1
2
3
Índice 1. Resumen………………………………………………………………………….6 2. Introducción………………………………………………………………………7 3. Hipótesis y Objetivo…………………………………………………………….9 3.1. Objetivo general……………………………………………………………….11 3.2. Objetivos específicos………………………………………………………….11 4. Marco Teórico……………………………………………………………………12 4.1. Breve descripción de la situación actual en torno a la deserción escolar 4.2. Definición de la deserción escolar como un indicador activo de una dependencia gubernamental. 4.3. Tipos de deserción y sus características 4.4. El IEMS-DF 4.4.1. Orígenes. 4.4.2. Planteles. 4.4.3. Organización y estructura estudiantil basado en un modelo educativo delimitado. 4.5. Interpretación del valor de la deserción escolar como un indicador alarmante en la dependencia gubernamental del IEMS-DF. 4.6. Factores que afectan en la dependencia gubernamental del IEMS-DF: Para que propicie y ocurra la deserción escolar 4.7. Beneficio de tener una acción que solucione la deserción escolar en la dependencia gubernamental del IEMS-DF 4.8. Ajuste de curvas 4.8.1. Suavizamiento de datos del ajuste 4.8.2. Modelo Teórico del ajuste 4.8.3. Modelo de Regresión del ajuste
4
4.9. El método de los mínimos cuadrados 4.9.1. Antecedentes históricos del método 4.9.2. Definición del método 4.9.3. Propiedades de la estimación del método 4.9.4. Clasificación de los modelos de ajuste del método 4.9.5. Cuantificación de la probabilidad del error del método 5. Desarrollo 5.1. Metodología 5.2. Desarrollo del primer modelo: Polinomial 5.3. Desarrollo del segundo modelo: Logarítmico-Exponencial. 6. Estudios de caso 6.1. Aplicación de los modelos de ingreso-deserción-egreso del alumnado con las acciones del IEMS-DF 6.1.1. Perfil estudiantil del IEMS-DF 6.1.2. Información histórica de datos estudiantiles del IEMS-DF 6.1.3. Aplicación del método de los mínimos cuadrados en el primer modelo: Polinomial. 6.1.4. Aplicación del método de los mínimos cuadrados en el segundo modelo: Logarítmico-Exponencial. 7. Análisis de resultados 7.1. Resultados pronosticados para los ingresos 7.2. Resultados pronosticados para las deserciones 7.3. Resultados pronosticados para los egresos 8. Conclusiones 9. Referencias 9.1. Bibliográficas 9.2. Cibergráficas 9.3. Serigráficas
5
1. Resumen.
El siguiente trabajo desarrolla un análisis del comportamiento de las acciones desertoras de los estudiantes en cuestión de la relación del ingreso y egreso en el IEMS-DF a través del uso del concepto del ajuste de curvas, que esto sustenta el método de los mínimos cuadrados, que esto es ampliamente utilizado en el análisis de diversos fenómenos científicos y sociales, que tiene como propiedad fundamental el requerir únicamente la situación presente del proceso a analizar para pronosticar y determinar su futuro.
Para ello, en el marco teórico se desarrollan los conceptos de la deserción escolar y cómo es que se puede determinar el valor de las mismas, de igual manera se explica de manera general los diversos tipos de ajuste de curvas para poder aplicar el método de los mínimos cuadrados y se definen los requerimientos para que pueda formularse y pronosticarse una función de ajuste.
Por último se desarrollan dos modelos básicos del ajuste de curvas que son: polinomial y logarítmico exponencial con los cuáles se puede determinar la probabilidad de que las acciones suban o bajen y se aplica sobre los valores históricos de tres rubros estudiantiles como son: el ingreso, el abandono y el egreso, para así concluir un análisis estadístico en torno al comportamiento de cada una.
6
2. Introducción
La deserción escolar en la educación media superior en nuestro país es un grave problema para el desarrollo de México.
Pero la estadística puede dar respuestas a muchas de las necesidades que la sociedad actual nos plantea. Su tarea fundamental es la reducción de datos, con el objetivo de representar la realidad y describirla, predecir su futuro o simplemente conocerla. En nuestros días la estadística se ha convertido en un método efectivo para describir con exactitud los valores de datos físicos, políticos y sociales, y sirve como herramienta para relacionar y analizar dichos datos. El trabajo del experto estadístico no consiste ya sólo en resumir y tabular los datos, sino sobre todo en el proceso de interpretación de esa información.
Pronosticar o dar aproximaciones a futuros eventos ha sido una práctica frecuente para los seres humanos. En tiempos remotos estos pronósticos se realizaban mediante métodos un poco ortodoxos. Con el paso del tiempo y gracias a los avances teóricos y tecnológicos de la ciencia, estas aproximaciones han ido cambiando hasta llegar a metodologías rigurosamente científicas y bien fundamentadas teóricamente.
El desarrollo de la teoría de la probabilidad ha aumentado el alcance de las aplicaciones de la estadística. Muchos conjuntos de datos se pueden aproximar, con gran exactitud, utilizando modelos probabilísticos; los resultados de estas pueden utilizar para analizar datos estadísticos. La probabilidad es útil para comprobar la fiabilidad de las inferencias estadísticas y para predecir el tipo y la cantidad de datos necesarios en un determinado estudio estadístico.
7
El análisis de regresión es una técnica estadística para investigar y modelar la relación entre variables. Son numerosas las aplicaciones de la regresión, y las hay en casi cualquier campo, incluyendo en ciencias físicas, experimentales y sociales. De hecho, puede ser que el análisis de regresión sea la técnica estadística más usada.
En la actualidad el uso de las herramientas matemáticas y probabilísticas ha permitido optimar los procesos de los indicadores de desempeño de los estudiantes en cada uno de los planteles del IEMS-DF para lograr avances en cuanto a la mejora de los mismos, provocando una minimización de deserción escolar y así realizar una mejor toma de decisiones que permite generar mayores egresos estudiantiles.
A continuación se desarrollará una sencilla aplicación de análisis de regresión por medio del ajuste de curvas, que esta es considerada como el Método de los Mínimos Cuadrados. Desarrolladas por el matemático alemán Karl Friedrich Gauss en 1795, la técnica del método de los mínimos cuadrados permite predecir la probabilidad de que un evento ocurra tan solo conociendo el evento inmediato anterior y esto se utilizará adecuadamente cuando la variable de respuesta sólo tiene dos resultados posibles, llamados en forma genérica, “éxito” y “fracaso” y se representan por 0 y 1.
Finalmente, en este presente trabajo buscará encontrar las variables más importantes que inciden la deserción escolar, así como proveer de resultados para que, de ser necesario, se puedan realizar políticas públicas en la CDMX para reducir la deserción.
8
3. Hipótesis y Objetivos. Se proponen dos hipótesis a analizar:
Primera Hipótesis: “El comportamiento de las acciones desertoras estudiantiles en el IEMS-DF a futuro es dependiente de su comportamiento en el pasado”.
Segunda Hipótesis: “El comportamiento de las acciones desertoras estudiantiles en el IEMS.DF es independiente de su comportamiento en el pasado, por lo que sólo dependen de la situación actual para poder determinar su situación en el futuro”.
Tomando en cuenta la primer hipótesis, para que un investigador pudiese tomar decisiones tendría que conocer previamente cada una de las situaciones que han ocurrido en el ingreso, en el egreso y la deserción de las acciones de los indicadores de desempeño estudiantiles del IEMS-DF así como el contexto que ello engloba: en el desarrollo sustentable de la capital mexicana, en el mayor ingreso presupuestal educativo del gobierno local capitalino, en la dimensión de la eficacia de la calidad educativa en la CDMX, etc.
9
Mientras que, por otro lado, se tiene que la segunda hipĂłtesis un investigador podrĂa recurrir al uso de herramientas propias del AnĂĄlisis NumĂŠrico, tales como los Modelos EstadĂsticos y/o probabilĂsticos y asĂ tener un pronĂłstico que le permita tomar decisiones de manera mĂĄs acertada, reduciendo la incertidumbre en torno al tema.
Cabe aclarar que en el presente trabajo se tomarĂĄ en cuenta las siguientes variables:
 

Variable cuantitativa dependiente (�): Define la deserción de los alumnos y alumnas de cada plantel que conforma el IEMS-DF. Variable cuantitativa independiente (�): Define el ciclo escolar o generación donde se analiza la deserción de estudiantes en cada plantel que conforma el IEMS-DF. Variable aleatoria (�� ): Define para la aleatoriedad para la tendencia del error de los datos que se presentan.
Con estas consideraciones que para un modelo mĂĄs exacto habrĂa que ampliar a las distintas variables que se mencionan en la primera hipĂłtesis y lograr con ello, un resultado muy exacto. Dicho modelo requiere un conocimiento matemĂĄtico especializado que se aplicarĂĄ a travĂŠs de un anĂĄlisis estadĂstico de regresiĂłn del ajuste de curvas por medio del MĂŠtodo de los MĂnimos Cuadrados.
10
3.1. Objetivo General Teniendo en cuenta lo mencionado con anterioridad, el objetivo que se pretende demostrar es que el comportamiento de las acciones de la deserción estudiantil como un indicador de desempeño del IEMS-DF puede ser modelado mediante el uso del ajuste de curvas mediante el método de los mínimos cuadrados con el cual se puede respaldar en mayor medida la toma de decisiones al momento de fomentar y facilitar estrategias institucionales de permanencia en cada uno de los planteles que conforma el IEMS-DF.
3.2 Objetivos Específicos Como metas secundarias se busca también demostrar que la aplicación de la probabilidad y estadística así como las herramientas del análisis numérico resulta de gran importancia para poder obtener mejores rendimientos estudiantiles en los indicadores de desempeño en la modalidad escolarizada del IEMS-DF en las distintas etapas escolares, desde el ingreso, pasando después por el abandono y deserción hasta el egreso o culminación de los estudios. De igual manera, se pretende conocer la situación actual de la deserción estudiantil en la Ciudad de México y conocer el futuro inmediato del comportamiento de las acciones desertoras estudiantiles de todos los planteles del IEMS-DF, que en este caso son tres vertientes a considerar: La Deserción Intracurricular, La Deserción Intercurricular y La Deserción Total.
11
4. Marco Teórico
4.1 .Breve Descripción de la situación actual en torno a la deserción.
La deserción escolar es un problema fundamental que se encuentra en el centro de atención de las políticas y las acciones realizadas por el Instituto de Educación Media Superior del Distrito Federal (IEMS-DF). Tomando en cuenta el modelo que sigue el sistema educativo mexicano, el primer requisito para lograr que los capitalinos puedan recibir una educación de buena calidad, radica en garantizar el acceso y la permanencia en un programa educativo que, de acuerdo con la Reforma Integral de la Educación Media Superior, puede ser presencial, intensiva, virtual, autoplaneada, mixta o certificada en exámenes (DOF, 2008, 2008b, 2008c; SEP SEMS RIEMS). La educación tiene como función social básica: “Ampliar las oportunidades educativas, para reducir desigualdades entre grupos sociales, cerrar brechas e impulsar la equidad” (SEP, 2006 p. 11) al dotar a los alumnos de competencias y conocimientos pertinentes que funcionan como base y estructura sólida para construir una trayectoria individual y comunitaria, productiva e integral. La deserción escolar mina este cometido y propicia el efecto contrario: las fisuras sociales se amplían y la movilidad social se pierde si quienes tienen menos oportunidades y recursos abandonan las aulas. Por ejemplo, a partir de la relación escolaridadingreso, quienes egresan del nivel medio superior reciben en promedio un salario mayor en 30% con respecto a quienes no la cursaron (CEPAL, 2010). De modo similar, la OCDE (2011) señala que, en los países miembros, las personas que concluyen estudios de ese nivel educativo pueden ver reflejado un incremento promedio en sus ingresos de hasta 23% adicional. Además, la diferencia en los ingresos entre quienes abandonan el nivel medio superior y quienes lo concluyen puede transmitirse generacionalmente y agravar con ello la desigualdad social. La escolaridad de los padres es un factor que incide en la trayectoria educativa de los jóvenes. Por ejemplo, la Encuesta Nacional de Deserción en la Educación Media Superior (ENDEMS) muestra que entre los jóvenes que abandonaron la escuela el 65% reportó que sus padres sólo alcanzaron estudios inferiores al nivel medio superior y sólo 8% de quienes desertaron reportó que sus padres iniciaron o concluyeron la educación superior y, como se verá más adelante, aquellos jóvenes cuyos padres estudiaron la Educación Superior tienen 18% menos probabilidades de desertar.
12
La relevancia del papel de la educación y de contar con un alto nivel de escolarización, se hace patente si se considera que los recursos invertidos en educación logran un retorno social y privado más alto (CEPAL, 2002), puesto que los años adicionales de educación se traducen en importantes ahorros de recursos públicos y privados, abatimiento de los índices de pobreza y marginación, recomposición del entorno de bienestar social, mejor inclusión y adaptación del individuo a la sociedad y a la familia, salvaguarda y enriquecimiento del capital cultural, incremento en las oportunidades de encontrar trabajos bien remunerados, decremento en las pérdidas salariales al acceder a nuevos empleos, disminución de la brecha salarial entre mujeres y hombres, reducción del subempleo, así como del número y duración de los períodos de desempleo, entre otros. Es decir: el umbral educativo para revertir la tendencia de pobreza y garantizar una alta probabilidad de un acceso mínimo al bienestar a lo largo del ciclo de vida abarca, por lo menos, 12 años de estudios formales (CEPAL, 1999b; PREAL, 2009; Goicovic, 2002).
Ahora bien, el aporte del proceso educativo a la cohesión social no se agota en el abono de competencias laborales y conocimientos que permiten un mejor desarrollo económico, individual y social. Además de esto, la educación tiene un papel central en la formación humana y ciudadana de los estudiantes, que debe de constituirse en pieza clave de la construcción de lazos sociales más fuertes y comprometidos. En este sentido, la Educación Media Superior se sitúa como un nivel educativo privilegiado, ya que en el caso de muchos estudiantes el paso por esta etapa coincide con el periodo de tránsito de la minoría de edad al momento en el que pueden ejercer plenamente sus derechos y deberes ciudadanos. Acorde con esto, una tarea medular de autoridades, directores, docentes y padres de familia, consiste en lograr que el camino de los jóvenes a la mayoría de edad corra en paralelo con una creciente capacidad de asumirse como auténticos ciudadanos, comprometidos, críticos y solidarios.
De este modo y en este contexto, la deserción afecta no sólo los ámbitos económico y social de los jóvenes. Las brechas educativas se traducen en sociedades fragmentadas y yuxtapuestas, al mismo tiempo las brechas se amplían a partir de dicha fragmentación. De esta forma, cabe destacar que la deserción significa mucho más que la interrupción de un proceso de transmisión de conocimientos, por demás valioso, pues con ella se debilita la función educativa de coadyuvar a la cimentación de una ciudadanía responsable.
13
La obligatoriedad de la Educación Media Superior, promulgada el 9 de febrero de 2012 (Diario Oficial de la Federación-DOF, 2012), puede incidir como un estímulo para fortalecer el nivel medio superior, incrementar la escolaridad de la población y promover condiciones que permitan apuntalar los esfuerzos por abatir la deserción. El objetivo central de la obligatoriedad está relacionado con las funciones educativas expuestas: “se asocia con el mejoramiento de la productividad, la movilidad social, la reducción de la pobreza, la construcción de la ciudadanía y la identidad y, en definitiva, con el fortalecimiento de la cohesión social (INEE, 2011, p. 13).” Además, es previsible y deseable que la reforma constitucional implique que al nivel medio superior se asigne mayores recursos, a partir de los cuales sea posible ampliar la cobertura, mejorar la infraestructura y el equipamiento y reforzar la calidad de la educación pública. Implica también que, tanto las autoridades educativas como los padres, tutores y los mismos estudiantes atiendan la exigencia social para lograr que todo alumno que ingrese al nivel lo concluya, lo que supone estable-ser una base de equidad para el ingreso, permanencia, continuidad y conclusión exitosa en un marco de buena calidad educativa (Verdugo, 2012). Es previsible, por ejemplo, que con la obligatoriedad los empleadores empiecen a solicitar en grado creciente la acreditación de la Educación Media Superior, de tal modo que aun el ámbito laboral mismo servirá de estímulo directo para que más jóvenes busquen concluir el nivel. Esto, por supuesto, deriva en una serie de retos que exigen apoyar a las familias y a los estudiantes para que sean solventes durante el tiempo que los jóvenes estudien, e impulsar opciones educativas cuya flexibilidad permita a los jóvenes trabajar y adquirir experiencia laboral. Por ello, el objetivo de ampliar la cobertura hasta garantizar un lugar para todos los jóvenes que hayan concluido la Educación Básica no es suficiente, sobre todo si una vez alcanzada esta capacidad un porcentaje alto de jóvenes deserta o no obtiene los aprendizajes que necesita para su vida profesional, laboral y social. Al respecto, el Instituto Nacional para la Evaluación de la Educación (INEE) sostiene: “el sentido más importante de la obligatoriedad es que la asistencia a la escuela signifique, para todos los educandos, el logro de resultados de aprendizaje comunes, independientemente de sus diferencias socioeconómicas (y) culturales...” (INEE, 2011, p. 20). Lograr lo que el espíritu de la obligatoriedad propone requiere abatir la deserción, consolidar la buena calidad educativa del nivel y generar los apoyos suficientes que garanticen, como se apuntó, la equidad y la igualdad de oportunidades en el acceso y permanencia en este nivel educativo.
14
El estudio de los factores asociados que inciden en la deserción en el nivel medio superior: Encuestas y estudios realizados. Desde la década de los años setenta el Sistema Educativo Nacional cuenta con información estadística para medir la deserción en el nivel medio superior (UPEPE – SEP), no se han desarrollado estudios o levantado encuestas específicas para analizar, a nivel local, tanto la dimensión del fenómeno de la deserción en la Educación Media Superior, como los factores que actúan como condiciones de posibilidad para que ocurra el abandono escolar. El Censo de Población y Vivienda 2000 realizado por el INEGI representó una de las primeras aproximaciones para determinar los factores que influyen en el abandono escolar del nivel medio superior. En este Censo de Población que incluyó una pregunta, dirigida a la población de 7 a 29 años de edad que dijo no asistir a la escuela, sobre la “causa principal por la cual había abandonado los estudios”. Sin embargo, dadas las características propias del levantamiento censal, la pregunta se realizaba en términos muy amplios, sin precisar, por ejemplo, en qué nivel se habían abandonado los estudios (básico, medio superior o superior) y restringiendo las posibles respuestas a los siguientes factores generales:
1. Nunca ha ido a la escuela 2. No quiso o no le gustó estudiar 3. Falta de dinero o tenía que trabajar 4. Se casó (unió) 5. La escuela estaba muy lejos o no había 6. Su familia ya no lo (a) dejó o por ayudar en las tareas del hogar 7. Terminó sus estudios A partir de los datos arrojados por el Censo de 2000, Norma Luz Navarro Sandoval, en su artículo Marginación escolar en los jóvenes. Aproximación a las causas de abandono (2001) calculó los porcentajes de cada una de las opciones de respuesta, delimitando los datos a las respuestas de los jóvenes de 15 a 19 años. Según este estudio, “de los jóvenes que desertaron del sistema educativo, el 37.4% no quiso o no le gustó estudiar; el 35.2% por causas económicas; el 5.8% porque se casó o unió; el 5.4% por haber terminado sus estudios; un porcentaje menor (2.3%) declaró que no existía escuela o que estaba lejos, la causa de tipo familiar presentó un porcentaje bajo (2.4%), en tanto que el 3.1% de las respuestas fueron para otra causa y el restante 8.5% no especificó por qué dejó los estudios” (Navarro, 2001, pp. 48 y 49).
15
Llama la atención que a diferencia de prácticamente todos los estudios realizados posteriormente sobre este tema, el principal motivo para desertar remite a una cuestión personal, prácticamente volitiva: no quiso o no le gustó estudiar (37.4%). El alto índice alcanzado por esta respuesta da la pauta para ahondar más en la indagación de situaciones que influyen para que un joven quiera o no continuar sus estudios. Juntas, la razón personal y la económica (falta de dinero o tenía que trabajar, 35.7%) integran poco menos de las tres cuartas partes de las respuestas de los jóvenes. Frente a este tipo de factores, la única opción relacionada con la situación escolar (la escuela estaba muy lejos o no había, 2.3%) obtiene un número de menciones poco significativo. Estos dos motivos, el personal y el económico, aparecen de nueva cuenta como las principales causas de abandono escolar, según los datos arrojados por la Encuesta Nacional de la Juventud 2005 (IMJUVE, 2005). Conforme a los resultados de esta encuesta, las opciones “tener que trabajar” y “ya no me gustaba estudiar” suman más de 70% de las respuestas para el segmento poblacional que va de los 15 a los 24 años. Las respuestas que les siguen son, para el segmento de 15 a 19, “porque acabé mis estudios”, “para cuidar a la familia” y “mis padres ya no quisieron que estudiara”. La Encuesta Nacional de Ocupación y Empleo (ENOE), (INEGI, 2009) incluyó un Módulo de Educación, Capacitación y Empleo (MECE), en el que consideraba una pregunta sobre las razones para desertar de la Educación Media Superior. La población objetivo de esta encuesta fueron personas mayores de 12 años y económicamente activas (PEA), es decir, que durante la última semana a la entrevista trabajaron o buscaron trabajo. A diferencia de: las otras encuestas mencionadas, en la ENOE de 2009, la pregunta se dirigía específicamente a las causas de abandono escolar para el nivel medio superior. Según los resultados de esta encuesta, la insuficiencia de dinero para pagar la escuela y la necesidad de aportar dinero al hogar suman 52% de las razones principales para desertar. En tercer lugar se menciona el embarazo, matrimonio y unión (12%) y en cuarto, “No le gustó estudiar” (11%). Además de esta última opción, que puede estar asociada con el sistema educativo y con la gestión y el ambiente escolar, la razón explícitamente escolar más alta fue la de “Reprobación, suspensión o expulsión”, con apenas 2.5%. Por otra parte, si bien tanto en hombres como en mujeres la primera causa es la referida a la in-suficiencia económica, en el caso de las mujeres la segunda causa se refiere al “Embarazo, matrimonio y unión” (23%), mientras que en los hombres ocupa la segunda posición “Necesidad de aportar dinero en el hogar” (27%).Con relación a los factores que influyen para que el joven abandone las aulas, otra fuente de información es la encuesta que se realiza entre los directores de las escuelas del nivel medio superior que participan en la prueba ENLACE. En 2010, aproximadamente 72% de los directores de media superior que participaron (10,686) contestaron ese cuestionario.
16
Los directores reportaron como principales razones para la deserción los problemas económicos (43%), la falta de interés en la escuela (24%) y el bajo rendimiento (19%). Estudios sobre las causas o los factores que inciden en el fenómeno de la deserción Como se mencionó al inicio de este apartado, más allá de las encuestas mencionadas, que ofrecen importantes indicios y proponen rutas para posteriores investigaciones, en México no existen estudios que documenten y analicen a nivel local los principales factores que confluyen para que un estudiante de la Educación Media Superior abandone los estudios, lo cierto es que se puede encontrar información valiosa en diferentes documentos que exponen esta situación a partir de estudios realizados en cada uno de los planteles que conforma el IEMS-DF. Así por ejemplo, en el informe La Educación Media Superior en México (INEE, 2011), se realiza una revisión del comportamiento de las tasas de deserción en el nivel medio superior mexicano que explica algunos aspectos como la variación histórica (de 19.8% a 14.9% en trece años), la diferencia entre el abandono escolar en hombres (17.2%) y mujeres (12.8%) y la distinción entre la deserción intercurricular (43%) y deserción intracurricular (57.2%). Por lo que toca a los motivos que inciden en la deserción de los jóvenes, el INEE (2011) destaca la necesidad de éstos por incorporarse al mundo laboral, la falta de pertinencia de la oferta curricular y la carencia de conocimientos sólidos y habilidades que permitan adquirir nuevos aprendizajes. Como consecuencia de esto último, se propone que parte de la solución al problema de la deserción radica en mejorar la formación obtenida por los egresados del nivel de educación básica. En este mismo sentido, el INEE apunta: “es razonable pensar que buena parte de ese abandono podría evitarse si la educación básica asegurara para todos una formación de calidad que les permita adquirir los aprendizajes que ofrece la EMS” (2011, p. 69).Esta conclusión coincide con los resultados de la Evaluación de las políticas de Educación Media Superior y Superior en el sector tecnológico federal 1995-2000 (Didou y Martínez, 2000), en la que se ofrece un panorama general de los retos y avances del sector tecnológico de Educación Media Superior y superior. Esta evaluación da cuenta de que durante el periodo 1994-1999 el porcentaje más alto de sustentantes que alcanzaron el mínimo de respuestas correctas en la sección de razonamiento formal del examen de diagnóstico e ingreso a los bachilleratos tecnológicos fue de 16.89%, mientras que en el caso de la sección de capacidad para el aprendizaje de las matemáticas del mismo examen, fue de 50.66% (Didou y Martínez, 2000). Según se explica, estos bajos niveles de conocimientos y habilidades al ingreso del nivel medio superior están relacionados con los altos índices de reprobación y deserción que afectaban entonces al sistema de educación tecnológica del nivel medio superior, sobre todo en los dos primeros semestres, particularmente a las escuelas
17
tecnológicas centralizadas de sostenimiento federal .Entre los estudios realizados a nivel regional para explorar en los factores que favorecen el fenómeno de la deserción se encuentra el desarrollado en el estado de Sonora (Valdez, Román, Cubillas y Moreno, 2008), llevado a cabo a partir de una encuesta que tuvo como muestra a 147 estudiantes. En este estudio, los factores académicos se perciben con mayor importancia, junto con los factores económicos (estos últimos reconocidos en todas las encuestas previas como condicionantes expulsores en la Educación Media Superior). Así, en el caso de los varones la principal razón para desertar fue académica, específicamente, la reprobación de materias (49%). A esta razón le siguieron los factores económicos (37%), la falta de interés (11%) y, con menores porcentajes, factores familiares (2%) y ubicación de la escuela (1%). Las mujeres, en cambio, refirieron en primer lugar las causas económicas (49%), seguidas de la reprobación de materias (25%), falta de interés (20%), factores familiares (4%) y ubicación de la escuela (2%). Junto con estas razones, en el estudio se hace un esfuerzo por indagar en las motivaciones intrasubjetivas referidas, de acuerdo con los autores, a la baja o alta autoestima como factor que influye en la decisión de abandonar los estudios y que, en relación con el rendimiento académico, se le vincula con la opinión que de sí mismos tienen los estudiantes. El estudio aborda también un tema que resulta relevante y que no es fácil encontrar en los datos que hablan de la deserción, a saber, el caso de los alumnos que si bien engrosan los porcentajes de abandono escolar de un determinado tipo de plantel, se matriculan después en otro. Según los resultados de la encuesta realizada en Sonora, en 26% de los casos, el joven encuestado había salido de un tipo de plantel y se había reincorporado a otro. Esto significa que más de la cuarta parte de los entrevistados que habiendo “desertado”, se encontraban inscritos en planteles distintos al de la escuela que había proporcionado los datos del joven que desertó. Esta situación evidencia, como apuntan los autores, la necesidad de contar con un sistema de comunicación entre los distintos tipos de planteles que ofertan la Educación Media Superior, de tal manera que se cuente con información pertinente respecto al número de estudiantes que efectivamente se encuentran fuera de las aulas y que, además, permita recuperar el costo individual e institucional de lo invertido en los semestres cursados por los estudiantes que abandonan una determinada escuela (Valdez, et al, 2008). En otro estudio (Vidales, 2009) se distinguen diversos factores de tipo intrasistema que tienen influencia sobre el rendimiento escolar en general, y más específicamente, sobre la deserción. Los factores propuestos: 1. Escasa introducción de mejoras didácticas y pedagógicas en los programas de formación docente.
