Programa Desarrollado Unidad 3. Integración Numérica
Universidad Abierta y a Distancia de México
Licenciatura en Matemáticas
Análisis Matemático I
7° cuatrimestre
Unidad 3. Integración Numérica
Clave: 050930726
Educación Abierta y a Distancia * Ciencias Exactas, Ingenierías y Tecnologías
1
Programa Desarrollado Unidad 3. Integración Numérica Contenido 3.- Integración Numérica.................................................................................................... 3 Presentación de la unidad ................................................................................................. 3 Propósitos de la unidad ..................................................................................................... 5 Competencia específica..................................................................................................... 5 3.1 Métodos de Newton-Cotes........................................................................................... 5 3.1.1. Regla del trapecio............................................................................................... 6 3.1.2 Regla de Simpson ............................................................................................... 9 Actividad 1. Solución de integrales por métodos de Newton-Cotes.................................. 12 3.2 Cuadratura de Gauss ................................................................................................. 12 3.2.1 Cuadratura de Gauss ........................................................................................ 13 Actividad 2. Solución de integrales mediante la cuadratura de Gauss ............................. 17 Actividad 3. Contraste de métodos. ................................................................................. 19 Autoevaluación ................................................................................................................ 19 Evidencia de aprendizaje. Integración Numérica ............................................................. 20 Autorreflexiones ............................................................................................................... 21 Para saber más ............................................................................................................... 21 Bibliografía....................................................................................................................... 21
Educación Abierta y a Distancia * Ciencias Exactas, Ingenierías y Tecnologías
2
Programa Desarrollado Unidad 3. Integración Numérica 3.- Integración Numérica
Presentación de la unidad Conforme hemos desarrollado los conceptos de esta asignatura se han aplicado métodos más precisos para resolver problemas específicos utilizando sistemas lineales para determinar raíces de funciones. Pasamos de conocer los problemas más comunes en la modelación matemática, como la representación y solución de sistemas lineales, hasta los de interpolación, cabe mencionar que los problemas que se presentan en la práctica común no suelen ser lineales. Conforme la investigación científica y matemática avanzase observa que existen más fenómenos no lineales que lineales. En esta unidad resolveremos problemas no lineales por medio de la obtención de raíces y la integral de una función. Uno de los grandes logros de las matemáticas es la construcción de los números reales, que respondía a problemas prácticos concretos y se fue desarrollando hasta ser la disciplina que conocemos como el cálculo diferencial. Muchos de los problemas en la ingeniería y economía usan los conceptos del Cálculo Infinitesimal para dar respuesta a los problemas planteados, particularmente el de la integral. Determinar el número real que especifica el área bajo la curva descrita por una función es un problema con gran variedad de aplicaciones, muchas de ellas englobadas bajo el teorema fundamental del cálculo. Se considera que no es suficiente obtener una expresión simbólica que nos indique la forma general de la función que determina al área bajo la curva , por lo que la forma de trabajo en el análisis numérico más adecuado es la de identificar un número específico para un problema determinado. . Entonces el problema planteado en la integración numérica (o cuadratura numérica) es la de estimar el número que responde a: ∫ Este problema lo abordamos cuando la función a integrar es difícil para hacerlo simbólicamente o la integral está definida por una cantidad finita de puntos, así que conviene seguir estrategias que hacen una suma finita sobre los puntos conocidos.. Lo que haremos es aproximar la expresión de la integral mediante un polinomio de grado menor o igual a k
Educación Abierta y a Distancia * Ciencias Exactas, Ingenierías y Tecnologías
3
Programa Desarrollado Unidad 3. Integración Numérica ∫
∑
La expresión anterior indica que el valor de (integral de f entre a y b) se obtiene a través de la combinación lineal de las y más un término de error (o residuo) donde las se denominan pesos y las abscisas o nodos que cumplen con ser los puntos bajo los cuales toma valores. Si nuestro término de error está acotado o es pequeño entonces podemos considerar que: ∑
Esta expresión es conocida como regla de cuadratura donde los pesos se determinan con interpolantes (como el de Lagrange o Newton) y los valores , (valores que toma en los puntos observados), es decir, esperamos obtener: como Para ilustrar esta última idea, el valor de combinación lineal de y :
Donde
lo determinaremos a partir de la
representa los valores que toma el interpolador de Lagrange en el punto , es decir, con es el Polinomio de Lagrange en el punto
.
