Presentación Contenido Temático Recursos Evaluación Bibliografía Créditos
Prof. Pedro Eche Querevalú CTA 5to de Secundaria 2011
Inicio
Presentación Nuestra vida está íntimamente relacionada con fenómenos de naturaleza eléctrica. En una planta de estación hidroeléctrica, la energía mecánica de la caída de agua se transforma en energía eléctrica mediante un turbogenerador hidráulico. En la iluminación de un árbol de Navidad, los foquitos generalmente se encuentran conectados en serie. Los aparatos eléctricos de una casa se conectan en paralelo, todos ellos se encuentran sometidos a un mismo voltaje.
Inicio
Contenido Temático
LA ENERGÍA ELÉCTRICA Y EL CALOR: EFECTO JOULE LA POTENCIA ELÉCTRICA CIRCUITOS DE CORRIENTE CONTINUA LEY DE NUDOS
LEY DE MALLAS PROBLEMAS
Inicio
EFECTO JOULE Cuando la corriente eléctrica atraviesa una resistencia, ésta se calienta. Este fenómeno, conocido como el efecto Joule, fue descubierto por el físico inglés James P. Joule allá por 1840 y es la base para el funcionamiento de muchos aparatos que tenemos en casa, como la plancha, la terma eléctrica, la cocina eléctrica, etc. Una diferencia de potencial en un conductor establece una corriente eléctrica, los electrones libres se aceleran y, en consecuencia, ganan energía cinética; sin embargo esta energía adicional se convierte rápidamente en energía interna del conductor por las colisiones entre los mismos electrones y los átomos que conforman el conductor. El incremento de energía interna del conductor da lugar a un aumento de temperatura y, en consecuencia, se produce calor.
“La energía disipada (E) por una resistencia está relacionada con el voltaje (V), la intensidad de corriente (I) y el tiempo (t)”.
E=V.I.t CONTINUA>>
Inicio
EFECTO JOULE Toda corriente eléctrica que atraviesa una resistencia eléctrica origina en ella un desprendimiento de calor (se calienta) que es directamente proporcional a la resistencia, al cuadrado de la intensidad de corriente y al tiempo que dura la corriente.
Q = I2 . R . t Donde: Q: I: R: t:
Cantidad de Calor desprendido (J=Joules) Corriente Resistencia del material tiempo
También el calor desprendido se expresa en “calorías”, por lo que la fórmula anterior se expresa también así: Q = 0,24 I2 . R . t En donde se ha introducido el factor de conversión 0,24 que relaciona joules con calorías. CONTINUA>>
Inicio
Aplicaciones del efecto Joule Todos los artefactos eléctricos, al estar en funcionamiento sufren un incremento de temperatura, es más, ésta se aprovecha en algunos de ellos tales como la plancha, la cocina eléctrica, el soldador eléctrico, la secadora de cabello, etc.
CONTINUA>>
Inicio
POTENCIA ELÉCTRICA Potencia es la velocidad a la que se consume la energía. “La potencia eléctrica (P) es la medida de la energía disipada o consumida por una unidad de tiempo”
P=E/t
P=V.I
Se lee: Potencia es igual a la energía dividido por el tiempo En el SI la potencia se expresa en watt (W). Un Watt de potencia indica un joule de energía disipada o consumida durante un segundo.
1W=1J/s Muchos artefactos electrodomésticos indican la potencia que consumen o que disipan, por ejemplo, algunas planchas tienen una potencia de 2000 W. Las lámparas incandescentes se venden según su potencia, hay de 25 W, 50 W, 75 W y 100 W, etc.
Conocer la potencia eléctrica de un aparato es importante, pues a partir de su valor podemos conocer la energía que consumimos y pagamos. Muchas empresas distribuidoras de energía eléctrica cobran su servicio de energía en kiloWatthora (KWh)
Inicio
CIRCUITOS DE CORRIENTE CONTINUA “Un circuito eléctrico de corriente continúa es un conjunto de baterías y resistencias unidas por conductores ideales de resistencia igual a cero” Un circuito eléctrico sencillo está conformado por baterías y resistencias en un solo trayecto cerrado, denominado malla. No obstante la mayor parte de los circuitos eléctricos está conformada por varias mallas y los conductores se interceptan en puntos denominados nudos. En 1845 el alemán Gustav Robert Kirchoff descubrió dos leyes para los circuitos eléctricos, estas leyes pueden ser comprendidas a partir del principio de conservación de la carga y de conservación de la energía
Inicio
CIRCUITO ELECTRICO
Inicio
LEY DE LOS NUDOS Primera Ley de Kirchoff.
Si aplicamos la conservación de la carga en un sistema, afirmaremos que la carga neta que ingresa a un nudo (o nodo) es igual a la carga neta que sale de él. En términos de la corriente eléctrica la primera ley de Kirchoff se expresa: “La intensidad de corriente neta que llega a un nudo es igual a la intensidad de corriente neta que sale de él”
I
entran
I salen
Circuito básico de dos nudos. Un nodo es el punto del circuito donde se unen mas de un terminal de un componente eléctrico
CONTINUA>>
Inicio
LEY DE LAS MALLAS Segunda Ley de Kirchoff.
Utilizando la conservación de la energía, Kirchoff dedujo que en una malla la fem neta proporcionada por las baterías es igual a la suma de los voltajes que reciben las resistencias.
V IR Las leyes de Kirchoff son útiles para determinar la intensidad de corriente de un circuito en una determinada resistencia.
