A ⊂ ℝn k>0
x0 x0 Vk (x0
𝐴
Vx0
x0 ∈ ℝn
x ∈ ℝn A ⊂ ℝn
x
A
A
C
ℝ2 ℝ3
ℝn
⊆ ℝ2
{f(x, y) = z│(x, y) ∈ D ⊆ ℝ2 , z ∈ ℝ} : D ⊆ ℝ2 → ℝ
ℝ2 = {(x, y)│x ∈ ℝ, y ∈ ℝ}
f = {f(x1 , x2 , x3 , … , xn ) = z│(x1 , x2 , x3 , … , xn ) ∈ D ⊆ ℝn , z ∈ ℝ} n
f(x, y) =
𝑥 2 +1 𝑥+𝑦
𝑥2 + 1 ∀x ∈ ℝ
xy
𝑥+𝑦 =0
x≠y
x+y≠0
Df = {(x, y) ∈ ℝ2 │x ≠ y,
x ∈ ℝ,
Df = {(x, y) ∈ ℝ2 \x ≠ y }
y∈ℝ}
f(x, y)
xy
f
f(x, y) xy x=y
ℝ𝟑
ℝ3
{f(x, y) = z│(x, y) ∈ D ⊆ ℝ2 , z ∈ ℝ}
Gf = {(x, y, f(x, y)) ∈ ℝ3 │(x, y) ∈ D} f(x, y) = x 2 + y 2
xy ℝ2
f(x, y)
𝐷𝑓 = (−100, 0) × (0, 100)
{(x, y) ∈ D│(x, y) = c } ⊆ ℝ2
Pxy ∩ Gf = {(x, y, z)│y = 0, z = f(x, 0)} Pyz ∩ Gf = {(x, y, z)│x = 0, z = f(0, y)} Pxy
xy Pyz
yz
Gf
f
f(x, y) = z = x 2 − y 2 z=0
z=4
x=0
y=0
z = 0,4
z=0
𝑥2 − 𝑦2 = 0
𝑥2 = 𝑦2
x=y
z=0
z=4
x2 − y2 = 4 y = ±√ x 2 − 4 x = ±2
x = ±√ y 2 + 4
x≥2 y
y = ±2
z=4
x2 − y2 = c
xy
f(x, y) = x 2 − y 2 = c
y=0 xz
y=0
x=0 yz
x=0
ℝ3
f(x, y) = z ℝ3
ℝ2
(a, b) f(x, y)
L=
lim
(x,y)→(a,b)
f(x, y)
(a, b) δ>0 √(x − a)2 + (y − b)2 < δ
D ∈ ℝ2 ε>0
(x, y) ∈ D |f(x, y) − L| < ε
|f(x, y) − L| < ε z xy
𝐷𝛿 (a, b)
y2
f(x, y) = x2 +y2
y2
lim
(x,0)→(0,0)
lim
(0,y)→(0,0)
y2
x2 +y2
(0)2
= x2 +(0)2 = 0
y2
x2 +y2
= (0)2 +y2 = 1
f(x, y)
1
f(x, y) = y 2 sen (y2 +|x|)
f(x, y) (0,0) [−1,1]
−1 ≤ sen (
y2
1 )≤1 + |x|
y2
y2 ≥ 0
y −y 2 ≤ sen (
y2
1 ) ≤ y2 + |x|
(x, y) → (0,0)
lim
(x,y)→(0,0)
− y2 = 0
lim
(x,y)→(0,0)
−y 2 ≤
lim
(x,y)→(0,0)
lim
(x,y)→(0,0)
sen (
y2
y2 = 0
1 ) ≤ lim y 2 (x,y)→(0,0) + |x|
lim
1
(x,y)→(0,0)
sen (y2 +|x|) = 0 1
f(x, y) = y 2 sen (y2 +|x|)
f(x, y): → ℝ
∃
lim
(x,y)→(a,b)
g(x, y): D → ℝ (x, y) ∈ D
a, b, d, c ∈ ℝ
f(x, y) = b
lim
(x,y)→(a,b)
f(x, y) = b
c
lim
g(x, y) = d
lim
g(x, y) = b
(x,y)→(a,b)
lim
(x,y)→(a,b)
f(x, y) = cb
lim
(x,y)→(a,b)
f(x, y) +
g(x, y) = b + d
∃
lim
(x,y)→(a,b)
f(x, y) = a
(x,y)→(a,b)
lim
(x,y)→(a,b)
f(x, y)g(x, y) = ab
∃
lim
(x,y)→(a,b) 1
lim
(x,y)→(a,b) f(x,y)
f(x, y) = b
b, f(x, y) ≠ 0
(x, y)
1
=b
1
f(x, y) = 2 x 2 + 2y 2 + 1 1 2 x 2
+ 2y 2 + 1
f(x, y)
x(x) = x 2
lim
(x,y)→(a,b)
lim
x2 = 1 2
(x,y)→(1,0) 2
