MERCURIO Es un metal noble, soluble únicamente en solución oxidante. El mercurio solido es tan suave como el plomo. El metal y sus componentes son muy tóxicos. El mercurio forma soluciones llamadas amalgamas con algunos metales (por ejemplo: Au, Ag, Pt, U, Cu, Pb, Na y K). El mercurio metálico se usa en interruptores eléctricos como material liquido de contacto, como fluido de trabajo en bombas de difusión en técnicos al vacio, en la fabricación de rectificadores de vapor de mercurio, termómetros, barómetros, tacómetros y termóstatos y en la manufactura de lámpara de vapor de mercurio. Se utiliza en amalgamas de Ag para emplaste de dientes. Los electrodos normales de calomel son importantes en electroquímica, se usan como electrodos de referencia en la medición de potenciales, en titulaciones potenciómetros y en la celda normal de Weston. El mercurio actualmente de utiliza en múltiples y variadas aplicaciones: barómetros, manómetros, termómetros, esfigmomanómetros, lentes de telescopios, lámparas de difusión y ultravioleta, conmutadores, cátodos de cubas electrolíticas, turbinas de vapor, metalurgia del oro y plata, amalgamas dentales, productos farmacéuticos, biocidas, fungicidas, pesticidas, pilas, baterías.... etc. Las amalgamas son los materiales de relleno más comunes en odontología. Su composición normal es de 45-55% de Hg, y aproximadamente 30% de plata y otros metales (cobre, zinc). Efectos del mercurio sobre la salud El mercurio es un elemento que puede ser encontrado de forma natural en el medio ambiente. Puede ser encontrada en forma de metal, como sales de mercurio o como mercurio orgánico. La dosis letal de mercurio inorgánico es de 1 gramo aunque hay evidencias de toxicidad con valores de 50 a 100 mg. La dosis letal del mercurio orgánico es dos a tres veces mayor. El mercurio metálico es usado en una variedad de productos en las casas, como barómetros, termómetros, bombillos fluorescentes. El mercurio en estos mecanismos está atrapado y usualmente no causa ningún problema de salud. De cualquier manera, cuando un termómetro se rompe una exposición significativa alta al mercurio ocurre a través de la respiración, esto ocurría por un periodo de tiempo corto mientras este a través de la
respiración, esto ocurrirá por un periodo de tiempo corto mientras este se evapora. Esto puede causar efectos dañinos, como daño a los nervios, al cerebro y riñones, irritación de los pulmones, irritación de los ojos, reacción en la piel, vómitos y diarreas. El mercurio no es encontrado de forma natural en los alimentos, pero este puede aparecer en la comida así como ser expandido en las cadenas alimentarias por pequeños organismos que son consumidos por los humanos, por ejemplo: a través de los peces. El mercurio tiene un número de efectos sobre los humanos, que pueden ser todos simplificados en los siguientes principalmente: Daño al SN. Daño a las funciones del cerebro. Daño al ADN y cromosomas. Reacciones alérgicas, irritación de la piel, cansancio, y dolor de cabeza. Efectos negativos en la reproducción, daño en el esperma, defectos de nacimientos y abortos. el daño a las funciones del cerebro pueden causar la degeneración de la habilidad para aprender, cambios en la personalidad, temblores, sordera. Daño en el cromosoma y es conocido que causa mongolismo. Metabolismo: Aproximadamente el 80% del mercurio inhalado es absorbido por los pulmones y se reduce en un 50% en un lapso de 50 días (esta reducción a la mitad se produce cada 50 días) La mayor concentración se encuentra en riñones. Se excreta por orina y heces como combinaciones de mercurio y albúmina. El efecto tóxico se debe a los iones de Hg2+. Síntomas de envenenamiento agudo Debido a inhalaciones de vapor de mercurio son: Dolor de pecho Dificultad para respirar Tos Sabor metálico Náusea Diarrea Dolor abdominal Vómito Dolor de cabeza y ocasionalmente albuminuria
Gastroenteritis aguda intensa, con un tiempo de latencia de 24 horas. Luego de 3 ó 4 días pueden aparecer gingivitis y nefritis, es decir, insuficiencia renal con aumento de uremía extrarrenal por albuminato de mercurio. Puede recuperarse en 2 semanas. En casos severos aparecen síntomas psicopatológicos y temblor de los músculos. En caso de inhalar vapor de mercurio por mucho tiempo, se presentan envenenamientos crónicos (Mercurialismo). Los síntomas son: En exposiciones intensas aparecen síntomas bucales, renales, respiratorios y gastrointestinales. En exposiciones prolongadas son frecuentes los síntomas neurológicos. Boca: gingivitis, destrucción alveolar, pigmentación de encías, salivación, temblor en la lengua, dificultad para hablar, alteración de la sensibilidad en la boca (gusto) y olfato. Nariz: epistaxis, irritación nasal. Pérdida del apetito y anemia. Neurológicos: lo más común es el temblor, primero en párpados, labios y luego en extremidades, en casos graves rigidez (espasmo clónico), además, neuralgias, parestesias, ataxia y aumento del reflejo plantar. Ojos: disminución de agudeza visual, opacación del cristalino. Psicológicos: irritabilidad, exitabilidad, insomnio, disminución capacidad de concentración, melancolía, depresión, timidez, fatiga, alteraciones de la memoria. Depósito en riñón, hígado, cerebro, se trasmite en leche materna. Se elimina por la orina. En algunos casos se ha visto desarrollo de síndrome nefrótico (52). Las combinaciones inorgánicas de Hg2+ muestran efectos de intoxicación semejantes. Las combinaciones orgánicas de mercurio, sobre todo el metilmercurio (CH3Hg+), son altamente tóxicas para el hombre. Se ingieren por la alimentación. El metilmercurio se disuelve fácilmente en la grasa y pasa la barrera sangre - cerebro y la placenta; tiene potencial mutágeno y teratógeno. Los síntomas típicos de una intoxicación solamente se reconocen después de unas semanas (exceptuando temblor patológico): campo visual restringido pronunciación y escritura poco claras hipersensibilidad anormal irritación dérmica hemorragia nasal depresión irritación del sistema nervioso.
Efectos ambientales del mercurio El mercurio entra en el ambiente como resultado de la ruptura de minerales de rocas y suelos a través de la exposición al viento y agua. La liberación de Hg desde fuentes naturales ha permanecido en el mismo nivel a través de los años. Todavía las concentraciones de Hg en el ambiente está creciendo: esto es debido a la actividad humana. La mayoría del mercurio liberado por las actividades humanas es liberado al aire; a través de la quema de productos fósiles, minera, fundiciones y combustión de residuos sólidos. Algunas formas de actividades humanas liberan Hg directamente del suelo o al agua, por ejemplo: la aplicación de fertilizantes en la agricultura y los vertidos de aguas residuales industriales. Todo el Hg que es liberado al ambiente eventualmente termina en los suelos o aguas superficiales. Las mayores fuentes naturales de mercurio son las emisiones de los volcanes, la erosión de las rocas y la evaporación desde los cuerpos de agua. Las principales fuentes antrópicas provienen de actividades relacionadas con: extracción de recursos naturales (recuperación de metales preciosos, yacimientos petrolíferos y carboníferos - muchos de los cuales presentan compuestos de mercurio como impurezas -, minas de Cinabrio), desechos y disposición de residuos (procesos de incineración de residuos – especialmente de origen medico-, disposición de pilas, lámparas, termómetros, equipo obsoleto descartado, etc.) centrales termoeléctricas y combustión de derivados del petróleo y del carbón. Efluentes y emisiones o de industrias (Clorosoda, farmacéutica, manufacturera, plaguicidas) y o de servicios: unidades médicas y odontológicas a partir de prácticas o accidentes (los residuos líquidos
no
tratados
de
la
práctica
odontológica, se han mensurado como en un tercio del volumen total de mercurio volcado a la red de drenaje urbano de agua) Desde estas fuentes el Mercurio contamina suelos, aire, aguas y cadena trófica. El dibujo que sigue representa la circulación del Hg en el ambiente:
Reacciones de reconocimiento Destruida la materia orgánica se realizan las reacciones de reconocimiento, después de haber filtrado la mezcla. Estas reacciones son: 1. Con el Cloruro Estañoso: al agregar una pequeña cantidad del reactivo a una porción de la muestra, en caso positivo se debe producir un precipitado blanco de cloruro mercurioso o calomel o un precipitado negro de Hg metálico. HgCl2 + SnCl2
2
Hg2Cl2 + SnCl2
Hg2Cl2 + SnCl4 Hg + SnCl4
2
2. Con el Yoduro de Potasio: al reaccionar una muestra que contenga Hg, frente al Ki, se produce un precipitado rojo, anaranjado o amarillo (de acuerdo a la concentración del toxico) de yoduro mercúrico. HgCl2 + 2IK
HgI2 + 2KCl
3. Con la Difenil Tio Carbazona: es una reacción muy sencilla para reconocer el Hg; (el reactivo se prepara con 0.012 gr de ditizona disuelta en 1000 ml de Cl 4C) se mide un poco demuestra y se añaden algunas gotas de reactivo con el cual debe producir un color anaranjado en caso (+), si es necesario se puede calentar ligeramente la mezcla. 4. Con la Difenil Carbazida: en medio alcohólico, la difenil carbazida produce con el Hg un color violeta o rojo violeta. 5. Con el Sulfuro de Hidrogeno: produce un precipitado negro mercúrico. HgCl2 + H2S
SHg + 2HCl
6. Con Amoniaco: si al añadir la solución de NH3 sobre el precipitado este se ennegrece, es señal suficiente para la existencia del mercurio. Hg2Cl2 + 2NH3
HgO + Hg(NH2)Cl + NH4+ + Cl-
Negro
Qué tipo de animal se pudiera utilizar para la identificación de mercurio: Los peces y bivalvos concentran mercurio en sus organismos. Las investigaciones realizadas han permitido determinar que los productos marinos pueden contener concentraciones diversas de metales pesados, particularmente mercurio y contaminantes solubles en grasas provenientes de la contaminación del agua.