18
2. La poca utilización de los datos arrojados por los exámenes de ingreso a la preparatoria y por los diagnósticos socioeconómicos, culturales y familiares que se realizan a los estudiantes. 3. La situación de los docentes y su poca profesionalización. La mayoría de ellos están contratados a tiempo parcial, sufren de inestabilidad laboral, movilidad entre planteles y excesiva carga de grupos y alumnos. 4. Escasa articulación entre niveles educativos y poca vinculación de la escuela con agentes externos, como la familia. 5. Poco acercamiento de los estudiantes a las actividades de investigación, que motiven su rendimiento académico. 6. Insuficiente orientación vocacional y poca motivación de los jóvenes por los estudios medio superiores. 7. Alta carga de alumnos por grupo. 8. Deficiencias en la formación de los estudiantes en temas como matemáticas, habilidades cuantitativas y verbales, y conocimiento del español. 9. Exiguo desarrollo de habilidades para el estudio y el autoaprendizaje. Otro tipo de estudio, que si bien no compara de modo explícito el grado de deserción por año, es el de Education at Glance (OECD, 2011) en el que se presentan diversos indicadores que nos muestran la situación de México con respecto a los otros países miembros de la Organización para la Cooperación y el Desarrollo Económico, en cuanto al porcentaje de jóvenes que estudian la Educación Media Superior y la finalizan. El indicador de eficiencia terminal (completion) describe el porcentaje de jóvenes que egresaron del nivel medio superior (upper secundary), entre aquellos que iniciaron dicho nivel. En un estudio realizado entre 20 países pertenecientes a la OCDE, entre los cuales se incluye a México, el promedio de la eficiencia terminal es de 68%, lo cual indica que si bien la mayoría de los estudiantes que inician el nivel medio superior lo finalizan, también indica que el porcentaje de deserción, 32% es significativamente alto. El estudio muestra que a este porcentaje debe restarse el número de alumnos que toman un “año sabático” (costumbre relativamente habitual en algunos de los países que participaron en el estudio) o que tardan más tiempo del establecido para finalizar el nivel educativo (por repetición o tiempo de descanso). En este rubro, México se coloca por debajo del promedio, al alcanzar 52% de eficiencia terminal (OECD, 2011). Este indicador está relacionado con los índices anuales de deserción: la suma de los estudiantes de una generación que desertan
19
durante los años en que transcurre su Educación Media Superior es justo lo que disminuye el porcentaje de la eficiencia terminal. En México, de modo coherente a las tendencias de los restantes países miembros de la OCDE, las mujeres tienen un mayor porcentaje de eficiencia terminal (55%), que los varones (48%). Junto con el indicador de eficiencia terminal (completion) se puede mencionar, de modo complementario, que la tasa de graduación o terminación (graduation) mide la relación entre los graduados del nivel medio superior (upper secundary) contra la totalidad de jóvenes que están en la edad característica de graduarse (esto varía según el sistema educativo de cada país). De esta forma, de acuerdo con la información disponible, 21 de 28 países miembros de la OCDE tienen tasas de graduación por encima del 75%, e incluso en algunos países como Finlandia, Irlanda, Japón, Nueva Zelanda, Noruega, Portugal, Eslovenia, Suiza y Reino Unido la tasa de graduación excede el 90%, sin embargo para el caso de México, la tasa de graduación que expone la OCDE, referida al número de graduados del nivel medio superior en comparación con la población de 18 años del país, el porcentaje es del 45%, lo que nos coloca muy por debajo del promedio OCDE que es del 82%.La tasa de graduación puede dar una idea de la deserción a nivel de sistema educativo. El porcentaje de este indicador disminuye a partir del abandono escolar tanto en Educación Básica como en Media Superior, además de hacerlo en correspondencia a los jóvenes que, teniendo 18 años, continúan estudiando. Otro indicador que ofrece una idea sobre la cuestión de la deserción, aunque de modo más amplio, de la situación de México frente a los países miembros de la OCDE, se refiere al porcentaje de personas de 25 a 34 años y de 25 a 64 años (sic) que no finalizaron su educación media. El promedio de los países de la OCDE es de menos de 20% y menos de 30% respectivamente; sin embargo, México tiene poco menos de 60% para el primer indicador y alrededor de 65% en el segundo (OECD, 2012).La OCDE en 2010, emitió 15 recomendaciones a México en el ánimo de contribuir para la mejora de sus resultados en el ámbito educativo. Las recomendaciones en términos generales fueron: (a) Reforzar la importancia del papel que juegan los docentes: atraer mejores candidatos, profesionalizar la selección, contratación y evaluación docente, y (b) Redefinir y apoyar un liderazgo y una gestión escolar de excelencia (OECD, 2010). Los estudios mencionados arrojan información general que nos aproxima al estudio de los factores que confluyen en el abandono escolar. Los datos arrojados por las encuestas aquí mencionadas (CENSO, 2000; IMJUVE, 2005; ENOE, 2009) privilegiaron los factores económicos y los individuales. Sin embargo, dichos aspectos quedaron mencionados en un nivel muy general. En el caso de los factores individuales, por ejemplo, el disgusto por estudiar no parece ser una causa por sí misma, sino una
20
manifestación de un problema anterior que puede estar relacionado con el ámbito familiar, escolar o social. Resulta, pues, necesario desentrañar qué elementos subyacen en este tipo de respuesta, tan ampliamente socorrido en estas encuestas. Por otra parte, en estas encuestas la influencia del ámbito escolar parece estar subestimada. Pareciera como si, frente a los factores económicos y al disgusto por estudiar, poco pudiera hacer el sistema educativo. No obstante, los estudios regionales (Valdez, Román, Cubillas y Moreno, 2008; Vidales, 2009), el informe del INEE (2011) y las recomendaciones de la OCDE (2010) coinciden en afirmar que el fortalecimiento del ámbito escolar (en términos de consolidar la labor de los docentes, asegurar un liderazgo eficiente de los directores, apuntalar los aprendizajes obtenidos en el nivel básico, contar con prácticas pedagógicas cercanas a los jóvenes, aprovechar la información surgida de los exámenes estandarizados, disminuir el índice de reprobación, etcétera) tiene una incidencia directa en la permanencia de los jóvenes. Detectar estos factores es de gran importancia, sobre todo porque arrojan información que puede ser utilizada para el diseño, evaluación y mejoramiento de las políticas educativas.
4.2. Definición de la deserción escolar como un indicador activo de una dependencia gubernamental.
Definición Deserción es el total de alumnos que abandonan las actividades escolares antes de concluir algún grado o nivel educativo, expresado como porcentaje del total de alumnos inscritos en el ciclo escolar. La deserción es un indicador que forma parte de la triada de indicadores de eficiencia (reprobación, deserción y eficiencia terminal) más representativa en relación con el éxito o el fracaso escolar. Asimismo, con base en este indicador, es posible determinar con exactitud la permanencia del alumnado dentro del sistema educativo (número de años que los desertores permanecen dentro del Sector antes de abandonar sus estudios definitivamente). Con estas consideraciones ya definidas la deserción puede calcularse para cada uno de los grados que constituyen un nivel educativo en este caso es para el nivel preuniversitario o para obtener el total de un nivel específico en este caso se enfocará en la modalidad escolarizada.
21
Interpretación. El valor del indicador muestra la proporción de alumnos 1. En riesgo de no alcanzar los créditos correspondientes al ciclo escolar en el que se encuentran inscritos, del total de alumnos de su generación inscritos en ese ciclo. 2. De una cohorte o generación dada que no se reinscriben al segundo y tercer año o al tercer y quinto semestre, con relación al total de alumnos que ingresaron en dicha generación.
Observaciones El abandono se entiende como el complemento de la capacidad que tienen la entidad académica del IEMS-DF en cada uno de los planteles que lo conforma para que los alumnos que ingresan en una generación dada se reinscriban al segundo y tercer año o tercer y quinto semestre del plan de estudios respectivo. Se consideran a los alumnos en riesgo aquellos que al iniciar el ciclo escolar presentan de una a tres de asignaturas no acreditadas en el tiempo establecido por el plan de estudios.
Utilidad La información que ofrece el indicador: 1. Puede considerase una medida del desempeño escolar útil para que las entidades académicas (los planteles) que conforman el IEMS-DF instrumenten acciones para reducir el rezago escolar 2. Permite dimensionar el abandono de los estudios en los planteles. Esta información puede ser útil para que la entidad académica del IEMS-DF implementen acciones cuyo propósito sea reducir los niveles de abandono y rezago en los primeros años.
Fórmula de Cálculo Alumnos de una generación que no se reinscriben al siguiente semestre ( ) ∗ 100 Total de alumnos de la generación
22
Dimensión del desempeño de la calidad educativa Este se considera como de Eficacia Escolar.
Naturaleza sistémica del Indicador Esta se considera como Proceso.
Niveles de desagregación • Institucional • Por Modalidad • Por plantel
Criterio Estadístico El número de alumnos en riesgo se calculará considerando aquellos alumnos que no alcanzan el avance esperado por el plan de estudios y cuentan con hasta tres asignaturas reprobadas. No se consideran los alumnos con un año de retraso ni se toma en cuenta si la acreditación se realizó en periodo ordinario o por examen extraordinario. El abandono se calcula por cohortes, esto es, a partir del total de alumnos que no se reinscriben al segundo y tercer año o tercer y quinto semestre del plan de estudios respectivo, con relación al total de alumnos de la generación correspondiente.
Fecha de corte (sugerida) Al inicio del ciclo escolar, verificando la actualización completa de historias académicas del ciclo escolar anterior. Al cierre del ciclo escolar, verificando la actualización completa de historias académicas.
23
4.3. Tipos de deserción y sus características.
La deserción se clasifica en tres vertientes características que son: • Deserción intracurricular: Se denomina así cuando el abandono ocurre durante el ciclo escolar. • Deserción intercurricular: Se denomina así cuando el abandono que se efectúa al finalizar el ciclo escolar, independientemente de que el alumno haya aprobado o no. • Deserción total: Es la combinación de ambas deserciones, es decir la combinación de la deserción intracurricular y de la deserción intercurricular. La deserción puede calcularse para cada uno de los grados que constituyen un nivel educativo (en este caso será el nivel medio superior) o para obtener el total de un nivel específico. Veamos el siguiente diagrama relacional:
__________________________________________________________________ •SEP-DGPP. Secretaria de Educación Pública-Dirección General de Planeación y Programación (2005) “Lineamientos para la formulación de indicadores educativos.” Recuperada el 10 de diciembre de 2015 en: http://www.dgpp.sep.gob.mx/Estadi/Formulario%20Completo%20modificado%202 6%20Ene%2005.pdf __________________________________________________________________
24
Cuyos elementos de este diagrama relacional se definen a travĂŠs de las siguientes fĂłrmulas: Para la: MatrĂcula(n+1) = MatrĂcula(n) − Desertores total(n) − Egresados(n) + Nuevo ingreso a 1ero.(n+1) Para los: Desertores total(n) = MatrĂcula(n) − Matricula(n+1) − Egresados(n) + Nuevo ingreso a 1ero.(n+1) Para la: deserciĂłn total =
desertores total(n) matrĂcula total(n)
Para la: matrĂcula total(n+1) − nuevo ingreso 1o.(n+1) + egresados(n) deserciĂłn total = 1 − ( ) matrĂcula total(n)
DeserciĂłn Intracurricular.
Para calcular los desertores intracurriculares por grado utilicemos la siguiente formula: đ?‘‘đ?‘’đ?‘ đ?‘’đ?‘&#x;đ?‘Ąđ?‘œđ?‘&#x;đ?‘’đ?‘ đ?‘–đ?‘›đ?‘Ąđ?‘&#x;đ?‘Žđ?‘–,đ?‘› = đ?‘šđ?‘Žđ?‘Ąđ?‘&#x;Ăđ?‘?đ?‘˘đ?‘™đ?‘Ž đ?‘Ąđ?‘œđ?‘Ąđ?‘Žđ?‘™đ?‘–,đ?‘› − đ?‘’đ?‘Ľđ?‘–đ?‘ đ?‘Ąđ?‘’đ?‘›đ?‘?đ?‘–đ?‘Žđ?‘–,đ?‘› Donde đ?‘– es el grado escolar, este se define como đ?‘– = 1, ‌ , 3 bachillerato de tres aĂąos. Sumando los desertores intracurriculares de cado grado se obtienen los desertores intracurriculares totales cuya fĂłrmula para obtenerlos es la siguiente: đ?‘—
đ?‘‘đ?‘’đ?‘ đ?‘’đ?‘&#x;đ?‘Ąđ?‘œđ?‘&#x;đ?‘’đ?‘ đ?‘–đ?‘›đ?‘Ąđ?‘&#x;đ?‘Ž(đ?‘›) ∑ đ?‘‘đ?‘’đ?‘ đ?‘’đ?‘&#x;đ?‘Ąđ?‘œđ?‘&#x;đ?‘’đ?‘ đ?‘–đ?‘›đ?‘Ąđ?‘&#x;đ?‘Žđ?‘–,đ?‘› đ?‘–=1
Donde � es el grado escolar, este se define como � = 1, ‌ , 3 bachillerato de tres aùos.
25
TambiĂŠn es posible obtener el mismo resultado a travĂŠs de la siguiente fĂłrmula: đ?‘‘đ?‘’đ?‘ đ?‘’đ?‘&#x;đ?‘Ąđ?‘œđ?‘&#x;đ?‘’đ?‘ đ?‘–đ?‘›đ?‘Ąđ?‘&#x;đ?‘Ž(đ?‘›) = đ?‘šđ?‘Žđ?‘Ąđ?‘&#x;Ăđ?‘?đ?‘˘đ?‘™đ?‘Ž đ?‘Ąđ?‘œđ?‘Ąđ?‘Žđ?‘™(đ?‘›) − đ?‘’đ?‘Ľđ?‘–đ?‘ đ?‘Ąđ?‘’đ?‘›đ?‘?đ?‘–đ?‘Ž(đ?‘›) En este caso, de este proyecto para los desertores intracurriculares totales para el nivel medio superior o bachillerato se obtienen de acuerdo con la siguiente fĂłrmula: đ?‘‘đ?‘’đ?‘ đ?‘’đ?‘&#x;đ?‘Ąđ?‘œđ?‘&#x;đ?‘’đ?‘ đ?‘–đ?‘›đ?‘Ąđ?‘&#x;đ?‘Žđ?‘?đ?‘Žđ?‘?â„Ž(đ?‘›) = đ?‘‘đ?‘’đ?‘ đ?‘’đ?‘&#x;đ?‘Ąđ?‘œđ?‘&#x;đ?‘’đ?‘ đ?‘–đ?‘›đ?‘Ąđ?‘&#x;đ?‘Žđ?‘?đ?‘Žđ?‘?â„Ž 2 đ?‘ŽĂąđ?‘œđ?‘ (đ?‘›) + đ?‘‘đ?‘’đ?‘ đ?‘’đ?‘&#x;đ?‘Ąđ?‘œđ?‘&#x;đ?‘’đ?‘ đ?‘–đ?‘›đ?‘Ąđ?‘&#x;đ?‘Žđ?‘?đ?‘Žđ?‘?â„Ž 3 đ?‘ŽĂąđ?‘œđ?‘ (đ?‘›)
DeserciĂłn Intercurricular. Si lo que se desea calcular son los desertores intercurriculares por grado, se procederĂĄ de acuerdo con lo siguiente: đ?‘‘đ?‘’đ?‘ đ?‘’đ?‘&#x;đ?‘Ąđ?‘œđ?‘&#x;đ?‘’đ?‘ đ?‘–đ?‘›đ?‘Ąđ?‘’đ?‘&#x;đ?‘˜,đ?‘› = đ?‘’đ?‘Ľđ?‘–đ?‘ đ?‘Ąđ?‘’đ?‘›đ?‘?đ?‘–đ?‘Žđ?‘˜,đ?‘› − đ?‘&#x;đ?‘’đ?‘–đ?‘›đ?‘”đ?‘&#x;đ?‘’đ?‘ đ?‘œđ?‘˜,đ?‘›+1 − đ?‘›đ?‘˘đ?‘’đ?‘Łđ?‘œ đ?‘–đ?‘›đ?‘”đ?‘&#x;đ?‘’đ?‘ đ?‘œđ?‘˜+1,đ?‘›+1 Donde đ?‘˜ es el grado escolar, este se define como đ?‘˜ = 1, ‌ , 3 bachillerato de tres aĂąos. La siguiente fĂłrmula se utiliza solamente para calcular el Ăşltimo grado de cada nivel educativo: đ?‘‘đ?‘’đ?‘ đ?‘’đ?‘&#x;đ?‘Ąđ?‘œđ?‘&#x;đ?‘’đ?‘ đ?‘–đ?‘›đ?‘Ąđ?‘’đ?‘&#x;đ?‘–,đ?‘› = đ?‘’đ?‘Ľđ?‘–đ?‘ đ?‘Ąđ?‘’đ?‘›đ?‘?đ?‘–đ?‘Žđ?‘–,đ?‘› − đ?‘&#x;đ?‘’đ?‘–đ?‘›đ?‘”đ?‘&#x;đ?‘’đ?‘ đ?‘œđ?‘˜,đ?‘›+1 − đ?‘’đ?‘”đ?‘&#x;đ?‘’đ?‘ đ?‘Žđ?‘‘đ?‘œđ?‘ đ?‘› Donde đ?‘– es el grado escolar, este se define como đ?‘– = 1, ‌ , 3 bachillerato de tres aĂąos Los desertores intercurriculares totales se obtienen sumando a los desertores intercurriculares de cada grado cuya fĂłrmula para obtenerlos es la siguiente: đ?‘—
đ?‘‘đ?‘’đ?‘ đ?‘’đ?‘&#x;đ?‘Ąđ?‘œđ?‘&#x;đ?‘’đ?‘ đ?‘–đ?‘›đ?‘Ąđ?‘’đ?‘&#x;đ?‘› = ∑ đ?‘‘đ?‘’đ?‘ đ?‘’đ?‘&#x;đ?‘Ąđ?‘œđ?‘&#x;đ?‘’đ?‘ đ?‘–đ?‘›đ?‘Ąđ?‘’đ?‘&#x;đ?‘”đ?‘&#x;đ?‘Žđ?‘‘đ?‘œ đ?‘˜,đ?‘› + đ?‘‘đ?‘’đ?‘ đ?‘’đ?‘&#x;đ?‘Ąđ?‘œđ?‘&#x;đ?‘’đ?‘ đ?‘–đ?‘›đ?‘Ąđ?‘’đ?‘&#x;đ?‘”đ?‘&#x;đ?‘Žđ?‘‘đ?‘œ đ?‘–,đ?‘› đ?‘˜=1
đ?‘‘đ?‘’đ?‘ đ?‘’đ?‘&#x;đ?‘Ąđ?‘œđ?‘&#x;đ?‘’đ?‘ đ?‘–đ?‘›đ?‘Ąđ?‘’đ?‘&#x;đ?‘› = đ?‘’đ?‘Ľđ?‘–đ?‘ đ?‘Ąđ?‘’đ?‘›đ?‘?đ?‘–đ?‘Žđ?‘› − đ?‘šđ?‘Žđ?‘Ąđ?‘&#x;đ?‘–đ?‘?đ?‘˘đ?‘™đ?‘Žđ?‘›+1 − đ?‘’đ?‘”đ?‘&#x;đ?‘’đ?‘ đ?‘Žđ?‘‘đ?‘œđ?‘ đ?‘› + đ?‘›đ?‘˘đ?‘’đ?‘Łđ?‘œ đ?‘–đ?‘›đ?‘”đ?‘&#x;đ?‘’đ?‘ đ?‘œ đ?‘Ž 1°đ?‘›+1
Donde se define para: đ?‘— = 2 En el bachillerato de 3 aĂąos
26
𝑖 = 3 En el bachillerato de 3 años En este caso, para el bachillerato, la fórmula para obtener los desertores intercurriculares totales es el siguiente: 𝑑𝑒𝑠𝑒𝑟𝑡𝑜𝑟𝑒𝑠 𝑏𝑎𝑐ℎ 𝑡𝑜𝑡𝑎𝑙𝑛 = 𝑑𝑒𝑠𝑒𝑟𝑡𝑜𝑟𝑒𝑠 𝑖𝑛𝑡𝑒𝑟𝑏𝑎𝑐ℎ 2 𝑎ñ𝑜𝑠𝑛 + 𝑑𝑒𝑠𝑒𝑟𝑡𝑜𝑟𝑒𝑠 𝑖𝑛𝑡𝑒𝑟𝑏𝑎𝑐ℎ 3 𝑎ñ𝑜𝑠𝑛
Deserción Total: Una vez obtenidos los desertores intracurriculares e intercurriculares se puede generar la información correspondiente a los desertores totales de acuerdo con lo siguiente: 𝑑𝑒𝑠𝑒𝑟𝑡𝑜𝑟𝑒𝑠 𝑡𝑜𝑡𝑎𝑙𝑒𝑠𝑛 = 𝑑𝑒𝑠𝑒𝑟𝑡𝑜𝑟𝑒𝑠 𝑖𝑛𝑡𝑟𝑎𝑐𝑢𝑟𝑟𝑖𝑐𝑢𝑙𝑎𝑟𝑒𝑠𝑛 + 𝑑𝑒𝑠𝑒𝑟𝑡𝑜𝑟𝑒𝑠 𝑖𝑛𝑡𝑒𝑟𝑐𝑢𝑟𝑟𝑖𝑐𝑢𝑙𝑎𝑟𝑒𝑠𝑛 Esto similarmente se expresa como: 𝑑𝑒𝑠𝑒𝑟𝑡𝑜𝑟𝑒𝑠 𝑡𝑜𝑡𝑎𝑙𝑒𝑠𝑛 = (𝑚𝑎𝑡𝑟í𝑐𝑢𝑙𝑎 𝑡𝑜𝑡𝑎𝑙𝑛 − 𝑒𝑥𝑖𝑠𝑡𝑒𝑛𝑐𝑖𝑎𝑛 ) + (𝑒𝑥𝑖𝑠𝑡𝑒𝑛𝑐𝑖𝑎𝑛 − (𝑚𝑎𝑡𝑟𝑖𝑐𝑢𝑙𝑎 𝑡𝑜𝑡𝑎𝑙𝑛+1 − 𝑛𝑢𝑒𝑣𝑜 𝑖𝑛𝑔𝑟𝑒𝑠𝑜 1°𝑛+1 + 𝑒𝑔𝑟𝑒𝑠𝑎𝑑𝑜𝑠𝑛 )) Entonces esto implica que 𝑑𝑒𝑠𝑒𝑟𝑡𝑜𝑟𝑒𝑠 𝑡𝑜𝑡𝑎𝑙𝑒𝑠𝑛 = 𝑚𝑎𝑡𝑟í𝑐𝑢𝑙𝑎 𝑡𝑜𝑡𝑎𝑙𝑛 − 𝑒𝑥𝑖𝑠𝑡𝑒𝑛𝑐𝑖𝑎𝑛 + 𝑒𝑥𝑖𝑠𝑡𝑒𝑛𝑐𝑖𝑎𝑛 − (𝑚𝑎𝑡𝑟𝑖𝑐𝑢𝑙𝑎 𝑡𝑜𝑡𝑎𝑙𝑛+1 − 𝑛𝑢𝑒𝑣𝑜 𝑖𝑛𝑔𝑟𝑒𝑠𝑜 1°𝑛+1 + 𝑒𝑔𝑟𝑒𝑠𝑎𝑑𝑜𝑠𝑛 ) Equivalentemente esto se expresa como: 𝑑𝑒𝑠𝑒𝑟𝑡𝑜𝑟𝑒𝑠 𝑡𝑜𝑡𝑎𝑙𝑒𝑠𝑛 = 𝑚𝑎𝑡𝑟𝑖𝑐𝑢𝑙𝑎 𝑡𝑜𝑡𝑎𝑙𝑛 − (𝑚𝑎𝑡𝑟𝑖𝑐𝑢𝑙𝑎 𝑡𝑜𝑡𝑎𝑙𝑛+1 − 𝑛𝑢𝑒𝑣𝑜 𝑖𝑛𝑔𝑟𝑒𝑠𝑜 1°𝑛+1 + 𝑒𝑔𝑟𝑒𝑠𝑎𝑑𝑜𝑠𝑛 ) La deserción total se puede calcular de dos formas las cuales se presentan a continuación: 𝑑𝑒𝑠𝑒𝑟𝑐𝑖ó𝑛 𝑡𝑜𝑡𝑎𝑙 =
𝑑𝑒𝑠𝑒𝑟𝑡𝑜𝑟𝑒𝑠 𝑡𝑜𝑡𝑎𝑙(𝑛) 𝑚𝑎𝑡𝑟í𝑐𝑢𝑙𝑎 𝑡𝑜𝑡𝑎𝑙(𝑛)
𝑑𝑒𝑠𝑒𝑟𝑐𝑖ó𝑛 𝑡𝑜𝑡𝑎𝑙 𝑚𝑎𝑡𝑟í𝑐𝑢𝑙𝑎 𝑡𝑜𝑡𝑎𝑙(𝑛+1) − 𝑛𝑢𝑒𝑣𝑜 𝑖𝑛𝑔𝑟𝑒𝑠𝑜 1𝑜.(𝑛+1) + 𝑒𝑔𝑟𝑒𝑠𝑎𝑑𝑜𝑠(𝑛) =1−( ) 𝑚𝑎𝑡𝑟í𝑐𝑢𝑙𝑎 𝑡𝑜𝑡𝑎𝑙(𝑛)
27
4.4. El IEMS-DF
4.4.1. Orígenes.
El Instituto de Educación Media Superior del Distrito Federal es un organismo público descentralizado, creado en marzo de 2000, para ofrecer educación de nivel medio superior en la Ciudad de México. El Instituto establece el sistema de bachillerato del Gobierno del Distrito Federal (SBGDF) con el compromiso de que “La educación que imparta será democrática, promoverá el libre examen y discusión de las ideas y estará orientada a satisfacer las necesidades de la población de la Ciudad de México
El IEMS se origina de una demanda que vecinos y organizaciones sociales de Iztapalapa realizaron, en 1995, al entonces regente capitalino, Óscar Espinosa Villarreal, de utilizar como centro educativo las instalaciones de la ex Cárcel de Mujeres que se encontraban en remodelación.2 La Unión de Colonos de San Miguel Teotongo organizó varias movilizaciones sociales con esa finalidad:
"Dos de las más importantes, fueron el “abrazo a la cárcel”, [17 de marzo de 1995] acto simbólico en que los vecinos fueron convocados a rodear las nueve hectáreas del inmueble y de esa manera, apropiárselo. Entonces comenzaron a perfilarse las opciones que los vecinos tenían para él: junto a la de convertirla en una escuela preparatoria, un hospital, mercado, centro cultural, áreas verdes… La segunda acción fue realizada el 28 de mayo: una consulta pública en la que participaron vecinos de colonias del Distrito Federal y del Estado de México. Fue recogida la expresión de más de seis mil personas, y el resultado abrumadoramente mayoritario fue convertirla en una escuela preparatoria."