lim
(x,y)→(a,b)
x(
lim
(x,y)→(a,b)
x) = a2
y2
1
x =2 1 2 1 2 1 3 x + lim y + lim 1 = + 1 = (x,y)→(1,0) 2 (x,y)→(1,0) 2 (x,y)→(1,0) 2 2 lim
1 2 1 3 x + 2y 2 + 1 = lim (1)2 + 2(0)2 + 1 = (x,y)→(1,0) 2 2 2 lim
(x,y)→(1,0)
D (a, b) â&#x2C6;&#x2C6; D
L = f(a, b) (a, b)
lim
(x,y)â&#x2020;&#x2019;(a,b)
f(x, y) = f(a, b)
đ?&#x2018;&#x201C;(đ?&#x2018;Ľ, đ?&#x2018;Ś) =
x3 2x 2 â&#x2C6;&#x2019; xy â&#x2C6;&#x2019; y 2
1
y = â&#x2C6;&#x2019;2x Âą 3 2
x
y = x + x2
x3 lim f(x, y) = lim (x,y)â&#x2020;&#x2019;(0,0) (x,x+x2 )â&#x2020;&#x2019;(0,0) 2x 2 â&#x2C6;&#x2019; x(x + đ?&#x2018;Ľ 2 ) â&#x2C6;&#x2019; (x + đ?&#x2018;Ľ 2 )2
x3 1 1 = lim â&#x2C6;&#x2019; = 2 2 2 2 2 )â&#x2020;&#x2019;(0,0) 2x â&#x2C6;&#x2019; x(x + đ?&#x2018;Ľ ) â&#x2C6;&#x2019; (x + đ?&#x2018;Ľ ) (x,x+x )â&#x2020;&#x2019;(0,0) đ?&#x2018;Ľ+3 3
lim 2
(x,x+x
y = 3x
x3 x lim = lim â&#x2C6;&#x2019; =0 (x,2x)â&#x2020;&#x2019;(0,0) 2x 2 â&#x2C6;&#x2019; x(3x) â&#x2C6;&#x2019; (3x)2 (x,3x)â&#x2020;&#x2019;(0,0) 9đ?&#x2018;Ľ 4 + 1
lim
(x,y)â&#x2020;&#x2019;(0,0)
f(x, y) = f(0,0)
(a, b)
đ?&#x153;&#x20AC;â&#x2C6;&#x2019;đ?&#x203A;ż
f(x, y): â&#x2020;&#x2019; â&#x201E;?
g(x, y): D â&#x2020;&#x2019; â&#x201E;? (x, y) â&#x2C6;&#x2C6; D
(x, y)
f
f
(cf)(x, y) = c[f(x)]
(x, y)
g
f
câ&#x2C6;&#x2C6;â&#x201E;?
(f + g)(x, y) = f(x, y) + g(x, y)
(x, y)
g
(fg)(x, y) = f(x, y)g(x, y)
f(x, y): D â&#x160;&#x2020; â&#x201E;?2 â&#x2020;&#x2019; â&#x201E;?
1
( f ) (x, y) = f(x)
g(x0 , y0 ): B â&#x160;&#x2020; â&#x201E;?2 â&#x2020;&#x2019; â&#x201E;? (f â&#x2C6;&#x2DC; g)(x, y) = f(g(x0 , y0 ))
g(B) â&#x160;&#x201A; D g
1
(x, y)
fâ&#x2030; 0
g
(x0 , y0 ) â&#x2C6;&#x2C6; đ??ľ
(f â&#x2C6;&#x2DC; g)(x, y)
f
(x, y) = g(x0 , y0 )
(x0 , y0 )
f(x, y) = (x 4 + y 4 )8 + cos(x)
f f â&#x201E;?2
z = x4 + y4
đ?&#x2018;§ 8 = (x 4 + y 4 )8
z(x, y) = x 4 + y 4
w = cos(x)
â&#x201E;?2
f
(x0 , y0 ) â&#x2C6;&#x2C6; â&#x201E;?2
lim
(x,y)â&#x2020;&#x2019;(x0 ,y0 )
lim
(x,y)â&#x2020;&#x2019;(a,b)
f(x, y) = f(a, b)
(x 4 + y 4 )8 â&#x201E;?