Plantas acuáticas tropicales La contaminación acuática por mercurio, generada por el proceso de industrialización o por procesos naturales, constituye uno de los problemas ambientales más críticos en la actualidad, debido a su alta toxicidad, persistencia y capacidad
de
bioacumulacion
y
bioconcentración
(también
conocida
como
biomagnificación). ARSÉNICO Elemento químico cuyo símbolo es As y su número atómico, 33. El arsénico se encuentra distribuido ampliamente en la naturaleza (cerca de 5 x 10-4% de la corteza terrestre). Es uno de los 22 elementos conocidos que se componen de un solo nucleído estable, 7533As; el peso atómico es de 74.922. Se conocen otros 17 nucleídos radiactivos de As. El arsénico elemental tiene pocos usos. Es uno de los pocos minerales disponibles con un 99.9999+ % de pureza. En el estado sólido se ha empleado ampliamente en los materiales láser GaAs y como agente acelerador en la manufactura de varios aparatos. El óxido de arsénico se utiliza en la elaboración de vidrio. Los sulfuros de arsénico se usan como pigmentos y en juegos pirotécnicos. El arseniato de hidrógeno se emplea en medicina, así como otros compuestos de arsénico. La mayor parte de la aplicación medicinal de los compuestos de arsénico se basa en su naturaleza tóxica. Toxicidad del arsénico La toxicidad de los compuestos del arsénico varía considerablemente. Los compuestos inorgánicos son generalmente más
tóxicos que los compuestos orgánicos. Ciertos
derivados del arsénico son además carcinogénicos. Las intoxicaciones en el ambiente de trabajo juegan un papel particularmente importante. Los dos derivados más frecuentemente encontrados en el agua son As (III) y As (IV). Efectos del arsénico sobre la salud El Arsénico es uno de los más toxicos elementos que pueden ser encontrados. Debido a sus efectos tóxicos, los enlaces de Arsénico inorgánico ocurren en la tierra naturalmente en pequeñas cantidades. Los humanos pueden ser expuestos al Arsénico a través de la comida, agua y aire.
La exposición puede también ocurrir a través del contacto con la piel con suelo o agua que contenga Arsénico. Los niveles de Arsénico en la comida son bastante bajos, no es añadido debido a su toxicidad, pero los niveles de Arsénico en peces y mariscos puede ser alta, porque los peces absorben Arsénico del agua donde viven. Por suerte esto esta es mayormente la forma de Arsénico orgánico menos dañina, pero peces que contienen significantes cantidades de Arsénico inorgánico pueden ser un peligro para la salud humana. La exposición al Arsénico puede ser más alta para la gente que trabaja con Arsénico, para gente que bebe significantes cantidades de vino, para gente que vive en casas que contienen conservantes de la madera y gente que viven en granjas donde el Arsénico de los pesticidas ha sido aplicado en el pasado. La exposición al Arsénico inorgánico puede causar varios efectos sobre la salud, como es irritación del estómago e intestinos, disminución en la producción de glóbulos rojos y blancos, cambios en la piel, e irritación de los pulmones. Es sugerido que la toma de significantes cantidades de Arsénico inorgánico puede intensificar las posibilidades de desarrollar cáncer, especialmente las posibilidades de desarrollo de cáncer de piel, pulmón, hígado, linfa. A exposiciones muy altas de Arsénico inorgánico puede causar infertilidad y abortos en mujeres, puede causar perturbación de la piel, pérdida de la resistencia a infecciones, perturbación en el corazón y daño del cerebro tanto en hombres como en mujeres. Finalmente, el Arsénico inorgánico puede dañar el ADN. El Arsénico orgánico no puede causar cáncer, ni tampoco daño al ADN. Pero exposiciones a dosis elevadas puede causar ciertos efectos sobre la salud humana, como es lesión de nervios y dolores de estómago. Efectos ambientales del arsénico Fuente de polución del medio ambiente: En los medios acuáticos, el arsénico existe principalmente en la forma de arseniuros y arseniatos. En los sedimentos y los suelos, los arseniatos son rápidamente absorbidos en forma de hierro o de hidróxido de aluminio, lo que reduce su capacidad y velocidad de percolación así como su disponibilidad para los sistemas biológicos. En las fases acuosas,
el arsénico forma precipitados insolubles con un cierto número de elementos (Ca, S, Ba, Al, Fe), lo que resulta en la eliminación de los compuestos de arsénico del agua. En los microorganismos, las plantas y los animales, existe metilación y reducción de los compuestos del arsénico. Esto favorece la producción de un cierto número de compuestos del arsénico, que son estables físico-química y biológicamente. El Arsénico puede ser encontrado de forma natural en la tierra en pequeñas concentraciones. Esto ocurre en el suelo y minerales y puede entrar en el aire, agua y tierra a través de las tormentas de polvo y las aguas de escorrentía. El Arsénico es un componente que es extremadamente duro de convertir en productos solubre en agua o volátil. En realidad el Arsénico es naturalmente específicamente un compuesto móvil, básicamente significa que grandes concentraciones no aparecen probablemente en un sitio específico. Esto es una buena cosa, pero el punto negativo es que la contaminación por Arsénico llega a ser un tema amplio debido al fácil esparcimiento de este. El Arsénico no se puede movilizar fácilmente cuando este es inmóvil. Debido a las actividades humanas, mayormente a través de la minería y las fundiciones, naturalmente el Arsénico inmóvil se ha movilizado también y puede ahora ser encontrado en muchos lugares donde ellos no existían de forma natural. El ciclo del Arsénico ha sido ampliado como consecuencia de la interferencia humana y debido a esto, grandes cantidades de Arsénico terminan en el Ambiente y en organismos vivos. El Arsénico es mayoritariamente emitido por las industrias productoras de cobre, pero también durante la producción de plomo y zinc y en la agricultura. Este no puede ser destruido una vez que este ha entrado en el Ambiente, así que las cantidades que hemos añadido pueden esparcirse y causar efectos sobre la salud de los humanos y los animales en muchas localizaciones sobre la tierra. Las plantas absorben Arsénico bastante fácil, así que alto ranto de concentraciones pueden estar presentes en la comida. Las concentraciones del peligroso Arsénico inorgánico que está actualmente presente en las aguas superficiales aumentan las posibilidades de alterar el material genético de los peces. Esto es mayormente causado por la acumulación de Arsénico en los organismos de las aguas dulces consumidores de plantas. Las aves comen peces que contienen eminentes cantidades de Arsénico y morirán como resultado del
envenenamiento por Arsénico como consecuencia de la descomposición de los peces en sus cuerpos. REACCIONES DE RECONOCIMIENTO Las reacciones que se realizan para reconocer el arsénico son: 1.
Con la Mixtura Magnesiana MgCl2 5.5 % + NH4Cl 15.5 % en solución de NH3
(35 ml de NH3).- a una pequeña porción de muestra se le añade unas gotas de mixtura magnesiana (cloruro de magnesio, cloruro de amonio), en medio alcalinizado con amoniaco, debe dar un precipitado blanco de arseniato de amonio y magnesio. 2.
Con el nitrato de plata.- a otra porción de la muestra (o el precipitado de la reacción
anterior después de lavarlo), se le adiciona solución de nitrato de plata, se forma un precipitado rojo oscuro o amarillo limón de arseniato de plata. 3.
Con el molibdato de Amonio.- (solución al 5.0 % en ácido sulfúrico 5 N).- el ácido
arsénico reacciona al agregarle gotas de molibdato de amonio formando un precipitado amarillo cristalino de arseno-molibdato de amonio fácilmente soluble en amoniaco y en álcalis caustico. 4.
Reacción de bettendorf.- esta reacción se fundamenta en la reacción del cloruro de
arsénico a arsénico metálico en presencia de cloruro estannoso, representado por un depósito de color negro. (Reactivo de bettendorf: 10 g SnCl2 se llevan a 100ml con HCl puro. Preparar en el momento de usar). En un tubo de ensayo poner un volumen de líquido más un volumen de reactivo. Calentar a ebullición y dejar reposar. Si hay As aparece coloración parda oscura o marrón. Es poco específica. AsO3-3 + 3 HCl AsCl3 2AsCl3 + 3SnCl2 5.
2As + 3SnCI4
Reacción de Reinsch.- se realiza introduciendo en un tubo de ensayo que contenga
la muestra una lámina de cobre en un medio ácido clorhídrico, al cabo cierto tiempo se deposita un estrato metalico color gris de arsénico y arseniuro de cobre. 6.
Con el sulfuro de hidrogeno.- con este reactivo los compuestos arsenicales producen
un precipitado amarillo de sulfuro de arsenico, soluble en amoniaco y sulfuro de amonio.
Sugerencias El Arsénico puede encontrarse en las aguas subterráneas utilizadas como aguas de consumo. Por eso, puede registrar su presencia en los vegetales que lo absorben en la raíz o son tratados con dichas aguas. Por otra parte, ciertas especies marinas tales como los mariscos y ciertos crustáceos filtran grandes cantidades de agua y concentran el As. Antiguamente, formaba parte de algunos medicamentos orgánicos e inorgánicos frecuentemente utilizados. El arseniato de sodio y cobre se emplearon como colorantes en vidrios, papel y pinturas. En pirotecnia se usan compuestos de As para la generación de fuegos de artificio de color verde. Además, se han registrado casos con etiología criminal. Sintomatología Aguda: 1.
Vasodilatación de los capilares sanguíneos con alteración de la permeabilidad de los
mismos. 2.
Vómitos, diarrea ( pérdida de agua y sales), irritación de garganta, dolores faríngeos.
3.
Edemas subcutáneos. Hipertensión.
4.
Colapso, shock, coma, muerte.
Crónica: El As se une a albúminas, se absorbe fácilmente a las mucosas y se deposita en hígado, riñón, huesos, pelos y uñas. Se elimina por orina y heces, pero se reabsorbe en el túbulo contorneado proximal. Por lo tanto, debido a que la absorción es mayor que la eliminación, se acumula. Los síntomas más característicos son: - caída del cabello. - mano en forma de garra y pie colgante - en piel: •
erupciones
•
hiperqueratosis (engrosamiento de la piel de la palma de las manos y pies)
•
hiperpigmentación (manchas oscuras)
-degeneración grasa del hígado que puede dar cirrosis. -temblores por alteración del SNC con desequilibrio de Na y K -fase final: cáncer de piel.