Los colonos decidieron sostener su demanda y permanecer en las instalaciones de la ex Cárcel de Mujeres desde mayo de 1995 hasta agosto de 1999. Aún sin autorización, el 9 de septiembre de 1997, iniciaron las clases en la autodesignada Escuela Preparatoria Iztapalapa (EPI), 160 estudiantes inscritos y profesores voluntarios; ellos mismos construyeron instalaciones provisionales. El 27 de agosto, la diputada Clara Brugada, quien fuera integrante de la Unión de Colonos de San Miguel Teotongo, organizó una manifestación y el bloqueo de la circulación de la calzada Ermita Iztapalapa para llamar la atención de las autoridades de la capital.
28
Fue hasta 1999, cuando la secretaria de gobierno, Rosario Robles, se comprometió a apoyar el proyecto de donación del inmueble para su uso como preparatoria. Ese mismo año se conformó la Coordinación de Asuntos Educativos con la dirección del Ing. Manuel Pérez Rocha, quien fuera coordinador del CCH de la UNAM en 1973, y a quien se le encomendó ser enlace con la EPI. Las actividades docentes formales de la EPI fueron inauguradas por el Lic. Cuauhtémoc Cárdenas Solórzano.
El 30 de marzo de 2000 se publica el decreto de creación del IEMSDF. Su primera directora general fue la matemática Ma. Guadalupe Lucio Maqueo, quien trabajó de manera coordinada con el ingeniero Pérez Rocha en la formulación del modelo educativo y de los planes de estudio. La Escuela Preparatoria Iztapalapa pasó a ser la primera preparatoria del Gobierno del Distrito Federal en funciones. En diciembre de ese mismo año, en el gobierno del Lic. Andrés Manuel López Obrador, se proyectó y autorizó la creación de quince planteles más, cuya primera generación ingresó en agosto de 2001, formando una matrícula de 3,062 estudiantes.
El Ing. Pérez Rocha participa de manera alterna a la puesta en marcha del proyecto del IEMS, como promotor y luego rector de la Universidad de la Ciudad de México (UCM). Las instalaciones de la ex Cárcel de Mujeres también darán cabida al primer plantel de la UCM, denominado Casa Libertad, con un origen común al IEMS aunque con una administración y trayectoria diferenciada. La UCM obtuvo su autonomía el 16 de diciembre de 2004. Por su origen común, la UACM y el IEMS establecieron un convenio en el que un determinado número de estudiantes del bachillerato tiene posibilidad de pase directo a la universidad. Por lo tanto, algunos egresados del IEMS eligen el pase a la UACM y muchos otros concursan y logran ingresar tanto a la UACM como a otras instituciones que imparten licenciatura como UNAM, IPN, UPN, UAM, etcétera.
29
4.4.2. Planteles El IEMS-DF cuenta con 20 planteles en la Ciudad de México (CDMX) que son descritos en la siguiente tabla que se presenta a continuación: DELEGACION– ABREVIATURA(PLANTEL)
DIRECCIÓN
Álvaro Obregón I – A.O.I. (“Lázaro Cárdenas del Río”.) Álvaro Obregón II – A.O.II. (“Vasco de Quiroga”.) Azcapotzalco – Azc. (“Melchor Ocampo”) Coyoacán – Coy. ("Ricardo Flores Magón".) Cuajimalpa – Cuaj. ("Josefa Ortiz de Domínguez".) Gustavo A. Madero I – G.A.M.I. (“Belisario Domínguez”.) Gustavo A. Madero II – G.A.M.II. ("Salvador Allende".) Iztacalco – Iztac. ("Felipe Carrillo Puerto".) Iztapalapa I – Iztap.I. (“Iztapalapa I”.)
Av. Jalalpa Norte no. 120, Col. Jalalpa El Grande. Av. Río Guadalupe s/n, entre San Agustín y Tocalcapa, Col. El Mirador Rosario s/n esq. Hidalgo, Col. Santa Catarina. Calz. de Tlalpan no. 3465, esq. Av. Acoxpa, Col. Viejo Ejido de Santa Úrsula. Carretera Federal México-Toluca km. 19.8, Col. El Molino. Av. La Corona no. 436, esq. Morelos, Col. Loma de la Palma. Av. Ferrocarril Hidalgo no. 1129, Col. Constitución de la República Oriente 237 no. 21, Col. Agrícola Oriental.
Iztapalapa II – Iztap.II. ("Benito Juárez".) Iztapalapa III – Iztap.III. (“Iztapalapa III”.) Iztapalapa IV – Iztap.IV. (“Iztapalapa IV”.) Magdalena Contreras – M.C. ("Ignacio Manuel Altamirano".) Miguel Hidalgo – M.H. (“Carmen Serdán”.) Milpa Alta – M.A. ("Emiliano Zapata".) Tláhuac – Tlah. ("José Ma. Morelos y Pavón".) Tlalpan I – Tlal.I. ("Gral. Francisco J. Múgica".) Tlalpan II – Tlal.II. ( "Otilio Montaño") Venustiano Carranza – V.C. (“José Revueltas Sánchez".) Xochimilco – Xoch. ("Bernardino de Sahagún".)
Calz. Ermita Iztapalapa 4163, Col. Lomas de Zaragoza. Zacatlán s/n, esq. Cempazuchitl, Pueblo de San Lorenzo Tezonco. Calle Duraznos Mz. 474, Lote 13, Col. Miravalles. Eje 3 Oriente s/n, esq. Av. Ermita Iztapalapa, Col. Progreso del Sur. Av. San Jerónimo no. 2625, Col. San Bernabé Ocotepec. Lago Ximilpa no. 88, Col. Argentina Antigua. Francisco I. Madero Oriente no. 154, Barrio La Lupita, Pueblo de Santa Ana Tlacotenco. Canal de Chalco, esq. Piraña, Col. Del Mar. Yobain no. 105, Col. Belverde. Av. Cruz Blanca no. 321, Pueblo de San Miguel Topilejo Lázaro Pavia s/n, esq. Lucas Alamán, Col. Jardín Balbuena. Carretera Nueva Xochimilco-Tulyehualco no. 9745, tramo Av. Aquiles Serdán, Pueblo de Santiago Tulyehualco
30
4.4.3. Organización y estructura estudiantil basado en un modelo educativo delimitado. Estructura y organización interna El IEMS se rige por un Estatuto Orgánico publicado el 23 de marzo de 2005. En el Estatuto se establece que el Jefe de gobierno de la ciudad de México tiene como atribución designar al Director general del Instituto. Para poder ostentar el cargo de Director General se requiere experiencia y conocimiento en materia de educación y grado mínimo de licenciatura. El gobierno y la administración del Instituto está a cargo del Consejo de Gobierno que preside el Secretario de educación del D. F. y los titulares de las secretarías de Gobierno, Desarrollo económico, Finanzas, Cultura; los titulares de la Oficialía Mayor y del Instituto de Ciencia y Tecnología del D. F.; dos académicos del Consejo Académico del Instituto y dos ciudadanos designados por el Jefe de Gobierno del D. F. El director general del instituto tiene derecho a voz pero no a voto. El Consejo tiene por obligación sesionar no menos de cuatro veces al año para resolver sobre la situación académica y administrativa del IEMS. Sin embargo, no existe evidencia de que todas las sesiones se realicen con esa frecuencia. Cuando las reuniones del Consejo se celebran, los temas que se hacen constar en las actas son abrumadoramente de carácter administrativo, de tal suerte que el IEMS se encuentra en una anomia académica En la vida académica al interior del Instituto deben coadyuvar cuatro órganos consultivos: Consejo General Interno, Consejo Académico, Consejo Interno de los Planteles, y Consejo de Participación Social de los Planteles. El Consejo General Interno integra autoridades académicas y administrativas y representantes de los docentes, trabajadores y estudiantes; tiene como atribución opinar sobre políticas y lineamientos académicos. El Consejo Académico lo forman investigadores externos al IEMS designados por el Director general y tienen, entre otras funciones, que revisar y actualizar los planes y programas de estudios. El Consejo Interno de los Planteles, tiene la misma función y se liga con el Consejo General. El Consejo de Participación Social se establece como un vínculo con los padres de familia y con las comunidades del entorno educativo. El IEMS posee una entidad jurídica, un patrimonio propio, así como una estructura y organización interna reglamentada, sin embargo, no existe una vigilancia patente sobre el cumplimiento de las normas en su vida académica ni un establecimiento de políticas generales por parte del Consejo de Gobierno, siendo el único órgano con la capacidad de tomar y ejecutar las decisiones que competen al Instituto. Los titulares de las secretarías que conforman el Consejo de Gobierno (comúnmente sus representantes) toman todas las decisiones, ya que el Director general del IEMS tiene derecho a voz pero no a voto. El IEMS opera sin la capacidad
31
interna para decidir sobre lineamientos fundamentales de su quehacer académico, como la actualización de planes y programas de estudio, dado que la aprobación corresponde al Consejo de Gobierno, y la iniciativa debe partir del Director general. En su estructura jurídica el IEMS está diseñado para operar con un aparato administrativo ligero y con un componente académico preponderante, que fundamenta los órganos consultivos, pero las últimas administraciones han decidido crear nuevas direcciones y han hecho crecer la carga administrativa. Actualmente, las figuras administrativas centralizadas en la Dirección General del IEMS ejercen su función sin cortapisa, dado que los órganos consultivos mencionados no operan, a pesar de que su existencia forma parte del Estatuto Orgánico. El Consejo Interno sesionó durante los años 2008 y 2009, pero la mayoría de sus acuerdos no se llevaron a efecto, uno de ellos fue un proyecto de Estatuto del Personal Académico que quedó sin aprobar y que a la fecha no existe. Al no existir los órganos consultivos, la participación de la comunidad académica en la evaluación y mejora del proyecto educativo queda excluida porque jamás llega a los oídos del Director general ni del Consejo de Gobierno. De acuerdo a los Estatutos, cada plantel será administrado por un Subdirector de Coordinación de Plantel, el cual podrá ser nombrado o removido por el Consejo de Gobierno, a propuesta del Director General; para su designación, en primera instancia se considerará al personal académico del Instituto. Un Subdirector de Coordinación de Plantel permanecerá en su cargo un máximo de cuatro años y, en razón tanto de su desempeño como de los resultados obtenidos, podrá ser nuevamente nombrado, por única vez, con el mismo cargo, por un periodo igual, pero en un plantel distinto. Sin embargo, existen jefes de coordinación que ingresaron en su función desde la primera administración del IEMS, y que continúan en ella después de 13 años. “Entre las principales tareas del coordinador se incluye la de garantizar el funcionamiento del plantel, de modo que las diversas áreas cumplan las tareas necesarias, así como trabajar con los profesores en la planeación académica de cada ciclo escolar Ingreso El IEMS admite a estudiantes, que una vez concluida la secundaria, presenten su certificado, demuestren que vive en colonias aledañas al plantel solicitado, y participen en un sorteo que se lleva a cabo bajo vigilancia notarial. La política de ingreso pretende ser incluyente y equitativa. Se restringe el ingreso a los estudiantes que viven cerca para favorecer a sectores de jóvenes que no cuentan con suficiente oferta educativa en su delegación. Se consigue, además, que el estudiante no gaste mucho tiempo y dinero en su traslado. Originalmente, el IEMS sólo admitía 350 estudiantes por plantel para el sistema escolarizado; pero a partir de 2007 se crea el sistema semiescolarizado, en el marco del programa
32
Universalidad del bachillerato que propuso el entonces secretario de educación del D. F., Lic. Axel DidrikssonTakayanagi, que propone admitir 270 estudiantes más por plantel. Sin embargo, en la convocatoria de 2012 se menciona que para la modalidad semiescolarizada se contará con un número de lugares de acuerdo con la disponibilidad de cada plantel. Entre los estudiantes sorteados existe una lista de espera para cubrir la inscripción de aquellos, que siendo favorecidos en el sorteo, no se presenten a la inscripción. Los lineamientos de Operación de los Servicios de Asesoría en la Modalidad SemiEscolar, se emiten el 10 de febrero de 2010. En el ciclo escolar 2011-2012 el IEMS contaba con una matrícula total de 19, 224 estudiantes y una planta docente de 1,107. Infraestructura Los primeros 16 planteles que se construyeron cuentan con 14 salones para dar clase grupal, más aulas dispuestas en la planta baja para que estudiantes con capacidades diferentes tengan fácil acceso. Cada preparatoria tiene una biblioteca, una cancha deportiva y un auditorio amplios, dos laboratorios, dos audiovisuales, salones especiales para música, artes pláticas y cómputo; y un cubículo de servicio médico. Existen cubículos para cada docente, cuentan con un equipo de cómputo personal y, frente a ellos, se encuentran cubículos estudiantiles para que los estudiantes trabajen de manera independiente o a través de la asesoría. La capacidad instalada es para mantener a, máximo, 1050 estudiantes matriculados en los tres ciclos, en cada plantel. Actualmente existen cuatro planteles más, uno en la delegación Venustiano Carranza, dos en Iztapalapa y uno en Álvaro Obregón, que se encuentran en su primera etapa de construcción. Estudiantes, docentes y trabajadores de esas preparatorias denuncian que realizan sus labores en espacios "prestados" o poco aptos para la enseñanza: en kioskos públicos, explanada delegacional o estacionamientos.1 El 26 de diciembre del 2013, se informó que la Asamblea Legislativa del Distrito Federal le asignó al IEMS "734. 2 millones de pesos, 5 millones menos que el año pasado." Y rechazó "una partida para la construcción de los planteles Venustiano Carranza e Iztapalapa IV y equipamiento a los planteles del IEMS, con el argumento de que 'afecta el equilibrio presupuestal." Modelo educativo y planes de estudio El objetivo del proyecto educativo es llevar la escuela a la colonia del estudiante y ofrecerle un plan de estudios equilibrado con un enfoque científico amplio, una atención personalizada de docentes titulados y especialistas de las asignaturas, en tutorías individuales que complementan la clase grupal, y una evaluación cualitativa que permita configurar el perfil formativo progresivamente. Un fundamento del proyecto educativo es “Desarrollar un modelo educativo flexible, abierto y permanente. [...] y evitar así la excesiva rigurosidad que imposibilita el desarrollo de formas y métodos diferentes para la satisfacción de las necesidades educativas.”
33
Los planes y programas de estudio que el Instituto formule, formarán parte de un modelo pedagógico orientado a responder de manera efectiva a las necesidades educativas y culturales actuales, a los avances de las humanidades y de las ciencias y, principalmente, a los avances en la teoría del conocimiento. Los estudiantes son los actores centrales de los procesos educativos y constituyen la razón de ser del Instituto, por lo que tendrán garantizada una participación activa y permanente a través de los Consejos Internos, procurando que esta función se desempeñe sin detrimento del proceso de aprendizaje. La estructura curricular se organiza con base en tres ejes: formación crítica, humanística y, científica. La formación crítica considera el dominio del campo u objeto de la crítica, capacidad y hábito de vigilancia epistemológica, capacidad y hábito de contextualización teórico-cultural, y capacidad y hábito de contextualización histórico-social. La Formación humanística consiste en: actitud y conocimientos axiológicos, conciencia humanística (histórica y social), conciencia ética, disposición y capacidad de actuación moral, sensibilidad y capacidad de reflexión estética, capacidad de expresión artística, capacidad de interacción social eficaz y responsable, capacidad de expresión oral y escrita, y hábito de trabajo ordenado, eficaz y disciplinado. La Formación científica consta de cuatro elementos: actitud científica, cultura científica general, conocimiento sólido de algunas ciencias particulares, y capacidad para la investigación científica. La carga curricular se organiza en seis periodos semestrales, en los cuales los estudiantes deben cursar doce asignaturas en el primer ciclo, trece en el segundo y trece en el tercero. Cursan en total 38 asignaturas: cinco semestres de matemáticas; cuatro de filosofía, lengua y literatura, e historia; tres de inglés; dos de cómputo, planeación y organización del estudio, química, física , biología, música y artes plásticas; tres optativas y una investigación final denominada problema eje, que pasa por la valoración académica de dos docentes y el seguimiento de una Comisión Evaluadora. El programa de bachillerato propedéutico está planeado para durar tres años. Sin embargo, otorga un máximo de tres semestres adicionales para concluir. El docente atiende grupos de 25 estudiantes en clases grupales y en asesoría individual en su cubículo personal. Además se le asignan 15 estudiantes para que les dé seguimiento académico a través de la tutoría durante su trayectoria en la preparatoria. Los programas de estudio fijan objetivos y se guían por un conjunto de competencias que modulan la enseñanza y la evaluación. La formulación de las competencias corresponde a las doce Academias (una por cada asignatura). Las Academias se constituyen por los docentes de una misma área y su trabajo lo coordina un grupo de consultores.
34
Egreso Investigadores en educación calculan que entre los años 2002 y 2009 egresaron 31% de los estudiantes inscritos. (21,272 estudiantes ingresados, egresaron 6, 651) La tasa de deserción se encuentra por encima del 50%. Esta situación supone un desafío para el Gobierno del Distrito Federal; puesto que debe mantener la calidad académica del IEMS y evitar la deserción. Docentes, estudiantes y subdirectores mencionan que una razón del abandono es la ampliación de la matrícula en las cuatro nuevas preparatorias sin la ampliación del presupuesto y bajo un régimen de austeridad. Otro factor que mencionan los docentes es que, por el principio de equidad en el ingreso, deben trabajar en la formación de un nuevo capital cultural para nivelar hacia arriba, dado que pueden ingresar tanto estudiantes con fortalezas cognitivas como estudiantes con rezagos en las competencias básicas; por lo tanto no se pueden esperar los mismos resultados que otros sistemas de bachillerato que sí consideran un filtro de ingreso y cuentan con pase automático a licenciatura para todos sus estudiantes regulares. Directores Generales Desde su decreto de creación en el año 2000, el IEMS ha tenido oficialmente cinco directores. La primera directora, la Matemática Guadalupe Lucio Gómez Maqueo vio crecer bajo su administración los 16 planteles de la preparatoria cuya creación corresponde al proyecto original. El segundo director, Juventino Rodríguez Ramos, tuvo que renunciar luego de que no pudo demostrar que era, como él decía y su currículo lo señalaba, licenciado en historia. El tercer director, ex funcionario del CCH de la UNAM, fue José de Jesús Bazán Levy. El Plan de Trabajo de Bazán menciona que su objetivo general es mejorar el aprendizaje reforzando la enseñanza. Considera que la enseñanza centrada en el estudiante lo hace “autónomo”. Justifica la falta de diagnóstico tanto de su Plan de trabajo como del proyecto educativo del IEMS, con los pobres resultados en la eficiencia terminal y la deserción. No admite el funcionamiento de los Consejos Interno y Académico. Las medidas propuestas para abatir el rezago y la deserción son sólo de índole académica, ninguna administrativa ni institucional. Pide al docente incrementar la regularidad de los estudiantes de primer ciclo y realizar un seguimiento eficaz de los estudiantes en riesgo de deserción. No se compromete con la actualización docente, propone “Centrar un trabajo académico de tiempo completo real en el tránsito al modelo educativo del IEMS y en la solución de problemas de aprendizaje críticos, ejerciendo prácticas docentes profesionales y autorreguladas." La C. Freyja Doridé Puebla López ocupó el cargo de Directora General del IEMS desde el 1° de diciembre de 2013, hasta el 13 de diciembre del 2014. Su designación fue criticada por el Sindicato de la Unión de Trabajadores del IEMS (SUTIEMS) porque no cuenta con título de licenciatura y no tiene experiencia en la
35
docencia, es educadora de preescolar. Declaraciones de la misma C. Puebla López la desautorizan en su ejercicio como líder del instituto porque admite que ni siquiera conocía la existencia del IEMS antes de ser nombrada directora. Su experiencia como funcionaria corresponde a una trayectoria en el área de finanzas, como parte del equipo de la perredista Alejandra Barrales, ya que fue asignada por ella como Oficial Mayor de la Asamblea de Representantes del D. F. en 2010, cargo que fue impugnado por no cumplir con el perfil y que tuvo que abandonar. "Puebla López fue tesorera en la Asociación Sindical de Sobrecargos de Aviación de México (ASSA), donde Barrales fue la líder… También ocupó el cargo de secretaria de Finanzas de la Federación de Sindicatos de Empresas de Bienes y Servicios (FESEBS), donde Barrales fue vicepresidencia de Asuntos Políticos, Económicos y Sociales… Pero además la nueva oficial mayor de la ALDF, fue directora de finanzas de la Secretaría de Desarrollo Social en el gobierno de Michoacán." El 23 de marzo de 2015, el académico de la UNAM, Mtro. Ulises Lara López fue nombrado como director general del IEMS por el jefe de gobierno del D. F., Lic. Miguel Ángel Mancera. A diferencia de su predecesora, el maestro Lara cuenta con el perfil que señala el Estatuto Orgánico del Instituto, ya que ostenta un título de maestría en Procesos políticos, y ha desempeñado, en 2014, cargos administrativos en la Secretaría de educación del D. F., además, imparte cursos en la facultad de Ciencias Políticas de Ciudad universitaria y ha sido funcionario en diferentes organismos y dependencias del GDF. Tiene una trayectoria de más de dos décadas en el PRD.