Se llama malla en un circuito a cualquier camino cerrado. En el ejemplo de la figura hay tres mallas: ABEF BCDE ABCDEF El contorno de la malla está formado por ramas. Hay tres ramas: EFAB BE BCDE
Inicio
RECOMENDACIONES LEYES DE KIRCHOFF Antes de aplicar las leyes de Kirchoff en un circuito es necesario que identifiques los nudos y mallas del circuito y, luego, realiza los siguientes pasos:
Para aplicar la primera ley de Kirchoff en un nudo: 1. Indica con una flechita el sentido de las corrientes que entran y salen de un nudo. Es arbitrario, es decir, puedes asumir cualquier sentido siempre que elijas corrientes que entran y salen.
Inicio
RECOMENDACIONES LEYES DE KIRCHOFF Antes de aplicar las leyes de Kirchoff en un circuito es necesario que identifiques los nudos y mallas del circuito y, luego, realiza los siguientes pasos: Para aplicar la segunda ley de Kirchoff en una malla: 1. Asume una corriente por cada malla, cuyo sentido es arbitrario y tú lo eliges. Si una resistencia es compartida por dos mallas, la corriente neta que circula por ella es la suma de las corrientes de malla si estas circulan en el mismo sentido, y la diferencia si circulan en sentidos contrarios. 2. Para las baterías, la fem: Se considera negativa (-E) cuando el sentido de la corriente asumida en una malla cruza la batería del polo positivo al polo negativo. Se considera positiva (+E) cuando la corriente cruza la batería del polo negativo al polo positivo.
Inicio
INSTRUMENTOS DE MEDIDA •
•
•
•
Voltímetro: Mide la tensión eléctrica y se conecta en paralelo con el componente o generador cuya tensión se va a medir. Puede tener varias escalas Amperímetro: Mide la intensidad de corriente y se conecta en serie con el receptor o receptores cuya intensidad queremos medir. Varias escalas. Ohmetro: Mide la resistencia eléctrica de un elemento o entre dos puntos del circuito y se conecta en paralelo. Muy importante: El elemento o el circuito no deben tener tensión. Polímetro: Es un instrumento que agrupa los anteriores. Podemos realizar cualquier medición seleccionando la magnitud y la escala. Pueden ser analógicos o digitales.
Inicio
PROBLEMA 1 ¿Cuál será el valor de la resistencia interna de una secadora de cabello conectada a la tomacorriente de 220 V si durante los 5 min que estuvo encendida desprendió 14000 cal? Solución: Datos: V=200 V t= 5min = 300 s Q= 14000 cal R= ? 1.- Por la Ley de Ohm: V=R.I I=V/R 2.- Por la ley de Joule: Q = 0,24 I2 .R . t Q = 0,24 . V2 / R2 .R . t Q = 0,24 V2 / R . t R = 0,24 . V2 / Q .t Q = 0,24 . (220V)2 / 14 000 cal . (300 s) R = 249 Ω
Rpta.- La resistencia de la secadora es 249 Ω CONTINUA>>
Inicio
PROBLEMA 2 La figura muestra parte de un circuito. Calcula la lectura del amperímetro ideal A. Solución: 1.- Sea Iamp la intensidad de corriente que pasa por el amperímetro y asumimos que sale del nudo. Aplicamos la Ley de nudos:
I
entran
I salen 6 A 7 A 12 A I amp
I amp 13 A 12 A I amp 1A Rpta.- La lectura del amperímetro ideal es de 1A
CONTINUA>>
Inicio
PROBLEMA 3 La figura 1 muestra un circuito de corriente continua. Determina la intensidad de corriente que circula por la batería de 20V. Solución: 1.- Observamos que hay dos mallas (I y II) y dos nudos (A y B). Asumimos el recorrido de la corriente de cada malla en la fig. 2 y aplicamos la segunda ley de Kirchoff para cada malla: Malla I: +20V – 10 V = I1 (2Ω) + I1 (3 Ω) 10V = I1 (5 Ω) I1 = 2A Malla II: +30V – 20V = I2 (5 Ω) + I2 (5 Ω) 10V = I2 (10 Ω) I2 = 1 A
A
I1
2.- Observamos que la intensidad de corriente neta que pasa por la batería de 20V es: I1 - I2 = 2A - 1A = 1A sentido hacia arriba. Rpta.- La intensidad de corriente que circula por la batería de 20V es 1A
I2 B
Malla I
Malla II
Inicio
Recursos Haz clic en “Actividades interactivas” para ingresar para desarrollar las actividades educativas lúdicas
Actividades interactivas
Inicio
Créditos Electrodinámica – introducción http://es.wikipedia.org/wiki/Electrodinamica Leyes de nudos http://electronicacompleta.com/lecciones/leyes-de-kirchhoff/ Leyes de Kirchoff http://www.nichese.com/leyes.html
Resistencias en serie y paralelo http://rabfis15.uco.es/lvct/tutorial/27/ejemplo4-1.htm Asociación de resistencias http://centros.edu.xunta.es/contidos/internetenelaula/newton07/1bach/corriente_electrica/resistencias.htm?2&0 Circuitos equivalentes http://www.ifent.org/lecciones/CAP05/CAP51.asp Factor de conversión de calorías a joules http://www.affari.com.ar/pesosymedidas.htm Factor de conversión http://newton.cnice.mec.es/materiales_didacticos/medida/factorconversion.htm