01 gipms uda1 documentoguiaparaeldocente

Page 1






λ λ 

 λ λ λ


𝐸 (λ) = 12,740 ∗

6 9,940 16,800 −6∗ = = 𝟏. 𝟔𝟖 10,000 10,000 10,000

4

𝐸 (𝑋) = ∑ 𝑋𝑖 ∗ 𝑓 (𝑥𝑖) 𝑖=0

= (0.03) + (1.025) + (2.025) + (3.01) + (4.01) = 𝟏. 𝟒𝟓 𝑉𝑎𝑟 (𝑋) = 𝐸 (𝑋 2 ) − (𝐸(𝑋))2


4

𝐸

(𝑋 2 )

= ∑ 𝑋 2 ∗ 𝑓 (𝑋𝑖 2 ) 𝑖=0 4

= ∑ 𝑥𝑖 2 ∗ 𝑓(𝑥𝑖) = (02 . 03) + (12 . 025) + (22 . 025) 𝑖=0

+ (32 . 01) + (42 . 01) = 𝟑. 𝟕𝟓

𝑽𝒂𝒓 (𝑿) = 𝟑. 𝟕𝟓 − 𝟏. 𝟒𝟓𝟐 = 𝟏. 𝟔𝟒𝟕𝟓 

2 −2𝑥 1 −𝑥 1 − 𝑒 3 − 𝑒 3 , 𝑠𝑖 𝑥 > 0} 𝑓 (𝑥) = { 3 3 0, 𝑠𝑖 𝑥 ≤ 0

𝑓 (𝑥) = 𝐹´(𝑥) =

λ

4 −2𝑥/3 1 −𝑥/3 𝑑𝐹 (𝑥) + 𝑒 , 𝑠𝑖 𝑥 > 0 = [9 𝑒 9 𝑑𝑥 0, 𝑠𝑖 𝑥 ≤ 0


λ

𝑷(𝑿 = 𝒙) = 𝒇(𝒙)


𝑹𝑿

(𝒂, 𝒃) ⊂ ℝ

𝑬(𝑿 + 𝒀) = 𝑬(𝑿) + 𝑬(𝒀).

𝑹𝑿


𝑹𝑿 = {𝒙𝟏 , 𝒙𝟐 , … , 𝒙𝒏 }

𝒙

𝟎≤ 𝑭(𝒙) ≤ 𝟏.

𝐸(𝑋) = ∞

∫−∞ 𝑥 𝑓𝑋 (𝑥)𝑑𝑥.

𝑓𝑋 (𝑥)

⊂ℝ


ЁЭР╣(ЁЭСе)


⊂ℝ ⋂

⊂ℝ ⋂ℝ ⊂ℝ 𝑃(𝑋 = 𝑥) = 𝑓(𝑥)

𝑃(𝑋 ≠ 𝑥𝑖 ) para 𝑖 = 1, 2, … , 𝑘, … 𝑓(𝑥𝑖 ) = { 1 𝑷(𝑿 = 𝒙𝒊 ) 𝐩𝐚𝐫𝐚 𝒊 = 𝟏, 𝟐, … , 𝒌, … 𝒇(𝒙𝒊 ) = { 𝟎 𝐞𝐧 𝐨𝐭𝐫𝐨 𝐜𝐚𝐬𝐨. 𝑃(𝐴) para 𝑛, … 𝑓(𝑥𝑖 ) = { 1 en otro caso. 𝑃(𝐴⋃𝐵) para 𝑛, … 𝑓(𝑥𝑖 ) = { 0 en otro caso.

𝑅𝑋 (𝑎, 𝑏) ⊂ ℝ


𝑃(𝑋 ≠ 𝑥𝑖 ) para 𝑖 = 1, 2, … , 𝑘, … 𝑓(𝑥𝑖 ) = { 1 ⋂

⊂ℝ

𝑃(𝐴⋃𝐵) para 𝑛, … 𝑓(𝑥𝑖 ) = { 0 en otro caso.

𝑅𝑋 𝑅𝑋 = {𝑥1 , 𝑥2 , … , 𝑥𝑛 }


a) 𝐸(𝑋 + 𝑌) = 1 b) 𝐸(𝑋 − 𝑌) ≠ 𝐸(𝑋) − 𝐸(𝑌). c) 𝐸(𝑌) = 𝐸(𝑋)⋂𝐸(𝑌). d) 𝑬(𝑿 + 𝒀) = 𝑬(𝑿) + 𝑬(𝒀).

𝑓𝑋 (𝑥) ∞

𝑬(𝑿) = ∫−∞ 𝒙 𝒇𝑿 (𝒙)𝒅𝒙. 𝐸(𝐴 − 𝐵) = (𝑥)𝑑𝑥. ∞

𝐸(𝑋𝑌) = ∫−1 𝑥 𝑓𝑋 . ∞

𝐸(𝐴⋂𝐵) = ∫−∞ 𝐴𝐵 𝑑𝑥. 𝐹(𝑥)

𝑥

2≤

𝐹(𝑥) ≤ 2. 𝑥

𝐹(𝑥) ≤ 0. 𝒙

𝟏.