36
4.5. Interpretación del valor de la deserción escolar como un indicador alarmante en la dependencia gubernamental del IEMS-DF, El IEMS DF cuenta con dos modalidades: escolarizada y semiescolarizada, el presente trabajo abordara sólo la modalidad escolarizada. La Modalidad Escolarizada: desde que se fundó esta institución por parte del Gobierno del Distrito Federal en la administración del Lic. Andrés Manuel López Obrador que dio inicio en el año 2001 hasta este año 2015. Esta necesidad por atender la demanda social en esta dependencia local se hará respectivamente en los siguientes ámbitos que se mencionaran a continuación (este es el último estudio que se ha realizado en el Distrito Federal o Ciudad de México, en cada una de los planteles delegaciones que la conforman en esta capital mexicana): A continuación se presentará la siguiente tabla de los estudiantes inscritos en el primer semestre del bachillerato del IEMS-DF: Estudiantes inscritos por Ciclo Escolar en la Modalidad Escolarizada OBSERVACIONES: En esa época el plantel no se había creado. * La cifra de inscritos del Ciclo Escolar 2001-2002 incluye estudiantes de las generaciones 1999-2000 y 20002001. Plantel Delegación
2001 2002
2002 2003
2003 2004
2004 2005
2005 2006
2006 2007
2007 2008
2008 2009
2009 2010
2010 2011
2011 2012
2012 2013
2013 2014
2014 2015
Total
A.O.I. 152 350 199 377 346 340 353 350 359 354 361 351 373 405 4670 A.O.II. 240 164 152 152 708 Azc. 135 85 180 369 341 359 363 346 346 352 331 352 341 390 4290 Coy. 141 309 250 341 332 337 344 357 356 383 365 363 376 367 4621 Cuaj. 142 160 258 360 348 326 365 356 355 358 357 368 329 387 4469 G.A.M.I. 150 257 148 358 350 354 349 358 361 353 354 357 343 353 4445 G.A.M.II. 149 215 251 371 335 352 341 356 354 368 351 352 328 416 4539 Iztac. 153 140 192 360 339 342 341 353 358 373 360 355 344 415 4425 Iztap.I. * 850 235 213 364 342 324 345 356 349 355 353 342 330 381 5139 Iztap.II. 151 355 247 346 345 350 342 343 357 382 361 360 354 356 4649 Iztap.III. 153 240 222 313 298 1226 Iztap.IV 290 187 169 150 796 M.C. 144 134 155 359 344 350 349 353 351 374 361 359 348 401 4382 M.H. 148 162 154 312 286 360 335 345 356 335 340 346 321 319 4119 M.A. 154 138 154 296 348 353 357 350 341 367 351 352 311 346 4218 Tlah. 149 349 250 349 344 350 351 349 343 381 355 358 375 407 4710 Tlal.I. 145 350 245 372 352 351 347 353 357 387 357 366 349 375 4706 Tlal.II. 145 272 256 359 362 348 348 347 353 380 361 361 359 379 4630 V.C. 157 181 76 103 178 106 165 178 1144 Xoch. 154 208 249 354 329 342 375 351 357 391 359 351 369 351 4540 Total 3062 3719 3401 5647 5443 5538 5762 5804 5729 6149 6625 6372 6349 6826 76426 _________________________________________________________________________________________________ Referencia cibergráfica: Sistema de Información Mexicana del Distrito Federal INFOMEXDF (2015) “Solicitud aprobada y registrada con el número de folio: 0311000023815”; Recuperada el sábado 5 de diciembre de 2015 en: http://www.infomexdf.org.mx/flslayer/seguimiento/e23b9a25/06cd56f7/ANEXO%20SOLICITUD%200311000023815.pdf
37
Después de que los estudiantes del IEMS-DF están cursando el primer semestre ocurre que algunos: se inscriben al siguiente semestre, reprueban y deben asignaturas y otros de plano desertan del plantel; pero aquí hay diferentes causas que origina esto por lo que lo estudiaremos más adelante en este presente trabajo. La deserción escolar en la educación media superior, es un grave problema a nivel mundial, nacional y estatal. El IEMS no es la excepción ya que este fenómeno afecta el desarrollo poblacional del Distrito Federal, a razón de que implica una conducta de riesgo entre sus habitantes, esto implica gastos presupuestales; que esto trae como consecuencia pérdidas económicas a nivel local respecto a las oportunidades de trabajo y esto realmente afecta a nivel familiar, en los ingresos salariales que sustenta una mejor calidad de vida para los parientes e individual, es decir en la superación personal de tener mejores oportunidades en el quehacer cotidiano. Por lo que a continuación se presentará la siguiente tabla de los estudiantes que se dieron de baja en el primer semestre del bachillerato del IEMS-DF: Estudiantes dados de baja por Ciclo Escolar en la Modalidad Escolarizada OBSERVACIONES: En esa época el plantel no se había creado. * La cifra de inscritos del Ciclo Escolar 2001-2002 incluye estudiantes de las generaciones 1999-2000 y 20002001. Plantel Delegación
2001 2002
2002 2003
2003 2004
2004 2005
2005 2006
2006 2007
2007 2008
2008 2009
2009 2010
2010 2011
2011 2012
2012 2013
2013 2014
2014 2015
Total
A.O.I. 7 19 20 59 112 112 61 48 0 0 0 0 0 0 A.O.II. 19 0 0 0 Azc. 7 4 20 77 84 61 87 84 43 0 0 0 0 0 Coy. 17 49 70 127 98 102 126 74 25 0 0 0 0 0 Cuaj. 2 14 18 49 97 94 99 66 45 39 0 0 0 0 G.A.M.I. 4 16 9 56 81 67 84 68 53 61 114 0 0 0 G.A.M.II. 13 21 39 78 86 64 53 46 0 0 0 0 0 0 Iztac. 2 6 22 35 73 60 69 53 0 0 0 0 0 0 Iztap.I. * 42 40 25 65 78 12 104 88 46 0 0 0 0 0 Iztap.II. 23 56 65 93 115 104 101 80 58 69 74 21 0 0 Iztap.III. 0 0 0 0 0 Iztap.IV 12 0 0 0 M.C. 8 11 22 69 96 82 90 80 42 0 0 0 0 0 M.H. 7 16 13 48 90 95 107 127 80 85 61 0 0 0 M.A. 9 6 20 47 78 93 60 59 0 0 0 0 0 0 Tlah. 5 23 30 53 73 73 87 86 55 85 56 0 0 0 Tlal.I. 12 35 26 108 54 58 54 26 0 0 0 0 0 0 Tlal.II. 6 12 13 48 81 98 107 113 89 65 0 0 0 0 V.C. 27 25 4 0 0 0 0 0 Xoch. 2 12 21 73 87 82 113 81 35 0 0 0 0 0 Total _________________________________________________________________________________________________ Referencia cibergráfica: Sistema de Información Mexicana del Distrito Federal INFOMEXDF (2015) “Solicitud aprobada y registrada con el número de folio: 0311000023815”; Recuperada el sábado 5 de diciembre de 2015 en: http://www.infomexdf.org.mx/flslayer/seguimiento/e23b9a25/06cd56f7/ANEXO%20SOLICITUD%200311000023815.pdf
38
Aquí vemos que el número de alumnos y alumnas que desertaron en este instituto de educación media superior del Distrito Federal a partir del 2003 hasta al 2010 va en aumento. Pero estos datos presentados son los registros de la coordinación de cada plantel que conforma el IEMS-DF, por lo que no se consideran aquí los registros que hace el área central de esta dependencia que depende de la Secretaría de Educación del Gobierno de la Ciudad de México (CDMX), cuya área central se ubica en Av. División del Norte 906, Col. Narvarte Poniente, CP 03020, Delegación Benito Juárez. Por lo que a continuación se presentará la siguiente tabla de los estudiantes que desertaron en el primer semestre del bachillerato del IEMS-DF: Estudiantes que desertaron por Ciclo Escolar en la Modalidad Escolarizada OBSERVACIONES: En esa época el plantel no se había creado. * La cifra de inscritos del Ciclo Escolar 2001-2002 incluye estudiantes de las generaciones 1999-2000 y 20002001. Plantel Delegación
2001 2002
2002 2003
2003 2004
2004 2005
2005 2006
2006 2007
2007 2008
2008 2009
2009 2010
2010 2011
2011 2012
2012 2013
2013 2014
2014 2015
Total
2425 A.O.I. 239 A.O.II. 2699 Azc. 2938 Coy. 3041 Cuaj. 2530 G.A.M.I. 2428 G.A.M.II. 2251 Iztac. 3397 Iztap.I. * 2770 Iztap.II. 534 Iztap.III. 267 Iztap.IV 2340 M.C. 2548 M.H. 2345 M.A. 2732 Tlah. 2549 Tlal.I. 2473 Tlal.II. 586 V.C. 2246 Xoch. Total 43338 _________________________________________________________________________________________________ Referencia cibergráfica: Sistema de Información Mexicana del Distrito Federal INFOMEXDF (2016) “Solicitud aprobada y registrada con el número de folio: 0311000040015”; Recuperada el martes 26 de enero de 2016 en: http://www.infomexdf.org.mx/flslayer/seguimiento/e9087dc9/06cd56f7/Sol.%2040015.pdf
La deserción escolar a nivel medio superior es un tema poco explorado, por lo que la producción en publicaciones aún es escasa, con el fin de ubicarnos en el contexto de dicho tema, se ofrece una síntesis del panorama de lo que se ha producido en México en un área tan general, vasta y de gran actualidad.
39
El término deserción se define regularmente como el abandono de cursos o en el plantel de bachillerato general al que se ha inscrito el estudiante, dejando de asistir a clases y de cumplir con las obligaciones establecidas previamente, lo cual tiene efectos sobre los índices de eficiencia terminal. Uno de los problemas actuales que se presentan en el nivel medio superior es la alta deserción, “que en el caso del Distrito Federal es la entidad federativa donde se tiene un mayor porcentaje de deserción” (Marín, 2014). En México la educación hasta el nivel medio superior (bachillerato, preparatoria general o técnica) está establecida como derecho constitucional en la Ley General de Educación del Distrito Federal. Por lo que a continuación se presentará la siguiente tabla de los estudiantes que son egresados del bachillerato del IEMS-DF: Estudiantes que egresaron por Ciclo Escolar en la Modalidad Escolarizada OBSERVACIONES: En esa época el plantel no se había creado. * La cifra de inscritos del Ciclo Escolar 2001-2002 incluye estudiantes de las generaciones 1999-2000 y 20002001. Plantel Delegación
2001 2002
2002 2003
2003 2004
2004 2005
2005 2006
2006 2007
2007 2008
2008 2009
2009 2010
2010 2011
2011 2012
2012 2013
2013 2014
2014 2015
Total
866 A.O.I. 62 A.O.II. 932 Azc. 1064 Coy. 764 Cuaj. 1275 G.A.M.I. 1258 G.A.M.II. 1315 Iztac. 1211 Iztap.I. * 1308 Iztap.II. 75 Iztap.III. 121 Iztap.IV 1330 M.C. 841 M.H. 1050 M.A. 1370 Tlah. 1145 Tlal.I. 1158 Tlal.II. 196 V.C. 1438 Xoch. Total 18779 _________________________________________________________________________________________________ Referencia cibergráfica: Sistema de Información Mexicana del Distrito Federal INFOMEXDF (2016) “Solicitud aprobada y registrada con el número de folio: 0311000040015”; Recuperada el martes 26 de enero de 2016 en: http://www.infomexdf.org.mx/flslayer/seguimiento/e9087dc9/06cd56f7/Sol.%2040015.pdf
Aunque el Distrito Federal (DF) es una de “Las entidades que tienen una mejor condición socioeconómica y cultural”, según el Índice de Estatus Económico, Social y Cultural (ESCS) generado por la Organización para la Cooperación y el Desarrollo
40
Económico (OCDE) (Amador, 2008), podemos encontrar que las Preparatorias del Gobierno del Distrito Federal (GDF) tienen muy pocos alumnos egresados, lo cual es un asunto que “tiene que analizarse y valorarse con cuidado y con honestidad”, como dice Manuel Pérez Rocha (2014). Resumiendo, así la comparación de los totales del ingreso, deserción y egreso a través de la siguiente tabla de estudiantes de la modalidad escolarizada del IEMSDF desde el ciclo escolar 2001-2002 hasta el ciclo 2014-2015: Plantel Delegación
Total Inscritos
Total Deserción
Total Egreso
Álvaro Obregón I Álvaro Obregón II Azcapotzalco Coyoacán Cuajimalpa Gustavo A. Madero I Gustavo A. Madero II Iztacalco Iztapalapa I Iztapalapa II Iztapalapa III Iztapalapa IV Magdalena Contreras Miguel Hidalgo Milpa Alta Tláhuac Tlalpan I Tlalpan II Venustiano Carranza Xochimilco
4670 708 4290 4621 4469 4445 4539 4425 5139 4649 1226 796 4382 4119 4218 4710 4706 4630 1144 4540
2425 239 2699 2938 3041 2530 2428 2251 3397 2770 534 267 2340 2548 2345 2732 2549 2473 586 2246
866 62 932 1064 764 1275 1258 1315 1211 1308 75 121 1330 841 1050 1370 1145 1158 196 1438
Total
76426
43338
18779
Por lo que esto es una prioridad a considerarla, porque es un derecho que sus estudiantes del IEMS-DF reciban una educación obligatoria.
4.6. Factores que afectan en la dependencia gubernamental del IEMS-DF, para que ocurra la deserción escolar.
Sin embargo los problemas comienzan cuando los jóvenes estudian e inician el nivel medio superior en la capital mexicana, ´por lo que brevemente reseñaré tres problemas donde los estudiantes enfrentan o enfrentarán en este nivel educativo:
En primer lugar, en el DF hay un grave problema de deserción escolar en el bachillerato.
En segundo lugar, la educación media superior, en calidad y cobertura, está sesgada en el sector público para jóvenes de mayores ingresos.
41
En tercer lugar, la desigualdad en el ingreso a la educación media superior define en gran medida el acceso y calidad de educación superior al que puede acceder un joven en la ciudad. Abatir estos problemas es necesario para que los jóvenes de la ciudad puedan tener mejores prospectos de ingreso en un futuro.
La palabra deserción o desertar según la real academia española se refiere a «la acción de desamparar o abandonar las obligaciones o los ideales que se tenían interpuestos», cuando se hace alusión a lo escolar implica lo relacionado con lo concerniente al estudiante con respecto a la escuela. Por lo tanto la expresión de “deserción escolar” es el abandono del alumno del proceso educativo quedando fuera del sistema sin concluir una certificación. La deserción escolar genera una fuerza de trabajo menos competente de la cual no se puede aprovechar los beneficios de productividad y su efecto en el crecimiento económico en los sectores públicos y privados, para los gobiernos esto implica mayores gastos para financiar programas sociales dado a los sectores que no logran generar recursos propios.
Causas de deserción escolar en el nivel medio superior Para la Asociación Nacional de Universidades e Instituciones de Educación Superior (ANUIES), la deserción a nivel medio superior es entendida como “una forma de abandono de los estudios”, que adopta distintos comportamientos y que afecta a los estudiantes en la continuidad de sus trayectorias escolares; estos comportamientos se caracterizan por: 1) Abandono o suspensión voluntaria y definitiva de los estudios y del sistema de educación media superior por parte del alumno. 2) Salida de alumnos debido a deficiencias académicas, consecuente y bajo rendimiento escolar. 3) Cambio de plantel (el alumno continua en otra institución pero se incorpora a otra cohorte generacional o de institución educativa). 4) Baja de los alumnos que alteran el orden y la disciplina institucional. Generalmente obstaculiza el ingreso a otra escuela o institución educativa. Se ha detectado que la deserción responde a una multiplicidad de factores que afectan a los estudiantes, principalmente durante el primer año posterior a su ingreso al bachillerato. Entre ellos se encuentran:
Las condiciones económicas desfavorables del estudiante.
42
El deficiente nivel cultural de la familia a la que pertenece.
Las expectativas del estudiante respecto de la importancia de la educación.
La incompatibilidad del tiempo dedicado al trabajo y a los estudios.
La responsabilidad que implica el matrimonio.
Las características personales del estudiante, por ejemplo, la falta de actitud de logro.
El poco interés por los estudios en general, por la preparatoria y la Institución.
Las características académicas previas del estudiante, como el bajo promedio obtenido en la educación secundaria, el cual reflejan la insuficiencia de los conocimientos y habilidades con que egresan los estudiantes, en relación con los requeridos para mantener las exigencias académicas del nivel medio superior.
La deficiente orientación vocacional recibida antes de ingresar al tipo de bachillerato que pretende cursar respecto a sus intereses personales, lo cual provoca que los alumnos se inscriban en cualquier bachillerato, sin sustentar su decisión en una sólida información sobre la misma.
Existen diversas explicaciones y clasificaciones de las causas de la deserción que se agrupan de la siguiente manera: •
Causas de origen social y familiar: desarticulación y/o disfuncionalidad familiar, desadaptación al medio por el origen sociocultural del que provienen, estudiantes que trabajan, problemas psicosociales y estudiantes casados y/o de paternidad o maternidad prematuras.
•
Causas de origen psicológico: desubicación en propósitos de vida e inadecuada opción vocacional.
•
Causas económicas: escasez de recursos y desempleo de los padres.
•
Causas atribuibles al rendimiento escolar: perfiles de ingreso inadecuados y falta de hábitos de estudio.
•
Causas físicas: inadecuada
problemas
43
de
salud
y
alimentación
Según la ANUIES, las Instituciones de Educación Media Superior “no han detectado con suficiente precisión los periodos críticos en la trayectoria escolar preuniversitaria, en los cuales las interacciones entre la institución y los alumnos pueden influir en la deserción”. Al respecto, Tinto (1992) señala tres periodos esenciales en la explicación del fenómeno de la deserción:
Primer periodo crítico: Se presenta en la transición entre la secundaria y el nivel medio superior y se caracteriza por el paso de un ambiente conocido a un mundo en apariencia impersonal, lo que implica serios problemas de ajuste para los estudiantes.
Segundo periodo crítico: Ocurre durante el proceso de admisión, cuando el estudiante se crea expectativas equivocadas sobre las instituciones y las condiciones de la vida estudiantil; al no satisfacerse, pueden conducir a decepciones tempranas y, por consiguiente, a la deserción.
Tercer periodo crítico: Se origina cuando el estudiante no logra un adecuado rendimiento académico en las asignaturas del plan de estudios y la Institución no le proporciona las herramientas necesarias para superar las deficiencias académicas.
Para Gustavo Nigenda la deserción es la “ausencia definitiva de los estudios sin haber concluido en su totalidad el plan de estudios de la educación media superior respectiva, esto por razones de carácter personal, institucional o social. Algunos de los motivos del abandono son: problemas familiares, hábitos de estudio, condiciones económicas, inadecuada orientación vocacional, baja motivación, estado civil o debido a la falta de dedicación a la escuela por motivos laborales”. En una investigación realizada en 1982, Javier Osorio Jiménez, de la Universidad Autónoma Metropolitana, señala respecto a los factores que inciden en la deserción, algunos aspectos que limitan la capacidad de retención institucional:
La existencia de diferencias importantes entre los conocimientos con que egresan los estudiantes de secundaria y el mínimo de aptitudes necesario para los estudios de la educación media superior.
La escasa atención a las ciencias básicas, las matemáticas y las metodologías de investigación en la educación secundaria y sus diversas repercusiones. Entre ellas, una elección de tipo de bachillerato que no incluya materias consideradas difíciles el ingreso al nivel medio superior sin
44
aptitudes para el razonamiento lógico y las erróneas percepciones sobre la investigación científica.
En el Instituto de Educación Media Superior del D.F. el fenómeno de la deserción está identificado por estados o categorías que han sido asignadas para ubicar aquellos sujetos que suspendieron los estudios en alguna etapa de la vida preuniversitaria, pero se desconoce con precisión cuáles son las causas de la suspensión de los estudios de esta población identificada. Por lo que la educación Media Superior se caracteriza principalmente porque se desarrolla en la etapa de la adolescencia de las personas. La adolescencia tiene una importancia crítica en el desarrollo de los individuos y de las sociedades. Es una etapa formativa que prepara a los jóvenes para la vida. Se percibía a la adolescencia como una etapa del desarrollo en la que no sólo se presentaban cambios físicos y psicológicos, sino también se incrementaba la tendencia de cometer conductas de riesgo, actualmente, se ha identificado que dichos cambios se encuentran enmarcados y fusionados con las características socioculturales de los contextos en los que los jóvenes se desarrollan, de tal forma que los problemas identificados con esta etapa no pueden atribuirse sólo a sus características personales, sino a la participación e interacción de una compleja red de dimensiones sociales y culturales. En el caso los adolescentes, en el precio de la deserción escolar son advertidos cuando el ocio, la sustracción de los ambientes controlados por la disciplina y la indefinición de objetivos productivos, inciden en la construcción de entornos inseguros, propios para la generación de climas de violencia y la comisión de actos delictivos. En estas circunstancias, es importante que padres, maestros y sociedad en general, consideren la concepción del origen y consecuencias de los cambios que sufren los adolescentes, hoy día se advierte en este sector de la población mexicana una mayor dependencia con el entorno.
Cambios emocionales: provocados por la necesidad de buscar afecto complementario al que la familia ofrece; por tal motivo, en esta etapa de la vida se hacen los mejores amigos y surge el primer enamoramiento, otorgando a la relación con los pares y con la pareja, una importancia determinante del comportamiento adolescente.
Cambios físicos –frecuentemente iniciados más prematuramente por las mujeres– que marcan sensibles diferencias en el desarrollo y en las formas de respuesta a los estímulos ambientales y sociales.
45
Cambios sexuales, originados por adaptaciones fisiológicas, que redundan en el incremento por el interés sexual.
Cambios intelectuales_ que hacen surgir intereses novedosos y el planteamiento de nuevas preguntas (¿Quién soy? ¿Para qué nací? ¿Cuál es el objetivo de vivir?), que sólo pueden responderse a partir de una conducta exploratoria, de la búsqueda de la novedad y el descubrimiento del mundo adulto, que a pesar de poder volverse en contra, permitirá entender mejor la forma de ser propia y la de los demás.
Las condiciones de vida actuales acentúan peligrosamente algunos rasgos de la conducta adolescente ya que incrementan la oferta de espacios para explorar el ambiente extra-familiar, el cual se ha diversificado enormemente en cantidad y en poder de fascinación. La adolescencia siempre fue un período durante el cual los miembros jóvenes de la familia, descubrían las imperfecciones de sus padres y del mundo en general, por lo que buscaban desprenderse del mundo de la infancia (en especial de los padres), desarrollar un guion de vida propio, sustentado en el familiar pero a la vez diferente y único, y comenzar a interactuar con otros pares y adultos que no necesariamente compartían los mismos valores y códigos. También, se caracterizaba predominantemente por ser una etapa de exploración, que permitía probar lo desconocido, alejarse de la seguridad de “lo familiar”, de comprobar si las alertas de los padres eran justificadas o simplemente el resultado de su deseo de mantenerlos junto a ellos; sin embargo, las conductas exploratorias se convierten cada día más, en conductas de riesgo o que relacionan la intranquilidad social con el comportamiento adolescente vulnerable y la consecuente construcción de una identidad. En este contexto, la adolescencia se encuentra actualmente asociada a la presencia de riesgos como consumo de tóxicos, SIDA y otras enfermedades de transmisión sexual, embarazo precoz o indeseado, depresión, accidentes e incluso la muerte; pero también con el concepto de circuitos de riesgo, que permiten identificar la presencia de conductas adicionadas, complementarias y crecientes en peligrosidad, lo que incrementa la vulnerabilidad. Diferentes autores coinciden en expresar que el abandono temprano de la escuela, la incorporación temprana al empleo y el consecuente desempeño en trabajos marginales, incrementa la vulnerabilidad psicosocial de los adolescentes, esto es totalmente cierto en nuestra entidad federativa del Distrito Federal a estudiar en este presente trabajo.
46
Cuando Guadalupe Lucio Gómez Maqueo era la Directora General del IEMSDF, advirtió que muchos de los jóvenes que ingresaban a las Preparatorias del GDF “no eran recién egresados de la secundaria, lo que tiene un peso importante, porque implica que el estudiante retome una serie de instrumentos, así como el hábito de estudio”, además de que “Un 50 por ciento proviene también de familias cuyo ingreso es de dos salarios mínimos que si bien no tiene que ver con habilidades de los estudiantes, sí impactan en su desempeño por cuestiones de capital cultural en su entorno” (Hernández, 2006). Dichas situaciones, sin duda, impactan negativamente en el desempeño y el avance académico de los estudiantes y pueden explicar, en parte, la razón por la que el Sistema de Bachillerato del GDF presenta una mayor deserción escolar, así como una menor eficiencia terminal. En el “Informe Final” del Centro de Investigación Educativa y Actualización de Profesores A. C. (2011), sobre la “Estrategia para el aprovechamiento y mejora del modelo educativo del bachillerato del IEMS”, se menciona que los estudiantes de las Preparatorias del GDF “demuestran un paupérrimo capital cultural” y que existe una “gran deserción de los alumnos: El 50% en los primeros dos semestres y por lo menos otro 20% entre el tercero y el sexto semestre”, además de que se afirma que “una de las causas de la deserción tan grande el primer semestre es el choque de la cultura (costumbres, vestimenta, vocabulario, higiene) de los alumnos con la de maestros y administrativos”, por lo que proponen la realización de “un programa intenso de redacción durante el primer semestre para elevar el nivel cultural de los alumnos e incrementar su autoestima. Esto más un esfuerzo deliberado de todo el mundo por ser amables y comprensivos con los alumnos”. Héctor G. Riveros y Emma Jiménez Cisneros (1998), mencionan que “La gran deserción observada en el primer año del nivel medio superior, indica que un porcentaje alto de estudiantes considera cambiar de vocación personal o incorporarse al mercado laboral ”, lo cual coincide con lo señalado por Roberto Rodríguez (2001), quien asegura que la deserción del total de estudiantes de bachillerato en el D.F. esta “relacionada con la incorporación temprana a la fuerza laboral”, y en el mismo sentido, Juventino Rodríguez Ramos, cuando era el Director General del IEMS-DF, afirmaba que “entre las causas de la deserción escolar está en la necesidad que tienen los jóvenes por contribuir a los ingresos familiares” (Archundia, 2007). Otro de los aspectos que puede afectar indirectamente la permanencia de los estudiantes en el IEMS-DF, es la falta de presupuesto para las Preparatorias del GDF, ya que, como señala Francisco Miranda, en los últimos años “han sufrido recorte presupuestal y en cuanto a su infraestructura hay unas que son ‘de mucho orgullo’, mientras otras están inconclusas”, (Hernández, Mirtha. 2013), lo cual puede
47
estar incrementando los índices de deserción escolar, al menos en los planteles que se encuentran todavía inconclusos. La deserción escolar “no es sólo un fracaso del estudiante, sino de su familia, de la institución educativa a la que está inscrito y de la sociedad en su conjunto”, tal como lo señalaron diversos expertos durante la tercera Conferencia Latinoamericana sobre el Abandono en la Educación Superior (Olivares, 2013:38), y si consideramos lo que menciona Lucía Monroy Cazorla respecto a que “si bien en las instituciones de educación superior existe un importante problema de deserción, éste es aún más grave en el nivel medio superior”, podríamos añadir que dicho problema es todavía mayor en las Preparatorias del GDF que en los demás bachilleratos del país y “Tal situación, además de plantear enormes retos en el uso de recursos, está minando la efectividad del proyecto”, según lo reportado por EVALUA DF (2012). Actualmente, según el análisis realizado por el IEMS-DF en el 2013, de las últimas tres generaciones de las Preparatorias del GDF, al término del primer ciclo escolar, la permanencia de los estudiantes disminuye un 25.3%, quedando únicamente el 74.7% de los estudiantes, lo cual coincide con el promedio de deserción que se tiene a nivel nacional durante “la transición del primero al segundo grado” de bachillerato (Amador, 2008). “La deserción en la educación media superior se presenta sobre todo en el segundo semestre y que los hombres abandonan más que las mujeres” (Olivares, 2013), y Héctor G. Riveros, junto con Julieta Fierro (s/f), mencionan que “la alta deserción observada en el primer año del nivel medio superior y superior, sugiere que este primer año es el que está actuando como un segundo filtro de selección”, por ello consideran que “es mejor incrementar la capacidad del primer año reconociendo su función como medio de selección, o establecer un curso semestral, trimestral o mensual, como filtro de selección.” La autoexclusión de los estudiantes fue considerada por José de Jesús Bazán Levy, cuando era Director General del IEMS-DF, como una “epidemia” o “una enfermedad que hace que haya una deserción importante”, la cual, según él, “es cercana al 20 por ciento en el primer año y del 30 por ciento, en el segundo”, y dicha situación se debe a que quienes ingresan a las Preparatorias del GDF sienten “que los conocimientos exigidos rebasan totalmente sus capacidades”, por lo que “se hacen a un lado, se excluyen por razones académicas” (Hernández, 2010).. Sin embargo, las recientes autoridades del IEMS-DF han señalado que al menos en las Preparatorias del GDF eso ya no es así, porque del 25.3% de estudiantes que desertan al término del primer ciclo escolar, el 14.24% de ellos causa baja de manera formal, para irse a estudiar a otra institución educativa. En palabras de
48
Freyja Doridé Puebla López, ex Directora General del IEMS-DF, se puede decir que “muchos chicos entran, se inscriben con nosotros y el próximo año vuelven a aplicar examen para la prepa de la UNAM, para el colegio de Bachilleres, para el CCH de la UNAM y se van” (Montes, 2013), mientras que “El otro 10.54% se ubica en el rubro de autoexclusión; es decir, estudiantes activos que ya no se inscriben al siguiente ciclo escolar por su bajo avance académico en la mayoría de las asignaturas” (IEMS-DF, 2013).
