E hk 2 = h 2m
(9.4)
Cada autovalor E de la energía es doblemente degenerado, pues corresponde a dos valores del impulso:
p = hk = ± 2 mE
(9.5)
El signo + en la (9.5) corresponde a una partícula que se mueve hacia la derecha y el signo – a una partícula que se mueve hacia la izquierda. Puesto que los estados estacionarios (9.4) tienen un impulso bien definido, la posición de la partícula está totalmente indeterminada y es igualmente probable encontrarla en cualquier parte. 103