x 4 + y 4 = x0 4 + y0 4
cos(x) f(x, y)
𝛾(t): T → ℝ3 (𝑥(t), y(t), z(t)) ∈ ℝ3
t∈T⊆ℝ 𝑥(t), y(t)
z(t)
ℝ
𝛾(t): t → (x(𝑡), y(t), z(t))
t∈ℝ
(x(𝑡), y(t), z(t)) ∈ ℝ3
𝛾(t): x(t)𝐢 − y(t)𝐣 + z(t)𝐤
𝛾(t): ℝn → ℝm
𝛾: 𝐒 ∈ ℝn → (x1 (𝑡), x2 (t), x3 (t), … , xm (t)) ∈ ℝm
𝛾(t) = (
x(t) =
t+1
t=0
t
t+1 t
, t, t 2 − 1)
Dom𝛾 =
{t ∈ ℝ│t ≠ 0}
𝛾(t) = (t + 1, 5t + 1, 3t − 1)
x=t+1 y= 5t + 1
z = 3t − 1
𝑡=0
(1, 1, −1)
(1, 5, 3)
𝐢 𝐣 𝐤 |1 1 −1| = (3 + 5)𝐢 − (3 + 1)𝐣 + (5 − 1)𝐤 = 0 1 5 3
𝛾(t) = (1, 1, −1) + t(1, 5, 3)
𝛾(t)
𝑥2 + 𝑦2 − 1 = 0
𝑧 = 2−𝑦
xy
x y 2đ?&#x153;&#x2039;
z
x = cost y = sent
z = 2 â&#x2C6;&#x2019; sent x = cost y = sent
0 â&#x2030;¤ t â&#x2030;¤ 2Ď&#x20AC;
z
đ?&#x203A;ž(t) = costđ??˘ + sentđ??Ł + (2 â&#x2C6;&#x2019; sent)đ??¤
0 â&#x2030;¤ t â&#x2030;¤ 2Ď&#x20AC;
0â&#x2030;¤đ?&#x2018;Ąâ&#x2030;¤
x
y
đ?&#x203A;ž(t): t â&#x2020;&#x2019; (x(đ?&#x2018;Ą), y(t)) đ?&#x203A;ž(t): t â&#x2020;&#x2019; (x(đ?&#x2018;Ą), y(t), z(t))
Îł(t) = (3cost, 3sent)
Îł x(đ?&#x2018;Ą) = 3đ?&#x2018;?đ?&#x2018;&#x153;đ?&#x2018; đ?&#x2018;Ą
y(t) = 3sent
x 2 (đ?&#x2018;Ą) = 9cos2 đ?&#x2018;Ą y 2 (đ?&#x2018;Ą) = 9sen2 đ?&#x2018;Ą
x 2 (đ?&#x2018;Ą) + y 2 (đ?&#x2018;Ą) = 9cos 2 đ?&#x2018;Ą + 9sen2 đ?&#x2018;Ą
Îł(t) = (3cost, 3sent)
Îł(t)
lim đ?&#x203A;ž(t) tâ&#x2020;&#x2019;a
1
Es una plataforma computacional online dedicado a la bĂşsqueda de respuestas, entre las que se encuentran los cĂĄlculos matemĂĄticos.
lim đ?&#x203A;ž(x(t), y(t), z(t)) = (lim x(t) đ??˘ + lim y(t) đ??Ł + lim z(t) đ??¤) = (L1 , L2 , L3 ) tâ&#x2020;&#x2019;a
tâ&#x2020;&#x2019;a
tâ&#x2020;&#x2019;a
tâ&#x2020;&#x2019;a
đ?&#x2018;&#x2019; đ?&#x2018;Ą +1
1
đ?&#x203A;ž(t) = (đ?&#x2018;&#x2019; đ?&#x2018;Ą â&#x2C6;&#x2019;1 , 1+đ?&#x2018;Ą , â&#x2C6;&#x161;1 + đ?&#x2018;Ą)
đ?&#x2018;&#x2019; đ?&#x2018;Ą +1
1
x(t) = đ?&#x2018;&#x2019; đ?&#x2018;Ą â&#x2C6;&#x2019;1 y(t) = 1+đ?&#x2018;Ą z(t) = â&#x2C6;&#x161;1 + đ?&#x2018;Ą
lim
1
đ?&#x2018;Ąâ&#x2020;&#x2019;0 1+đ?&#x2018;Ą
lim
=1
lim â&#x2C6;&#x161;1 + đ?&#x2018;Ą = 1
đ?&#x2018;Ąâ&#x2020;&#x2019;0
đ?&#x2018;&#x2019; đ?&#x2018;Ą +1
đ?&#x2018;Ąâ&#x2020;&#x2019;0 đ?&#x2018;&#x2019; đ?&#x2018;Ą â&#x2C6;&#x2019;1
đ?&#x203A;ž(t)
lim đ?&#x203A;ž(t) = lim x(a) đ??˘ + lim y(a) đ??Ł + lim z(a) đ??¤ = (L1 , L2 , L3 ) tâ&#x2020;&#x2019;a
tâ&#x2020;&#x2019;a
tâ&#x2020;&#x2019;a
tâ&#x2020;&#x2019;a
đ?&#x203A;ž(t) = ( 3
đ?&#x2018;Ą2
â&#x2C6;&#x161;đ?&#x2018;Ą 2 +1
x(t) =
đ?&#x2018;Ą2 3