4.7. Beneficio de tener una acción que solucione la deserción escolar en la dependencia gubernamental del IEMS-DF Es determinar un modelo estadístico llamado el “Ajuste de curvas por mínimos cuadrados” que considere información sobre el perfil de la trayectoria escolar y evaluación del estudiante en los planteles de estas escuelas de nivel medio superior, el cual permita determinar la probabilidad de que un alumno deserte en este instituto. El estudio tiene como propósito en pronosticar la deserción de los estudiantes de cada uno de los 20 planteles que conforma el Instituto de Educación Media Superior del Distrito Federal durante el primer periodo de estudios de la Preparatoria. Asimismo, con esto se pretende que las autoridades de cada plantel que conforma el IEMS-DF se involucren en conocer la situación académica y trayectoria escolar de cada estudiante, que esté en riesgo de desertar, para que las autoridades tome medidas preventivas, para poder facilitar el diseño de estrategias institucionales orientadas a fomentar la permanencia de sus estudiantes y que esto conlleve a la conclusión exitosa de los estudios de bachillerato de sus estudiantes en cada uno de los planteles que conforma esta dependencia del IEMS-DF. Esto sustenta el análisis de los métodos numéricos que se basan de los modelos matemáticos para desarrollarlo que en esta situación ocuparemos el método de ajuste de curvas por mínimos cuadrados ,con esto se espera hacer un aporte con la investigación cuyo fin se considere como argumento para poder atender la problemática de la deserción escolar y que las autoridades competentes gubernamentales hagan acciones y medidas preventivas con este análisis estadístico y les sirva en proponer la viabilidad de crear estrategias de atención en incrementar el egreso de sus estudiantes para que tengan una mejor calidad de vida laboral y profesional en esta ciudad de México. Sus objetivos principales de este estudio son: I) Explorar la incidencia de los factores escolares en el tema de deserción en media superior, e II) Identificar en qué medida existe relación entre los factores escolares y las tasas de deserción en las escuelas de este nivel educativo
49
Lo que se espera de este proyecto es de efectuar un análisis a partir de la Probabilidad y Estadística con ayuda de la fundamentación del análisis de los métodos numéricos es hacer predicciones, y con base a esas predicciones advertir mejores decisiones; para el caso de este proyecto con respecto a los resultados, fundamentar la problemática con este tipo análisis puede ser un primer paso para empezar a tomar medidas para atender la problemática y reflexionar la importancia a corto y largo plazo de cómo puede afectar a la deserción a la población estudiantil. Los objetivos de esta investigación son: I.
Explorar la incidencia de los factores escolares en el tema de deserción en educación media superior en el Distrito Federal e
II.
Identificar en qué medida existe relación entre los factores escolares y las tasas de deserción en las escuelas de este nivel educativo
También se pronosticará la deserción escolar en el Instituto de Educación Media Superior del Distrito Federal en base a la tendencia que ha seguido a lo largo del tiempo, con el fin de que las autoridades puedan implementar estrategias y medidas que puedan instrumentarse para reducir su incidencia. También se busca clasificar, debido a la complejidad de las causas que se identifiquen y a sus combinaciones, los fenómenos en dos categorías interpretativas: a) Las que caben dentro de la esfera de influencia del Instituto de Educación Media Superior b) Y las que escapan a su control. Tomando en cuenta las siguientes consideraciones:
En identificar qué factores del perfil del estudiante presenta mayor influencia para que abandone el bachillerato general.
En determinar un modelo estadístico llamado el “Ajuste de curvas por mínimos cuadrados” con mayor bondad de ajuste que determina la probabilidad de que un alumno pueda evitar en abandonar el bachillerato general y buscar una alternativa para mejorar su calidad de vida.
En determinar un modelo para cada plantel que permita al alumno conocer de forma particular la probabilidad que tiene para que no caiga en la deserción y asegure su egreso de acuerdo al contexto situacional del plantel que elige en su formación académica.
50
Estos resultados beneficiaría al:
Gobierno del Distrito Federal en su mayor ingreso presupuestal en vivienda, empleo y desarrollo educacional y profesional.
A la institución de Educación Media Superior del Distrito Federal en que tenga mayor cantidad de egresados y con esto sus egresados gocen y tengan el beneficio de una educación superior asegurada de pase directo a la Universidad Autónoma de la Ciudad de México UACM y con esto tengan mayores oportunidades laborales en esta entidad federativa
A la planta docente en que mejoren la calidad educativa para sus estudiantes de esta dependencia de educación media superior y sea innovadora para entidad federativa.
A sus estudiantes para encuentren una mejor calidad de vida en esta entidad federativa y sean útiles y productivos para el desarrollo sustentable de la capital mexicana.
METAS: Considerando que uno de los principales retos que tiene la institución es que “los jóvenes estudiantes consideren al IEMS como su primera opción educativa y no como la última”, la ex Directora General de las Preparatorias del GDF consideraba que para lograrlo primero debíamos “salir a que nos conozcan por cosas buenas y por cosas positivas, porque ya somos conocidos, pero ahora por cosas buenas y por cosas positivas, y la otra, fortalecer el trabajo del instituto, que la gente sepa lo que hacemos, que la gente nos vea como opción de investigación, de proyecto” (Montes, 2013). De manera similar, algunos estudiantes egresados del IEMS-DF, como Martha Marlene López (citada por Hernández y Durán, 2004), han considerado que en el caso de las Preparatorias del GDF “hace falta que la gente confíe en ellas, porque se piensa que son chafas, y no es así”, ya que muchos jóvenes que han sido rechazados del IEMS-DF por falta de lugares para ellos, quieren que los dejen estudiar en las Preparatorias del GDF porque consideran que tienen un buen sistema educativo (González, 2002), además de que los alumnos del IEMS-DF que abandonaron o interrumpieron sus estudios “tienen buena opinión del IEMS y consideran que su paso por este sistema les ha ayudado mucho en su vida o a realizar otro tipo de actividades” (Centro de Investigación Educativa y Actualización de Profesores A. C., 2011). Sin embargo, se debe revisar la problemática que generan los horarios desfasados de los estudiantes irregulares o rezagados del IEMS-DF, los cuales
51
pueden llegar a contener muchas horas libres entre una asignatura y otra, lo que genera un desgaste en ellos, además de que da pie para que centren su tiempo en actividades que no están relacionadas “en términos estrictos con lo académico”, como socializar entre pares y tener un noviazgo, mientras están en la escuela (Sánchez e Ybarra, 2008). En ese sentido, es indudable que “la Secretaría de Educación del DF y en específico las autoridades del IEMS, tienen la obligación de proponer y crear un plan específico para mejorar su plan educativo y en consecuencia sus índices de egreso”, tal como lo señaló Priscila Vera (citada por El Zócalo DF, 2013), aunque también es cierto que “La sociedad no puede esperar que las instituciones educativas contrarresten solas los efectos perniciosos que se generan en el contexto social y cultural en el cual dichas instituciones están inmersas” (IEMS-DF, 2002). Se necesita de la participación de todos, además de la identificación clara y precisa de las diferentes causas que generan dicha problemática, para poder implementar las soluciones más adecuadas para la misma. El Gobierno del Distrito Federal, debe coordinar una política común para cambiar los problemas de calidad, deserción y cobertura en educación media superior. También se debe incluir a los municipios y gobierno del Estado de México que se encuentran en la Zona Metropolitana. No basta con un solo examen para coordinar la respuesta del gobierno, se requiere rediseñar los mecanismos de ingreso y ampliar los programas sociales de becas, pues la desigualdad explica en gran medida la deserción escolar. En primer lugar, se debería reconsiderar que únicamente los puntajes definan quienes ingresan o no a cada nivel. Por ejemplo podrían considerarse ponderadores según condición socioeconómica para que se cierren las brechas entre quienes tienen menores ingresos y acceso a educación pública, sobre todo si queremos combatir el rezago educativo. Esto implica dar opciones de movilidad social a jóvenes de menores ingresos y tener capital humano capaz de desarrollar la economía de la ciudad. En segundo lugar, a reservar de conocer nuevos datos de deserción, debería pensarse en ampliar las becas para aquellos que tienen mayor riesgo de desertar del sistema educativo. Deben considerarse otros factores de deserción como embarazos no deseados o desinterés. En tercer lugar, es urgente revisar la calidad del bachillerato en el Distrito Federal, todos los jóvenes deberían tener la posibilidad de un bachillerato de calidad, y no sólo aquellos quienes tienen mayor capital cultural e ingresos para responder mejor a los exámenes. Una opción podría ser asignar también a jóvenes de menores ingresos a las escuelas más cercanas que tengan mejores puntajes
52
para permitirles mayor movilidad, o en otro caso subsidiar sus opciones de transporte público y mejorándolo. Por lo tanto, una mayor matricula y graduación es un indicador de capital humano y a la vez de desarrollo y bienestar para la población de esta entidad federativa de la Ciudad de México. Al investigar sobre este problema, consideramos que los resultados obtenidos contribuirán a enriquecer los conocimientos en el campo de la Administración Educativa, particularmente en los aspectos de: organización y planeación institucional, organización académica, administración del personal docente y del rendimiento escolar. La Secretaría de Educación Pública, por medio de la Subsecretaría de Educación Media Superior, otorga al sistema de bachillerato general público elevados subsidios anuales, que en el caso del Distrito Federal ascienden a aproximadamente 31 mil pesos por alumno al año (datos del ciclo escolar 2001 2015). Dada la baja eficiencia terminal y elevada deserción escolar, es obvio que se están desperdiciando recursos públicos. Si se estudiara mejor el problema de la deserción y se tomaran las medidas adecuadas para su disminución desde cada escuela, contribuiríamos a evitar esa pérdida de recursos. El éxito escolar y la formación completa de los egresados son un aspecto fundamental de la misión social del Instituto de Educación Media Superior. Además, disminuyendo la deserción el prestigio de esta escuela en particular mejoraría, ya que el público en general suele asociar la deserción con la eficiencia de la planta docente, entre otros factores. Evitando el abandono de los estudios el individuo no solamente mejoraría su calidad de vida en el futuro, sino que también esto propiciaría una elevación de la autoestima, al verse a sí mismo como capaz de concluir un proyecto que él inició. Respecto al personal docente, el conocer las causas de la deserción escolar en la institución de educación media superior del D.F., ayudaría a combatir en el ámbito dependiente del maestro y así mejoraría el desempeño docente de cada plantel educativo que conforma el IEMS DF. Estos resultados principales nos conducen en señalar que: en la figura del director hay i)una mayor satisfacción de estabilidad laboral que esto se asocia con menores índices de abandono, mientras que para el cuerpo docente ii) un mayor desarrollo profesional -asistencia a cursos sobre los contenidos de las materias que
53
imparten; y iii) mayor desarrollo personal -hĂĄbito de lectura de temas de interĂŠs personal-constituyen factores que reducen la tasa de deserciĂłn en el alumnado.
4.8. Ajuste de curvas 4.8.1. Suavizamiento de datos del ajuste En la ciencia, se da a menudo, el caso de la realizaciĂłn de encuesta con frecuencia que produce una cantidad de datos. Para interpretar los datos, podemos recurrir a los mĂŠtodos grĂĄficos que definen un conjunto de datos (đ?‘Ľ0 , đ?‘Ś0 ), (đ?‘Ľ1 , đ?‘Ś1 ), ‌ , (đ?‘Ľđ?‘› , đ?‘Śđ?‘› ), siendo las abscisas {đ?‘Ľđ?‘˜ } distintas entre sĂ; esto quiere decir, que esta situaciĂłn en este caso de la realizaciĂłn de encuesta con frecuencia puede producir una tabla numĂŠrica de la siguiente forma: đ?‘‹
đ?‘Ľ0
đ?‘Ľ1
‌
đ?‘Ľđ?‘›
đ?‘Œ
đ?‘Ś0
đ?‘Ś1
‌
đ?‘Śđ?‘›
Y de esta, se pueden ubicar đ?‘› + 1 puntos en una grĂĄfica. Entonces para ubicar en una grĂĄfica, el anĂĄlisis de regresiĂłn consiste en definir la variable independiente đ?‘‹ que ayuda a explicar (estimar) la variable dependiente đ?‘Œ, siempre que exista un relaciĂłn lineal entre ellas, ademĂĄs que ambas variables deben ser cuantitativas. Tomando en consideraciĂłn, que uno de los objetivos de esta introducciĂłn del cĂĄlculo numĂŠrico es la determinaciĂłn de la fĂłrmula đ?‘Ś = đ?‘“(đ?‘Ľ) que relacione las variables. Con esto definimos, en que se tiene un conjunto arbitrariamente espaciado de đ?‘› + 1 puntos dados definido como (đ?‘Ľđ?‘˜ , đ?‘“đ?‘˜ ). En el caso prĂĄctico no es posible encontrar esta funciĂłn đ?‘Ś = đ?‘“(đ?‘Ľ) y que satisfaga exactamente todas las relaciones: đ?‘Ś1 = đ?‘“(đ?‘Ľ1 ) đ?‘Ś2 = đ?‘“(đ?‘Ľ2 ) . . . đ?‘Śđ?‘› = đ?‘“(đ?‘Ľđ?‘› ) Por lo general, uno estĂĄ dispuesto a aceptar un "error" (y este error dependerĂĄ de cada observaciĂłn) que se define de la manera siguiente:
54
đ?‘“(đ?‘Ľđ?‘˜ ) = đ?‘Śđ?‘˜ + đ?‘’đ?‘˜
Donde đ?‘’đ?‘˜ es el error de mediciĂłn observado en el dato. La pregunta que uno se hace es ÂżcĂłmo poder encontrar "la mejor aproximaciĂłn" que pase de los puntos? Para responder esta pregunta, hay que considerar los errores (tambiĂŠn llamado como las desviaciones) y estĂĄn dados como la diferencia del valor estimado por el modelo đ?‘“(đ?‘Ľđ?‘˜ ) menos el valor observado đ?‘Śđ?‘˜ , es decir: Errores de MediciĂłn đ?‘’đ?‘˜ = đ?‘“(đ?‘Ľđ?‘˜ ) − đ?‘Śđ?‘˜ para 1 ≤ đ?‘˜ ≤ đ?‘› đ??¸đ?‘&#x;đ?‘&#x;đ?‘œđ?‘&#x; = đ?‘‰đ?‘Žđ?‘™đ?‘œđ?‘&#x; đ??¸đ?‘ đ?‘Ąđ?‘–đ?‘šđ?‘Žđ?‘‘đ?‘œ − đ?‘‰đ?‘Žđ?‘™đ?‘œđ?‘&#x; đ?‘‚đ?‘?đ?‘’đ?‘&#x;đ?‘Łđ?‘Žđ?‘‘đ?‘œ
Que esto grĂĄficamente se representa de la siguiente manera:
Por lo que entonces se desea seleccionar de una clase de funciones, la que la minimice, es decir đ?‘‘22 , la suma de los cuadrados de las diferencias de los valores. Entonces definamos que đ?‘‘2 (đ?‘?, đ?‘“) = √∑(đ?‘?đ?‘˜ − đ?‘“đ?‘˜ )2 → đ?‘‘22 (đ?‘?, đ?‘“) = ∑(đ?‘?đ?‘˜ − đ?‘“đ?‘˜ )2 Por lo que decimos entonces que la medida de la distancia đ?‘‘2 que se denomina distancia euclidiana entre đ?‘? y đ?‘“. Escribimos đ?‘?(đ?‘Ľ) para un candidato de la funciĂłn de aproximaciĂłn y đ?‘?(đ?‘Ľđ?‘˜ ) = đ?‘?đ?‘˜ de manera que deseamos minimizar: đ?‘›
đ??¸ = ∑(đ?‘?đ?‘˜ − đ?‘“đ?‘˜ )2 đ?‘˜=0
55
Que se denomina la medida de bondad de ajuste o el error. Este enfoque se conoce como: “mĂnimos cuadradosâ€? o “error cuadrĂĄtico mĂnimoâ€? La funciĂłn đ?‘?(đ?‘Ľ) no necesita coincidir con alguno de los valores dados, da un ajuste razonable a la tabla “en promedioâ€?. Permitimos varios valores đ?‘“đ?‘— asociados con el mismo valor đ?‘Ľ en el caso de que varias mediciones en alguna đ?‘Ľ arrojen resultados diferentes. Esto implica que los đ?‘Ľđ?‘˜ de la sumatoria đ??¸ no necesitan ser distintos. Este caso se define como una suma ponderada para el error đ??¸, serĂa mĂĄs adecuada. TambiĂŠn podrĂamos incluir pesos si algunos de los đ?‘“đ?‘˜ fueran menos confiables que otros o si en especial conviniera un ajuste cerca de ciertos puntos. Consideremos que, aun cuando algunos đ?‘Ľđ?‘˜ puedan repetirse, no todos los đ?‘Ľ pueden ser el mismo; debemos tener al menos dos abscisas diferentes. Seleccionamos la forma de đ?‘?(đ?‘Ľ) con base en expectativas teĂłricas y/o cualquiera de los đ?‘› + 1 puntos sugeridos. El grado đ?‘› del polinomio đ?‘?(đ?‘Ľ) puede establecerse con antelaciĂłn por algĂşn resultado teĂłrico, alguna expectativa o por la aplicaciĂłn que se le pretenda dar al polinomio. Existen "normas" que se usan comĂşnmente para poder cuantificar la distancia que hay entre los valores estimados y los valores observados de la siguiente manera: Error MĂĄximo đ??¸âˆž (đ?‘“) =
đ?‘šĂĄđ?‘Ľ {đ?‘“(đ?‘Ľđ?‘˜ ) − đ?‘Śđ?‘˜ } 1≤đ?‘˜â‰¤đ?‘›
1
Error Medio đ??¸1 (đ?‘“) = đ?‘› ∑đ?‘›đ?‘˜=1|đ?‘“(đ?‘Ľđ?‘˜ ) − đ?‘Śđ?‘˜ | 1
Error CuadrĂĄtico Medio đ??¸2 (đ?‘“) = √ ∑đ?‘›đ?‘˜=1|đ?‘“(đ?‘Ľđ?‘˜ ) − đ?‘Śđ?‘˜ |2 đ?‘›
Como no se puede hacer que todos los errores sean cero (ese serĂa nuestro modelo ideal), ni tampoco se puede hacer que cada uno sea lo mĂĄs pequeĂąo posible, se tiene que hacer una combinaciĂłn razonable de ellos tan pequeĂąa como sea posible En la mayorĂa de los casos el grado serĂĄ uno, y esto se denomina “la lĂnea recta que mejor se ajustaâ€? o la “lĂnea de mĂnimos cuadradosâ€? para una tabla.
56
Una opciĂłn muy utilizada en la literatura es la de minimizar la suma de los errores de los errores al cuadrado. Es decir, usar el mĂŠtodo llamado mĂnimos cuadrados. Es decir esto se puede demostrar estadĂsticamente que la mejor lĂnea recta a travĂŠs de una serie de puntos experimentales es la lĂnea para la cual la suma de los cuadrados de las desviaciones(los residuales) de los puntos de la lĂnea es mĂnima. Esto se le conoce como mĂŠtodo de los mĂnimos cuadrados.
4.8.2. Modelo teĂłrico del ajuste Para analizar la probabilidad de deserciĂłn escolar se considera un modelo “logit bivariadoâ€?. La variable dependiente toma los valores de đ?‘Œ = 1 cuando es desertor y đ?‘Œ = 0 cuando no lo es. Para este anĂĄlisis se puede plantear la siguiente ecuaciĂłn sobre deserciĂłn escolar:
đ?‘ƒđ?‘– = đ??¸(đ?‘Œ = 1|đ?‘żđ?’Š ) =
1 1 + đ?‘’ −(đ?›ź+đ?œˇđ?‘ż)
‌ (1)
Donde el subĂndice representa al alumno individuo como đ?‘– = 1, . . . , đ?‘› y đ?‘ż es un vector de variables explicativas que contiene las diferentes caracterĂsticas econĂłmicas, sociales y culturales del adolescente tanto del desertor como del no desertor. La ecuaciĂłn ‌ (1) tambiĂŠn se puede escribir como: đ?‘ƒđ?‘– =
1 đ?‘’đ?‘Ą = ‌ (2) 1 + đ?‘’ −đ?‘Ąđ?‘– 1 + đ?‘’ đ?‘Ą
Donde se define para đ?‘Ąđ?‘– = đ?›ź + đ?›˝đ?‘ż La ecuaciĂłn ‌ (2) se le conoce como la funciĂłn de distribuciĂłn logĂstica. Tal como lo plantea Gujarati (2005: 595), es sencillo demostrar que si la variable đ?‘Ą se encuentra en un valor de −đ?‘Œ hasta +đ?‘Œ, entonces la variable đ?‘ƒ oscilarĂĄ entre 0 y 1. Dado que el modelo no es lineal, ni en el vector đ?‘ż ,ni en alfa đ?›ź , ni en beta đ?›˝, decimos entonces no se puede ocupar el procedimiento de mĂnimos cuadrados ordinarios (MCO), aunque este problema puede resolverse linealizĂĄndose. Si đ?‘ƒđ?‘– , es la probabilidad de ser desertor que esta dada por la ecuaciĂłn anterior, entonces (1 − đ?‘ƒđ?‘– ), es la probabilidad de no desertar, esto es 1 − đ?‘ƒđ?‘– =
1 ‌ (3) 1 + � ��
57
Que se puede reescribir de la siguiente forma: đ?‘ƒđ?‘– 1 + đ?‘’ đ?‘Ąđ?‘– = = đ?‘’ đ?‘Ąđ?‘– ‌ (4) 1 − đ?‘ƒđ?‘– 1 + đ?‘’ −đ?‘Ąđ?‘– đ?‘ƒ
Ahora (1−đ?‘ƒđ?‘– ) es el coeficiente de probabilidades de desertar. Si se toma el logaritmo đ?‘–
natural de la ecuaciĂłn ‌ (4), se puede obtener un resultado importante que definira crucialmente este proyecto: đ?‘ƒđ?‘– đ??żđ?‘– = đ??źđ?‘› ( ) = đ?‘Ąđ?‘– = đ?›ź + đ?œˇđ?‘ż ‌ (5) 1 − đ?‘ƒđ?‘– Lo que permite encontrar que no solo el vector de las đ?‘ż es lineal sino tambiĂŠn lineal en los parĂĄmetros.
4.8.3. Modelo de regresiĂłn del ajuste En los casos de anĂĄlisis de regresiĂłn se admite que la relaciĂłn poblacional promedio entre la variable dependiente (denotada usualmente por la letra đ?‘Ś) y la variable independiente (denotada por la letra đ?‘Ľ) es lineal. Puesto que deseamos determinar el valor medio de đ?‘Ś para un valor dado de đ?‘Ľ, tendremos interĂŠs en la esperanza đ?œ‡đ?‘Śâˆ™đ?‘Ľ que representa “la media de los valores đ?‘Ś para un valor dado đ?‘Ľ.â€? Para escribir una ecuaciĂłn que represente la relaciĂłn poblacional lineal entre đ?‘Ľ y la media de loa valores de đ?‘Ś llamada recta de regresiĂłn poblacional necesitamos conocer su pendiente đ?‘Ś y su intersecciĂłn con đ?‘Ś. Generalmente se usa la letra griega đ?›˝ (beta) para denotar la pendiente y la đ?›ź (alfa) para denotar la intersecciĂłn con el eje đ?‘Ś. El valor medio de đ?‘Ś para un valor dado đ?‘Ľ se denota mediante el sĂmbolo đ?œ‡đ?‘Śâˆ™đ?‘Ľ . AsĂ la recta de regresiĂłn poblacional puede escribirse de la forma siguiente: Recta de regresiĂłn poblacional: đ?œ‡đ?‘Śâˆ™đ?‘Ľ = đ?›ź + đ?›˝đ?‘Ľ ‌ (1) La diferencia entre đ?‘Śđ?‘– y đ?œ‡đ?‘Śâˆ™đ?‘Ľ , depende de la precisiĂłn con que el modelo de regresiĂłn describa la situaciĂłn del mundo real y de la precisiĂłn con que se midan las variables đ?‘Ľ e đ?‘Ś. AdemĂĄs mencionemos que otra diferencia entre đ?‘Śđ?‘– y đ?œ‡đ?‘Śâˆ™đ?‘Ľ es el elemento imprevisible en el anĂĄlisis de regresiĂłn. Esta diferencia suele llamarse error aleatorio y se denota por đ?œ€đ?‘– Esto es
58
đ?œ€đ?‘– = đ?‘Śđ?‘– − đ?œ‡đ?‘Śâˆ™đ?‘Ľ o đ?‘Śđ?‘– = đ?œ‡đ?‘Śâˆ™đ?‘Ľ + đ?œ€đ?‘– ‌ (2) Usando la fĂłrmula ‌ (2) para describir el llamado Modelo de RegresiĂłn Poblacional. Este modelo consta de todos los tĂŠrminos cuya suma es igual a đ?‘Śđ?‘– Sustituyendo đ?‘Śđ?‘– = đ?œ‡đ?‘Śâˆ™đ?‘Ľđ?‘– + đ?œ€đ?‘– en ‌ (1) obtenemos El modelo de regresiĂłn poblacional đ?‘Śđ?‘– = đ?›ź + đ?›˝đ?‘Ľđ?‘– + đ?œ€đ?‘– ‌ (3) La Ăşnica forma de determinar la naturaleza de tal relaciĂłn (poblacional) es hacer uso de datos tomados en el pasado (informaciĂłn muestral). Si se puede determinarse que existen determinados factores que estuvieron relacionadas con las situaciones en el pasado, entonces esta informaciĂłn puede ser Ăştil para separar a los postulantes potencialmente exitosos de que aquellos que parecen tener menos posibilidades. De aquĂ consideremos la forma que esta recta muestral estĂĄ relacionada con la recta de regresiĂłn poblacional dada en ‌ (1) en: 
El valor muestral de � es nuestra mejor estimación de �.

El valor muestral de đ?‘? es nuestra mejor estimaciĂłn de đ?›˝.