Estabilidad y reactividad Por calentamiento intenso se producen humos tóxicos. Reacciona violentamente con oxidantes fuertes y halógenos, originando peligro de incendio y explosión. Reacciona con ácido nítrico, ácido sulfúrico caliente. En contacto con ácidos o sustancias ácidas y ciertos metales (p.ej. galvanizados, metales ligeros) se forma gas tóxico de arsina. Condiciones que deben evitarse: Calentamiento intenso. Materiales a evitar: Oxidantes fuertes, halógenos, ácido nítrico, ácido sulfúrico caliente, ácidos en general, sustancias ácidas y metales ligeros. Productos de descomposición: gas tóxico de arsina. Polimerización: No aplicable. ENSAYOS POR VÍA SECA • Ensayo al soplete: Los compuestos de arsénico calentados sobre carbón con carbonato de sodio dan incrustaciones blancas de óxido arsenioso y olor aliáceo durante el calentamiento. • Cuando se calienta con un exceso de cianuro de potasio y carbonato de sodio anhidro en un tubo seco, se obtiene en la parte fría del tubo un espejo negro de arsénico soluble en solución de hipoclorito de sodio. DETERMINACION DE ARSENICO EN MATERIALES BIOLOGICOS. En todos los casos es necesario destruir previamente la materia orgánica. El método empleado depende del material biológico de que se trate. a)- Orina: se colocan 10 ml de orina en una cápsula de porcelana, agregando 10 gotas de H2SO4 concentrado y 20 gotas de HNO3 concentrado. Se calienta la cápsula en baño de arena hasta observar carbonización (ennegrecimiento). Se agrega luego gota a gota la mezcla constituida por dos volúmenes de HNO3 concentrado y un volumen de HClO4 concentrado (70%) hasta que el líquido de la cápsula no se oscurezca más. Por calentamiento se lleva a residuo siruposo. Cuando el residuo se enfría se toma con 2 o 3 ml de agua destilada. b)- Pelos y uñas: se colocan 1 a 2 g de material en una cápsula de porcelana. Si se trata de pelos es conveniente humedecerlos con unas gotas de agua destilada. Agregar 1 ml de
H2SO4 concentrado y 5 ml de HNO3 concentrado. Si es posible dejar en contacto varias horas. Calentar progresivamente sobre tela metálica y luego en baño de arena. Cuando aparecen humos blancos, retirar del baño de arena y agregar 2 ml de la mezcla constituida por dos partes de HNO3 concentrado y una parte de HClO4concentrado (70%). Desde este punto en adelante, cuando se produzca oscurecimiento del líquido por carbonización debe suspenderse el calentamiento del mismo pues en dicho medio reductor se perderá As por volatilización. Calentar hasta humos blancos y repetir este tratamiento hasta que el residuo sea incoloro o blanquecino. Retirar del baño y agregar 10 ml de agua destilada. Calentar nuevamente hasta residuo siruposo. Enfriar y tomar con 10 ml de agua destilada. c)- Alimentos: nos referiremos en particular al caso de alimentos en base a hidratos de carbono. En este caso es adecuada una DMO por vía seca, útil para la destrucción de carbohidratos pero no para las grandes moléculas de lípidos o proteínas. Se realiza la DMO por calcinación de la muestra con una mezcla de nitrato de magnesio y óxido de magnesio que transforma el As cuantitativamente en piroarseniato de magnesio. En estas condiciones el As no es volátil. Colocar 10 g de muestra en cápsula de porcelana y agregar 3.5 ml de solución de nitrato de magnesio al 20% y 0.1 g. de óxido de magnesio. Mezclar bien formando una papilla y calentar primero a baño maría hasta sequedad, luego en baño de arena y por último en triángulo de pipas hasta cenizas blancas. Enfriar y tomar el residuo con 10 ml de ác. Sulfúrico al 10%. Filtrar si es necesario a fin de obtener una muestra de aspecto límpido. MgO + 2 Mg(NO3)2 +As2O3 Mg3(AsO4)2 + 4 NO2 Mg3(AsO) calor As2O7Mg2 (piroarseniato) +MgO As2O7Mg2 + H2SO4
AsO4H3 (ác. arsénico) + MgSO4
d)- Polvo insecticida: se solubiliza el As con hidróxido de sodio que lo transforma en arsenito soluble. Los insecticidas no tienen materia orgánica, sólo una base de arseniatos de calcio o plomo. Pesar 5 g de muestra y agregar 20 ml de hidróxido de sodio al 10%. Calentar a baño maría durante 5 minutos para solubilizar al As. Enfriar, filtrar y llevar a 30 ml con agua destilada. 2 AsO4Na3 + Ca(OH)2 Calentamiento en Baño María
(AsO4)2Ca3
Esta metodología se utiliza sólo para muestras con grandes cantidades de Arsénico. CADMIO Es un metal dúctil, de color blanco argentino con un ligero matiz azulado. Es más blanco y maleable que el zinc, pero poco más duro que el estaño. Peso atómico de 112.40 y densidad relativa de 8.65 a 20°C (68°F). Su punto de fusión de 320.9°C (610°F) y de ebullición de 765°C(1410°F) son inferiores a los del zinc . Hay ocho isotopos estables en la naturaleza y se han descrito once radioisótopos inestables de tipo artificial. El cadmio es miembro del grupo IIb (zinc, cadmio y mercurio) en la tabla periódica, y presenta propiedades químicas intermedias entre las del zinc metálico en soluciones acidas de sulfato. El cadmio es divalente en todos sus compuestos estables y su ion es incoloro. El cadmio no se encuentra en estado libre en la naturaleza, y la greenockita (sulfuro de cadmio), único mineral de cadmio, no se una fuente comercial de metal. Casi todo el que se produce es obtenido como subproducto de la fundición y refinamiento de los minerales de zinc, los cuales por lo general contienen de 0.2 a 0.4%. Estados Unidos, Canadá, México, Australia, Bélgica, Luxemburgo y Republica de Corea son fuentes importantes, aunque no todos son productos. En el pasado, un uso comercial importante del cadmio fue como cubierta electro deposita sobre hierro o acero para protegerlos contra la corrosión. La segunda aplicación es de baterías de níquel – cadmio y la tercera como reactivo químico y pigmento. Se recurre a cantidades apreciables en aleaciones de bajo punto de fusión semejantes a las del metal de Wood, en rociadores automáticos contra el fuego y en cantidad menor, en aleaciones de latón, soldaduras y cojinetes. Los compuestos de cadmio se emplean como estabilizadores
de plásticos y en la producción de cadmio fosforado. Por su gran capacidad de absorber neutrones, en especial el isotopo 113, se usa en barras de control y recubrimiento nucleares. Efectos del cadmio sobre la salud El cadmio puede ser encontrado prioritariamente en la corteza terrestre. Este siempre ocurre en combinación en el zinc. El cadmio tambien consiste en las industrias como inevitable subproducto del zinc, plomo y cobre extracciones .después de ser aplicado este entra en el ambiente mayormente a través del suelo, porque es encontrado en estiércoles y pesticidas. La toma por los humanos de cadmio tiene lugar mayormente a través de la comida. Los alimentos que son ricos en cadmio pueden en gran medida incrementar la concentración de cadmio en los humanos. Ejemplos son pates, champiñones, mariscos, mejillones, cacao y algas secas. Una exposición a niveles significativamente altas ocurren cuando la gente fuma. El humo del tabaco transporta el cadmio a los pulmones. La sangre transportara el cadmio al resto del cuerpo donde puede incrementar los efectos por potenciación del cadmio que está ya presente por comer comida rico en cadmio. Otra alta exposición puede ocurrir con gente que vive cerca de los vertederos de residuos peligrosos o fabricas que liberan cadmio en el aire y gente que trabaja en las industrias de refinerías del metal. Cuando la gente respira el cadmio este puede dañar severamente los pulmones. Esto puede incluso causar la muerte. El cadmio primero es transportado hacia el hígado por la sangre . allí es unido a proteínas para formar complejos que son transportados hacia los riñones . el cadmio se acumula en los riñones , donde causa un daño en el mecanismo de filtración . esto causa la excreción de proteínas esenciales y azucares del cuerpo y el consecuente daño de los riñones . lleva bastante tiempo antes de que el cadmio que ha sido acumulado en los riñones sea excretado del cuerpo humano. Otros efectos sobre la salud que pueden ser causados por el cadmio son: •
Diarrea , dolor de estomago y vómitos severos
•
Fractura de huesos
•
Fallos en la reproducción y posibilidad incluso de infertilidad
•
Daño al sistema nervioso central
•
Daño al sistema inmune
•
Desordenes psicológicos
•
Posible daño en el ADN o de desarrollo de cáncer.
Efectos ambientales del cadmio De forma natural grandes cantidades de cadmio son liberadas al ambiente, sobre 25.000 toneladas al año . la mitad de este cadmio es liberado en los ríos a través
dela
descomposición de rocas y algún cadmio es liberado al aire a través de fuegos forestales y volcanes .el resto del cadmio es liberado por las actividades humanas , como es al manufacturación. Las aguas residuales con cadmio procedentes de las industrias mayoritariamente terminan en los suelos. Las cuales de estas corrientes de residuos son por ejemplo la producción de zinc, minerales de fosfatos y las bioindustrias del estiércol. El cadmio de las corrientes residuales puede tambien entrar en el aire a través de la quema de residuos urbanos y de la quema de combustibles fósiles. Debido a las regulaciones solo una pequeña cantidad de cadmio entra ahora en el agua a través del vertido de aguas residuales de casas o industrias. Otra fuente importante de emisión de cadmio es la producción de fertilizantes fosfatados artificiales. Parte del cadmio terminara en el suelo después
de que el fertilizante es
aplicado en las granjas y el resto del cadmio terminara en las aguas superficiales cuando los residuos del fertilizante es vertido por las compañías productoras. El cadmio puede ser transportado a grandes distancias cuando es absorbido por el lodo. Este lodo rico en cadmio puede contaminar las aguas superficiales y los suelos. El cadmio es fuertemente adsorbido por la materia orgánica del suelo .cuando el cadmio está presente en el saleo este puede ser extremadamente peligroso, y la toma a través de la comida puede incrementar. Los suelos que son ácidos aumentan la toma de cadmio por las plantas. Esto es un daño potencial para los animales que dependen de las plantas para sobrevivir. el cadmio puede acumularse en sus cuerpos , especialmente cuando estos comen muchas plantas diferentes . las vacas pueden tener grandes cantidades de cadmio en sus riñones debido esto. Las lombrices y otros animales esenciales para el suelo son extremadamente sensibles al envenenamiento por cadmio. Pueden morir a muy bajas concentraciones y esto tiene consecuencia en la estructura del suelo. Cuando las concentraciones de cadmio en el suelo
son altas pueden influir en los procesos del suelo de microorganismos y amenazar a todo el ecosistema del suelo. En ecosistemas acuáticos el cadmio puede bioacumularse en mejillones, ostras, gambas, langostas y peces .las susceptibilidad al cadmio puede variar ampliamente entre organismos acuáticos. Organismos de agua salada se sabe que son más resistentes el envenenamiento por cadmio que organismos de agua dulce, animales que comen o beben cadmio algunas veces tienen la presión sanguínea alta, daños del hígado y daños en nervios y el cerebro. REACCIONES DE RECONOCIMIENTO 1.
