04 em 07 emcved uda1 s3 material de estudio

Page 1



ℝ2 → ℝ

ℝ2 → ℝ2 x

fxx (x, y) =

∂f ∂f ∂2 f ( ) = 2 (x, y) ∂x ∂x ∂x

y ∂f ∂f ∂2 f fyy (x, y) = ( ) = 2 (x, y) ∂y ∂y ∂y

fxy (x, y) =

∂f ∂f ∂2 f ( )= (x, y) ∂x ∂y ∂x ∂y


f

f(x, y)

∂2 f ∂x2 ∂3 f ∂x3

(x, y),

∂2 f ∂y2

∂3 f ∂y3

(x, y)

(x, y)

⋮ ∂n f ∂xn

f: A ⊆ ℝ2 → ℝ

(x, y)

(x, y),

∂n f ∂yn

(x, y)

𝐶2

(x0 , y0 ) ∈ A ⊆ ℝ2 ∂2 f ∂2 f = fxy (x0 , y0 ) = fyx (x0 , y0 ) = ∂x ∂y ∂y ∂x

f = y𝑒 𝑥 + 𝑥𝑦 2

∂f = y𝑒 𝑥 + 𝑦 2 , ∂x

∂2 f = 𝑒 𝑥 + 2𝑦 ∂x ∂y

∂f = 𝑒 𝑥 + 2𝑥𝑦, ∂y

∂2 f = 𝑒 𝑥 + 2𝑦 ∂y ∂x


𝛾(𝑡): [𝑎, 𝑏] → ℝ2

𝛾(𝑡): [𝑎, 𝑏] → ℝ3 γ(n) (t)

n≥2

dn γ dtn

𝐹

𝐶2

div rot F = ∇ ∙ (∇ × F) = 0 div rot F = 0

F(x, y, z) = xy + yz +

xz ∇×F 𝐢 𝐣 𝐤 ∂ ∂ ∂ ∇×F =| | = −𝑦𝐢 − z𝐣 − x𝐤 ∂x ∂y ∂z xy yz xz ∂

𝐹 = ∇ ∙ (∇ × F) = − (∂x , ∂y , ∂z) ∙ (𝑦, 𝑧, 𝑥) = 0 div rot F = 0

f: ℝ3 → ℝ

∂2 f ∂2 f ∂2 f ∇ f = ∇ ∙ (∇f) = 2 + 2 + 2 ∂x ∂y ∂z 2

f(x, y, z) = 𝑥 3 𝑦 2 𝑧 4 + 5𝑥𝑦𝑧


∂f = 3𝑥 2 𝑦 2 𝑧 4 + 5𝑦𝑧, ∂x

∂2 f = 6𝑥𝑦 2 𝑧 4 ∂x 2

∂f = 2𝑥 3 𝑦𝑧 4 + 5𝑥𝑧, ∂y

∂2 f = 2𝑥 3 𝑧 4 ∂y 2

∂f = 4𝑥 3 𝑦 2 𝑧 3 + 5𝑥𝑦, ∂z

∂2 f = 12𝑥 3 𝑧 2 𝑧 2 ∂z 2

∇2 f = 6𝑥𝑦 2 𝑧 4 + 2𝑥 3 𝑧 4 + 12𝑥 3 𝑧 2 𝑧 2


f: A ⊆ ℝ2 → ℝ

(𝑥0 , 𝑦0 ) ∈ 𝐴

(V(x0 ,y0 ) )

(x, y) ∈ V f(x, y) ≥ f(x0 , y0 )

f: A ⊆ ℝ2 → ℝ

(𝑥0 , 𝑦0 ) ∈ 𝐴

(V(x0 ,y0 ) )

(x, y) ∈ V f(x, y) ≤ f(x0 , y0 )

(𝑥0 , 𝑦0 ) f Df(x0 , y0 ) = 0

(𝑥0 , 𝑦0 )


V(0,0)

(x0 , y0 )

f: A ⊆ ℝ2 → ℝ Df(x0 , y0 ) = 0

V(x0,y0)

(x0 , y0 ) ∈ A (x0 , y0 )

f

f(x, y) = 2𝑥 2 + 3𝑦 2 f(x, y)


∂f ∂x

= 4x = 0

∂f ∂y

= 9y 2 = 0

f(x, y) = 2𝑥 2 + 3𝑦 2

2𝑥 2 + 3𝑦 2 ≥ 0

f: A ⊆ ℝ2 → ℝ

𝐶2

𝑉(x0 ,y0 ) ∈ A

f

f

(x0 , y0 )

∂2 f ∂2 f 2 2 2 2 2 ∂xy ∂ f ∂ f ∂ f ∂x | H𝑓(x0 , y0 ) = || 2 ( ) − ( ) 2 |= ∂x 2 ∂y 2 ∂xy ∂ f ∂ f ∂yx ∂y 2

f: A ⊆ ℝ2 → ℝ

𝐶2

(x0 , y0 ) ∈ A

(x0 , y0 )