â&#x2C6;&#x161;đ?&#x2018;Ą 2 +1
, eđ?&#x2018;Ą ,
tâ&#x2C6;&#x2019;1 đ?&#x2018;Ą4
)
tâ&#x2C6;&#x2019;1
y(t) = eđ?&#x2018;Ą z(t) = đ?&#x2018;Ą 4 +2
02 0â&#x2C6;&#x2019;1 1 lim đ?&#x203A;ž(t) = lim 3 đ??˘ + lim e0 đ??Ł + lim 4 đ??¤ = (0,1, â&#x2C6;&#x2019; ) tâ&#x2020;&#x2019;0 tâ&#x2020;&#x2019;0 â&#x2C6;&#x161;02 + 1 tâ&#x2020;&#x2019;0 tâ&#x2020;&#x2019;a 0 + 2 2
đ?&#x2018;Ąâ&#x2020;&#x2019;0
𝑡→0
𝑡→
0
𝛾(t): ℝ → ℝ3 𝛾(t): ℝ → ℝm
𝛾(𝐭): ℝn → ℝm
f(x, y): ℝ2 → ℝ (x0 , y0 ) ∈ ℝ2
y
(x0 , y0 ) ∈ ℝ2 f(x0 + h, y0 ) − f(x0 , y0 ) h→0 h
fx (x0 , y0 ) = lim
f(x0 , y0 + h) − f(x0 , y0 ) h→0 h
fy (x0 , y0 ) = lim
f(x, y) = 2x 2 − y + 4
fx (0,1)
fy (0,1)
f(0 + h, 1) − f(0,1) f(h, 1) − f(0,1) = lim = lim 2h = 0 h→0 h→0 h→0 h h f(0,1 + h) − f(0,1) f(0,1 + h) − f(0,1) fy (0,1) = lim = lim = lim −1 = −1 h→0 h→0 h→0 h h fx (0,1) = lim
fx (0,1) = 0
fy (0,1) = −1
x
∂f ∂x
(x0 , y0 , z0 )
f(x, y) = z ∂f
∂f
∂y
∂x
𝜕𝑓
𝜕
𝑓𝑥 (𝑥, 𝑦) = 𝜕𝑥 = 𝜕𝑥 𝑓(𝑥, 𝑦) 𝜕𝑓
𝜕
𝑓𝑦 (𝑥, 𝑦) = 𝜕𝑦 = 𝜕𝑦 𝑓(𝑥, 𝑦)
z = f(x, y) ∂z ∂x
∂
= ∂x f(x, y)
∂f
∂
∂x
∂y
∂z ∂y
∂
= ∂y f(x, y)
xy2
f(x, y) = x+y
x+y>0 u = xy 2 v = x + y ≠ 0 y
x
∂f u´v − uv y 2 (x + y) − xy 2 y3 = = = (x + y)2 (x + y)2 ∂x v2
y
x
∂f u´v − uv x2y(x + y) − xy 2 (2x − y)(xy) = = = (x + y)2 (x + y)2 ∂y v2
f(x, y)
∂f
∂f
∂x
∂y
(x0 , y0 , z0 )
𝑧 = f(x, y)
z − z0 = fx (x0 , y0 )(x − x0 ) + fy (x0 , y0 )(y − y0 )
𝑧 = f(x, y) = 3𝑥 2 + 6𝑦 2
(2,2,6) f(x, y)
fx (x, y) = 6𝑥 fy (2,2) = 12
fy (x, y) = 12𝑦 fy (2,2) = 24
z − 6 = 12(x − 2) + 24(y − 2) z = 12x + 24y − 66
f(x, y): ℝ2 → ℝ
∇f(x, y) =
∂f ∂f 𝐢 + 𝐣 = 〈fx (x, y), fy (x, y)〉 ∂x ∂y
f(x, y) (x0 , y0 , z0 ) c
đ?&#x203A;ťđ?&#x2018;&#x201C;
f
f(x, y) = â&#x2C6;&#x161;x 2 + y 2
f â&#x2C6;&#x201A;f
= â&#x2C6;&#x201A;x
x â&#x2C6;&#x161;x2 +y2
â&#x2C6;&#x201A;f
= â&#x2C6;&#x201A;y
y
â&#x2C6;&#x2021;f(x, y) =
â&#x2C6;&#x161;x2 +y2
x â&#x2C6;&#x161;x2 +y2
đ??˘+
y â&#x2C6;&#x161;x2 +y2
f(x, y): â&#x201E;?2 â&#x2020;&#x2019; â&#x201E;? đ??Ž = â&#x152;Ša, bâ&#x152;Ş
f(x0 + ha, y0 + hb) â&#x2C6;&#x2019; f(x0 , y0 ) hâ&#x2020;&#x2019;0 h
Du f(x0 , y0 ) = lim
đ??Ł
(x0 , y0 )
Du f(x0 , y0 ) = ∇f ∙ 𝐮 = fx (x, y)x0 + fy (x, y)y0
𝐮
C
𝑧 = f(x, y) 𝑃 = (x0 , y0 , z0 𝐮
T
C
x0 , y0 , z0 f
𝐮
𝑃′ , 𝑄′
𝑄∈𝐶
𝑃, 𝑄 𝑃′𝑄 ′ 𝐮
f(x, y) Du f(x0 , y0 ) = fx (x, y)x0 + fy (x, y)y0
𝐮 = (x0 , y0 )
f(x, y) = x 2 y 4 + 12x (2,2)
v = (3,2)
∇f(x, y) = (fx , fy ) = (2xy 4 + 12, 4x 2 y 3 ) ∇f(1,2) = (fx , fy ) = (2(1)(2)4 + 12, 4(1)2 (2)3 ) = (48,32)