A una pequeña porción de la muestra , agregar algunas gotas de hidróxido de sodio
Na(OH)-, en caso positivo , se debe formar un precipitado blanco de Cd(OH)2 Cl2Cd+Na (OH) 2.
Cd (OH)2+2Cl-+2Na+
A otra pequeña cantidad de muestra , se le adiciona gotas de hidróxido de amonio
(NH4OH), observamos que se produce un precipitado blanco de Cd(OH)2 ,
el mismo que es soluble en exceso de reactivo ya que se forma el complejo [Cd
(NH3)4]=. Cl2Cd + NH4 (OH)
Cd (OH)2+2Cl-+2NH4+
Cd (OH)2 + NH4(OH)
3.
[Cd (NH3)4]++
Cuando a una pequeña cantidad de muestra que contiene cadmio, se la hace
reaccionar con unas cuantas gotas de cianuro de sodio (CNNa) , debe producir un precipitado blanco de (CN)2Cd, el mismo que es soluble en exceso de reactivo por formación de complejo [Cd (CN)4] Cl2Cd + CNNa (CN) 2Cd + CNNa
.
(CN) 2Cd +2Cl-+2Na+ [Cd (CN)4]
4.
Al hacer circular a una pequeña cantidad de muestra una buena corriente de gas
sulfhídrico, se observa la formación de un precipitado color amarillo intenso por formación de SCd. El mismo que es insoluble en exceso de reactivo, y soluble en NO3H diluido y caliente, dejando un depósito de azufre coloidal.
Cl2Cd + SH2
SCd +2H +2Cd-
CADMIO Historia El cadmio (en latín, cadmia, y en griego kadmeia, que significa "calamina", el nombre que recibía antiguamente el carbonato de zinc) fue descubierto en Alemania en 1817 por Friedrich Stromeyer, quien observó que algunas muestras de calamina con impurezas cambiaban de color cuando se calentaban, mientras que la calamina pura no lo hacía; encontró el nuevo elemento como impureza en este compuesto de zinc. Durante unos cien años Alemania fue el principal productor de este metal. Abundancia y obtención Es un elemento escaso en la corteza terrestre. Las minas de cadmio son difíciles de encontrar, y suelen estar en pequeñas cantidades. Suele sustituir al zinc en sus minerales debido a su parecido químico. Se obtiene generalmente como subproducto; el cadmio se separa del zinc precipitándolo con sulfatos o mediante destilación. Generalmente el zinc y el cadmio están en sus minerales como sulfuros, al tostarlos se obtiene una mezcla de óxidos y sulfatos, y el cadmio se separa aprovechando la mayor facilidad para reducirlo. El mineral más importante de zinc es la esfalerita, (Zn, Fe) S, siendo el mineral análogo de cadmio la greenockita, CdS. Además de obtenerse de la minería y metalurgia de sulfuros de
zinc, también se obtiene, en menor medida, de los de plomo y cobre. Existen otras fuentes secundarias: del reciclado de chatarra de hierro y acero se obtiene aproximadamente el 10% del cadmio consumido. Toxicidad del cadmio El cadmio es un metal pesado que produce efectos tóxicos en los organismos vivos, aun en concentraciones muy pequeñas. La exposición al cadmio en los humanos se produce generalmente a través de dos fuentes principales: la primera es la vía oral (por agua e ingestión de alimentos contaminados.) La segunda vía es por inhalación. La población fumadora es la más expuesta al cadmio, porque los cigarrillos lo contienen. Algunos órganos vitales son blancos de la toxicidad del cadmio. En organismos sobreexpuestos, el cadmio ocasiona graves enfermedades al actuar sobre dichos órganos. Existen actualmente algunas descripciones de posibles mecanismos de toxicidad del cadmio. Sin embargo, la implicación real que este elemento tiene como agente tóxico ha sido poco estudiada, por lo que se considera que debe ser monitoreado. Es de gran importancia llevar a cabo estudios para profundizar en los factores de riesgo y así realizar medidas preventivas en la población. El cadmio es un elemento que se encuentra de manera natural en la corteza terrestre. El cadmio puro es un metal blando, de un brillo muy parecido al de la plata, pero en esta forma no es muy común encontrarlo en el ambiente. Este metal se encuentra más a menudo combinado con otros elementos (tales como oxígeno, cloro o azufre) formando compuestos. Todos estos compuestos son sólidos estables que no se evaporan (sólo el óxido de cadmio también se encuentra en el aire en forma de pequeñas partículas.) Una gran parte del cadmio utilizado con fines industriales es obtenido como un producto a partir del fundimiento de rocas que contienen zinc, plomo o cobre. El cadmio tiene muchas aplicaciones en la industria, pero es utilizado con más frecuencia en la elaboración de pigmentos, pilas eléctricas y plásticos. Pequeñas cantidades de cadmio se encuentran naturalmente en el aire, en el agua, en el suelo y en la comida. Para muchas personas, la comida es la principal causa de exposición al cadmio, debido a que muchos alimentos tienden a absorberlo y a retenerlo. Por ejemplo, las plantas toman el cadmio del suelo, los peces lo toman del agua, etc.
La aplicación de ciertos fertilizantes o de excremento de animales en el suelo destinado al cultivo de alimentos puede aumentar su nivel de cadmio lo cual, a su vez, causa un aumento en el nivel de cadmio de los productos. El cadmio no se encuentra en cantidades preocupantes en el agua; sin embargo, puede contaminarla cuando ésta viaja a través de las tuberías (que muchas veces están soldadas con materiales que lo contienen) o cuando entra en contacto con desechos químicos. La fuente más importante de descarga de cadmio al medio ambiente es la quema de combustibles fósiles (como carbón o petróleo) o la incineración de la basura doméstica común. El cadmio también contamina el aire cuando se funden rocas para extraer zinc, cobre o plomo. Trabajar o vivir cerca de una de estas fuentes contaminantes puede resultar en una sobreexposición al cadmio. Fumar es otra importante fuente de cadmio. Como muchas plantas, el tabaco contiene cadmio, algo del cual es inhalado en el humo. Muchos fumadores tienen alrededor del doble de cadmio en sus organismos que los no fumadores. El cadmio entra al torrente sanguíneo por absorción en el estómago o en los intestinos luego de la ingestión de comida o agua, o por absorción en los pulmones después de la inhalación. Muy poco cadmio entra al cuerpo a través de la piel. Usualmente sólo es absorbido por la sangre alrededor del 1 al 5% del cadmio que es ingerido por la boca, mientras que se absorbe alrededor del 30 al 50% del que es inhalado. Un fumador que consuma un paquete de cigarros por día puede absorber, durante ese lapso, casi el doble del cadmio absorbido por un no fumador. De cualquier forma, una vez que el cadmio se absorbe es fuertemente retenido; así que incluso bajas dosis de este metal pueden constituir un nivel significativo en el organismo si la exposición se prolonga durante un largo periodo. Una vez absorbido el cadmio, es transportado por el torrente circulatorio hasta el hígado, en donde se une a una proteína de bajo peso molecular. Pequeñas cantidades de ese complejo proteína-cadmio pasan continuamente del hígado al torrente sanguíneo, para ser transportado a los riñones y filtrado a través de los glomérulos, para posteriormente ser reabsorbido y almacenado en las células tubulares del riñón. Este último órgano excreta del 1 al 2% del cadmio tomado directamente de las fuentes ambientales, lo que provoca una gran acumulación de cadmio en los riñones. La concentración del metal en el riñón es
aproximadamente 10 mil veces más alta que en el torrente sanguíneo. La excreción fecal del metal representa una mínima cantidad de cadmio no absorbido en el sistema gastrointestinal. Por otra parte, se estima que la vida biológica del cadmio en los humanos varía entre 13 y 40 años. No se sabe que el cadmio tenga algún efecto benéfico. Más bien puede causar algunos efectos adversos en la salud. Aunque las exposiciones prolongadas son extremadamente raras actualmente, la ingestión de altas dosis es causa de severas irritaciones del estómago, vómito y diarrea y su inhalación causa graves irritaciones en los pulmones. Causan mayor preocupación los efectos de las exposiciones bajas al cadmio y a largo plazo. Algunos efectos de varios niveles y duraciones de exposición son los siguientes: En personas que han estado expuestas a un exceso de cadmio en su dieta o por el aire se ha observado un daño en los riñones. Esta enfermedad renal normalmente no es mortal, pero puede ocasionar la formación de cálculos y sus efectos en el sistema óseo se manifiestan a través de dolor y debilidad. En trabajadores de fábricas, en donde el nivel de concentración de cadmio en el aire es alto, han sido observados severos daños en los pulmones, tales como enfisema. En animales expuestos durante largos periodos al cadmio por inhalación, se ha observado la aparición de cáncer de pulmón. Estudios en seres humanos también sugieren que una inhalación prolongada de cadmio puede resultar en incrementar el riesgo de contraer cáncer pulmonar, como en el caso de los fumadores. No hay evidencia de que la ingestión de cadmio por la vía oral sea causante de cáncer. Ha sido también observada alta presión arterial en animales expuestos al cadmio. Aún no se sabe si la exposición al cadmio desempeña un papel importante en la hipertensión humana. Otros tejidos también son dañados por exposición al cadmio (en animales o humanos) incluyendo al hígado, los testículos, el sistema inmunológico, el sistema nervioso y la sangre. Efectos en la reproducción y el desarrollo han sido observados en animales expuestos al cadmio, pero no han sido reportados aún en seres humanos. Es importante tomar medidas preventivas para regular las descargas de cadmio al ambiente. Asimismo, se debe proteger a las personas que por una otra causa se encuentren sobreexpuestas a este metal. Debe también considerarse aumentar la información acerca del cadmio a la población en general.