𝟎 ≤ 𝑭(𝒙) ≤


ЁЭСе

тЙд ЁЭР╣(ЁЭСе)



𝑋 (𝑎, 𝑏)

𝑋~U(𝑎, 𝑏)

1

𝐴𝐵 = {𝑏−𝑎 si 𝑥 ∈ (𝑎, 𝑏), 𝟏

𝟎

𝐬𝐢 𝒙 ∈ (𝒂, 𝒃), 𝐞𝐧 𝐨𝐭𝐫𝐨 𝐜𝐚𝐬𝐨.

0

𝑋+𝐵 en otro caso.

𝒇(𝒙) = {

𝑓(𝑥) = {

𝒃−𝒂

𝑓(𝑥) = {𝐴 + 𝐵 + 𝐶

𝑓(1) = 𝑃(𝑋 + 1) = 0 𝒇(𝟏) = 𝑷(𝑿 = 𝟏) = 𝒑 𝑓(0) = 𝑃(𝐴) = 𝑝

𝒇(𝟎) = 𝑷(𝑿 = 𝟎) = 𝟏 − 𝒑

𝑓(0) = 𝑃(𝐴) = 1

𝑓(0) = 𝑃(𝑋 + 2) = 𝑝

𝑓(𝑋 = (𝐴 + 𝐵) = 1


𝜆>0

𝑓(𝑥) = 2 + 5𝑥 𝑓(𝐴) = {𝜆𝑒

−𝜆𝑥

𝑓(𝐴) = { 50

𝐴+𝐵 en otro caso.

−𝝀𝒙 𝐬𝐢 𝒙 ≥ 𝟎, 𝒇(𝒙) = { 𝝀𝒆 𝟎 𝐞𝐧 𝐨𝐭𝐫𝐨 𝐜𝐚𝐬𝐨.

𝑋~Exp(𝜆)


𝜆 = (𝐸|𝑥)−1 = 𝑓𝑥 (𝑋) =

𝟏𝟎

𝑷 (𝒙 ≺ 𝟏𝟎) = ∫ 𝟎

1

1 22 −𝑥

∗ 𝑒 22 22

𝟏 −𝒙 −𝒙 𝟏𝟎 ∗ 𝒆 ⁄𝟐𝟐 ∅𝒙 = −𝒆 ⁄𝟐𝟐 [ = 𝟏 − 𝒆 −𝟓⁄𝟏𝟏 𝟎 𝟐𝟐


𝟔𝟎

𝑷 (𝟑𝟎 ≺ 𝒙 ⪯ 𝟔𝟎) = ∫ 𝟑𝟎

𝟏 −𝒙 −𝟑𝟎 −𝟏𝟓 ∗ 𝒆 ⁄𝟐𝟐 ∅𝒙 = −𝒆 ⁄𝟏𝟏 + 𝒆 ⁄𝟏𝟏 𝟐𝟐

𝑷 (𝒙 > 𝒕)

∫ 𝒕

𝟏 −𝒙 −𝒙 ⧝ ∗ 𝒆 ⁄𝟐𝟐 ∅𝒙 = −𝒆 ⁄𝟐𝟐 [ = 𝒆 −𝒕⁄𝟐𝟐 = 𝟎. 𝟏 𝒕 𝟐𝟐 ≌

σ

σ


µ𝒙 = 𝑬 (𝑿) = ∑ 𝑿𝒊 𝒇 (𝑿𝒊) = 𝟏

𝟏

𝟏

𝟏

𝟏

𝟏

= 𝟐 (𝟔) + 𝟒 (𝟔) + 𝟔 (𝟔) + 𝟖 (𝟔) + 𝟏𝟎 (𝟔) + 𝟏𝟐 (𝟔) =

𝟒𝟐 𝟔

=𝟕

𝑬 (𝑿𝟐 ) = ∑ 𝑿𝒊𝟐 𝒇 (𝑿𝒊) = 𝟏

𝟏

𝟏

𝟏

𝟏

𝟏

= 𝟒 (𝟔) + 𝟏𝟔 (𝟔) + 𝟑𝟔 (𝟔) + 𝟔𝟒 (𝟔) + 𝟏𝟎𝟎 (𝟔) + 𝟏𝟒𝟒 (𝟔) =

𝝈𝟐 = 𝒗𝒂𝒓 (𝑿) = 𝑬(𝑿𝟐 ) − µ𝒙𝟐 = 𝟔𝟎. 𝟕 − (𝟕𝟐 ) = 𝟏𝟏. 𝟕 𝝈𝒙 = √𝒗𝒂𝒓 (𝑿) = √𝟏𝟏. 𝟕 = 𝟑. 𝟒

𝟑𝟓𝟒 𝟔

= 𝟔𝟎. 𝟕



𝒇(𝒙) = −𝝀𝒙 𝐬𝐢 𝒙 ≥ 𝟎, { 𝝀𝒆 𝟎 𝐞𝐧 𝐨𝐭𝐫𝐨 𝐜𝐚𝐬𝐨.

𝒇(𝒙) = 𝟏

{

𝑋

𝒃−𝒂

𝟎

𝐬𝐢 𝒙 ∈ (𝒂, 𝒃), 𝐞𝐧 𝐨𝐭𝐫𝐨 𝐜𝐚𝐬𝐨.


(𝑎, 𝑏) 𝑋~U(𝑎, 𝑏)

𝑓(1) = 𝑃(𝑋 = 1) = 𝑝 𝑓(0) = 𝑃(𝑋 = 0) = 1 − 𝑝.

𝜆>0 𝑋~Exp(𝜆)








Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.