v = (3,2) v
𝐮 = ‖v‖ =
1 √13
3
(3,2) = (
,
2
)
√13 √13
Du f(x0 , y0 ) = fx (x, y)x0 + fy (x, y)y0
D(3,2) f(48,32) = ∇f ∙ v = (76,128) ∙ ( D(3,2) f(48,32) =
3
,
2
√13 √13 400 √13
)=
144 √13
+
256 √13
𝑧 = f(x, y): D ⊆ ℝ2 → ℝ
lim
(x0 , y0 )
f(x, y) − f(x0 , y0 ) − (fx (x0 , y0 ) ∗ (x − x0 )) − (fy (x0 , y0 ) ∗ (y − y0 ))
(x,y)→(x0 ,y0 )
√(x − x0 )2 + (y − y0 )2
dz =
=0
∂z ∂z dx + dy = fx (x, y)dx + fy (x, y)dy ∂x ∂y dx = ∆x
𝑧 = f(x, y) = 𝑥 4 + 𝑥𝑦 − 2𝑦 4
x
y=2
fx (x, y)
fy (x, y)
fx (x, y) = 4𝑥 3 + 𝑦 fy (x, y) = 𝑥 − 8𝑦 3 dz = (4𝑥 3 + 𝑦)𝑑𝑥 + (𝑥 − 8𝑦 3 )𝑑𝑦 x=2
y = 2 dx = 1
dy = 0.5
dz
dz = (4(2)3 + 2)(1) + (2 − 8(2)3 )(0.5) = 34 − 31 = 3 dz = 3
f(x, y): ℝ2 → ℝ ∂f
∂f
∂x
∂y
(x0 , y0 ) (x0 , y0 )
f(x, y): ℝ2 → ℝ
(x0 , y0 )
f(x, y) = exy + xy
(0,1)
(0,1) ∂f = yexy + y = y(exy + 1) ∂x ∂f = xexy + x = x(exy + 1) ∂y
∂f ∂x ∂f ∂y
= g(x, y) = y(exy + 1)
= h(x, y) = x(exy + 1) (0,1) lim
g(x, y) =
lim
h(x, y) =
(x,y)→(0,1) (x,y)→(0,1)
lim
y(exy + 1) = 2 = g(0,1)
(0,1)
lim
x(exy + 1) = 0 = h(0,1)
(0,1)
(x,y)→(0,1) (x,y)→(0,1)
f(x, y) (0,1)
f(x, y): ℝ2 → ℝ2
∂f1 ∂f1 (x0 , y0 ) (x , y ) ∂x ∂y 0 0 Df(x0 , y0 ) = ∂f2 ∂f2 (x0 , y0 ) (x0 , y0 ) ∂x ∂y ( )
(x0 , y0 ) ∈ ℝ2
f(x, y): ℝ2 → ℝ ∂f
∂f
Df(x0 , y0 ) = ∂x + ∂y
f(x, y) = 5ex y
(1,1)
g(x, y) = (5ex y, xy)
Df(1,1) =
∂f ∂f (1,1) + (1,1) = 5e + 5e = 10e ∂x ∂y
∂f1 ∂f1 (1,1) (1,1) ∂x ∂y 5e Dg(1,1) = =( ∂f2 ∂f2 1 (1,1) (1,1) ∂y ( ∂x )
f: ℝ2 → ℝ2
5e ) 1
f: ℝn → ℝm
f(x, y): ℝ2 → ℝ2 ℝ2
f: (x, y) → (g(x, y), h(x, y))
Df
𝑓1 (𝑥, 𝑦) = 𝑒 𝑥 y 𝑓2 (𝑥, 𝑦) = 2xcosy Df(x, y)
f(x, y) = (𝑒 𝑥 y, 2xcosy)
â&#x2C6;&#x201A;f1
Df(x, y) =
â&#x2C6;&#x201A;x (â&#x2C6;&#x201A;f 2 â&#x2C6;&#x201A;x
â&#x2C6;&#x201A;f1 â&#x2C6;&#x201A;x â&#x2C6;&#x201A;f2 â&#x2C6;&#x201A;x
= đ?&#x2018;&#x2019;đ?&#x2018;Ľy
â&#x2C6;&#x201A;f2 â&#x2C6;&#x201A;y
(x, y) = đ?&#x2018;&#x2019; đ?&#x2018;Ľ y
(x, y) = 2cosy
â&#x2C6;&#x201A;f1
(x, y) = đ?&#x2018;&#x2019; đ?&#x2018;Ľ
đ?&#x2018;&#x2019;đ?&#x2018;Ľy ) Df(x, y) = ( â&#x2C6;&#x201A;f2 2cosy (x, y) = â&#x2C6;&#x2019;2xseny â&#x2C6;&#x201A;y â&#x2C6;&#x201A;y
= đ?&#x2018;&#x2019;đ?&#x2018;Ľ ) â&#x2C6;&#x2019;2xseny
â&#x2C6;&#x201A;f1
â&#x201E;?2
= â&#x2C6;&#x2019;2xseny
= 2cosy
â&#x2C6;&#x201A;y
â&#x201E;?
f(x, y): â&#x201E;?2 â&#x2020;&#x2019; â&#x201E;?2
g(x, y): â&#x201E;?2 â&#x2020;&#x2019; â&#x201E;?2
f(x, y): â&#x201E;?2 â&#x2020;&#x2019; â&#x201E;? g(x, y): â&#x201E;?2 â&#x2020;&#x2019; â&#x201E;?
