8 minute read
The lockdown lowdown
Figure 1. A high level of power generation and low demand could overload local energy grids and reduce the resilience of the energy systems to sudden changes in frequency, causing blackouts.
a predominantly home-based workforce, this peak has moved to much later in the day.
Many may assume that lower demand would be better for the grid, but it is just as important to monitor lower demand as it is to monitor peaks. A high level of power generation and low demand could overload local energy grids and reduce the resilience of the energy systems to sudden changes in frequency, causing blackouts. As a result, stabilising the grid is more vital than ever.
Balancing supply and demand
Battery storage is an integral part of stabilising supply. Batteries are able to store additional generation during lower
Figure 2. The Bright Building, Manchester Science Park, UK. demand and release at peak times. They are extremely flexible, providing fast-acting supply and demand balance to the network, which is critical to maintaining consistent frequency for grid stability. Batteries can be connected directly to the National Grid and automatically charged or discharged in response to frequency variations, helping the grid to maintain control. With such drastic changes to peak demand times and consumption dropping below baseload, it is important for the grid to rely on agile technology such as batteries to avoid any dips in voltage and subsequent blackouts.
With the cost of energy storage batteries being driven down, it is becoming increasingly more realistic for industries to utilise them. This adoption not only helps balance the supply and demand of the grid but helps businesses become more self-sufficient and manage their own supply with additional monetary benefits. Batteries open up the door to demand side response (DSR), so businesses can also receive payments from the National Grid for participating and helping to stabilise the grid.
That is not all; batteries have the potential to save businesses thousands each year on their utility bills.
Smart building deployment
Energy consumption in commercial buildings accounts for a huge proportion of the UK’s total consumption. The Bright Building ran by Manchester Science Partnerships is a perfect example of how battery storage provides greater energy control to improve efficiency and a consistent supply of generation. The 70 000 ft 2 office hosts tech incubators
from across the region and it has invested in a commercial Tesla battery. Its powerpack system has been installed with four powerpacks and one inverter, making a flexible and scalable battery system with the potential to add up to 16 additional powerpacks. This enables it to store energy to take its building off-grid during peak demand and benefit from DSR. The battery powers the entire building each day during triad periods, saving thousands in utility bills but also taking demand off the National Grid. Alongside this, the Tesla powerpack can ensure a continuous supply of energy in case of a power outage, kicking in in less than one second (a vast improvement over industry norms of 30 min.), so there is no crucial loss of power to the high-tech equipment that is stored inside the building.
To improve productivity, Manchester Science Partnerships integrated Internet of Things (IoT) technology throughout the entire building and in the battery itself. Implementing a real-time energy analytics and asset performance IoT platform opens the door to monitoring the stability of the asset and indicates any issues earlier, but also brings in the possibility of automation. The battery can be charged and discharged based on the energy market and provides more visual insight into how it is operating over time, meaning it can be automatically controlled to achieve optimal efficiency. The battery pack is now automatically controlled to be discharged during triad periods (5.00 pm - 8.00 pm), releasing energy back into the grid and avoiding costly triad charges, and then is recharged during off-peak times (2.00 am - 4.00 am). This automated process means Manchester Science Partnerships can simultaneously benefit from DSR and avoid costly energy bills.
In the future, The Bright Building could go one step further and become an energy island where they could be entirely selfsufficient without any reliance on the National Grid.
Reactive renewables
Over the years, the UK’s power generation mix has become increasingly reliant on renewable sources. According to Wärtsilä Energy Transition Lab, between 10 March - 10 April 2020, renewables delivered almost half (46%) of generation – an increase of 8% compared to 2019. 2 However, due to the intermittent nature of renewables, they bring with them volatility. Their supply is highly dependent on environmental factors, for example, if it is not windy then wind turbines will not turn.