Con los valores de đ?‘Ž, đ?‘? y con un valor dado de đ?‘Ľ, se produce un valor de đ?‘Ś; denotado por đ?‘ŚĚ‚, el cual constituye nuestro mejor estimador del valor poblacional đ?œ‡đ?‘Śâˆ™đ?‘Ľ , es decir tiene la forma đ?‘ŚĚ‚ = đ?‘Ž + đ?‘?đ?‘Ľ ‌ (4) A estas variables puede agregĂĄrseles el subĂndice đ?‘– para indicar que se trata de valores especĂficos. AsĂ, si đ?‘Ľđ?‘– es un valor especifico de đ?‘Ľ, la ecuaciĂłn que se para hallar đ?‘ŚĚ‚đ?‘– (que es la mejor estimaciĂłn de đ?œ‡đ?‘Śâˆ™đ?‘Ľ para este valor de đ?‘Ľ) es đ?‘ŚĚ‚đ?‘– = đ?‘Ž + đ?‘?đ?‘Ľđ?‘– Luego definimos un tĂŠrmino de error que este caso es la diferencia entre el valor de predicciĂłn đ?‘ŚĚ‚đ?‘– y el valor real đ?‘Śđ?‘– . Para denotar a nuestro mejor estimador del valor poblacional đ?œ€đ?‘– utilizaremos el sĂmbolo đ?‘’đ?‘– . En el anĂĄlisis de la regresiĂłn los valores đ?‘’đ?‘– se llaman usualmente residuos, ya que representan lo que “se dejaâ€?, o queda inexplicado; despuĂŠs de usar el valor đ?‘ŚĚ‚đ?‘– para estimar el valor real đ?‘Śđ?‘–
59
Esto es Residuo: đ?‘’đ?‘– = đ?‘Śđ?‘– − đ?‘ŚĚ‚đ?‘– o bien đ?‘Śđ?‘– = đ?‘ŚĚ‚đ?‘– + đ?‘’đ?‘– Si utilizamos el estimador đ?‘ŚĚ‚đ?‘– = đ?‘Śđ?‘– − đ?‘’đ?‘– en la formula ‌ (4) obtenemos el Modelo de RegresiĂłn Muestral: Tiene la forma đ?‘Śđ?‘– = đ?‘Ž + đ?‘?đ?‘Ľđ?‘– + đ?œ€đ?‘– ‌ (5) Ahora que hemos especificado estos modelos de regresiĂłn muestral y poblacional necesitamos de un procedimiento para determinar los valores de đ?‘Ž y đ?‘? que constituyen las “mejoresâ€? estimaciones de đ?›ź y đ?›˝. El procedimiento para hallar tales estimaciones se llama MĂŠtodo de los MĂnimos Cuadrados.
EstimaciĂłn de đ?œś y đ?œˇ por el MĂŠtodo de MĂnimos Cuadrados. Entonces para determinar la recta de regresiĂłn muestral de mejor ajuste consiste en representar los datos en un diagrama de dispersiĂłn. Esta grĂĄfica de diagrama de dispersiĂłn ademĂĄs de permitirnos precisar objetivamente si puede trazarse una recta adecuada, para describir los datos, nos puede servir tambiĂŠn para hacer una estimaciĂłn aproximada de đ?›ź y đ?›˝.
Resultados esperados La dificultad para establecer tal procedimiento del MĂŠtodo de los MĂnimos Cuadrados estĂĄ en determinar el criterio para definir el “mejor ajusteâ€?. Pero, sin embargo para hallar la recta de mejor ajuste, determinaremos los valores de đ?‘Ž y đ?‘? que minimizan la suma de los cuadrados de los residuos. Este procedimiento se conoce como el MĂŠtodo de los MĂnimos Cuadrados, puesto que los residuos estĂĄn representados por đ?‘’đ?‘– = đ?‘ŚĚ‚đ?‘– − đ?‘Śđ?‘– dicho esto se define de la manera siguiente: EstimaciĂłn por el MĂŠtodo de MĂnimos Cuadrados: đ?‘›
đ?‘€đ?‘–đ?‘›đ?‘–đ?‘šđ?‘–đ?‘§đ?‘Žđ?‘&#x; ∑ đ?‘’đ?‘–2 đ?‘–=1
đ?‘› 2 = ∑(đ?‘Śđ?‘– − đ?‘ŚĚ‚) ‌ (6) đ?‘– đ?‘–=1
La recta de regresiĂłn muestral determinada minimizando ∑ đ?‘’đ?‘–2 se llama recta de regresiĂłn mĂnimo-cuadrĂĄtica. Esta ecuaciĂłn debe satisfacer la condiciĂłn de minimizar la suma de las desviaciones o residuos (đ?‘’đ?‘– ) del comportamiento de cada par de datos discretos, con respecto al modelo propuesto, elevadas al cuadrado, es decir:
60
đ?‘›
∑ đ?‘’đ?‘–2 = 0 đ?‘–=1
Puesto que đ?‘ŚĚ‚đ?‘– = đ?‘Ž + đ?‘?đ?‘Ľđ?‘– entonces se debe minimizar: ∑ đ?‘’đ?‘–2 = ∑(đ?‘Śđ?‘– − đ?‘ŚĚ‚đ?‘– )2 Equivale a minimizar đ?‘›
∑[đ?‘Śđ?‘– − (đ?‘Ž + đ?‘?đ?‘Ľđ?‘– )]2 đ?‘–=1
Esto quiere decir que mediante la minimizaciĂłn de đ?‘›
Ě‚đ?‘– ) ∑(đ?‘Œđ?‘– − đ?‘Œ
2
đ?‘–=1
Se obtienen buenas representaciones de la relaciĂłn entre đ?‘‹ y đ?‘Œ. Teniendo en cuenta todo lo mencionado con anterioridad se harĂĄ la prueba de realizar un ajuste a los datos presentados por medio de un modelo respectivo que se definirĂĄ como: 
Modelo lineal

Modelo cuadrĂĄtico

Modelo Polinomial

Modelo Exponencial
DespuĂŠs de esto tomaremos el mejor ajuste para el anĂĄlisis de datos de la deserciĂłn escolar en esta dependencia del IEMS-DF. Este anĂĄlisis se describirĂĄ para las predicciones generacionales a travĂŠs del cĂĄlculo del error; que este error sea lo mĂĄs exacto posible, es decir un error mĂnimo para encontrar el mejor ajuste para los datos presentados e inferir que acciones se debe llevar a cabo para cada situaciĂłn respectiva en sus modalidades de estudios.
61
4.9. El método de los Mínimos Cuadrados. 4.9.1. Antecedentes históricos del Método El día de Año Nuevo de 1801, el astrónomo italiano Giuseppe Piazzi descubrió el planeta enano Ceres. Fue capaz de seguir su órbita durante 40 días. Durante el curso de ese año, muchos científicos intentaron estimar su trayectoria con base en las observaciones de Piazzi (resolver las ecuaciones no lineales de Kepler de movimiento es muy difícil). La mayoría de las evaluaciones fueron inútiles; el único cálculo suficientemente preciso para permitir a Franz Xaver von Zach, astrónomo alemán, reencontrar a Ceres al final del año fue el de Carl Friedrich Gauss, por entonces un joven de 24 años (los fundamentos de su enfoque ya los había planteado en 1795, cuando aún tenía 18 años). Sin embargo, su método de mínimos cuadrados no se publicó sino hasta 1809, y apareció en el segundo volumen de su trabajo sobre mecánica celeste, Theoria Motus Corporum Coelestium in sectionibus conicis solem ambientium. El francés Adrien-Marie Legendre desarrolló el mismo método de forma independiente en 1805. En 1829, Gauss fue capaz de establecer la razón del éxito maravilloso de este procedimiento: simplemente, el método de mínimos cuadrados es óptimo en muchos aspectos. El argumento concreto se conoce como teorema de GaussMárkov. 4.9.2. Definición del Método. Mínimos cuadrados es una técnica de análisis numérico enmarcada dentro de la optimización matemática, en la que, dados un conjunto de pares ordenados: variable independiente, variable dependiente, y una familia de funciones, se intenta encontrar la función continua, dentro de dicha familia, que mejor se aproxime a los datos (un "mejor ajuste"), de acuerdo con el criterio de mínimo error cuadrático. En su forma más simple, intenta minimizar la suma de cuadrados de las diferencias en las ordenadas (llamadas residuos) entre los puntos generados por la función elegida y los correspondientes valores en los datos. Específicamente, se llama mínimos cuadrados promedio (LMS) cuando el número de datos medidos es 1 y se usa el método de descenso por gradiente para minimizar el residuo cuadrado. Se puede demostrar que LMS minimiza el residuo cuadrado esperado, con el mínimo de operaciones (por iteración), pero requiere un gran número de iteraciones para converger. Desde un punto de vista estadístico, un requisito implícito para que funcione el método de mínimos cuadrados es que los errores de cada medida estén distribuidos de forma aleatoria. El teorema de Gauss-Márkov prueba que los estimadores mínimos cuadráticos carecen de sesgo y que el muestreo de datos no tiene que
62
ajustarse, por ejemplo, a una distribuciĂłn normal. TambiĂŠn es importante que los datos a procesar estĂŠn bien escogidos, para que permitan visibilidad en las variables que han de ser resueltas (para dar mĂĄs peso a un dato en particular, vĂŠase mĂnimos cuadrados ponderados). La tĂŠcnica de mĂnimos cuadrados se usa comĂşnmente en el ajuste de curvas. Muchos otros problemas de optimizaciĂłn pueden expresarse tambiĂŠn en forma de mĂnimos cuadrados, minimizando la energĂa o maximizando la entropĂa. 4.9.3. Propiedades de la estimaciĂłn del mĂŠtodo El principal objetivo de mĂşltiples investigaciones estadĂsticas es efectuar predicciones, de preferencia basĂĄndose en ecuaciones matemĂĄticas. El anĂĄlisis numĂŠrico por medio de MĂnimos cuadrados es una tĂŠcnica de optimizaciĂłn matemĂĄtica en la que dados un conjunto de puntos que incluyen una variable independiente y una dependiente se busca la funciĂłn continua que mejor se aproxime a los datos, de acuerdo con criterio de minimizar el error cuadrĂĄtico, a esto se le conoce como “mejor ajusteâ€? en el sentido de mĂnimos cuadrados Cuando se busca la recta que se aproxime a todos los puntos, siempre se cometerĂĄn errores, lo que se pretende es minimizar lo mĂĄs que se pueda estos errores. Como no se puede hacer que todos los errores sean cero se hace una combinaciĂłn razonable de ellos tan pequeĂąa como sea posible. Minimizar los errores es difĂcil dado que las distancias se miden usando valores absolutos. Lo que tĂŠcnicamente es mĂĄs fĂĄcil, es manejar la suma de los cuadrados de los errores. Por lo que el mĂŠtodo de mĂnimos cuadrados consiste en encontrar una funciĂłn analĂtica sencilla que represente el comportamiento general de los datos, aunque la curva propuesta no pase por todos y cada uno de los puntos en cuestiĂłn. Decimos con esto que debemos definir una ecuaciĂłn que debe satisface la condiciĂłn de minimizar la suma de las desviaciones (đ?‘‘đ?‘– ) del comportamiento de cada par de datos discretos, con respecto al modelo propuesto, elevadas al cuadrado, es decir: đ?‘›
∑(đ?‘‘đ?‘– )2 = 0 đ?‘–=1
Por lo que Algunas formas de ajustar curvas son: a) Modelo lineal đ?‘“(đ?‘Ľ; đ?‘Ž0 , đ?‘Ž1 ) = đ?‘Ž0 + đ?‘Ž1 đ?‘Ľ b) Modelo cuadrĂĄtico đ?‘“(đ?‘Ľ; đ?‘Ž0 , đ?‘Ž1 , đ?‘Ž2 ) = đ?‘Ž0 + đ?‘Ž1 đ?‘Ľ + đ?‘Ž2 đ?‘Ľ 2 c) Modelo exponencial đ?‘“(đ?‘Ľ; đ?‘Ž0 , đ?‘Ž1 , đ?‘Ž2 ) = đ?‘Ž0 đ?‘’ đ?‘Ž1 đ?‘Ľ+đ?‘Ž2
63
d) Polinomial e) TrigonomÊtrico El caso mås usado en la pråctica es poder ajustar funciones polinomiales, ya que en este caso los paråmetros serån funciones lineales fåciles de estimar. El modelo a ajustar estå dado por: �(�; �1 , �2 , ‌ , �� ) = �0 + �1 � + �2 � 2 + ⋯ + �� � �
Y por lo tanto la funciĂłn đ?‘… 2 (la suma de los errores al cuadrado) estĂĄ dada por la siguiente ecuaciĂłn: đ?‘› 2
đ?‘… = ∑[đ?‘Śđ?‘˜ − (đ?‘Ž0 + đ?‘Ž1 đ?‘Ľ + đ?‘Ž2 đ?‘Ľ 2 + â‹Ż + đ?‘Žđ?‘š đ?‘Ľ đ?‘š )]2 đ?‘˜=1
La validez de la aplicaciĂłn del mĂŠtodo de mĂnimos cuadrados para el ajuste de curvas descansa sobre tres suposiciones sobre los errores que son la: 1.-Independencia: requiere que los errores sean independientes unos de otros. 2.-Normalidad: requiere que los errores se distribuyan normalmente en cada valor de la variable independiente. 3.-Homoscedasticidad: requiere que la varianza de los errores sea constante; es decir requiere que tengan igual varianza. De las suposiciones anteriores podemos deducir en tĂŠrminos probabilĂsticos que el error generado se comporta como una variable aleatoria con distribuciĂłn Normal con parĂĄmetros (0, đ?‘ đ?‘–đ?‘”đ?‘šđ?‘Ž) es decir đ?‘ đ?‘œđ?‘&#x;đ?‘šđ?‘Žđ?‘™ (0, đ?œŽ). Para el desarrollo del presente trabajo se utilizaran los mĂŠtodos de los modelos lineales y polinomial de cuarto grado. 4.9.4. ClasificaciĂłn de los modelos de ajuste del mĂŠtodo Ajuste del modelo lineal. Para entender el principio de mĂnimos cuadrados hay que considerar el planteamiento de una igualdad por medio de una ecuaciĂłn lineal, donde se pueden ver involucradas una o mĂĄs variables a la primera potencia, ademĂĄs de no contar con productos entre las variables; es decir que solamente se involucran sumas y restas de las variables a la primera potencia. Una forma comĂşn de ecuaciones lineales de dos variables considerĂĄndola en un sistema cartesiano es la ecuaciĂłn de una recta:
64
đ?‘Ś = đ?‘šđ?‘Ľ + đ?‘? DĂłnde: đ?‘š=
đ?‘Ś2 − đ?‘Ś1 đ?‘Ľ2 − đ?‘Ľ1
Esta m representa la pendiente de la recta dado dos puntos y el valor de b determina el punto donde la recta corta el eje đ?‘Œ (la ordenada al origen). Frecuentemente, en la prĂĄctica se disponen con mĂĄs de dos puntos dentro del sistema cartesiano, donde no todos los puntos estĂĄn dentro de una recta, pero hipotĂŠticamente todos los puntos estĂĄn cercanos a una. Donde se dan đ?‘› parejas de puntos. (đ?‘Ľ1 , đ?‘Ś1 ), (đ?‘Ľ2 , đ?‘Ś2 ), (đ?‘Ľ3 , đ?‘Ś3 ), ‌ , (đ?‘Ľđ?‘› , đ?‘Śđ?‘› ) La recta que minimiza la suma de los cuadrados de los errores se le llama recta de regresiĂłn, recta de mĂnimos cuadrados o recta de mejor ajuste. Para plantear este problema de manera formal, consideramos đ?‘› parejas de observaciones (đ?‘Ľđ?‘› , đ?‘Śđ?‘› ) en las cuales suponemos que la regresiĂłn es lineal (esto es la ecuaciĂłn de la recta) que en algĂşn sentido dĂŠ el mejor ajuste. Existen varias formas de interpretar la palabra “mejorâ€?, y el significado que le daremos puede explicarse de la siguiente manera. La recta que mejor se ajusta a los puntos (đ?‘Ľ1 , đ?‘Ś1 ), (đ?‘Ľ2 , đ?‘Ś2 ), (đ?‘Ľ3 , đ?‘Ś3 ), ‌ , (đ?‘Ľđ?‘› , đ?‘Śđ?‘› ) tiene la forma: đ?‘ŚĚ‚ = đ?‘š Ě‚ đ?‘Ľ + đ?‘?Ě‚ Donde đ?‘š y đ?‘? son constantes, entonces đ?œ€đ?‘– , el error al predecir el valor de đ?‘Ś correspondiente a la đ?‘Ľ , dada es: đ?œ€đ?‘– = đ?‘Śđ?‘– − đ?‘ŚĚ‚đ?‘– Y queremos determinar đ?‘š, đ?‘? de tal manera que estos errores sean, en cierto modo lo mĂĄs pequeĂąo posible. En general, una “yâ€? observada diferirĂĄ de esta media; la diferencia la denotaremos por đ?œ€: đ?‘ŚĚ‚ = đ?‘š Ě‚ đ?‘Ľ + đ?‘?Ě‚ + Îľ AsĂ, đ?œ€ es el valor de una variable aleatoria y siempre podemos elegir đ?‘? tal que la media de distribuciĂłn de esta variable aleatoria sea igual a cero. Donde las constantes đ?‘š Ě‚ en ‌ (1) y đ?‘?Ě‚ en ‌ (2) estĂĄn dadas por:
65
đ?‘š Ě‚=
đ?‘›(∑ đ?‘Ľđ?‘Ś) − (∑ đ?‘Ľ)(∑ đ?‘Ś) ‌ (1) đ?‘›(∑ đ?‘Ľ 2 ) − (∑ đ?‘Ľ)2 đ?‘?Ě‚ =
∑đ?‘Ś − đ?‘š Ě‚ (∑ đ?‘Ľ) ‌ (2) đ?‘›
Mediante la minimizaciĂłn de đ?‘› 2 ∑(đ?‘Śđ?‘– − đ?‘ŚĚ‚) đ?‘– đ?‘–=1
Se obtiene buenas representaciones de la relaciĂłn entre đ?‘Ľ y đ?‘Ś tal como se muestra la figura 1c) evitĂĄndose situaciones como las mostradas en la figura 1a) a 1b)
Figura 1
_________________________________________________________________ Chapra Steven C. y Canale Raymond P. (2011). MĂŠtodos numĂŠricos para ingenieros. (6ta. EdiciĂłn) MĂŠxico, D.F.: Editorial McGraw-Hill Interamericana RegresiĂłn Lineal Recordemos que una aproximaciĂłn por mĂnimos cuadrados consiste en ajustar a una lĂnea recta un conjunto de datos discretos (đ?‘Ľ1 , đ?‘Ś1 ), (đ?‘Ľ2 , đ?‘Ś2 ), ‌ , (đ?‘Ľđ?‘› , đ?‘Śđ?‘› ) Por lo que se inicia en considerar una ecuaciĂłn de una lĂnea recta a la cual se le agrega el error producido entre el comportamiento de los datos y el modelo propuesto de esta forma se tiene:
66
đ?‘Ś = đ?‘Ž0 + đ?‘Ž1 đ?‘Ľ + đ??¸ ‌ (1) DĂłnde: đ?‘Ž0 =Es la ordenada al origen đ?‘Ž1 =Es la pendiente đ??¸ =El error entre el modelo y los datos experimentales De esta forma decimos que: đ??¸ = đ?‘Ś − đ?‘Ž0 − đ?‘Ž1 đ?‘Ľ Al aplicar el criterio de que el “mejorâ€? ajuste se cumple cuando se puede minimizar la suma de los cuadrados de los residuos đ?‘şđ?’“ , es decir el error entre el modelo y los datos experimentales, se tiene que: đ?‘›
đ?‘†đ?‘&#x; = ∑(đ?‘Ś1 − đ?‘Ž0 − đ?‘Ž1 đ?‘Ľđ?‘– )2 ‌ (2) đ?‘–=1
Este criterio tiene la ventaja de proporcionar una lĂnea Ăşnica para un conjunto de datos. Para determinar los valores de đ?‘Ž0 y đ?‘Ž1 que minimizan la ecuaciĂłn ‌ (2) se deriva la ecuaciĂłn con respecto a cada uno de los coeficientes đ?œ•đ?‘†đ?‘&#x; = −2 ∑(đ?‘Śđ?‘– − đ?‘Ž0 − đ?‘Ž1 đ?‘Ľđ?‘– ) = 0 đ?œ•đ?‘Ž0 ‌ . (3) đ?œ•đ?‘†đ?‘&#x; = −2 ∑[(đ?‘Ś1 − đ?‘Ž0 − đ?‘Ž1 đ?‘Ľđ?‘– )đ?‘Ľđ?‘– ] = 0 đ?œ•đ?‘Ž1 Al igualar ambas derivadas a cero, se genera un mĂnimo para la suma de los cuadrados de los residuos đ?‘şđ?’“ de la siguiente forma: −2 ∑(đ?‘Śđ?‘– − đ?‘Ž0 − đ?‘Ž1 đ?‘Ľđ?‘– ) = 0 = ∑ đ?‘Śđ?‘– − ∑ đ?‘Ž0 − ∑ đ?‘Ž1 đ?‘Ľđ?‘– ‌ (4) −2 ∑[(đ?‘Ś1 − đ?‘Ž0 − đ?‘Ž1 đ?‘Ľđ?‘– )đ?‘Ľđ?‘– ] = 0 = ∑ đ?‘Śđ?‘– đ?‘Ľđ?‘– − ∑ đ?‘Ž0 đ?‘Ľđ?‘– − ∑ đ?‘Ž1 đ?‘Ľđ?‘–2 ‌ (5) De la ecuaciĂłn ‌ (4) se obtiene ∑ đ?‘Śđ?‘– = đ?‘›đ?‘Ž0 + đ?‘Ž1 ∑ đ?‘Ľđ?‘– ‌ (6) De la ecuaciĂłn ‌ (5) se obtiene ∑ đ?‘Śđ?‘– đ?‘Ľđ?‘– = đ?‘Ž0 ∑ đ?‘Ľđ?‘– + đ?‘Ž1 ∑(đ?‘Ľđ?‘– )2 ‌ . (7)
67
Al resolver en forma simultanea las ecuaciones ‌ (6) y ‌ (7) se obtiene los valores de đ?‘Ž0 y đ?‘Ž1 mediante las siguientes ecuaciones: đ?‘› ∑ đ?‘Ľđ?‘– đ?‘Śđ?‘– − ∑ đ?‘Ľđ?‘– đ?‘Ś1 ‌ (8) đ?‘› ∑ đ?‘Ľđ?‘–2 − (∑ đ?‘Ľđ?‘– )2
đ?‘Ž1 =
đ?‘Žđ?‘œ = đ?‘ŚĚ… − đ?‘Ž1 đ?‘ĽĚ… ‌ (9) Aplicaciones de la regresiĂłn lineal La regresiĂłn lineal proporciona tĂŠcnicas para ajustar datos discretos a una lĂnea recta, sin embargo, la relaciĂłn entre la variable dependiente y la independiente no siempre es lineal. AsĂ que, para proponer un modelo que represente el conjunto de datos discretos, lo primero que se debe hacer es graficarlos en la forma đ?‘Ľ vs đ?‘Ś, de esta manera es posible decidir si es correcto o no aplicar el ajuste lineal. Cuando al graficar el conjunto de datos discretos, se observa que el comportamiento no es lineal, es posible proponer ciertos modelos no lineales, que mediante cierto tratamiento matemĂĄtico pueden adquirir un comportamiento lineal, como son los casos que se presentan a continuaciĂłn. Modelo del ajuste exponencial Cuando al graficar un conjunto de datos discretos, se observa que el comportamiento no es lineal, tal como se muestra en esta figura 2, es posible proponer un modelo exponencial, el cual mediante tratamiento matemĂĄtico puede transformarse en un modelo lineal, tal como se muestra en la figura 3
Figura 2 Modelo Exponencial đ?‘Ś = đ?‘Ž0 đ?‘’ đ?‘Ž1 đ?‘Ľ
68
Figura 3 Modelo Exponencial Linealizado. __________________________________________________________________ Quintana HernĂĄndez Pedro Alberto, Villalobos Oliver EloĂsa Bernardett y Cornejo Serrano MarĂa del Carmen (2005) MĂŠtodos NumĂŠricos con Aplicaciones en Excel. MĂŠxico, Guanajuato: Instituto TecnolĂłgico de Celaya, Guanajuato; Editorial RevertĂŠ. Por lo que el modelo exponencial se representa mediante la ecuaciĂłn: đ?‘Ś = đ?‘Ž0 đ?‘’ đ?‘Ž1 đ?‘Ľ ‌ (đ?‘Ž) La ecuaciĂłn ‌ (đ?‘Ž) tiene un comportamiento no lineal el cual puede ser linealizado mediante la aplicaciĂłn de logaritmos naturales en ambos lados de la ecuaciĂłn, de lo cual resulta: đ??źđ?‘› đ?‘Ś = đ??źđ?‘› đ?‘Ž0 + đ?‘Ž1 đ?‘Ľ đ??źđ?‘› đ?‘’ = đ??źđ?‘› đ?‘Ž0 + đ?‘Ž1 đ?‘Ľ ‌ (đ?‘?) La ecuaciĂłn ‌ (đ?‘?) representa la ecuaciĂłn de una lĂnea recta en la que la pendiente es đ?‘Ž1 y la ordenada al origen es đ??źđ?‘› đ?‘Ž0 .