A pesar de que son claras las evidencias de la toxicidad del cadmio, aún no se realizan estudios formales acerca de las consecuencias reales que tiene la acción de este metal sobre los organismos vivos, especialmente en el humano. Es muy posible que algunos de nuestros padecimientos (tales como el cáncer, enfermedades renales, hepáticas, pulmonares, etc.), estén ligados con la exposición prolongada al cadmio. La investigación ayudaría, además, a profundizar en los mecanismos básicos de daño y permitiría un mejor entendimiento de la toxicidad del cadmio y su posible tratamiento. Recientemente, en un estudio se ha comprobado su relación con el cáncer de mama en mujeres con alto contenido de cadmio en la orina. Aplicaciones •
Es componente de aleaciones de bajo punto de fusión. Se emplea en
aleaciones de cojinetes, con bajo coeficiente de fricción y gran resistencia a la fatiga. •
Se utiliza mucho en electrodeposición: recubrimiento de rectificadores y
acumuladores. •
Se emplea en baterías níquel-cadmio recargable.
•
Utilizado en barras de control del flujo de neutrones en los reactores nucleares.
•
El hidróxido de cadmio se emplea en galvanotecnia y en la fabricación de electrodos
negativos de baterías de níquel-cadmio. •
El óxido de cadmio se usa como catalizador para la hidrogenación y la síntesis de
metano. Además, se emplea para fabricación de esmaltes y en sinterización. •
El cloruro de cadmio se utiliza en galvanotecnia, fotografía y tintorería.
•
El sulfuro de cadmio se utiliza como pigmento amarillo.
•
El estearato de cadmio se emplea para mejorar la estabilidad de materiales de PVC
frente a la luz y a los agentes atmosféricos. •
Los silicatos y los boratos de cadmio presentan fosforescencia y fluorescencia y se
usan como componentes de las sustancias fosforescentes de televisión en blanco y negro. ENSAYO PARA EL CADMIO Para la identificación del Cadmio hay dos casos, uno cuando está presente el cobre y otro cuando no lo está:
A) Cuando está PRESENTE el Cobre A las dos terceras partes de la solución del Si en la solución del se encuentra presente el Cu y Cd, se toma la tercera parte de la solución y se agrega poco a poco ácido acético 6 M hasta reacción acida y después 2 gotas de solución de ferrocianuro de potasio 0.2 M., un precipitado rojo ladrillo indica la presencia del cobre. Solo hay cambio de color a verdoso.se le agrega gota a gota solución de KCN 0.2 M hasta desaparición del color azul. Agregar gotas de solución de (NH4)2S. Si se confirma un precipitado amarillo la presencia del Cadmio está confirmada. B) Cuando está AUSENTE el Cobre. A las dos terceras partes de la solución del del paso anterior agregar 5 gotas de solución de sulfuro de amonio, si se forma un precipitado amarillo la presencia de Cadmio está confirmado. Muy a menudo el pp del es negro debido a la mala separación de los cationes anteriores. En este caso, el pp del se trata con 1 mL de H2S04 6 M agitando por 1 minuto y centrifugar. La solución se diluye con 10 gotas de agua y se añade sulfuro de amonio. Si se un forma precipitado amarillo, existe cadmio. A) 2Cu(NH3)4+2 + 7CN- + 2OH- ---------------► 2Cu(CN)3-2 + 8NH3 + N02- + 2H20 Cd(NH3)4+2 + 4CN- ---------------► (CN)4-2 + 4NH3 Cd(CN)4-2 + S-2 ---------------► CdS(Amarillo) + 4CNCu(CN)3-2 + S-2 ---------------►NR B) Cd(NH3)4+2 + S-2 ---------------► CdS (Amarillo) + 4NH3
INTOXICACION PRODUCIDA POR HIERRO (Cloruro Férrico) HIERRO Es un metal maleable, de color gris plateado y magnético. Los 4 isotopos estables, que se encuentran en la naturaleza tienen las masas 54, 56, 57,58. Los dos minerales principales son la hematina, Fe2O3 y la limonita, Fe2O3.3H2O. El hierro se encuentra en muchos otros
minerales y está presente en las aguas preaticas (agua acumulada sobre una capa de tierra impermeable sirve para extraer por medio de pozos) y en la hemoglobina rojo de la sangre. El ion férrico por la razón de su alta carga (3+) y su tamaño pequeño tiene una fuerte tendencia a captar iones. El ion hidratado Fe(H2O)63+ que se encuentran en solución, se combina con OH+, Cl-, CN-, SCN-, N3-, C2O42- y otros aniones para formar complejos. Un aspecto interesante de la química del hierro es el arreglo de los compuestos con enlaces al carbono. Los complejos con cianuro, tanto del ion ferroso como del férrico. Los complejos son muy estables y no son intensamente magnéticos, en contraposición a la mayor parte de los complejos de coordinación del hierro. Los complejos con cianuro forman sales coloradas. EFECTOS DEL HIERRO SOBRE LA SALUD El hierro puede ser encontrado en carne, productos integrales, patatas y vegetales. El cuerpo humano adsorbe hierro de animales El hierro puede ser encontrado en carne, productos integrales, patatas y vegetales. El cuerpo humano adsorbe hierro de animales El hierro puede ser encontrado en carne, productos integrales, patatas y vegetales. El cuerpo humano adsorbe hierro de animales El hierro puede ser encontrado en carne, productos integrales, patatas y vegetales. El cuerpo humano adsorbe hierro de animales más rápidos que el hierro de las plantas. El hierro es parte esencial de la hemoglobina, el agente colorante rojo de la sangre que transporta el oxígeno a través de nuestros cuerpos. Pueden provocar conjuntivitis, coriovefinita (inflamación de la coroides y la retina) y renitis si contacta con los tejidos y permanece en ellos. La inhalación de concentraciones excesivas de óxido de hierro puede incrementar el riesgo de desarrollar cáncer de pulmón en trabajadores expuestos a carcinógenos pulmonares LD 50= 30Kg (LD50: Dosis letal 50. Dosis individual de una sustancia que provoca la muerte del 50% de la población animal debido a la exposición de la sustancia por cualquier vía distinta o la inhalación normalmente expresada como miligramos o gramos de materia por kilogramo de peso animal). EFECTOS AMBIENTALES DEL HIERRO El hierro (III)-o-arsenito, penta hidratado puede ser peligroso para el medio ambiente; se debe prestar especialmente a las plantas, el aire y el agua.
Se recomienda encarecidamente que no se permita que el producto. REACCIONES DE RECONOCIMIENTO 1.- Con los NaOH y KOH: El hierro reacciona frente a los NaOH y KOH produciendo un precipitado blanco de Fe(OH)2; este precipitado rápidamente se oxida formándose primeramente verde sucio, luego negro y finalmente pardo rojizo. Fe2+ + (OH)
Fe(OH)2
2.- Con el Sulfocianuro de Potasio: El Fe2+ no reacciona frente a este reactivo, el Fe3+ reacciona originando un complejo color rojo sangre, esta reacción es más sensible para reconocer el hierro. 3.- Con el Ferricianuro de Potasio Fe (CN)6K3: Frente a este reactivo, las sales ferrosas producen un precipitado, sino que forma un complejo color pardo oscuro. 4.- Con el Ferrocianuro de Potasio Fe (CN)6K4: Con este reactivo los iones ferrosos reaccionan dando un precipitado color blanco que rápidamente se hace azul, conocido como azul de Prusia. Fe (CN)6 + Fe2+ Fe(CN)6 5.- Con el H2S: Con este gas, el hierro produce un precipitado negro de sulfuro de hierro. Fe2+ + H2S
SFe + 2H+
INTOXICACION PRODUCIDA POR HIERRO La intoxicación por hierro es muy frecuente en niños por las escasas medidas de seguridad con estos medicamentos. Es común que los padres no le den la importancia necesaria porque piensan que los suplementos nutricios, incluidas las vitaminas, son inocuos; por ello, en la mayoría de los casos dejan estos medicamentos al alcance de los niños. Por otro lado, la presentación de estos suplementos casi siempre tiene un aspecto, olor y sabor agradables. La intoxicación por hierro depende de la concentración de hierro elemental en sangre, para lo cual es necesario saber las equivalencias de acuerdo a las diferentes presentaciones farmacológicas existentes,
El hierro libre puede causar una intoxicación dosis dependiente, ya que a mayor cantidad de hierro elemental libre en sangre mayor toxicidad. Las concentraciones séricas de hierro mayores de 400-500 mcg/dl y/o cuando existan síntomas severos de intoxicación por hierro, como shock o coma, son de muy mal pronóstico y pueden causar la muerte. La dosis efectiva de estos preparados esta basada en el contenido de hierro. Dosis profiláctica:
1-2 mg/kg/ día
Dosis de tratamiento:
4-5 mg/kg/ día
Cinética del hierro
Absorción: se produce estando en su forma ferrosa a nivel de duodeno.
Las formas férricas son reducidas por el HCl a ferrosas a nivel gástrico.
Distribución: transportado en la sangre, unido a la proteína "transferrina".
Eliminación fecal, biliar, urinaria y por flujo menstrual.
FISIOPATOLOGÍA DE LA INTOXICACIÓN Daño Gastrointestinal Las sales de hierro corroen y erosionan la mucosa GI. Generan una gastroenteritis hemorrágica que puede llegar a perforación (peritonitis). Al dañar la barrera de la mucosa gastrointestinal, facilitan el paso de las bacterias a la sangre llevando a diseminación hematógena y sepsis. Alteración Cardiovascular
Las altas concentraciones de hierro aumentan la permeabilidad capilar generando salida de líquido a un tercer espacio. Lo anterior, sumado a la hemorragia gastrointestinal, genera hipovolemia e hipoperfusión tisular y shock. Acidosis Metabólica Es el producto de la hipoperfusión tisular que lleva al metabolismo anaeróbico y posteriormente a la acidosis láctica. Coagulopatía El Hierro elemental se une a los factores de coagulación, alterando su actividad, prolongando el PT y PTT. Disfunción Orgánica
Hepática: El hierro libre llega a los hepatocitos generando daños mitocondriales.
