03 em 05 empe u3 s7

Page 1


ℝ𝑛

ℝ𝑛

𝑛

(𝑥1 , 𝑥2 , … , 𝑥𝑛 )

ℝ𝑛 = {(𝑥1 , 𝑥2 , … , 𝑥𝑛 ) | 𝑥1 , 𝑥2 , … , 𝑥𝑛 ∈ ℝ} , 𝑛

𝑛=2

ℝ2

(𝑥1 , 𝑥2 )

(𝑥, 𝑦)

𝑛 = 3 ℝ3 (𝑥, 𝑦, 𝑧)

(𝑥1 , 𝑥2 , 𝑥3 ) (𝑥1 , 𝑥2 , 𝑥3 )


Figura 2: Creada por el autor.

ℝ2 ℝ

3

𝑛 𝑛

(𝑥1 , 𝑥2 , … , 𝑥𝑛 ) (𝑥, 𝑦) 𝑛

(𝑥1 , 𝑥2 , … , 𝑥𝑛 )

𝑥⃗ = (𝑥1 , 𝑥2 , … , 𝑥𝑛 ), 𝑦⃗ = (𝑦1 , 𝑦2 , … , 𝑦𝑛 ), 𝑣⃗ = (𝑣1 , 𝑣2 , … , 𝑣𝑛 ). ℝ𝑛 ℝ𝑛

ℝ𝑛 ℝ𝑛

(𝑥, 𝑦, 𝑧)


DefiniciĂłn. Si đ?‘Ľâƒ— y đ?‘Śâƒ— son elementos de â„?đ?‘› , digamos đ?‘Ľâƒ— = (đ?‘Ľ1 , đ?‘Ľ2 , ‌ , đ?‘Ľđ?‘› ), đ?‘Śâƒ— = (đ?‘Ś1 , đ?‘Ś2 , ‌ , đ?‘Śđ?‘› ),

se define la suma đ?‘Ľâƒ— + đ?‘Śâƒ— como el elemento de â„?đ?‘› por đ?‘Ľâƒ— + đ?‘Śâƒ— = (đ?‘Ľ1 + đ?‘Ś1 , đ?‘Ľ2 + đ?‘Ś2 , ‌ , đ?‘Ľđ?‘› + đ?‘Śđ?‘› ).

Si ademĂĄs đ?›ź es un nĂşmero real, se define đ?›źđ?‘Ľâƒ— como el elemento đ?›źđ?‘Ľâƒ— = (đ?›źđ?‘Ľ1 , đ?›źđ?‘Ľ2 , ‌ , đ?›źđ?‘Ľđ?‘› ). Por ejemplo si đ?‘Ľâƒ— = (1, 4, −2, 3), đ?‘Śâƒ— = (2, −3, 1, 1) entonces la suma đ?‘Ľâƒ— + đ?‘Śâƒ— entre los elementos es đ?‘Ľâƒ— + đ?‘Śâƒ— = (1 + 2, 4 − 3, −2 + 1, 3 + 1) = (3, 1, −1, 4). De forma similar para la suma 3đ?‘Ľâƒ— + 2đ?‘Śâƒ— tenemos 3đ?‘Ľâƒ— + 2đ?‘Śâƒ— = 3(1, 4, −2, 3) + 2(2, −3, 1, 1) = (3, 12, −6, 9) + (4, −6, 2, 2) = (7, 6, −4, 11).

â„?2

â„?3

đ?‘Ľâƒ— + đ?‘Śâƒ— đ?‘Ľâƒ—

đ?‘Śâƒ—

đ?›źđ?‘Ľâƒ— đ?‘Ľâƒ—

|�| �<0

â„?3

đ?‘Ľâƒ—


Figura 3: Creada por el autor.

Figura 4: Creada por el autor.