EcuaciĂłn elevada a una potencia Cuando al graficar un conjunto de datos discretos, se observa que el comportamiento no es lineal, tal como se muestra en la figura 4, es posible proponer un modelo de ecuaciĂłn elevada a una potencia, la cual mediante tratamiento matemĂĄtico puede transformarse en un modelo lineal, tal como se muestra en la figura 5
69
Figura 4 EcuaciĂłn elevada a una potencia đ?‘Ś = đ?‘Ž0 đ?‘Ľ đ?‘Ž1
Figura 5 Modelo linealizado. Por lo que la ecuaciĂłn elevada a una potencia ecuaciĂłn:
se representa mediante la
đ?‘Ś = đ?‘Ž0 đ?‘Ľ đ?‘Ž1 ‌ (đ?‘?) Al aplicar logaritmo base 10 en ambos lados de la ecuaciĂłn ‌ (đ?‘?) se obtiene el siguiente modelo linealizado: đ??źđ?‘œđ?‘” đ?‘Ś = log đ?‘Ž0 + đ?‘Ž1 log đ?‘Ľ ‌ (đ?‘‘) La ecuaciĂłn ‌ (đ?‘‘) representa la ecuaciĂłn de una lĂnea recta en la que la pendiente es đ?‘Ž1 y la ordenada al origen es đ?‘™đ?‘œđ?‘” đ?‘Ž0 . EcuaciĂłn de promedio de crecimiento de saturaciĂłn Cuando al graficar un conjunto de datos discretos de observa que el comportamiento no es lineal tal como se muestra en la figura 6, es posible proponer
70
una ecuaciĂłn que caracteriza el crecimiento de la poblaciĂłn en condiciones limitantes, la cual mediante simple reordenaciĂłn puede transformarse en un modelo lineal, tal como se muestra en la figura 7
Figura 6 EcuaciĂłn de promedio de crecimiento de saturaciĂłn
Figura 7 Modelo Linealizado. La ecuaciĂłn que caracteriza el crecimiento de la poblaciĂłn bajo condiciones limitantes es la siguiente: đ?‘Ś = đ?‘Ž0
� ‌ (�) �1 + �
Al reordenar la ecuación ‌ (�) resulta:
71
đ?‘Śđ?‘Ž1 + đ?‘Śđ?‘Ľ = đ?‘Ž0 đ?‘Ľ đ?‘Ś(đ?‘Ž1 + đ?‘Ľ) = đ?‘Ž0 đ?‘Ľ đ?‘Ž1 + đ?‘Ľ 1 ‌ (đ?‘“) đ?‘Ž0 đ?‘Ľ = đ?‘Ś 1 đ?‘Ž1 đ?‘Ľ đ?‘Ś = đ?‘Ž0 đ?‘Ľ + đ?‘Ž0 đ?‘Ľ 1 đ?‘Ž1 1 1 đ?‘Ś = đ?‘Ž0 đ?‘Ľ + đ?‘Ž0 La ecuaciĂłn ‌ (đ?‘“) representa la ecuaciĂłn de una lĂnea recta en la que la pendiente đ?‘Ž
1
es đ?‘Ž1 y la ordenada al origen es đ?‘Ž . 0
0
Ajuste polinomial. Por lo que aquĂ se generaliza por medio de aproximar ahora un conjunto de datos {(đ?&#x2018;Ľđ?&#x2018;&#x2013; , đ?&#x2018;Śđ?&#x2018;&#x2013; )}đ?&#x2018;&#x161; đ?&#x2018;&#x2013;=1 con un polinomio algebraico de grado đ?&#x2018;&#x203A; < đ?&#x2018;&#x161; â&#x2C6;&#x2019; 1 mediante el procedimiento de mĂnimos cuadrados. Sea definido el polinomio como: đ?&#x2018;&#x203A;
đ?&#x2018;&#x192;đ?&#x2018;&#x203A; (đ?&#x2018;Ľđ?&#x2018;&#x2013; ) =
đ?&#x2018;&#x17D;đ?&#x2018;&#x203A; đ?&#x2018;Ľđ?&#x2018;&#x2013;đ?&#x2018;&#x203A;
+
đ?&#x2018;&#x17D;đ?&#x2018;&#x203A;â&#x2C6;&#x2019;1 đ?&#x2018;Ľđ?&#x2018;&#x2013;đ?&#x2018;&#x203A;â&#x2C6;&#x2019;1
đ?&#x2018;&#x2014;
+ â&#x2039;Ż + đ?&#x2018;&#x17D;1 đ?&#x2018;Ľđ?&#x2018;&#x2013; + đ?&#x2018;&#x17D;0 = â&#x2C6;&#x2018; đ?&#x2018;&#x17D;đ?&#x2018;&#x2014; đ?&#x2018;Ľđ?&#x2018;&#x2013; đ?&#x2018;&#x2014;=0
Para disminuir al mĂnimo el error de mĂnimos cuadrados, es necesario seleccionar las constantes đ?&#x2018;&#x17D;0 , đ?&#x2018;&#x17D;1 , â&#x20AC;Ś , đ?&#x2018;&#x17D;đ?&#x2018;&#x203A; de tal manera que las parciales con respecto a cada una de ellas sean cero. AsĂ para cada đ?&#x2018;&#x2014;: đ?&#x2018;&#x161;
đ?&#x2018;&#x161;
đ?&#x2018;&#x203A;
đ??¸2 = â&#x2C6;&#x2018;[đ?&#x2018;Śđ?&#x2018;&#x2013; â&#x2C6;&#x2019; đ?&#x2018;&#x192;(đ?&#x2018;Ľđ?&#x2018;&#x2013; )]2 = â&#x2C6;&#x2018; đ?&#x2018;Śđ?&#x2018;&#x2013;2 â&#x2C6;&#x2019; đ?&#x2018;&#x2013;=1
đ?&#x2018;&#x2013;=1
đ?&#x2018;&#x161;
đ?&#x2018;&#x203A;
đ?&#x2018;&#x2014; 2 â&#x2C6;&#x2018; đ?&#x2018;&#x17D;đ?&#x2018;&#x2014; (â&#x2C6;&#x2018; đ?&#x2018;Śđ?&#x2018;&#x2013; đ?&#x2018;Ľđ?&#x2018;&#x2013; ) đ?&#x2018;&#x2014;=0 đ?&#x2018;&#x2013;=1
đ?&#x2018;&#x161;
đ?&#x2018;&#x161;
đ?&#x2018;&#x161;
đ?&#x2018;&#x2013;=1
đ?&#x2018;&#x2DC;=0
đ?&#x2018;&#x2013;=1
đ?&#x2018;&#x203A;
đ?&#x2018;&#x161; đ?&#x2018;&#x2014;+đ?&#x2018;&#x2DC;
+ â&#x2C6;&#x2018; â&#x2C6;&#x2018; đ?&#x2018;&#x17D;đ?&#x2018;&#x2014; đ?&#x2018;&#x17D;đ?&#x2018;&#x2DC; (â&#x2C6;&#x2018; đ?&#x2018;Ľđ?&#x2018;&#x2013; đ?&#x2018;&#x2014;=0 đ?&#x2018;&#x2DC;=0
)
đ?&#x2018;&#x2013;=1
đ?&#x153;&#x2022;đ??¸ đ?&#x2018;&#x2014; đ?&#x2018;&#x2014;+đ?&#x2018;&#x2DC; = â&#x2C6;&#x2019;2 â&#x2C6;&#x2018; đ?&#x2018;Śđ?&#x2018;&#x2013; đ?&#x2018;Ľđ?&#x2018;&#x2013; + 2 â&#x2C6;&#x2018; đ?&#x2018;&#x17D;đ?&#x2018;&#x2DC; â&#x2C6;&#x2018; đ?&#x2018;Ľđ?&#x2018;&#x2013; đ?&#x153;&#x2022;đ?&#x2018;&#x17D;đ?&#x2018;&#x2014; Esto nos da đ?&#x2018;&#x203A; + 1 ecuaciones normales en las đ?&#x2018;&#x203A; + 1 incognitas đ?&#x2018;&#x17D;đ?&#x2018;&#x2014; por lo que decimos que:
đ?&#x2018;&#x203A;
đ?&#x2018;&#x161;
đ?&#x2018;&#x161;
đ?&#x2018;&#x2014;+đ?&#x2018;&#x2DC; â&#x2C6;&#x2018; đ?&#x2018;&#x17D;đ?&#x2018;&#x2DC; â&#x2C6;&#x2018; đ?&#x2018;Ľđ?&#x2018;&#x2013; đ?&#x2018;&#x2DC;=0 đ?&#x2018;&#x2013;=1
72
đ?&#x2018;&#x2014;
= â&#x2C6;&#x2018; đ?&#x2018;Śđ?&#x2018;&#x2013; đ?&#x2018;Ľđ?&#x2018;&#x2013; đ?&#x2018;&#x2013;=1
Para cada đ?&#x2018;&#x2014; = 0,1, â&#x20AC;Ś , đ?&#x2018;&#x203A; Por lo que conviene escribir las ecuaciones como sigue: đ?&#x2018;&#x161;
đ?&#x2018;&#x161;
đ?&#x2018;&#x161;
đ?&#x2018;&#x161;
đ?&#x2018;&#x17D;0 (â&#x2C6;&#x2018; đ?&#x2018;Ľđ?&#x2018;&#x2013;0 ) đ?&#x2018;&#x2013;=1 đ?&#x2018;&#x161;
đ?&#x2018;&#x17D;1 (â&#x2C6;&#x2018; đ?&#x2018;Ľđ?&#x2018;&#x2013;1 ) đ?&#x2018;&#x2013;=1 đ?&#x2018;&#x161;
đ?&#x2018;&#x17D;2 (â&#x2C6;&#x2018; đ?&#x2018;Ľđ?&#x2018;&#x2013;2 ) đ?&#x2018;&#x2013;=1 đ?&#x2018;&#x161;
đ?&#x2018;&#x17D;đ?&#x2018;&#x203A; (â&#x2C6;&#x2018; đ?&#x2018;Ľđ?&#x2018;&#x2013;đ?&#x2018;&#x203A; ) đ?&#x2018;&#x2013;=1 đ?&#x2018;&#x161;
+
+
+ â&#x2039;Ż+
đ?&#x2018;&#x161;
= â&#x2C6;&#x2018; đ?&#x2018;Śđ?&#x2018;&#x2013; đ?&#x2018;Ľđ?&#x2018;&#x2013;0 đ?&#x2018;&#x2013;=1 đ?&#x2018;&#x161;
đ?&#x2018;&#x17D;0 (â&#x2C6;&#x2018; đ?&#x2018;Ľđ?&#x2018;&#x2013; ) + đ?&#x2018;&#x17D;1 (â&#x2C6;&#x2018; đ?&#x2018;Ľđ?&#x2018;&#x2013;2 ) + đ?&#x2018;&#x17D;2 (â&#x2C6;&#x2018; đ?&#x2018;Ľđ?&#x2018;&#x2013;3 ) + â&#x2039;Ż + đ?&#x2018;&#x17D;đ?&#x2018;&#x203A; (â&#x2C6;&#x2018; đ?&#x2018;Ľđ?&#x2018;&#x2013;đ?&#x2018;&#x203A;+1 ) = â&#x2C6;&#x2018; đ?&#x2018;Śđ?&#x2018;&#x2013; đ?&#x2018;Ľđ?&#x2018;&#x2013;1 đ?&#x2018;&#x2013;=1
đ?&#x2018;&#x2013;=1
đ?&#x2018;&#x161;
đ?&#x2018;&#x161;
đ?&#x2018;&#x17D;0 (â&#x2C6;&#x2018; đ?&#x2018;Ľđ?&#x2018;&#x2013;đ?&#x2018;&#x203A; ) đ?&#x2018;&#x2013;=1
+
đ?&#x2018;&#x17D;1 (â&#x2C6;&#x2018; đ?&#x2018;Ľđ?&#x2018;&#x2013;đ?&#x2018;&#x203A;+1 ) đ?&#x2018;&#x2013;=1
đ?&#x2018;&#x2013;=1
. . .
đ?&#x2018;&#x161;
+
đ?&#x2018;&#x17D;2 (â&#x2C6;&#x2018; đ?&#x2018;Ľđ?&#x2018;&#x2013;đ?&#x2018;&#x203A;+2 ) â&#x20AC;Ś + đ?&#x2018;&#x2013;=1
đ?&#x2018;&#x2013;=1
đ?&#x2018;&#x161;
đ?&#x2018;&#x17D;đ?&#x2018;&#x203A; (â&#x2C6;&#x2018; đ?&#x2018;Ľđ?&#x2018;&#x2013;2đ?&#x2018;&#x203A; ) đ?&#x2018;&#x2013;=1
đ?&#x2018;&#x2013;=1
đ?&#x2018;&#x161;
= â&#x2C6;&#x2018; đ?&#x2018;Śđ?&#x2018;&#x2013; đ?&#x2018;Ľđ?&#x2018;&#x2013;đ?&#x2018;&#x203A; đ?&#x2018;&#x2013;=1
Estas ecuaciones normales tienen soluciĂłn Ăşnica siempre y cuando las đ?&#x2018;Ľđ?&#x2018;&#x2013; sean distintas.
Suavizamiento de datos Algunas veces, cuando los datos son recolectados, hay fluctuaciones estadĂsticas, errores aleatorios, estimaciones visuales al tomar lecturas, etc., que provocan que los nĂşmeros se ajusten a una curva teĂłrica exactamente. En tal caso, la funciĂłn apropiada de mĂnimos cuadrados (probablemente un polinomio de grado đ?&#x2018;&#x203A;) puede deducirse con los valores de la funciĂłn deducida reemplazando los datos cuando la medida de bondad de ajuste de đ??¸ sea suficientemente pequeĂąa, a esto se le denomina â&#x20AC;&#x153;suavizamiento de datos.â&#x20AC;? En este caso polinomial ya ha sido muy trabajado en los textos cientĂficos de estadĂstica y de los mĂŠtodos numĂŠricos, y estos se pueden construir sistemas de ecuaciones fĂĄciles de resolver para encontrar estos parĂĄmetros đ?&#x2018;&#x17D;1 , đ?&#x2018;&#x17D;2 , â&#x20AC;Ś , đ?&#x2018;&#x17D;đ?&#x2018;&#x203A; : Este sistema de ecuaciones lineales se conocen como las "ecuaciones normales" y estĂĄn dadas ahora por la aplicaciĂłn del â&#x20AC;&#x153;suavizamiento de datosâ&#x20AC;? que queda de la manera siguiente:
73
đ?&#x2018;&#x203A;
đ?&#x2018;&#x203A;
đ?&#x2018;&#x203A;
đ?&#x2018;&#x17D;0 đ?&#x2018;&#x203A; + đ?&#x2018;&#x17D;1 (â&#x2C6;&#x2018; đ?&#x2018;Ľđ?&#x2018;&#x2013; ) + â&#x2039;Ż +
đ?&#x2018;&#x17D;đ?&#x2018;&#x161; (â&#x2C6;&#x2018; đ?&#x2018;Ľđ?&#x2018;&#x2013;đ?&#x2018;&#x161; ) đ?&#x2018;&#x2013;=1 đ?&#x2018;&#x203A;
= â&#x2C6;&#x2018; đ?&#x2018;Śđ?&#x2018;&#x2013;
đ?&#x2018;&#x2013;=1 đ?&#x2018;&#x203A;
đ?&#x2018;&#x203A;
đ?&#x2018;&#x17D;0 (â&#x2C6;&#x2018; đ?&#x2018;Ľđ?&#x2018;&#x2013; ) + đ?&#x2018;&#x2013;=1
đ?&#x2018;&#x203A;
đ?&#x2018;&#x17D;1 (â&#x2C6;&#x2018; đ?&#x2018;Ľđ?&#x2018;&#x2013;2 ) đ?&#x2018;&#x2013;=1
+â&#x2039;Ż+ . . .
đ?&#x2018;&#x203A;
đ?&#x2018;&#x17D;0 (â&#x2C6;&#x2018; đ?&#x2018;Ľđ?&#x2018;&#x2013;đ?&#x2018;&#x161; ) đ?&#x2018;&#x2013;=1
+
đ?&#x2018;&#x17D;1 (â&#x2C6;&#x2018; đ?&#x2018;Ľđ?&#x2018;&#x2013;đ?&#x2018;&#x161;+1 ) đ?&#x2018;&#x2013;=1
đ?&#x2018;&#x2013;=1
đ?&#x2018;&#x17D;đ?&#x2018;&#x161; (â&#x2C6;&#x2018; đ?&#x2018;Ľđ?&#x2018;&#x2013;đ?&#x2018;&#x161;+1 ) đ?&#x2018;&#x2013;=1
+ â&#x2039;Ż+
đ?&#x2018;&#x203A;
= â&#x2C6;&#x2018; đ?&#x2018;Ľđ?&#x2018;&#x2013; đ?&#x2018;Śđ?&#x2018;&#x2013;
đ?&#x2018;&#x203A;
đ?&#x2018;&#x17D;đ?&#x2018;&#x161; (â&#x2C6;&#x2018; đ?&#x2018;Ľđ?&#x2018;&#x2013;2đ?&#x2018;&#x161; ) đ?&#x2018;&#x2013;=1
đ?&#x2018;&#x2013;=1
đ?&#x2018;&#x203A;
= â&#x2C6;&#x2018; đ?&#x2018;Ľđ?&#x2018;&#x2013;đ?&#x2018;&#x161; đ?&#x2018;Śđ?&#x2018;&#x2013; đ?&#x2018;&#x2013;=1
O tambiĂŠn se puede expresar en tĂŠrminos matriciales đ?&#x2018;&#x2039;đ?&#x2018;&#x17D; = đ?&#x2018;Ś por lo que este sistema de ecuaciones queda como: Ecuaciones normales ajuste polinomial de grado đ?&#x2018;&#x161; đ?&#x2018;&#x203A;
â&#x2C6;&#x2018; đ?&#x2018;Ľđ?&#x2018;&#x2013;
â&#x2C6;&#x2018; đ?&#x2018;Ľđ?&#x2018;&#x2013;đ?&#x2018;&#x161;
â&#x2C6;&#x2018; đ?&#x2018;Śđ?&#x2018;&#x2013; â&#x20AC;Ś đ?&#x2018;&#x17D;0 â&#x2C6;&#x2018; đ?&#x2018;Ľđ?&#x2018;&#x2013; â&#x2C6;&#x2018; đ?&#x2018;Ľđ?&#x2018;&#x2013;2 â&#x20AC;Ś â&#x2C6;&#x2018; đ?&#x2018;Ľđ?&#x2018;&#x2013;đ?&#x2018;&#x161;+1 [ đ?&#x2018;&#x17D;1 ] = â&#x2C6;&#x2018; đ?&#x2018;Ľđ?&#x2018;&#x2013; đ?&#x2018;Śđ?&#x2018;&#x2013; â&#x2039;ą â&#x2039;Ž â&#x2039;Ž â&#x2039;Ž â&#x2039;Ž â&#x2039;Ž â&#x20AC;Ś đ?&#x2018;&#x17D;đ?&#x2018;&#x161; â&#x2C6;&#x2018; đ?&#x2018;Ľđ?&#x2018;&#x2013;đ?&#x2018;&#x161; đ?&#x2018;&#x161; â&#x2C6;&#x2018; đ?&#x2018;Ľđ?&#x2018;&#x2013;đ?&#x2018;&#x161;+1 â&#x2C6;&#x2018; đ?&#x2018;Ľđ?&#x2018;&#x2013;2đ?&#x2018;&#x161; ] [ [â&#x2C6;&#x2018; đ?&#x2018;Ľđ?&#x2018;&#x2013; đ?&#x2018;Śđ?&#x2018;&#x2013; ] Este sistema de ecuaciones lineales simultĂĄneas se puede resolver fĂĄcilmente usando la famosa regla de Cramer (para polinomios lineales y cuadrĂĄticos) y el mĂŠtodo de eliminaciĂłn Gaussiana (para polinomios al menos tercer grado). Los coeficientes de la matriz los podemos encontrar si acomodamos los datos como si estuviĂŠramos trabajando en una hoja de cĂĄlculo de la siguiente manera:
Ajuste de cuarto grado. La construcciĂłn de la tabla fundamental para el caso polinomial 4to grado estĂĄ dado por:
74
Y las ecuaciones normales estĂĄn dadas por el siguiente sistema de 5 variables y 5 ecuaciones:
4.9.5. CuantificaciĂłn de la probabilidad del error del mĂŠtodo. CuantificaciĂłn del error en la RegresiĂłn Lineal Recordemos que la suma de los cuadrados de los residuos se define como đ?&#x2018;&#x203A;
đ?&#x2018;&#x2020;đ?&#x2018;&#x; = â&#x2C6;&#x2018;(đ?&#x2018;Śđ?&#x2018;&#x2013; â&#x2C6;&#x2019; đ?&#x2018;&#x17D;0 â&#x2C6;&#x2019; đ?&#x2018;&#x17D;1 đ?&#x2018;Ľđ?&#x2018;&#x2013; )2 â&#x20AC;Ś (10) đ?&#x2018;&#x2013;=1
75
Donde los residuos representan el cuadrado de la distancia vertical entre los datos y la lĂnea recta. La dispersiĂłn de los puntos alrededor de la recta es la magnitud similar a lo largo del rango de datos, la regresiĂłn con mĂnimos cuadrados proporciona la mejor aproximaciĂłn para đ?&#x2018;&#x17D; y đ?&#x2018;? , a esto se le conoce como principio de probabilidad mĂĄxima dentro de la estadĂstica. Para comparar la eficiencia del ajuste se determina la suma de los cuadrados alrededor de la media para la variable independiente (đ?&#x2018;Ś), la cual se denomina como la suma total de los cuadrados: đ?&#x2018;&#x203A;
đ?&#x2018;&#x2020;đ?&#x2018;Ą = â&#x2C6;&#x2018;(đ?&#x2018;Śđ?&#x2018;&#x2013; â&#x2C6;&#x2019; đ?&#x2018;ŚĚ&#x2026;)2 â&#x20AC;Ś (11) đ?&#x2018;&#x2013;=1
Esta es la cantidad de dispersiĂłn en la variable independiente antes de la regresiĂłn. DespuĂŠs de llevar a cabo la regresiĂłn lineal se puede calcular đ?&#x2018;&#x2020;đ?&#x2018;&#x;, que es la suma de los cuadrados de los residuos alrededor de la lĂnea de regresiĂłn, la cual presenta la dispersiĂłn que existe despuĂŠs de la regresiĂłn. La diferencia entre las dos cantidades đ?&#x2018;&#x2020;đ?&#x2018;Ą â&#x2C6;&#x2019; đ?&#x2018;&#x2020;đ?&#x2018;&#x; en que se cuantifica la mejora en la reducciĂłn del error al utilizar lĂnea recta. Esta diferencia se normaliza al error total y se obtiene: đ?&#x2018;&#x;2 =
đ?&#x2018;&#x2020;đ?&#x2018;Ą â&#x2C6;&#x2019; đ?&#x2018;&#x2020;đ?&#x2018;&#x; â&#x20AC;Ś (12) đ?&#x2018;&#x2020;đ?&#x2018;Ą
đ?&#x2018;&#x2020;đ?&#x2018;Ą â&#x2C6;&#x2019; đ?&#x2018;&#x2020;đ?&#x2018;&#x; đ?&#x2018;&#x;=â&#x2C6;&#x161; â&#x20AC;Ś (13) đ?&#x2018;&#x2020;đ?&#x2018;Ą En donde đ?&#x2018;&#x; es el coeficiente de correlaciĂłn y đ?&#x2018;&#x; 2 es el coeficiente de terminaciĂłn. Para un ajuste perfecto, la suma de los cuadrados de los residuos đ?&#x2018;&#x2020;đ?&#x2018;&#x; debe ser igual a cero y el coeficiente de determinaciĂłn debe ser igual a uno. Consideremos que la probabilidad es un modelo matemĂĄtico para estudiar la regularidad estadĂstica de los fenĂłmenos aleatorios. Los fenĂłmenos al estudiarse muchas veces en condiciones constantes presentan sus diferentes modalidades en frecuencias relativas o proporciones muy estables, a esto se le llama regularidad estadĂstica. A estos fenĂłmenos se les llama aleatorios porque son aquellos donde no es posible hacer predicciones del estado final. Sin embargo no hay modelos matemĂĄticos que liguen las propiedades del fenĂłmeno en forma exacta.
76
No hay modelos matemĂĄticos que liguen las propiedades del fenĂłmeno en forma exacta. Por lo que entonces se puede caracterizar la aleatoriedad mediante la regularidad estadĂstica para: a) Hacer predicciones sujetas a error: Donde predeciremos la deserciĂłn escolar de los estudiantes en el IEMS del D.F. y consideraremos tambiĂŠn el nĂşmero de alumnos desertores en este Instituto de EducaciĂłn Media Superior en el D.F. b) Comparar la modalidad de fenĂłmenos aleatorios.
Por lo que entonces decimos que el MĂŠtodo de MĂnimos Cuadrados se basarĂĄ y se relacionara con los modelos siguientes que son: el Modelo teĂłrico que este es considerado para este anĂĄlisis como: â&#x20AC;&#x153;Logit bivariadoâ&#x20AC;? y el Modelo de RegresiĂłn. Por lo que la variable deserciĂłn para este caso corresponde a la variable respuesta, es decir, aquella en la que las variables independientes se correlacionan de forma directa o indirecta. La variable de deserciĂłn es construida a partir de la fĂłrmula que emplea la Secretaria de EducaciĂłn PĂşblica (SEP) para obtener la tasa de abandono a partir de una diferencia de matrĂculas: đ??ˇđ?&#x2018;&#x2021;đ?&#x2018;&#x203A; = đ?&#x2018;&#x20AC;đ?&#x2018;&#x2021;đ?&#x2018;&#x203A; â&#x2C6;&#x2019; đ??¸đ??şđ?&#x2018;&#x203A; â&#x2C6;&#x2019; (đ?&#x2018;&#x20AC;đ?&#x2018;&#x2021;đ?&#x2018;&#x203A;+1 â&#x2C6;&#x2019; đ?&#x2018; đ??ź1+(đ?&#x2018;&#x203A;+1) ) DĂłnde: đ??ˇđ?&#x2018;&#x2021; =DeserciĂłn Total đ?&#x2018;&#x20AC;đ?&#x2018;&#x2021; =MatrĂcula Total đ?&#x2018; đ??ź1 =Nuevo Ingreso a primer grado đ??¸đ??ş =Egresados đ?&#x2018;&#x203A; =Ciclo escolar (2001 â&#x2C6;&#x2019; 02,2002 â&#x2C6;&#x2019; 03, â&#x20AC;Ś ,2014 â&#x2C6;&#x2019; 15). đ?&#x2018;&#x203A; + 1 =Ciclo escolar subsecuente Esta fĂłrmula sirve para contabilizar la deserciĂłn en el Distrito Federal que esta se concibe en forma trasversal, por lo que no permite saber quiĂŠnes se retiraron por completo de la educaciĂłn formal, o aquellos que sĂłlo cambiaron de plantel o los que decidieron optar por otra modalidad pero que se mantienen en el sistema educativo. A partir de la definiciĂłn de deserciĂłn en tĂŠrminos de reportar un estado y no un evento, el cĂĄlculo de la misma se entiende como una diferencia de matrĂculas, lo cual, cuando se calcula a nivel de centro escolar
77
genera dificultades debido a que el resultado del cálculo -a partir de esta fórmulapuede presentar números negativos, quebrantando el sentido lógico del término, ya que el valor mínimo de la deserción es cero y no algún número negativo.