Renal: Por efecto directo el hierro produce necrosis tubular.
SNC: Por daño vascular y alteraciones metabólicas genera letargo y coma.
DETERMINACIÓN DE HIERRO POR EL MÉTODO DE ZIMMERMANNREINHARD Fundamento Debido al oxígeno atmosférico, las disoluciones de hierro siempre contienen a éste (en mayor o menor medida) en su estado de oxidación +3. Para poder determinar volumétricamente hierro con KMnO4 debe pasarse de forma cuantitativa el Fe(II) a Fe(II), mediante una reducción previa. El reductor recomendado en este método, es el cloruro de estaño(II) que actúa de acuerdo a: El exceso de Sn2+ debe ser eliminado para que no interfiera en la posterior valoración, y eso se logra con cloruro mercúrico:
El hierro, una vez transformado cuantitativamente en Fe2+, puede valorarse con KMnO4: Sin embargo se plantean varios problemas: (1) El Fe 3+ es coloreado (amarillo) y dificulta la detección del punto final y (2) la disolución contiene cloruro, que es oxidado a cloro por el permanganato. Estas dificultades se resuelven mediante el método de Zimmermann-Reinhard (ZR), que consiste en añadir a la disolución ya reducida, cantidad suficiente del reactivo de ZR. Este reactivo contieneácido sulfúrico, que nos proporciona la acidez necesaria, sulfato de manganeso, que disminuye el potencial red-ox del sistema MnO 4-/Mn2+ impidiendo la oxidación del cloruro a cloro, y ácido fosfórico, que forma con el Fe3+ que se forma en la reacción volumétrica un complejo incoloro (permitiendo detectar el Punto Final) y simultáneamente disminuye el potencial del sistema Fe 3+/Fe2+, compensando la disminución del potencial del sistema MnO4-/Mn2+. La reacción volumétrica será pues:
El Punto Final viene marcado nuevamente por el primer exceso de KMnO4 que teñirá de rosa la disolución.
Valoración de la muestra 1.-Reducción Se transfiere con pipeta 10,00 ml de la disolución problema de hierro a un Erlenmeyer y se calientan a unos 80ºC. Se separa el matraz del fuego y se añade con un cuentagotas SnCl 2, agitando el Erlenmeyer, hasta que el color amarillo-rojizo se transforme en color verdoso, más dos gotas en exceso. 2.-
Eliminación
del
exceso
de
reductor
Se enfría el Erlenmeyer al grifo hasta temperatura ambiente, añadiendo entonces con la probeta, de golpe y de una sola vez 10 ml de disolución de HgCl 2. Como consecuencia de todas estas operaciones deberemos tener una disolución prácticamente incolora (verdosa) y un precipitado blanco de cloruro de mercurio (I) (Hg2Cl2). Si no aparece precipitado, o al menos turbidez, es señal de que no se añadió suficiente SnCl2 con lo cual probablemente no habremos reducido todo el Fe(III) a Fe(II). Si el
precipitado aparece gris o negro, es que las operaciones no se han realizado correctamente y ha aparecido mercurio metálico, que gastará KMnO4 durante la valoración. Por consiguiente, en cualquiera de las dos circunstancias debe desecharse la disolución y comenzar todo el procedimiento de nuevo. 3.-Adición del reactivo de Zimmermann-Reinhard y Valoración con KMnO4 Si se obtuvo precipitado blanco, se esperan dos o tres minutos y se añaden a continuación con la probeta 10 mL de la disolución de ZR. Por último se valora con permanganato potásico, tomando las precauciones ya citadas en el apartado anterior.
Adición del Colores del Valoración Punto final Z-R Permanganato El procedimiento completo se repite tres veces, y se obtiene un volumen medio de KMnO4. Cálculos A partir de los valores experimentales: volumen de muestra y volumen medio gastado de KMnO4, se calcula la concentración de Fe en mg/L., teniendo en cuenta la reacción volumétrica:
Respuesta a la concentración de Hierro A la vista de la reacción volumétrica:
ELIMINACIÓN
DE
LA
MATERIA
ORGÁNICA
O MINERALIZACIÓN El material de investigación son generalmente estos órganos y para poder separar las sustancias tóxicas, es necesario eliminar la materia orgánica, proceso comúnmente llamado como mineralización. Este proceso se lo puede realizar mediante dos métodos: El del cloro naciente o método de Fresenius y Babo y el de la mezcla sulfo-nítrica; ambos métodos los estudiaremos a continuación. Método Fresenius y Babo o del Cloro Naciente.- El material que vamos a investigar que puede ser el residuo que ha quedado de la separación de los tóxicos volátiles o material original (Viseras en general, sangre, vómitos; etc.), se tritura finamente en presencia de agua para formar una masa fluida se la coloca en un balón de 1.000 ml de capacidad; se agrega de 15-20 ml de ácido clorhídrico concentrado y de 1-2 g de clorato de potasio. Se coloca el balón en un baño de maría hirviente en una campana; se agita frecuentemente para que el cloro que se forma esté en íntimo contacto con la materia orgánica; se debe agregar de tiempo en tiempo 1-2 g de clorato de potasio. ClO3K + 6HCl
KCI + 3H20 + 3Cl2
Cuando cesa el desarrollo de cloro, se añaden nuevamente 2 g de clorato de potasio, reemplazando también el agua que eventualmente se haya evaporado. Cuando al agregar clorato de potasio, no se desarrolla más cloro se agrega cautelosamente más ácido clorhídrico. Estas operaciones se realizan hasta cuando no se tenga un líquido límpido de color amarillo por la presencia del cloro. Se deja entonces enfriar, se desplaza el cloro y el dióxido de cloro eventualmente presentes con una corriente de anhídrido carbónico, se filtra en caliente para evitar la separación del cloruro de plomo. El líquido filtrado contiene casi todos los metales tóxicos como el arsénico bajo la forma de ácido arsénico, antimonio, bismuto, mercurio, cobre, zinc, plomo, bario; etc., bajo la forma de cloruros. El residuo del -filtrado puede a su vez contener cloruros de plata y/o de plomo, así como sulfatos de plomo o bario. Tanto en líquido filtrado como en el residuo; se realizan las reacciones analíticas para identificar los distintos elementos tóxicos que eventualmente pudieran estar presentes.
Método de la mezcla sulfo-nítrica.- A la muestra motivo de la investigación se le agrega un volumen determinado de ácido nítrico concentrado y un volumen de ácido sulfúrico concentrado equivalente al 50% de ácido nítrico agregado y se lo pone a calentamiento en baño de maría hirviente en una campana. El ácido suifínico es empleado como deshidratante de la materia orgánica y también para destruida y oxidar el carbón orgánico, y en esas condiciones, puede el ácido nítrico oxidar el tóxico mineral transformándolo en nitrato soluble. El calentamiento de la mezcla, al inicio será lento para evitar la formación de espuma que se produce cuando la muestra lleva gran cantidad de sustancias amiláceas; la formación de espuma también se puede evitar utilizando sustancias sólidas inertes como perlas de vidrio, pues de lo contrario su operación se hace difícil y además hay perdida de muestra y consecuentemente de tóxico. En ocasiones es necesario tapar el recipiente adaptando un refrigerante vertical pira condensar y recuperar parte del tóxico. Si durante el calentamiento se observa la carbonización de la muestra, se interrumpe el proceso y se agrega nuevas cantidades de ácido nítrico. Esta operación se repite varias veces hasta observas la disolución completa de la materia orgánica incluyendo las grasas. Cuando se obtiene un pequeño volumen traslucido, se da por terminado el proceso. Si acaso se presenta un precipitado blanco, seguramente serán los sulfatos de calcio o de plomo; esta precipitación se produce cuando en la oxidación ha faltado ácido nítrico, lo cual hace que quede libre el ácido sulfúrico y reaccione y precipite con estos metales. Para darse cuenta de la falta de ácido nítrico, basta observar el desprendimiento de vapores blancos que corresponden a los anhídridos del azufre. Una vez concluida esta fase, se procede a filtrar la mezcla y en el líquido filtrado se realizan las reacciones para investigar los tóxicos que posiblemente se encuentran. El residuo de ser necesario también se lo emplea si fuera el caso, tal como se estableció en el método del cloro naciente. El método de la mezcla sulfo-nítrico, tiene una modificación que es utilizada cuando se desea que la destrucción de la materia orgánica sea más rápida. Para esto, inicialmente se realiza la destrucción con la mezcla sulfo-nítrica, y cuando hayan transcurrido de 15- 30 minutos de calentamiento, se agregan partes iguales de ácido perclórico y ácido nítrico; esta mezcla debe ser agregada con sumo cuidado, ya que se produce desprendimiento enérgico