That is why it is integral for wind farms and solar fields to integrate IoT and battery storage to create a more consistent supply of energy. IoT already plays a major role in wind farms and solar fields to enable efficiency and automation. IoT helps connect various elements of power production and consumption to gain visibility and ultimately control over energy flow. Sensor-based technology can look into weather conditions and asset health, each of which can optimise energy generation. For example, sensors can monitor the health of a wind turbine and an IoT platform can highlight when issues occur, so engineers can conduct predictive maintenance to keep wind turbines operating efficiently and ensure they are consistently producing sufficient energy levels.
Figure 3. It is integral for wind farms and solar fields to integrate IoT and battery storage to create a more consistent supply of energy.
The lockdown has called for greater flexibility, and that is where IoT can help the grid cope with the changes in fluctuations. The automation and control capabilities of IoT means wind farms can be powered down quickly to avoid overwhelming the grid, unlike nuclear power reactors that can take hours to shut down safely, forcing the grid into emergency procedures. So, when generation is superseding demand, the supply can automatically be powered down or placed into an off-grid situation to protect the grid from an overflow.
Wind farms
Envision Energy, a Chinese wind turbine manufacturer, has already begun integrating IoT and developing an analytics platform to improve efficiency across all of its turbines. The company’s smart wind farm monitors each asset individually via sensors, examining performance and indicating any issues so that predictive maintenance can be conducted. The integration of this technology has led to the prognostic health management of the turbines, which has increased production by 10% and reduced operating and maintenance costs by 20%. These improvements have led to a more seamless supply of energy. This continuous monitoring also means that accurate power forecasts can be produced and fed back into the grid. If the grid was able to gain more accurate production forecasts from their renewable suppliers, it would be able to manage the energy supply more effectively and predict when dips and spikes may occur. It would use alternative resources or storage capabilities during these dips, helping to maintain a seamless supply to the end consumer overall.
Utilising cutting-edge technology like virtual batteries and IoT can create a more fluid energy generation system that is highly reactive and, most importantly, more resilient. With drastic changes to energy consumption and unpredictable times ahead, it is integral to use innovative solutions that will ultimately keep countries running.
References
1. Reuters, ‘Lockdown knocks UK daily electricity demand by 10% - grid,’ uk.reuters.com/ article/uk-britain-energy/lockdown-knocks-uk-daily-electricity-demand-by-10-grididUKKBN21I205 2. Wärtsilä Energy Transition Lab, www.wartsila.com/energy/transition-lab
The potential of green public procurement (GPP) for facilitating the energy transition from traditional fossil fuels to renewable energy sources (RES) is widely acknowledged. It is also evident that the exploitation of this potential is far from being fully developed. In order to overcome this problem, Horizon 2020 project XPRESS is organising co-creation workshops to bring together cities and enterprises across Europe. Public authorities all across Europe consider lowering their greenhouse gas emissions by using RES as a very high priority in their political agendas. More specifically, the 10 000 European local governments that have adhered to the Covenant of Mayors have committed themselves to lowering their CO 2 emissions by 40% within the end of the year 2030. Even if municipalities are only responsible for 2 - 3% of emissions in their territories, their climate emergency actions are highly visible, especially those focused on renewable energy solutions.
In early March 2020, in its co-creation workshop in Frankfurt/ Main, Germany, the XPRESS project discussed the case of a tender launched by a provider of green electricity for the Marburg Biedenkopf county in Germany – which comprises 22 small and medium sized towns. “The goal was simple,” says Björn Kajewski, the climate protection and energy manager of the county, “buying reliably certified electricity with zero CO 2 emissions would result in boosting the production of renewables while committing to low administrative efforts and costs.” In total, 14 of these local administrations decided to co-operate by launching a public procurement tender, buying 15 500 MWh/y of certified electricity deriving from renewables, avoiding the emission of 8000 tpy of CO 2 . “The overall administrative effort was reduced by the collaboration across towns, which also allowed smaller towns, who normally would not have been able to manage public procurement on their own, to benefit from taking part in the
Paola Zerilli (University of York, UK), KarlLudwig Schibel (Climate Alliance, Italy), and Riccardo Coletta (Agency for the Promotion of European Research, Italy), XPRESS Consortium, describe the need for collaboration between public authorities and SMEs to remove the barriers to green public procurement.