Una medida de error o grado de precisión asociada a las fórmulas de cuadratura es un número que verifica que: [ ] Para todos los polinomios [ ] .
cuyo grado es
, a partir del polinomio cuyo grado es
La forma general de truncamiento es [ ]
(1)
Para alguna constante, es el grado de precisión del polinomio en algún punto donde se pueda evaluar la función. Dentro de los métodos de integración numérica que estudiaremos en esta unidad están las fórmulas de Newton-Cotes, desarrolladas por Isaac Newton y Roger Cotes. Las fórmulas de Newton-Cotes son sencillas e incluso intuitivas ya que, de manera general, lo que hacen es incrustar un polígono dentro de la curva cuya integral queremos conocer pero cuya área sea más sencilla de determinar.
Educación Abierta y a Distancia * Ciencias Exactas, Ingenierías y Tecnologías
4
Programa Desarrollado Unidad 3. Integración Numérica Dentro de las fórmulas de Newton-Cotes podemos encontrar la regla del rectángulo, del trapecio y la de Simpson. En esta unidad sólo desarrollaremos la del trapecio y la de Simpson. Cabe mencionar que la cuadratura de Gauss es una generalización sobre estos métodos pero cuyo funcionamiento es esencialmente el mismo.
Propósitos de la unidad
Utilizar los métodos de integración numérica para obtener la derivada o su inversa Obtener la aproximación a integrales definidas en alguna área
Competencia específica
Utilizar algoritmos para calcular la integral definida por medio de la interpolación polinómica.
3.1 Métodos de Newton-Cotes La forma en la que se calcula la integral de una función es aproximando el área bajo la curva de dicha función mediante la construcción de rectángulos a los cuales les medimos su área para después aproximar la base de estos rectángulos a cero y determinar el límite de la suma de dichas áreas, llamada integral de la función. La estrategia utilizada en las fórmulas de Newton-Cotes es la misma, en la cual se construyen diferentes polinomios donde es más sencillo calcular su área que el de la función original.
Figura 1 Ejemplo de cómo se calcula el área usando la regla del rectángulo.
Educación Abierta y a Distancia * Ciencias Exactas, Ingenierías y Tecnologías
5
Programa Desarrollado Unidad 3. Integración Numérica { } son Suponiendo que: nodos igualmente espaciados y con esta consideración usamos cada una de las siguientes reglas de integración, se observa que dentro de los índices está el 0 y n, lo que quiere decir que los intervalos son cerrados, es decir, incluyen los extremos, es por esta razón que consideramos que las fórmulas de Newton-Cotes son cerradas. Concluimos que siempre que la integral incluya los extremos del intervalo de integración la fórmula es cerrada porque estamos trabajando en un intervalo cerrado. En la figura 1 puedes observar un ejemplo de una regla que no mostraremos analíticamente ya que su construcción es muy sencilla y su aplicación trivial. La fórmula para la regla del rectángulo consiste en evaluar la función a integrar en algún extremo del intervalo y construir el rectángulo usando como base el largo del intervalo para medir su área como lo expresa la figura 1, el área de los rectángulos en el intervalo [ ] se aproxima mediante la expresión: ∫ Que indica la forma en la que aplicaremos las reglas de integración, usando la función a integrar y evaluarla en los límites de integración, después multiplicar esa altura por el ancho de la base (distancia entre los extremos del intervalo). En la figura el intervalo total está dividido en dos intervalos más pequeños.
3.1.1. Regla del trapecio La fórmula de Newton-Cotes es la regla del trapecio. Como su nombre lo indica, vamos a aproximar la integral a partir de construir trapecios con intervalos equidistantes en la base, la regla es: (2) ∫ Donde
es el tamaño del intervalo
y
∫
.