h(x, y): â&#x201E;?2 â&#x2020;&#x2019; â&#x201E;? â&#x2030; 0
f
f
D(f + g)(x0 , y0 ) = Df(x0 , y0 ) + Dg(x0 , y0 )
D(hf)(x0 , y0 ) = h(x0 , y0 )Df(x0 , y0 ) + f(x0 , y0 )Dh(x0 , y0 )
f
D (h) (x0 , y0 ) =
h(x0 ,y0 )Df(x0 ,y0 )â&#x2C6;&#x2019;f(x0 ,y0 )Dh(x0 ,y0 ) â&#x201E;&#x17D;2 (x0 ,y0 )
z = f(x, y) = x(g(t)) + y(h(t))
g(t) h(t)
t
z
t
= đ?&#x2018;&#x2019;đ?&#x2018;Ľ
â&#x2C6;&#x201A;z â&#x2C6;&#x201A;f dx â&#x2C6;&#x201A;f dy = + â&#x2C6;&#x201A;t â&#x2C6;&#x201A;x dt â&#x2C6;&#x201A;y dt
z = f(x, y) = đ?&#x2018;Ľđ?&#x2018;Ś 2 + 4đ?&#x2018;Ľ 4 đ?&#x2018;Ś
g(t) = 2cost
h(t) = t +
1 z = f(x, y)
g(t)
h(t) t0 â&#x2C6;&#x2C6; â&#x201E;?
lim 2đ?&#x2018;?đ?&#x2018;&#x153;đ?&#x2018; đ?&#x2018;Ą = 2cos t 0 lim đ?&#x2018;Ą + 1 = t 0 + 1 t0
t0
z = f(g(t), h(t)) = (2đ?&#x2018;?đ?&#x2018;&#x153;đ?&#x2018; đ?&#x2018;Ą)đ?&#x2018;Ś(đ?&#x2018;Ą + 1)2 + 4(2đ?&#x2018;?đ?&#x2018;&#x153;đ?&#x2018; đ?&#x2018;Ą)4 (đ?&#x2018;Ą + 1)
â&#x2C6;&#x201A;z â&#x2C6;&#x201A;t
= (đ?&#x2018;Ś 2 + 12đ?&#x2018;Ľ 3 đ?&#x2018;Ś)(â&#x2C6;&#x2019;2sent) + (2xy) = â&#x2C6;&#x2019;2sent(đ?&#x2018;Ą + 1)[(đ?&#x2018;Ą + 1) + (2đ?&#x2018;?đ?&#x2018;&#x153;đ?&#x2018; đ?&#x2018;Ą)3 ] + 4(đ?&#x2018;?đ?&#x2018;&#x153;đ?&#x2018; đ?&#x2018;Ą)(đ?&#x2018;Ą + 1)
z = f(x, y) = đ?&#x2018;Ľ(g(s, t)) + y(h(s, t))
g(s, t) h(s, t)
z
t â&#x2C6;&#x201A;z â&#x2C6;&#x201A;s
â&#x2C6;&#x201A;z â&#x2C6;&#x201A;x
â&#x2C6;&#x201A;z â&#x2C6;&#x201A;y
= â&#x2C6;&#x201A;x â&#x2C6;&#x201A;s + â&#x2C6;&#x201A;y â&#x2C6;&#x201A;s
â&#x2C6;&#x201A;z â&#x2C6;&#x201A;t
â&#x2C6;&#x201A;z â&#x2C6;&#x201A;x
â&#x2C6;&#x201A;z â&#x2C6;&#x201A;y
= â&#x2C6;&#x201A;x â&#x2C6;&#x201A;t + â&#x2C6;&#x201A;y â&#x2C6;&#x201A;t
z ∂z
∂z
∂x
∂y
x
y
∂x
∂x
∂y
∂y
∂s
∂t
∂s
∂t
s
t
s
t
f: (x, y) = 5𝑥 2 + 2𝑦
f: (g(t), h(t))
g(t) =
𝑐𝑜𝑠𝑡 h(t) = 2𝑒 𝑡 + 1
∂z ∂f dx ∂f dy = + = (10𝑥)(−𝑠𝑒𝑛𝑡) + (2)(2𝑒 𝑡 ) ∂t ∂x dt ∂y dt ∂z = −10𝑐𝑜𝑠𝑡(𝑠𝑒𝑛𝑡) + 4𝑒 𝑡 ∂t g(x, y): D ⊆ ℝ2 → ℝ2
(f ∘ g) (𝑥0 , 𝑦0 ) ∈ 𝐴 𝑔(𝑥0 , 𝑦0 )
(f ∘ g)
f(x, y): A ⊆ ℝ2 → ℝ2
(𝑠0 , 𝑡0 ) =
(𝑥0 , 𝑦0 )
𝐷(f ∘ g)(𝑥0 , 𝑦0 ) = 𝐷𝑓(𝑔(𝑥0 , 𝑦0 ))𝐷𝑔(𝑥0 , 𝑦0 )
f∘g f: (x, y) = (senx + 𝑦 2 , 2xy)