de Oxígeno, y además porque durante esta oxidación hay formación de cantidades excesivas de gases, los 511331110S que deberán ser condensados una parte, otra eliminados por la salida de agua, por lo que es necesario instalar un refrigerante y un tubo de desprendimiento. Cuando se quiere orientar la investigación del tóxico mineral, se realiza un examen previo, siguiendo la técnica de Reinsch, que consiste en tomar directamente una pequeña cantidad de la muestra, ya sean heces, vómitos, vísceras líquidos orgánicos; etc. Y agregarlas a un recipiente al que se le adiciona solución de ácido clorhídrico del 10-20 %. En la mezcla se introduce una lámina metálica libre de grasa y óxido, se calienta el recipiente y se observan los cambios de color de la lámina cada cinco minutos durante un tiempo máximo de treinta minutos. En ocasiones, se pueden formar depósitos sobre la lámina.; en este caso, se extrae la lámina, se la lava, y se la seca, y si la cantidad es suficiente, se puede separar el depósito y disolver en un ácido y practicar en ella las reacciones analíticas, de acuerdo a las propiedades físicas que se observan en la lámina; por ejemplo, si la lámina es de cobre, los tóxicos presentes deben ser los elementos que están por debajo de la escala electromotriz del Cobre, como Arsénico, Bismuto, Mercurio, Plata, Antimonio; etc; -si la prueba es negativa, se descartan estos elementos. Si la lámina es de Zinc o de Hierro, y la prueba resulta positiva, debe pensarse en el Piorno. Si en la lámina de Cobre, aparee un color blanco., deberá pensarse en el Mercurio o Plata; en este caso se hará una diferenciación, calentando la lámina. Si es Mercurio, y la lámina recobra el color púrpura original; esto es debido a que el Mercurio se volatiliza; y si es Plata, el color original de la lámina no reaparece. Si acaso se trata del Arsénico o del Antimonio, aparece una mancha gris oscura o negro brillante respectivamente. INTOXICACIONES POR EL PLOMO Industrialmente, sus compuestos más importantes son los óxidos de plomo y el tetraetilo de plomo. El plomo forma aleaciones con muchos metales y, en general, se 'emplea en esta forma en la mayor parte de sus aplicaciones. Todas las aleaciones formadas con estaño, cobre, arsénico, antimonio, bismuto, cadmio y sodio tienen importancia industrial. Los compuestos del plomo son tóxicos y han producido envenenamiento de trabajadores por su uso inadecuado y por una exposición excesiva a los mismos. Sin embargo, en la
actualidad el envenenamiento por plomo es raro en virtud de la aplicación industrial de controles modernos, tanto de higiene como relacionados con la ingeniería. El mayor peligro proviene de la inhalación de vapor o de polvo. En el caso de los compuestos organoplúmbicos, la absorción a través de la piel puede llegar a ser significativa. Algunos de los síntomas de envenenamiento por plomo son dolores de cabeza, vértigo e insomnio. En los casos agudos, por lo común se presenta estupor, el cual progresa hasta el coma y termina en la muerte. El plomo rara vez se encuentra en su estado elemental, el mineral más común es el sulfuro. Los minerales comerciales pueden contener tan poco plomo como el 3%, pero lo más común es un contenido de poco más o menos el 10%. Los minerales se concentran hasta alcanzar un contenido de plomo de 40% o más antes de fundirse. Durante mucho tiempo se ha empleado el plomo como pantalla protectora para las máquinas de rayos X. En virtud de las aplicaciones cada vez más amplias de la energía atómica, se han vuelto cada vez más importantes las aplicaciones del plomo como blindaje contra la radiación. Su utilización como forro para cables de Teléfono y de televisión sigue siendo una forma de empleo adecuada para el plomo. El uso del plomo en pigmentos ha sido muy importante, pero está decreciendo en volumen. El pigmento que se utiliza más, en que interviene este elemento, es el blanco de plomo 2PbCO3.Pb (0E)7; otros pigmentos importantes son el sulfato básico de plomo y los cromatos de plomo. EFECTOS DEL PLOMO SOBRE LA SALUD El Plomo es un metal blando que ha sido conocido a través de los años por muchas aplicaciones. Este ha sido usado ampliamente desde el 5000 antes de Cristo para aplicaciones en productos metálicos, cables y tuberías, pero también en pinturas y pesticidas. El plomo es uno de los cuatro metales que tienen un mayor efecto dañino sobre la salud humana. Este puede entrar en el cuerpo humano a través de la comida (65%), agua (20%) y aire (15%). Las comidas como fruta, vegetales, carnes, granos, mariscos, refrescos y vino pueden contener cantidades significantes de Plomo. El humo de los cigarros también contiene pequeñas cantidades de plomo.
El Plorno puede entrar en el agua potable a través de la corrosión de las tuberías. Esto es más común que ocurra cuando el agua es ligeramente ácida. Este es el porqué de los sistemas de tratamiento de aguas públicas son ahora requeridos llevar a cabo un ajuste de pH en agua que sirve para el uso del agua potable. Que nosotros sepamos, el Plomo no cumple ninguna función esencial en el cuerpo humano, este puede principalmente hacer daño después de ser tomado en la comida, aire o agua. El PLOMO puede causar varios efectos no deseados, como son: •
Perturbación de la biosíntesis de hemoglobina y anemia
•
Incremento de la presión sanguínea
•
Daño a los riñones
•
Abortos y abortos sutiles
•
Perturbación del sistema nervioso
•
Daño al cerebro
•
Disminución de la fertilidad del hombre a través del daño en el esperma
•
Disminución de las habilida4s de aprendizaje de los niños
•
Perturbación en el comportamiento de los niños, como es agresión, comportamiento impulsivo e hipersensibilidad.
El Plomo puede entrar en el feto a través de la placenta de la madre. Debido a esto puede causar serios daños al sistema nervioso y al cerebro de los niños por nacer. EFECTOS AMBIENTALES DEL PLOMO El Plomo ocurre de forma natural en el ambiente, pero las mayores concentraciones que son encontradas en el ambiente son el resultado de las actividades humanas. Debido a la aplicación del plomo en gasolinas un ciclo no natural del Plomo tiene lugar. En los motores de los coches el Plomo es quemado, eso genera sales de Plomo (cloruros. bromuros, óxidos) se originarán. Estas sales de Plomo entran en el ambiente a través de los tubos de escape de los coches. Las partículas grandes precipitarán en el suelo o la superficie de aguas, las pequeñas partículas viajarán largas distancias a través del aire y pernianecerán en la atmósfera. Parte de este Plomo caerá de nuevo sobre la tierra cuando llueva. Este ciclo del Plomo causado por la producción humana está mucho más extendido que el ciclo natural del plomo. Este ha causado contaminación por Plomo haciéndolo en un tema mundial no sólo la gasolina
con Plomo causa concentración de Plomo en el ambiente. Otras actividades humanas, como la combustión del petróleo, procesos industriales, combustión de residuos sólidos, también contribuyen. El Plomo puede terminar en el agua y suelos a través de la corrosión de las tuberías de plomo en los sistemas de transportes y a través de la corrosión de pinturas que contienen Plomo. No puede ser roto, pero puede convertirse en otros compuestos. El Plomo se acumula en los cuerpos de los organismos acuáticos y organismos suelo. Estos experimentarán efectos en su salud por envenenamiento por Plomo. Los efectos sobre la salud de los crustáceos pueden tener lugar incluso cuando sólo hay pequeñas concentraciones de Plomo presente. El Plomo es un elemento químico particularmente peligroso, y se puede acumular en organismos individuales, pero también entrar en las Cadenas alimenticias.
REACCIONES DE RECONOCIMIENTO: El líquido proveniente de la destrucción de la materia orgánica, es tratado con amoniaco para disminuir la acidez y luego se realizan las reacciones de identificación que a continuación se detallan. 1. Con el Cromato de Potasio.- Se pone una porción del líquido en un tubo de ensayo, o en una cápsula de porcelana, se neutraliza con hidróxido de sodio, luego se acidifica con ácido acético y se trata con solución de cromato de potasio, obteniéndose un precipitado amarillo de cromato de potasio. Pb (NO3)2 + K2CrO4
CrO4Pb + 2KNO3
2. Con el Yoduro de Potasio.- Con este reactivo en solución, al hacerlo reaccionar con la muestra que contenga plomo, se debe producir un precipitado amarillo cristalino de l2Pb soluble en caliente con agua y precipilable en frío como agujillas amarillas. Pb (NO3)2 + 2IK
PbI2 + 2KNO3
3. Con la Difenil tio Carbazona.- Esta sustancia disuelta en tetracloruro de carbono al reaccionar con el plomo produce un color rojo.