∫
donde el término error corresponde a:
Educación Abierta y a Distancia * Ciencias Exactas, Ingenierías y Tecnologías
6
Programa Desarrollado Unidad 3. Integración Numérica Siendo
un número perteneciente al intervalo [a,b].
∫
[
]
El bosquejo de esta regla se presenta a continuación:
Figura 2. Regla del trapecio.
El grado de precisión para esta fórmula está dado por: [
]
Lo que implica que la función debe tener una segunda derivada para poder obtener este término. Considerando que los intervalos son continuos, entonces se debe integrar sobre todo un intervalo [
] dividido de tal forma que
∫
∫
∫
∫
Educación Abierta y a Distancia * Ciencias Exactas, Ingenierías y Tecnologías
7
Programa Desarrollado Unidad 3. Integración Numérica Entonces ∫
[
]
(3)
A esta regla de cuadratura se le conoce como la regla del trapecio compuesto Ejemplo Considera la función
Y 5 nodos igualmente espaciados para integrarla en el intervalo [ { }.entonces ( 0.0000 0.5000 1.0000 1.5000 2.0000 2.5000 3.0000 3.5000
2.0000 1.6065 1.3679 1.2231 1.1353 1.0821 1.0498 1.0302
], es decir,
) 0.9016 0.7436 0.6478 0.5896 0.5544 0.5330 0.5200
La integral de la función intervalo a intervalo la puedes identificar en la tercera columna, pero la integral sobre todo el intervalo viene dada por (3) y su valor es Ejemplo Considera la integral ∫ Para integrarla usando 6 nodos igualmente espaciados. Por lo tanto los intervalos son { } lo que implica que . Los valores de la integración quedan como:
0.00000 0.11220
0.00000 0.11196
0.00628 0.01876
Educación Abierta y a Distancia * Ciencias Exactas, Ingenierías y Tecnologías
8
Programa Desarrollado Unidad 3. Integración Numérica 0.22440 0.33660 0.44880 0.56100 0.67320 0.78540
0.22252 0.33028 0.43388 0.53203 0.62349 0.70711
0.03101 0.04287 0.05419 0.06482 0.07465
Al igual que en el ejemplo anterior, en la tercera columna observa la integral intervalo a intervalo. Para obtener la integral del intervalo [ ] hay que ocupar (3) por lo que el resultado queda: [
] .
3.1.2 Regla de Simpson La regla de Simpson está dada por: ∫
(4)
El polinomio que se usa para construir esta regla es: [
]
[
]
El cual describe una parábola que pasa exactamente por el punto medio entre tenemos que integrar este polinomio para llegar a la expresión (3).
y . Sólo
El grado de precisión de esta fórmula está dada por: [
]
En la figura 3. Se observa un bosquejo de en qué curva se está calculando el área e ].. identifica que pasa por el punto medio entre [
Educación Abierta y a Distancia * Ciencias Exactas, Ingenierías y Tecnologías
9
Programa Desarrollado Unidad 3. Integración Numérica
Figura 3. Bosquejo de la parábola usada para interpolar en la regla de Simpson
Con esta regla de cuadratura puedes alcanzar mayor precisión ya que al pasar una parábola entre los puntos extremos del intervalo, el error en el que se incurre es menor. Igual que en la regla del trapecio, no podemos sumar los valores de cada intervalo integrado, en este caso es importante tomar en cuenta que el punto intermedio se convertirá en punto extremo en la siguiente aplicación y por lo tanto habrá toda una sección doblemente considerada. Explícitamente la integración del intervalo [ siguiente forma: ∫
∫
] usando la regla de Simpson queda de la
∫
∫
(
)
(
(
) [(
Obteniendo: ∫ (
)
)
(
) )]
(5)
En conclusión: para aproximar una integral por la regla de cuadratura de Simpson hay que: sumar los extremos más la suma de los índices impares multiplicada por 4 más la suma de los índices pares multiplicada por 2 y el resultado multiplicado por . A esta regla se le llama la regla de Simpson compuesta.
Ejemplo.