g: (x, y) = (t𝑒 𝑠 , 𝑠 − 𝑐𝑜𝑠𝑡)
(f ∘ g)(s, t) = f(e2s , s − cost) = (sen(es ) + (s − cost)2 , 2es (s − cost)) 𝐷(𝑓 ∘ 𝑔)(0,0) = 𝐷𝑓(𝑔(0,0))𝐷𝑔(0,0)
Dg(0,0) = (
tes 1
g(0,0) = (0, â&#x2C6;&#x2019;1) Df(0, â&#x2C6;&#x2019;1) = (
0 1 es ) =( ) 1 0 sent (s,t)=(0,0)
cosx 2y 1 â&#x2C6;&#x2019;2 ) =( ) 2y 2x (x,y)=(0,0) â&#x2C6;&#x2019;2 0
1 â&#x2C6;&#x2019;2 0 1 â&#x2C6;&#x2019;2 1 )( )=( ) â&#x2C6;&#x2019;2 0 1 0 0 â&#x2C6;&#x2019;2
đ??ˇ(f â&#x2C6;&#x2DC; g)(0,0) = (
đ??š=0
F(x, y): D â&#x160;&#x2020; â&#x201E;?2 â&#x2020;&#x2019; â&#x201E;? F(x, y) = 0 x
y = f(x) F(x, f(x)) = 0
x â&#x2C6;&#x2C6; Domf
F
F(x, y) = 0 â&#x2C6;&#x201A;F â&#x2C6;&#x201A;y Fx = â&#x2C6;&#x2019; â&#x2C6;&#x201A;x = â&#x2C6;&#x2019; â&#x2C6;&#x201A;F â&#x2C6;&#x201A;x Fy â&#x2C6;&#x201A;y â&#x2C6;&#x201A;F â&#x2C6;&#x201A;y
â&#x2030; 0
f(x): â&#x201E;? â&#x2020;&#x2019; â&#x201E;?
F(x, y): D â&#x160;&#x2020; â&#x201E;?3 â&#x2020;&#x2019; â&#x201E;? F(x, y, z) = 0
z
đ?&#x2018;§ = f(x, y)
F(x, y, f(x, y)) = 0
(x, y) â&#x2C6;&#x2C6; Domf
F
f
F(x, y, z) = 0 â&#x2C6;&#x201A;z â&#x2C6;&#x201A;x
â&#x2C6;&#x201A;F â&#x2C6;&#x201A;z
â&#x2030; 0
=â&#x2C6;&#x2019;
f(x): : â&#x201E;?2 â&#x2020;&#x2019; â&#x201E;?
â&#x2C6;&#x201A;F â&#x2C6;&#x201A;x â&#x2C6;&#x201A;F â&#x2C6;&#x201A;z
â&#x2C6;&#x201A;z â&#x2C6;&#x201A;y
=â&#x2C6;&#x2019;
â&#x2C6;&#x201A;F â&#x2C6;&#x201A;y â&#x2C6;&#x201A;F â&#x2C6;&#x201A;z
x 2 + y 2 + z 2 + kxyz = 5
𝐹(𝑥, 𝑦, 𝑧) = x 2 + y 2 + z 2 + xyz − 5
z ∂z ∂x
=−
∂F ∂x ∂F ∂z
2𝑥+𝑦𝑧
= 2𝑧+𝑥𝑦
x ∂z ∂x
=−
∂F ∂y ∂F ∂z
2𝑦+𝑥𝑧
= 2𝑧+𝑥𝑦
f(𝐱): ℝn → ℝm
№ О(t): т т т 3
t0
№ О(№ Ё + т ) т № О(№ Ё) =0 hт 0 т
№ О т В (t) = lim
№ О т В (t) =
d№ О dt
№ О(t) = (x(t), y(t), z(t))
№ О(t) = (x(t), y(t), z(t)) = x(t)№ Ђ + y(t)№ Ѓ + z(t)№ Є
x(t) y(t)
z(t)
№ О т В (t) = (x т В (t), y т В (t), z т В (t)) = xт В(t)№ Ђ + yт В(t)№ Ѓ + zт В(t)№ Є
№ О(t) = (sen2t, № Ё 2 , t + 6) № О т В (t) = (cost, 2t, 1)
№ О(t)
№ (t)
(№ О(t) + № (t) )т В = № От В(t) + № т В(t) (k№ О(t) )т В = k№ От В(t) (f(t)№ (t) )т В = f т В (t)№ (t) + f(t)№ т В(t) (№ О(t) т № (t) )т В = № От В(t) т № (t) + № О(t) т № т В(t) (№ О(t) У № (t) )т В = № От В(t) У № (t) + № О(t) У № т В(t) (№ О(f(t) )т В = f т В (t)№ т В(f(t))