5. Desarrollo
Descripción breve de lo que se va a realizar y en donde se contemple Se realizará un análisis de la deserción escolar desde el punto de vista matemático, en el Instituto de Educación Media Superior del Distrito Federal IEMS DF que depende de la Secretaría de Educación del Gobierno del Distrito Federal, cuya área central se ubica en Av. División del Norte 906, Col. Narvarte Poniente, CP 03020, Delegación Benito Juárez. Sin embargo el trabajo de investigación será asesorado en el Plantel Belisario Domínguez que se ubica en Av. La Corona No. 436, Col. La Palma, C.P.:07160, en la delegación Gustavo A. Madero GAM. Cabe señalar dicho análisis se realizará sólo en la modalidad escolarizada.
PREGUNTA DE INVESTIGACION ¿Cuál es la curva que mejor se ajusta a los datos de la deserción escolar que permitiría analizar el fenómeno de la deserción en el Instituto de Educación Media Superior del Gobierno del Distrito Federal en el sentido de mínimos cuadrados?
La Delimitación del alcance del proyecto ¿En qué va a consistir el Análisis Estadístico y Probabilístico de la Deserción Escolar en el Nivel Medio Superior en el Distrito Federal en todos los planteles que lo conforman? En utilizar el principio del método de mínimos cuadrados mediante el ajuste de curvas basado en un método de estimación que a veces se utiliza en forma preliminar que consiste en utilizar el diagrama de dispersión para dibujar la recta, que mejor parezca representar la tendencia de datos.
78
Es evidente que las distancias intervienen en el mĂŠtodo; el usar cuadrados de distancias en lugar de valores absolutos resulta prĂĄctico desde el punto de vista del cĂĄlculo y de la teorĂa. Este mĂŠtodo analĂtico, cuya tĂŠcnica empleada es para obtener la ecuaciĂłn de regresiĂłn, minimizando la suma de los cuadrados de las distancias verticales entre los valores verdaderos o valores observados de đ?&#x2018;&#x152; y los valores pronosticados o valores estimados de đ?&#x2018;&#x152; ; es decir đ?&#x2018;&#x20AC;đ?&#x2018;&#x2013;đ?&#x2018;&#x203A; â&#x2C6;&#x2018;(đ?&#x2018;&#x152; â&#x2C6;&#x2019; đ?&#x2018;&#x152;´)2 Considerando que en este principio del mĂŠtodo de mĂnimos cuadrados mediante al ajuste de curvas se basara en el anĂĄlisis de la regresiĂłn que cuya tĂŠcnica es empleada para desarrollar la ecuaciĂłn dada anteriormente y con esto dar las estimaciones; esto quiere decir que se usa para estimar valores de una variable a partir de otra con la cual estĂĄ relacionada estadĂsticamente. Esto es que minimicen la suma de cuadrados de las longitudes de los segmentos de las lĂneas verticales que unen los datos observados con la recta estimada en la grĂĄfica de dispersiĂłn. La tĂŠcnica de mĂnimos cuadrados es un ejemplo clĂĄsico de manejo de datos. La entrada consiste en un conjunto de puntos y la salida es un modelo que, con un nĂşmero relativamente reducido de parĂĄmetros, se ajusta a los datos tanto como sea posible. Por lo general, la razĂłn para utilizar mĂnimos cuadrados es reemplazar los datos problemĂĄticos con un modelo convincente. DespuĂŠs, el modelo suele utilizarse para predecir seĂąales o con fines de clasificaciĂłn. La idea del mĂŠtodo es dar un estimador de la media, encontrando el valor â&#x20AC;&#x153;mĂĄs cercanoâ&#x20AC;? a los datos.
Motivos El MĂŠtodo de MĂnimos Cuadrados puede proporcionar resultados aceptables, sobre todo si la tendencia de los datos es muy marcada, esto hace preferible el mĂŠtodo, a razĂłn del uso de la distancia vertical (en lugar de la distancia mĂĄs corta). El MĂŠtodo de MĂnimos Cuadrados se necesita en este caso porque es un procedimiento matemĂĄtico para determinar la recta de regresiĂłn muestral de ajuste a los datos muĂŠstrales.
79
El Método de Mínimos Cuadrados consiste en encontrar una función analítica sencilla que represente el comportamiento general de los datos, aunque la curva propuesta no pase por todos y cada uno de los puntos en cuestión. Este modelo de ajuste de curvas por mínimos cuadrados se puede aplicar en este caso:
Para saber cuál es el contexto actual en el que se encuentra el nivel de cada respectivo plantel en el Distrito Federal.
Para tomar medidas preventivas en el sentido de predecir la deserción escolar y dar alternativas factibles de cambio en esta entidad federativa del Distrito Federal, en este nivel educativo de la media superior.
5.1. Metodología Cronograma Cuyas fechas tentativas se presentan a continuación: No. actividad
de Fecha de tentativa de inicio y Nombre de la actividad a término realizar
1
11 al 30 de enero del 2016
2
1 de febrero al 31 de marzo del El ajuste de curvas para cada 2016 plantel del IEMS-DF.
3
1 al 16 de abril del 2016
El pronóstico de la deserción y conclusiones.
4
17 de abril al 31 de mayo del 2016
Redacción del documento de proyecto terminal para titulación.
Búsqueda y discriminación de la Información de los datos.
Esto se presenta detalladamente mediante el siguiente diagrama de Gantt (considere que las fechas se leen de esta manera: año/mes/día y la línea punteada en rojo significa el término de este proyecto.):
80
Recursos Y en este caso es necesario recurrir al ordenador para poder resolver "de manera sencilla" este sistema de ecuaciones. En este trabajo se utilizarán los sistemas algebraicos especializados en cómputo científico que son:
Wólfram Alpha desde: www.wolframalpha.com
QtOctave-MATLAB versión .8.2 desde: http://octave-online.net/
Python IDLE-GUI.
Además de la hoja de cálculo de Microsoft Excel 2010 del sistema operativo Windows 7.
81
9. Referencias 9.1 .Bibliográficas (artículos de libros de textos científicos) •Box George E., Hunter J. Stuart, Hunter William G. (2008) Estadística para investigadores: Diseño, Innovación y Descubrimiento. (Segunda Edición) España, Barcelona, Ed. Reverté. •Box George E., Hunter William G., Hunter J, Stuart (1999) Estadística para investigadores: Introducción al diseño de experimentos, Análisis de Datos y Construcción de Modelos. (Primera Edición) España, Barcelona, Ed. Reverté. •Budnick Frank S., McLeavey Dennis, Mojena Richard (1988) Principles of Operations Research for Management (Second Edition); Homewood, Illinois, U.S.A., Ed. Richard D. IRWIN. Inc. •Chapra Steven C. y Canale Raymond P. (2011). Métodos numéricos para ingenieros. (6ta. Edición) México, D.F.: Editorial McGraw-Hill Interamericana. •Dagdug Leonardo, Guzmán Orlando (2010) Mathematica Esencial con aplicaciones México, D.F., Ed. UAM-Iztapalapa-Colección: CBI Ciencias Básicas e Ingeniería. •Don Eugene (2010) Theory and Problems of Mathematica (Second Edition) U.S.A. Ed. McGraw-Hill •Dukkipati Rao V. (2010) Numerical Methods (First Edition) U.S.A. Ed. New Age International Limited Publishers. •Etter Delores M. (1998) Solución de Problemas de Ingeniería con MATLAB (Segunda Edición) México, Naucalpan de Juárez Ed. Prentice Hall Hispanoamericana. •Fuller Gordon, Tarwater Dalton (1999) Geometría Analítica (Séptima Edición) Naucalpan, México. Ed. Pearson Educación. •Gutiérrez Banegas Ana. (2012). Probabilidad y estadística: Un Enfoque por competencias. México D.F.: Editorial McGraw-Hill Interamericana. •Harnett Donald L., Murphy James L., (1987) Introducción al Análisis Estadístico. México D.F.: Editorial Addison-Wesley Iberoamericana, S.A. •Infante Gil Said, Zarate de Lara Guillermo P. (2012) Métodos Estadísticos: Un Enfoque Interdisciplinario. (3ra. Edición) México, Estado de México, Texcoco: Editorial del Colegio de Postgraduados-La Gaya Ciencia. •Kiusalaas Jaan (2010) Numerical Methods in Engineering with Python (Second Edition) New York, U.S.A. Ed. Cambridge University Press.
82
•Kolman Bernard, Hill David R. (2006) Algebra lineal. (8va. Edición) Ed. Pearson Educación; México, Estado de México, Naucalpan de Juárez. •Kreyszig Erwin (1979) Introducción a la Estadística Matemática: Principios y Métodos. México D.F. Editorial Limusa. •Larson Ronald E., Edwards Bruce H. (2004) Introducción al Algebra Lineal. México D.F. Editorial Limusa. •Linz Peter, Wang Richard (2003) Exploring Numerical Methods: An Introduction Scientific Computing using MATLAB. U.S.A., Massachusetts. Ed. Jones and Barlett Publishers, Inc. •Lyche Tom, Merrien Jean-Louis (2014) Exercises in Computational Mathematics with MATLAB, Berlín Alemania, Ed. Springer. •Marín Salguero Rafael (2014). Matemáticas Preuniversitarias: “Probabilidad y Estadística” Versión 2. •Mathews John H. y Fink Kurtis D. (2000) Métodos Numéricos con MATLAB. (3ra. Edición). España, Madrid: Editorial Prentice-Hall. •Medrano Sánchez Carlos, Plaza García Inmaculada (2009) Software libre para cálculo numérico España, Madrid. Editorial RC Libros. •Miller. I, Freud. J, Johnson. R (1992). Probabilidad y estadística para ingenieros. (Cuarta edición), México D.F. Ed. Prentice Hall-Hispanoamericana S.A. •Montes de Oca Puzio Francisco (2002) Problemas Resueltos de Estadística. (Segunda Edición) México, D.F. Editorial Skorpio. •Nakos George, Joyner David (1999) Algebra Lineal con aplicaciones. México, D.F., Editorial Thomson International Editores S.A. de C.V. •Nieves Hurtado Antonio, y Domínguez Sánchez Federico C. (2013). Métodos numéricos aplicados a la Ingeniería. México, D.F.: Instituto Politécnico Nacional I.P.N.; Grupo Editorial Patria. •Quarteroni A., Saleri F. (2006) Cálculo científico con MATLAB y Octave, Italia, Milano. Ed. Springer. •Quintana Hernández Pedro Alberto, Villalobos Oliver Eloísa Bernardett y Cornejo Serrano María del Carmen (2005) Métodos Numéricos con Aplicaciones en Excel. México, Guanajuato: Instituto Tecnológico de Celaya, Guanajuato; Editorial Reverté. •Smith W. Allen (1988) Análisis Numérico. México, D.F.: Editorial Prentice-Hall Hispanoamericana S.A.
83
•Spiegel Murray R. (1970) Teoría y problemas de Estadística (1ra. Edición) Serie de Compendios Schaum Editorial McGraw-Hill. •Sauer Timothy. (2013). Análisis Numérico. (2da. Edición). México, D.F.: Editorial Pearson Educación.
9.2 .Serigráficas (artículos de revista, de divulgación institucional, de tesis y de tesinas.) •Amador Hernández, Juan Carlos (2008). “La evaluación y el diseño de políticas educativas en México.” Centro de Estudios Sociales y de Opinión Pública (CESOP). Documento de Trabajo núm. 35. Ed. CESOP, Marzo de 2008. •Dale, Roger, (2004). “El Marketing del mercado educacional y la polarización de la educación”. En: Gentili, Pablo (Coord.). “Pedagogía de la exclusión. Crítica al neoliberalismo en educación”. Ed. Universidad Autónoma de la Ciudad de México UACM -Otras Voces. pp. 203-250. •Díaz Martínez Juan Pablo (2015) Deserción Escolar en la Educación Media Superior: Un aproximación logística México, D.F. Tesis para obtener el título de Licenciatura en Actuaria UNAM, Facultad de Ciencias en: http://132.248.9.195/ptd2015/junio/306158177/Index.html •González, Alberto, (2002). “Buscan un lugar en prepa del GDF”. “La Reforma de la Ciudad del 12/08/02”. Ed. El periódico: Reforma, Ciudad de México, 12 de agosto de 2002. •Hernández, Mirtha y Durán Manuel. (2004). “Presume GDF a graduados de prepas”. “La Reforma de la Ciudad del 31/08/04.” Ed. El periódico: Reforma, Ciudad de México, 31 de agosto de 2004. •Hernández, Mirtha, (2006). “Termina sólo el 25% en las prepas del GDF”. “La Reforma de la Ciudad del 27/07/06”. Ed. El Periódico: Reforma del 27 de julio de 2006. •Hernández, Mirtha, (2010). “Desertan de prepas del GDF”. “La Reforma de la Ciudad Contemporánea del mes de julio”. Ciudad de México .Ed. El Periódico: Reforma, México D.F. 12 de julio de 2010. •Hernández, Mirtha. (2013). “Y quiere combatir deserción en prepas”. “La Reforma de la Ciudad Contemporánea del mes de marzo”. Ciudad de México Ed. El Periódico: Reforma, México D.F.12 de marzo de 2013 •IEMS-DF (2002). “Propuesta Educativa del Sistema de Bachillerato del Gobierno del Distrito Federal”. México, D.F. p. 1-2, 5.
84
•Marín Salguero Rafael (2014) Solución numérica a procesos de Markov con espacio de estados finito: Una revisión teórica con aplicaciones; Tesis para obtener el grado de Maestría en Ciencias Matemáticas, Facultad de Ciencias UNAM en: http://132.248.9.195/ptd2014/abril/095389491/Index.html •Montes, Rafael, (2013). “DF, casi con 100% de cobertura universal en bachillerato”. “El Universal”. Ed. El periódico de la Metrópoli. Lunes 14 de octubre de 2013. •Palacios García Elsa (2007) “Estudio estadístico de aprovechamiento de alumnos de secundaria y preparatoria de Centro de Estudios Lomas.” Tesina para obtener el título de Licenciatura en Actuaria, FES Acatlán UNAM en: http://132.248.9.195/pd2008/0624572/Index.html •Universidad Pedagógica Nacional UPN (1986) Antología de Estadística I Vol. I. Especialización en Educación Matemática México, D.F. UPN-Unidad Ajusco. •Salinas Herrera Héctor Jesús (2015) Análisis de la deserción escolar en la generación 2011-2014 del IEMS desde un enfoque Probabilístico y Estadístico.; Tesina para obtener la acreditación de la asignatura del “Problema eje aplicada a las ciencias”, IEMS-Plantel Belisario Domínguez, Delegación Gustavo A. Madero •Sanders, Nadia (2001). “Pierde prepa por ‘salada’”. “La Crónica de la Ciudad” Distrito Federal Ed. El periódico: Reforma, 08 de agosto de 2001. •Sánchez Jiménez, Aracely e Ybarra Garduño Beatriz (2008). “Factores que pueden interferir en el aprendizaje del estudiante de bachillerato”. “Ser y Hacer en la práctica tutoral de seguimiento y acompañamiento”. Ed. IEMS-DF. pp. 55-62. •Zúñiga González Rubén, Zamudio Vissuet Sergina Ascelli (2001) “Estudio del rendimiento académico en MAC a través de técnicas estadísticas y etnográficas.” Para obtener el título de licenciatura en Matemáticas Aplicadas y computación, ENEP Acatlán UNAM en: http://132.248.9.195/pd2001/298847/Index.html
85
9.3 .Cibergráficas (artículos de internet.) •Aguilar, Antonio (2007). “Deserción estudiantil, consideraciones de la ANUIES en un contexto generalizado.”. Producido en la Universidad Autónoma Metropolitana UAM unidad Azcapotzalco. Lunes 16 de junio de 2007 En: http://www.uam.mx/egresados/estudios/descercbiazc.pdf •Alavez Neria Delfina, Varela Petito Gonzalo (2012) “El proyecto del Instituto de Educación Media Superior del Distrito Federal.” en Revista Latinoamericana de Estudios Educativos en México Vol. XLII, núm. 2, 2012; pág.119-153. Recuperado el 27 de enero del 2016 en: http://www.redalyc.org/pdf/270/27024538005.pdf •Archundia, Mónica (2007). “Deserción en prepas del GDF, aún con tutorías”. El Universal. Metrópoli. Viernes 06 de julio de 2007. En: http://www.eluniversal.com.mx/ciudad/85230.html •Bazán Levy José de Jesús (2011) “Informe de Actividades en el IEMS del año 2011.” Recuperado el 27 de enero del 2016 en: http://www.iems.edu.mx/descargar-a7c2ff7b9e125a9e5ba87ac0d70eb358.pdf •Bazán Levy José de Jesús (2012) “Informe de Actividades en el IEMS del año 2012.” Recuperado el 27 de enero del 2016 en: http://www.iems.edu.mx/descargar-54c8541d8790c90eca2fc3d8617cb38f.pdf •Carrillo Ramírez Teresa (2008) “Apuntes de Métodos Numéricos II para la Licenciatura en Matemáticas Aplicadas y Computación de la UNAM FES Acatlán” en la sección de Mínimos Cuadrados, Lunes 22 de julio del 2013 en: http://gauss.acatlan.unam.mx/enrol/index.php?id=21 •Durán Encalada Jorge A., Hernández Díaz Graciela (2013) “Análisis de la deserción estudiantil en la Universidad Autónoma Metropolitana” Recuperada el 14 de enero del 2015 en: http://publicaciones.anuies.mx/pdfs/revista/Revista74_S1A3ES.pdf •Neuhauser Claudia (2015) “Curve fitting.” Recuperado el 10 de diciembre del 2015 en: http://www.ms.uky.edu/~ma138/Fall15/Curve_fitting.pdf •El Zócalo DF (2013). “Ineficiente el sistema de educación media superior del DF, afirma Priscila Vera”. El Zócalo DF. ALDF. 27/10/2013. En: http://www.elzocalodf.com.mx/ineficiente-sistema-educacion-media-superiordel-df-afirma-priscila-vera •EVALUA DF (2012).”Evaluación del diseño de los servicios educativos que proporciona el Instituto de Educación Media Superior del Distrito Federal”, p. 25.en:
86
http://www.evalua.df.gob.mx/files/recomendaciones/evaluaciones_finales/ev aluacion_media_superior.pdf •Hernández, Mirtha. (2013). “Egresan 3 de 10 de prepas del GDF”. Ed El periódico de la Reforma. Ciudad de México del 13 de julio de 2013. En: http://images.reforma.com/ciudad/articulo/707/1412133/?Titulo=egresan-3-de10-de-prepas-del-gdf •Instituto de Educación Media Superior del Distrito Federal (IEMS-DF) (2013). “Líneas de Acción Prioritarias de Trabajo Académico para Fortalecer el Proyecto Educativo del IEMSDF 2013-2014”. En: http://www.iems.df.gob.mx/pdfs/500319832Lineas_de_accion_dos_tinr01.pdf •INEE-SEP (2004) Sistema de Indicadores Educativos de los Estados Unidos Mexicanos En: http://www.snie.sep.gob.mx/descargas/indicadores/SININDE.pdf •Ledesma, Luda, Bianchet (2011) “Instructivo uso de Octave/MATLAB para modelar” Recuperada el 14 de enero del 2015 en: http://users.df.uba.ar/ledesma/labo2/instructivo_Octave_MATLAB.pdf •Montes, Rafael (2013). “Directora del IEMS no conocía ‘prepas’ del DF”. El Universal. Metrópoli. Educación. 8 de noviembre de 2013. En: http://www.redpolitica.mx/metropoli/directora-del-iems-no-conocia-prepasdel-df •Olguín Rosas Mayra, Medrano Pérez Antonio (2013) “Interpolación y aproximación polinomial aplicado al Censo Poblacional en México.” Recuperado el 10 de diciembre del 2015 en: http://camaleon.acatlan.unam.mx/pruebacamaleon/ •Olivares Alonso, Emir, (2013). “Fracasan alumno, familia y plantel con la deserción escolar: expertos”. La Jornada. Sociedad y Justicia. Jueves 14 de noviembre de 2013. p. 38. En: http://www.jornada.unam.mx/2013/11/14/sociedad/038n1soc •Pérez Rocha, Manuel. (2014). “El IEMS”, La Jornada. Opinión. Jueves 6 de febrero de 2014. En: http://www.jornada.unam.mx/2014/02/06/opinion/021a2pol •Riveros, Héctor G. y Julieta Fierro, (s/f). “La evaluación y los exámenes de admisión”. En: http://www.fisica.unam.mx/personales/hgriveros/docu/HecEvaAlfin.pdf •Rodríguez Lagunas Javier, Leyva Piña Marco Antonio (2007) “La Deserción Escolar Universitaria en la experiencia de la UAM entre el déficit de la oferta educativa de la educación superior y las dificultades de la retención escolar”
87
Recuperada el 14 de enero del 2015 en: http://www.redalyc.org/pdf/325/32514212.pdf •Rodríguez Lagunas Javier (2005) “El informe final de la Deserción Escolar en la UAM-I” Recuperada el 14 de enero del 2015 en: http://csh.izt.uam.mx/licenciaturas/psicologia_social/comision/desercion.pdf •Rodríguez Lagunas Javier, Hernández Vázquez Juan Manuel (2008) “La Deserción Escolar Universitaria en México. La Experiencia de la UAM Iztapalapa” Recuperada el 14 de enero del 2015 en: http://files.desercionescolar6.webnode.mx/2000000309ff10a0eb4/Deserción%20en%20el%20nivel%20medio%20superior.pdf •Rodríguez Ramos Juventino (2008) “Informe de Actividades del IEMS.” Recuperado el 27 de enero del 2016 en:http://www.iems.edu.mx/descargare08bfad6020dd58c487b77999c04a856.pdf •SEP-DGPP. Secretaria de Educación Pública-Dirección General de Planeación y Programación (2005) “Lineamientos para la formulación de indicadores educativos.” Recuperada el 10 de diciembre de 2015 en: http://www.dgpp.sep.gob.mx/Estadi/Formulario%20Completo%20modificado %2026%20Ene%2005.pdf •SEP-Sistema Nacional de Información Estadística Educativa (2014) Sistema Nacional de Información de Escuelas en: http://www.snie.sep.gob.mx/SNIESC/ •SEP-SEMS-COPEEMS. Secretaria de Educación Pública-Subsecretaria de Educación Media Superior-Consejo para la Evaluación de la Educación del Tipo Medio Superior (2012) “Reporte de la Encuesta Nacional de Deserción en la Educación Media Superior.” Recuperada el 10 de diciembre de 2015 en: http://www.sems.gob.mx/work/models/sems/Resource/10787/1/images/Anexo _6Reporte_de_la_ENDEMS.pdf •Sistema de Información Mexicana del Distrito Federal INFOMEXDF (2015) “Solicitud aprobada y registrada con el número de folio: 0311000023815; con la información de los datos del número de estudiantes que han ingresado y que han sido dados de baja de todas las generaciones de todos los planteles del IEMS, desde su creación hasta la generación 2015.”. Recuperada el sábado 5 de diciembre de 2015 en: http://www.infomexdf.org.mx/flslayer/seguimiento/e23b9a25/06cd56f7/ANEX O%20SOLICITUD%200311000023815.pdf Con el oficio anexo de la autorización del IEMS-DF en:
88
http://www.infomexdf.org.mx/flslayer/seguimiento/e23b9a25/06cd56f7/RESPU ESTA%20SOLICITUD%200311000023815.pdf •Sistema de Información Mexicana del Distrito Federal INFOMEXDF (2016) “Solicitud aprobada y registrada con el número de folio: 0311000040015; con la información de datos de número de estudiantes que han desertado con su respectivo porcentaje y con la información de datos de número de estudiantes que han egresado con su respectivo porcentaje de todas las generaciones de todos los planteles del IEMS, desde su creación hasta la generación 2015.” Recuperada el martes 26 de enero de 2016 en: http://www.infomexdf.org.mx/flslayer/seguimiento/e9087dc9/06cd56f7/Sol.%2 040015.pdf •Sistema de Información Mexicana del Distrito Federal INFOMEXDF (2008) “Solicitud aprobada y registrada con el número de folio: 0311000013907: con la información de egreso de los estudiantes del IEMS por plantel y año, así como su matrícula desde su primera hasta su última generación.” Recuperado el 27 de enero de 2016 en: http://www.infomexdf.org.mx/flslayer/seguimiento/f8b63499/06cd56f7/139.pdf •Sistema de Información Mexicana del Distrito Federal INFOMEXDF (2009) “Solicitud aprobada y registrada con el número de folio: 0311000000209; con la información de a) número de alumnos inscritos, b) el número de bajas definitivas en los alumnos y c) el número de alumnos egresados en el IEMSDF.” Recuperado el 27 de enero de 2016 en: a)http://www.infomexdf.org.mx/flslayer/seguimiento/39487dcc/06cd56f7/02091.pdf b)http://www.infomexdf.org.mx/flslayer/seguimiento/39487dcc/06cd56f7/0209 -2.pdf c)http://www.infomexdf.org.mx/flslayer/seguimiento/39487dcc/06cd56f7/02093.pdf •UNAM. Universidad Nacional Autónoma de México (2005) “Catálogo de indicadores de desempeño de entidades y dependencias universitarias.” Recuperada el 10 de diciembre de 2015 en: http://www.planeacion.unam.mx/Planeacion/Apoyo/cat_indicadores_2005.pdf •UNAM. Universidad Nacional Autónoma de México (2014) “Indicadores de desempeño para el bachillerato UNAM.” Recuperada el 10 de diciembre de 2015 en: http://www.planeacion.unam.mx/Planeacion/Apoyo/IndDesBach_14oct15.pdf
89
•Wikipedia (2013) “Instituto de Educación Media Superior del D.F.” Recuperada el 14 de enero del 2015 en: https://es.wikipedia.org/wiki/Instituto_de_Educaci%C3%B3n_Media_Superior _del_Distrito_Federal •Wikipedia (2013) “Mínimos Cuadrados” Recuperada el 14 de enero del 2015 en: https://es.wikipedia.org/wiki/M%C3%ADnimos_cuadrados •Zúñiga Soraida (2013) “Mínimos Cuadrados: Método para aproximar una función polinomial a un conjunto de datos” Recuperada el 14 de enero del 2015 en: http://soraidazuniga.pbworks.com/w/file/fetch/97514742/minimosCuadrados. pdf
90