𝑛 = 3 ℝ3

ℝ𝑛

ℝ𝑛

ℝ𝑛

𝑢 ⃗​⃗, 𝑣⃗ ∈ ℝ𝑛 𝑢 ⃗​⃗ + 𝑣⃗ = 𝑣⃗ + 𝑢 ⃗​⃗

𝑢 ⃗​⃗, 𝑣⃗, 𝑤 ⃗​⃗​⃗ ∈ ℝ𝑛 𝑢 ⃗​⃗ + (𝑣⃗ + 𝑤 ⃗​⃗​⃗) = (𝑢 ⃗​⃗ + 𝑣⃗) + 𝑤 ⃗​⃗​⃗

𝑢 ⃗​⃗ ∈ ℝ𝑛

⃗​⃗ ∈ ℝ𝑛 0 𝑢 ⃗​⃗ + ⃗0⃗ = ⃗0⃗ + 𝑢 ⃗​⃗ = 𝑢 ⃗​⃗

𝑢 ⃗​⃗ ∈ ℝ𝑛

𝑣⃗ ∈ ℝ𝑛 𝑢 ⃗​⃗ + 𝑣⃗ = 𝑣⃗ + 𝑢 ⃗​⃗ = ⃗0⃗

–𝑢 ⃗​⃗ 𝑢 ⃗​⃗ ∈ ℝ𝑛 1𝑢 ⃗​⃗ = 𝑢 ⃗​⃗


𝛼, 𝛽 ∈ ℝ

𝑢 ⃗​⃗ ∈ ℝ𝑛 𝛼(𝛽𝑢 ⃗​⃗) = (𝛼𝛽)𝑢 ⃗​⃗

𝛼, 𝛽 ∈ ℝ

𝑢 ⃗​⃗, 𝑣⃗ ∈ ℝ𝑛 𝛼(𝑢 ⃗​⃗ + 𝑣⃗) = 𝛼𝑢 ⃗​⃗ + 𝛼𝑣⃗ (𝛼 + 𝛽)𝑢 ⃗​⃗ = 𝛼𝑢 ⃗​⃗ + 𝛽𝑢 ⃗​⃗

ℝ𝑛

V 𝑢 ⃗​⃗, 𝑣⃗, ∈ V 𝛼 ∈ℝ

𝑢 ⃗​⃗ + 𝑣⃗ 𝑢 ⃗​⃗ ∈ V

V

𝑢 ⃗​⃗, 𝑣⃗ ∈ V 𝑢 ⃗​⃗ + 𝑣⃗ = 𝑣⃗ + 𝑢 ⃗​⃗

𝑢 ⃗​⃗, 𝑣⃗, 𝑤 ⃗​⃗​⃗ ∈ V 𝑢 ⃗​⃗ + (𝑣⃗ + 𝑤 ⃗​⃗​⃗) = (𝑢 ⃗​⃗ + 𝑣⃗) + 𝑤 ⃗​⃗​⃗

⃗0⃗ ∈ V

𝑢 ⃗​⃗ ∈ V ⃗​⃗ = 0 ⃗​⃗ + 𝑢 𝑢 ⃗​⃗ + 0 ⃗​⃗ = 𝑢 ⃗​⃗

𝑢 ⃗​⃗ ∈ V

𝑣⃗ ∈ V

𝛼𝑢 ⃗​⃗ ∈ V


𝑢 ⃗​⃗ + 𝑣⃗ = 𝑣⃗ + 𝑢 ⃗​⃗ = 0 𝑢 ⃗​⃗ 𝑢 ⃗​⃗ ∈ 𝑉 1𝑢 ⃗​⃗ = 𝑢 ⃗​⃗ 𝛼, 𝛽 ∈ ℝ

𝑢 ⃗​⃗ ∈ V 𝛼(𝛽𝑢 ⃗​⃗) = (𝛼𝛽)𝑢 ⃗​⃗

𝛼, 𝛽 ∈ ℝ

𝑢 ⃗​⃗, 𝑣⃗ ∈ V 𝛼(𝑢 ⃗​⃗ + 𝑣⃗) = 𝛼𝑢 ⃗​⃗ + 𝛼𝑣⃗ (𝛼 + 𝛽)𝑢 ⃗​⃗ = 𝛼𝑢 ⃗​⃗ + 𝛽𝑢 ⃗​⃗

V

ℝ ℝ𝑛

𝑛 V=𝒞 𝑓: [0,1] ⟶ ℝ

𝑓, 𝑔 ∈ 𝒞

𝛼∈ ℝ

(𝑓 + 𝑔)(𝑥) = 𝑓(𝑥) + 𝑔(𝑥) (𝛼𝑓)(𝑥) = 𝛼𝑓(𝑥)