kт т
f(t): т т т
đ?&#x203A;ž(đ?&#x2018;Ą): [đ?&#x2018;&#x17D;, đ?&#x2018;?] â&#x2020;&#x2019; â&#x201E;?2
đ?&#x203A;ž(đ?&#x2018;Ą): [đ?&#x2018;&#x17D;, đ?&#x2018;?] â&#x2020;&#x2019; â&#x201E;?3
C1
b
â&#x2C6;Ť â&#x2C6;&#x161;(xâ&#x20AC;˛(t))2 + (yâ&#x20AC;˛(t))2 dt,
b
si su rango esta en â&#x201E;?2
a
â&#x201E;&#x2019; = â&#x2C6;Ťâ&#x20AC;&#x2013;Îłâ&#x20AC;˛(t)â&#x20AC;&#x2013; dt =
b
a
{
si su rango esta en â&#x201E;?3
â&#x2C6;Ť â&#x2C6;&#x161;(xâ&#x20AC;˛(t))2 + (yâ&#x20AC;˛(t))2 + (zâ&#x20AC;˛(t))2 dt, a
C1
Cn
Dâ&#x201E;&#x2019; = â&#x2C6;&#x161;(xâ&#x20AC;˛(t))2 + (yâ&#x20AC;˛(t))2 + (zâ&#x20AC;˛(t))2 dt
Dâ&#x201E;&#x2019;
đ?&#x2018;Ľđ?&#x2018;&#x2013;
đ?&#x2018;Ľđ?&#x2018;&#x2014;
đ?&#x2018;&#x2013;<đ?&#x2018;&#x2014;
𝜋 𝛾(t) = (sen2t, cos2t + 1 )
𝛾 ′ (t)
𝛾 ′ (t) = (2cos2t, −2sen2t) 𝜋
‖γ′(t)‖ = ∫
𝜋
√(2cos2t)2
0
+
(−2sen2t)2 dt
= ∫ √4dt = 2𝜋 0
𝐹: 𝐴 ⊆ ℝ3 → ℝ3 (x, y, z ) ∈ 𝐴
𝐹(𝑥, 𝑦, 𝑧) = (𝐹1 , 𝐹2 , 𝐹3 ) ℝ3 → ℝ
𝐹: 𝐴 ⊆ ℝ2 → ℝ2
(x, y ) ∈ 𝐴 𝐹(𝑥, 𝑦) =
(𝐹1 , 𝐹2 )
ℝ2 → ℝ
∇F(x, y, z) =
∂F ∂F ∂F (x, y, z)𝐢 + (x, y, z)𝐣 + (x, y, z)𝐤 ∂x ∂y ∂z
∇F(x, y) =
∂F ∂F (x, y, z)𝐢 + (x, y, z)𝐣 ∂x ∂y
𝑧= F(x, y)
𝑛𝑖 ∈ ℝ
(xi , yi )
F
𝛾(t)
𝛾 ′ (t) = 𝐹(𝛾(t)) 𝛾(t) = (𝑠𝑒𝑛𝑡, 𝑐𝑜𝑠𝑡) F(x, y) = (y, −x) 𝛾 ′ (t)
𝛾 ′ (t) = (𝑐𝑜𝑠𝑡, −𝑠𝑒𝑛𝑡) 𝐹(𝛾(t)) = (𝑐𝑜𝑠𝑡, −𝑠𝑒𝑛𝑡)
𝐹(𝛾(t))
𝛾 ′ (t) = 𝐹(𝛾(t))
𝛾(t)
divF(x, y, z) = ∇ ∙ F =
F(x, y)
∂𝐹1 ∂𝐹2 ∂𝐹3 (x, y, z) + (x, y, z) + (x, y, z) ∂x ∂y ∂z
divF(x, y) = ∇ ∙ F =
∂𝐹1 ∂𝐹2 (x, y, z) + (x, y, z) ∂x ∂y
F(x, y, z) = (x, y, z)𝐢 + 𝐹2 (x, y, z)𝐣 + 𝐹3 (x, y, z)𝐤
𝐢 𝐣 𝐤 ∂ ∂ ∂ ∇×F =| | ∂x ∂y ∂z F1 F2 F3 𝐢 ∂
F(x, y) = (x, y)𝐢 + F2 (x, y)𝐣
𝐣
𝐤
Rot F = |∂x
∂
∂
∂y
∂z
P
Q
R
|
∂F
∇ × F = ( ∂x2 − 𝐤
F(x, y, z) = (2xz, y 2 z, yxz)
∂F1 ∂y
)𝐤
F(x, y, z) ∇F(x, y, z) =
∂F ∂F ∂F (x, y, z)𝐢 + (x, y, z)𝐣 + (x, y, z)𝐤 ∂x ∂y ∂z
∇F(x, y, z) = (2z + yz)𝐢 + (2yz + yx)𝐣 + (2x + y 2 + xy)𝐤
div F(x, y, z) =
∂𝐹1 ∂𝐹2 ∂𝐹3 (x, y, z) + (x, y, z) + (x, y, z) ∂x ∂y ∂z
div F(x, y, z) = 2z + 2yz + yx
𝐢 ∂ ∇ × F = || ∂x 2xz
𝐣 𝐤 ∂ ∂ || = (xz − y 2 )𝐢 + (2x − yz)𝐣 + (0)𝐤 ∂y ∂z y 2 z xy