4. Con el Ácido Sulfúrico.- En solución diluida, produce un ,3recipitado blanco de sulfato de plomo; este precipitado después de ser lavado se le adicionan gotas de una mezcla de cloruro estannoso, yoduro de potasio y nitrato de cadmio, hasta que se disuelva el ptecipnado produce un color anranjado. 5. Con el Tetrametildiaminodifenilmetano.- En solución acética. Para realizar esta reacción, se humedece el papel filtro en algunas gotas de solución amoniacal de peróxido de hidrógeno al 3%, se agregan al papel unas pequeñas gotas de la solución muestra; el papel Oro humedecido se lo coloca sobre un vidrio de reloj y se calienta a baño de maría para eliminar el exceso de peróxido y precipitar al plomo corno óxido de plomo. Así, se hace caer sobre el papel una gota de reactivo cerca de la zona donde se dejó caer las gotas de muestra. En caso positivo, en el punto de contacto aparece un color azul por la formación del hidrosol respectivo. 6. Con Bencidina.- A 1 ml de la solución muestra se añade hidróxido de sodio hasta que la Mezcla de reacción francamente alcalina (si aparece algún precipitado se centrifuga para separarlo). A la solución clara se añade 1/2 ml de peróxido de hidrógeno al 3%, se hierve un momento, se separa y lava el precipitado (por centrifugación o filtración) con agua y finalmente se añaden gotas de bencidina sobre el precipitado. Un color azul nos indica, la presencia de plomo
Estaño Es un metal suave, flexible y resistente a la corrosión en muchos medios. Una aplicación importante es el recubrimiento de envases de acero para conservar alimentos y bebidas. Otros empleos, importantes son: aleaciones para soldar, bronces, y aleaciones industriales diversas. Los productos químicos de estaño, tanto inorgánicos como orgánicos, se utilizan mucho en las industrias de galvanoplastia, cerámica y plásticos, y en la agricultura. El mineral del estaño más importante es la casiterita, SnO2. No se conocen depósitos de alta calidad de este mineral. La mayor parte del mineral de estaño del mundo se obtiene de depósitos aluviales de baja calidad. Existen dos formas alotrópicas del estañó: estaño blanco y estaño gris. El estaño reacciona tanto con ácidos fuertes como con bases fuertes, pero es relativamente resistente a
soluciones casi neutras. En muy diversas circunstancias corrosivas, no se desprende el gas hidrógeno del estaño y la velocidad de corrosión está controlada por el suministro de oxígeno u otros agentes oxidantes; en su ausencia, la corrosión es despreciable. Se forma una película delgada de óxido estánico sobre el estaño que está expuesto al aire y esto origina una protección superficial. Las sales que tienen una reacción acida en solución, como el cloruro de aluminio y el cloruro férrico, atacan el estaño en presencia de oxidantes o aire. La mayor parte de los líquidos no acuosos, como los aceite, los alcoholes o los hidrocarburos clorados, no tienen efectos obvios sobre el estaño o son muy pequeños. El estaño y las sales inorgánicas simples no son tóxicos, pero sí lo son algunas formas de compuesto organoestañosos. El óxido estannoso, SnO es un producto cristalino de color negro-azul, soluble en los ácidos comunes y en bases fuertes. Se emplea para fabricar sales estannosas en galvanoplastia y en manufactura de vidrio. El óxido estánico, Sn0 2, es un polvo blanco, insoluble en ácidos y álcalis. Es un excelente opacador de brillo y componente de colorantes cerámicos rosas, amarillos y marrones y de cuerpos refractarios y dieléctricos. Es un importante agente pulidor del mármol y de las piedras decorativas. El cloruro estannoso, SnCl2, es el ingrediente principal en el galvanoestañado ácido con electrólitos e intermediario de algunos compuesto químicos de estaño. El cloruro estánico, SnCl4, en la forma pentahidratada es un sólido blanco. Se utiliza en la preparación de compuestos órgano estañosos y químicos para añadir peso a la seda y para estabilizar perfumes y colores en jabones. El fluoruro estañoso, 5nF 2, compuesto blanco soluble en agua, es un aditivo de las pastas dentales. Los compuestos organoestañosos son aquellos en que existe al menos un enlace estañocarbono; el estaño suele presentar un estado de oxidación de +IV. Los compuestos organoestañosos que encuentran aplicación en la industria son los que tienen la fórmula R4Sn, R3SnX, R2SnX2 y RSnX5. R es un grupo orgánico, como metilo, butilo, octílo, o fenílo, mientras que X es un sustituyente inorgánico, por lo regular cloruro, fluoruro, óxido, hidróxido, carboxilatos o tioles. Electos del Estaño sobre la salud El estaño se aplica principalmente en varias sustancias orgánicas. Los enlaces orgánicos de estaño son las formas más peligrosas del estaño para los humanos. A pesar de su peligro son
aplicadas en gran número de industrias, tales como la industria de la pintura y del plástico, y en la agricultura a través de los pesticidas. El número de aplicaciones de las sustancias orgánicas del estaño sigue creciendo, a pesar del hecho de que conocemos las consecuencias del envenenamiento por estaño. Los efectos de las sustancias orgánicas de estaño pueden variar. Dependen del tipo de sustancia que está presente y del organismo que está expuesto a ella. El estaño trietílico es la sustancia orgánica del estaño más peligrosa para los humanos. Tiene enlaces de hidrógeno relativamente cortos. Cuanto más largo sean los enlaces de hidrógeno., menos peligrosa para la salud humana será la sustancia del estaño. Los humanos podemos absorber enlaces de estaño a través de la comida y la respiración y a través de la piel. La toma de enlaces de estaño puede provocar efectos agudos así como efectos a largo plazo. Los efectos agudos son:
Irritaciones de ojos y piel
Dolores de cabeza
Dolores de estómago
Vómitos y mareos
Sudoración severa
Falta de aliento
Problemas para orinar
Los efectos a largo plazo son:
Depresiones
Daños hepáticos
Disfunción del sistema inmunitario
Daño cromosómicos
Escasez de glóbulos rojos
Daños cerebrales (provocando ira, trastornos del sueño, olvidos y dolores de cabeza)
Efectos ambientales del Estaño El estaño como simple átomo o en molécula no es muy tóxico para ningún tipo de organismo. La forma tóxica es la forma orgánica. Los compuestos orgánicos del estaño pueden mantenerse en el medio ambiente durante largos periodos de tiempo. Son muy persistentes y no fácilmente biodegradables. Los microorganismos tienen muchas dificultades en romper compuestos orgánicos del estaño que se han acumulado en aguas del suelo a lo largo de los años. Las concentraciones de estaño orgánico todavía aumentan debido a esto. Los estaños orgánicos pueden dispersarse a través de los sistemas acuáticos cuando son absorbidos por partículas residuales. Se sabe que causan mucho daño en los ecosistemas acuáticos, ya que son muy tóxicos para los hongos, las algas y el fitoplancton. El fitoplancton es un eslabón muy importante en el ecosistema acuático, ya que proporciona oxígeno al resto de ¡os organismos acuáticos. También es una parte importante de la cadena alimenticia acuática. Hay muchos tipos diferentes de estaño orgánico que pueden variar mucho en su toxicidad. Los estaños tributilicos son los compuestos del estaño más tóxicos para los peces y los hongos, mientras que el estaño trifenólico es mucho más tóxico para el fitoplancton. Se sabe que los estaños orgánicos alteran el crecimiento, la reproducción, los sistemas enzirnáticos y los esquemas de alimentación de los organismos acuáticos. La exposición tiene Jugar principalmente en la capa superior del agua, ya que es ahí donde los compuestos orgánicos del estaño se acumulan. REACCIONES DE RECONOCTMIENTO 1. Con el NaOH. A l mI de solución muestra, agregamos algunas gotas de NaOH, con lo cual en caso positivo se debe formar un precipitado color blanco por formación de Sn(OH)2. Este precipitado es soluble en exceso de reactivo por formación de Estannito Sn(OH)3]Sn+++ 20H —» Sn(OH)2
2. Con las sales de Bismuto. Al Estannito formado en la reacción anterior, agregarle algunas gotas de sales de Bismuto, en caso positivo se forma un precipitado color negro Bismuto metálico. [Sn (Q1EQ3)- + Bi+++ —» Bi metálico color negro 3. Con el SH2. Si la muestra contiene Estaño, debe formarse un precipitado negro al hacerle pasar una buena corriente de SH2, por formarse un precipitado SSn. Este precipitado es insoluble en exceso de reactivo, en KOH 6M, y en ácidos minerales diluidos y fríos. Sn+++ SH2—» SSn + 2H 4. Con el Zinc metálico. Todos los metales que se encuentran por encima del Estaño en la escala de fuerza electromotriz, reducen a los iones Sn+3 y Sn+2 a estaño metálico color blanco en forma de cocos. 5. Con azul de metileno. Este reactivo es reducido a la forma incolora al hacerlo reaccionar frente al Estaño bivalente. El método de la mezcla sulfa-nítrica, tiene una modificación que es utilizada cuando se desea que la destrucción de la materia orgánica sea más rápida. Para esto, inicialmente se realiza la destrucción con la mezcla sulfa-nítrica, y cuando hayan transcurrido de 15-30 minutos de calentamiento, se agregan partes iguales de ácido perclórico y ácido nítrico; esta mezcla debe ser agregada con sumo cuidado, ya que se produce desprendimiento enérgico de Oxígeno, y además porque durante esta oxidación hay formación de cantidades excesivas de gases, los mismos que deberán ser condensados una parte, otra eliminados por la salida de agua, por lo que es necesario instalar un refrigerante y un tubo de desprendimiento. Cuando se quiere orientar la investigación del tóxico mineral, se realiza un examen previo, siguiendo la técnica de Reinsch, que consiste en tomar directamente una pequeña cantidad de la muestra, ya sean heces, vómitos, vísceras líquidos orgánicos; etc. Y agregarlas a un recipiente al que se le adiciona solución de ácido clorhídrico del 10-20 %. En la mezcla se introduce una lámina metálica libre de grasa y óxido, se calienta el recipiente y se observan
los cambios de color de la lámina cada cinco minutos durante un tiempo máximo de treinta minutos. En ocasiones, se pueden formar depósitos sobre la lámina; en este caso, se extrae la lámina, se la lava, y se la seca, y sí la cantidad es suficiente, se puede separar el depósito y disolver en un ácido y practicar en ella las reacciones analíticas, de acuerdo a las propiedades físicas que se observan en la lámina; por ejemplo, si la lámina es de cobre, los tóxicos presentes deben ser los elementos que están por debajo de la escala electromotriz de! Cobre, como Arsénico, Bismuto, Mercurio, Plata, Antimonio; etc; si la prueba es negativa, se descartan estos elementos. Si la lámina es de Zinc o de Hierro, y la prueba resulta positiva, debe pensarse en el Plomo. Si en la lámina de Cobre, aparece un color blanco, deberá pensarse en el Mercurio o Plata; en este caso se hará una diferenciación, calentando la lámina. Si es Mercurio, y la lámina recobra el color púrpura original; esto es debido a que el Mercurio se volatiliza; y si es Plata, el color original de la lámina no reaparece. Si acaso se trata del Arsénico o del Antimonio, aparece una mancha gris oscura o negro brillante respectivamente.
INTOXICACIONES POR PLOMO REACCIONES DE RECONOCIMIENTO: El líquido proveniente de la destrucción de la materia orgánica, es tratado con amoniaco para disminuir la acidez y luego se realizan las reacciones de identificación, que a continuación se detallan. 1. Con el Cromato de Potasio.- Se pone una porción del líquido en un tubo de ensayo, o en una cápsula de porcelana, se neutraliza con hidróxido de sodio, luego se acidifica con ácido acético y se trata con solución de cromato de potasio, obteniéndose un precipitado amarillo de cromato de potasio. Pb(N03)2 + K2CrO4 —» Cr04Pb 2KNO3
2. Con el Yoduro de Potasio.- Con este reactivo en solución, al hacerlo reaccionar con la muestra que contenga plomo, se debe producir un precipitado amarillo cristalino de I2Pb soluble en caliente con agua y precipitaba en frío como agujillas amarillas. Pb (NO3)2 + 2IK -> PbI2 + 2KNO3 3. Con la Difenl tio Carbazona.- Esta sustancia disuelta en tetracloruro de carbono, al reaccionar con el plomo produce un color rojo. 4. Con el Ácido Sulfúrico.- En solución diluida, produce un precipitado blanco de sulfato de plomo; este precipitado después de ser lavado se le adicionan gotas de una mezcla de cloruro estannoso, yoduro de potasio y nitrato de cadmio, hasta que se disuelva el precipitado produce un color anaranjado. 5. Con el Tetrametildiaminodifenilmetano.- En solución acética. Para realizar esta reacción, se humedece el papel filtro en algunas gotas de solución amoniacal de peróxido