𝑓+𝑔

𝛼𝑓 𝒞

𝑓, 𝑔 ∈ 𝒞

𝑓+𝑔 =𝑔+𝑓

𝑓(𝑥) + 𝑔(𝑥) = (𝑓 + 𝑔)(𝑥) = (𝑔 + 𝑓)(𝑥) = 𝑔(𝑥) + 𝑓(𝑥)


𝑓 + (𝑔 + ℎ) = (𝑓 + 𝑔) + ℎ

𝑓, 𝑔, ℎ ∈ 𝒞

𝑓(𝑥) + (𝑔(𝑥) + ℎ(𝑥)) = 𝑓(𝑥) + (𝑔 + ℎ)(𝑥) = (𝑓 + (𝑔 + ℎ))(𝑥) = ((𝑓 + 𝑔) + ℎ)(𝑥) = (𝑓 + 𝑔)(𝑥) + ℎ(𝑥) = (𝑓(𝑥) + 𝑔(𝑥)) + ℎ(𝑥)

𝑓 ∈ 𝒞

0 ∈ 𝒞

𝑓+0 = 0+𝑓 =

𝑓

𝑓 ∈ 𝒞

𝑓 ∈ 𝒞

𝑔 ∈ 𝒞 𝑓+𝑔 =𝑔+𝑓 = 0 (−𝑓)(𝑥) = −𝑓(𝑥)

1𝑓 = 𝑓 1𝑓(𝑥) = 𝑓(𝑥). 𝛼, 𝛽 ∈ ℝ

𝑓 ∈ 𝒞

𝛼(𝛽𝑓) = (𝛼𝛽)𝑓

𝛼(𝛽𝑓(𝑥)) = 𝛼((𝛽𝑓)(𝑥)) = (𝛼𝛽𝑓)(𝑥) = (𝛼𝛽)𝑓(𝑥) . 𝛼, 𝛽 ∈ ℝ

𝑓, 𝑔 ∈ 𝒞 𝛼(𝑓 + 𝑔) = 𝛼𝑓 + 𝛼𝑔 (𝛼 + 𝛽)𝑓 = 𝛼𝑓 + 𝛽𝑓 .

𝛼(𝑓 + 𝑔)(𝑥) = 𝛼(𝑓(𝑥) + 𝑔(𝑥)) = 𝛼𝑓(𝑥) + 𝛼𝑔(𝑥), (𝛼 + 𝛽)𝑓(𝑥) = 𝛼𝑓(𝑥) + 𝛽𝑓(𝑥).

V

W

V W⊂V V

W

V


W

V

V W

V

𝑤 ⃗​⃗​⃗1 , 𝑤 ⃗​⃗​⃗2 ∈ W 𝛼∈ ℝ

W⊂V

𝑤 ⃗​⃗​⃗1 + 𝑤 ⃗​⃗​⃗2 ∈ W

𝑤 ⃗​⃗​⃗ ∈ W

W

𝛼𝑤 ⃗​⃗​⃗ ∈ W

W

ℝ3 ℝ3

W (𝑥, 𝑦, 0) W

ℝ2

𝐶0 lim 𝑥𝑛 = 0

𝑛⟶+∞

𝑥⃗𝑛 = (𝑥1 , 𝑥2 , 𝑥3 , … )

ℝ∞

𝐶0 ℝ

i. ii.

lim (𝑥𝑛 + 𝑦𝑛 ) = lim 𝑥𝑛 + lim 𝑦𝑛

𝑛→∞

𝑛→∞

𝑛→∞

lim 𝛼𝑥𝑛 = 𝛼 lim 𝑥𝑛 .

𝑛→∞

𝑛→∞

V V

{0} W

V

𝐶0


ℝ𝑛 ℝ2

{0}

ℝ2

ℝ3

W

ℝ3

(𝑥, 𝑦, 𝑧)

𝑥+𝑦−𝑧 =0 (𝑥, 𝑦, 𝑧) 𝑎, 𝑏

𝑐 .

𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 = 0 ℝ3


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.