∂2 f

Hf(x0 , y0 ) > 0

∂x2

>0

f(x0 , y0 )

∂2 f

Hf(x0 , y0 ) > 0

∂x2

<0

f(x0 , y0 )

Hf(x0 , y0 ) < 0 f(x0 , y0 ) Hf(x0 , y0 ) = 0

f(x, y) = 𝑥 4 + 𝑦 4 − 2𝑥𝑦 + 2

f ∂f = 4x 3 − 2y = 0 ∂x ∂f = 4y 3 − 2x = 0 ∂y

1

(0,0) (

,

1

)

√2 √2

(−

1 √2

,−

1

)

√2

f Hf(x0 , y0 ) ∂2 f ∂x2

= 12x 2

∂2 f ∂y2

∂2 f

= 12y 2

= −2

∂xy

2

∂2 f ∂2 f ∂2 f ) Hf(x0 , y0 = 2 ( 2 ) − ( ) = 144x 2 y 2 − 2 ∂x ∂y ∂xy

Hf(0,0) = −2 < 0 Hf (

1

,

1

) = 34 >

√2 √2

Hf (−

1 √2

,−

1

1

f(

) = 34 > 0

√2

,

1

3

)=2>0

√2 √2

f (−

1 √2

,−

1

3

)=2>0

√2


1 √2

1

)

√2

f: C ⊆ ℝ2 → ℝ

C f(x0 , y0 )

f(x1 , y1 )

(x0 , y0 ), (x1 , y1 ) ∈ C

C f

C

f

f: C ⊆ ℝ2 → ℝ f(x, y) = x 2 − 2𝑥 − 2𝑦 + 𝑥𝑦 + y 2 C = {(x, y)│ − 5 ≤ x ≤ 5 , −5 ≤ y ≤ 5}

x 2 − 2𝑥 − 2𝑦 + 𝑥𝑦 + y 2

C

f

f


∂f = 2𝑥 − 2 + 𝑦 = 0 ∂x ∂f = 2𝑦 + 𝑥 − 2 = 0 ∂y

2 2

f

(3 , 3)

2 2

4

f (3 , 3) = − 3

f

𝑦 = −5 7

f (2 , −5) =

C

−5 ≤ x ≤ 5 f(x, −5) = 𝑥 2 − 7𝑥 + 35

11

f(−5, −5) = 95

4

3

−5 ≤ x ≤ 5 f(x, 5) = x 2 + 3x + 15

𝑦=5

f (− 2 , 5) =

f(5,5) = 55

x=5 3

f (5, − 2) =

51

f(5, −5) = 25

4

x = −5 7

f (−5, 2) =

91 4

−5 ≤ y ≤ 5 f(5, y) = y 2 + 3y + 15

−5 ≤ y ≤ 5 f(5, y) = y 2 − 7y + 35 f(−5,5) = 25

2 2

(3 , 3)

91 4


2 2

4

(−5, −5)

f (3 , 3) = − 3

f(−5, −5) =

95

f: D ⊆ ℝ2 → ℝ

𝑔 = ℝ2 → ℝ

C1

S = {(x, y) ∈ ℝ2 │ g(x, y) = k} S ∇f(x0 , y0 ) = 𝜆∇g(x0 , y0 )

f│S

∇f(x0 , y0 ) = 𝜆∇g(x0 , y0 )

∂f ∂g −𝜆 =0 ∂x ∂x ∂f ∂g −𝜆 =0 ∂y ∂y

ℝn → ℝ

f(x, y) = 2(x 2 − y 2 )

(x0 , y0 ) ∈ 𝐷 g(x0 , y0 ) = 𝑘 ∇𝑔(x0 , y0 ) ≠ 0 𝜆∈ℝ

f│S


f(x, y) = 2(x 2 − y 2 ) ∇f(x0 , y0 )

g(x, y) = x 2 + y 2 = 1

𝜆∇g(x0 , y0 )

∂f ∂f ∇f(x0 , y0 ) = ( , ) = (4𝑥, −4𝑦) ∂x ∂y ∂g ∂g

𝜆∇g(x0 , y0 ) = 𝜆 (∂x , ∂y) = (2𝑥𝜆, 2𝑦𝜆) ≠ 0

x2 + y2 = 1

4𝑥 − 2𝑥𝜆 = 0 −4𝑦 − 2𝑦𝜆 = 0 x2 + y2 − 1 = 0

(1,0) (−1,0)

𝜆=2

(0,1) (0, −1)

𝜆 = −2

f

S = {(x, y) ∈ ℝ2 │ x 2 + y 2 = 1}

f│S



Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.