Educación Abierta y a Distancia * Ciencias Exactas, Ingenierías y Tecnologías
10
Programa Desarrollado Unidad 3. Integración Numérica Usando la misma función que en el ejemplo anterior hay que obtener la integral aproximada de . Igual que en el ejemplo pasado el intervalo es de y en la tabla siguiente se observan los valores de la aproximación
1 2 3 4 5 6 7 8
0.0000 0.5000 1.0000 1.5000 2.0000 2.5000 3.0000 3.5000
2.0000 1.6065 1.3679 1.2231 1.1353 1.0821 1.0498 1.0302
1.63233368 1.38352976 1.23262256 1.14109272 1.08557706 1.05190511
[
El valor de la aproximación en este intervalo es de: ] Ejemplo Aproximar ∫ En el intervalo [
(√ )
] se usan 11 nodos equidistribuidos aplicando la regla de Simpson.
Entonces puedes ver a continuación
(11 nodos implican 10 intervalos). Las aproximaciones las
1 2 3 4 5 6 7 8 9 10 11
1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
2.90929743 2.63815764 2.30807174 1.97931647 1.68305284 1.4353041 1.2431975 1.10831775 1.0287222 1.0002414 1.01735756
2.62833328 2.30829351 1.98473174 1.69113865 1.44457779 1.25273531 1.11753178 1.03724133 1.00784089
Educación Abierta y a Distancia * Ciencias Exactas, Ingenierías y Tecnologías
11
Programa Desarrollado Unidad 3. Integración Numérica Usando (5) obtenemos que la aproximación es 8.18301549. Este valor también lo puedes obtener sumando los números que están en rojo en la cuarta columna. La razón es porque los intervalos considerados en la regla de Simpson contienen tres puntos dentro de cada intervalo, entonces no podemos simplemente sumar cada intervalo calculado ya que estaríamos considerando doble cada subintervalo, es por esto que únicamente sumamos intervalos ajenos.
Actividad 1. Solución de integrales por métodos de Newton-Cotes En esta actividad practicarás la forma de aproximar numéricamente el valor de una integral usando los métodos de Newton-Cotes, regla del trapecio y regla de Simpson. Instrucciones 1. Descarga el archivo “Act 1. Solución de Integrales por NC 2. Lee el contenido del documento, atendiendo principalmente los tips que se mencionan. 3. Anota en un documento de texto, los resultados de las operaciones realizadas y una brevísima explicación de cada una. 4. Guarda y envía tu documento y el archivo de la función creada con la nomenclatura MANU2_U3_A1_XXYZ. Sustituye las XX por las dos letras de tu primer nombre, la Y por la inicial de tu apellido paterno y la Z por la inicial de tu apellido materno. 5. El peso del archivo no debe exceder los 4 MB. 6. Espera la retroalimentación de tu facilitador (a).
3.2 Cuadratura de Gauss Las fórmulas de Newton-Cotes pueden incurrir en errores, como el cambio de los signos en los pesos (alturas de los rectángulos) que podrían cambiar de signo haciendo que la suma de varios de ellos presente cancelación catastrófica o escoger los nodos separados equidistantemente, con lo que podría existir una distribución de nodos que lleve a cabo un cálculo más aproximado.
Educación Abierta y a Distancia * Ciencias Exactas, Ingenierías y Tecnologías
12
Programa Desarrollado Unidad 3. Integración Numérica En el caso que abordaremos ahora, en la cuadratura de Gauss, podemos integrar funciones del tipo:
∫
∫
(4)
Donde (5) Se observa que los pesos de las funciones ya no son escalares, como en el caso de las fórmulas de Newton-Cotes donde se fijaban para ser un múltiplo de . En el caso de la regla de cuadratura de Gauss-Legendre, esto no será una restricción, es decir, el valor del peso por el que multiplicaremos cada función variará y su valor específico será determinado para cada caso. Las denominaremos, funciones de peso. Este método de cuadratura también se conoce como cuadratura de Gauss-Legendre.
3.2.1 Cuadratura de Gauss Las fórmulas de Newton-Cotes transforman una integral difícil de evaluar en una expresión polinómica más sencilla, de un grado k y un error que sea derivable en [ ]. Este procedimiento parece bueno excepto cuando tenemos funciones cóncavas donde el polinomio escogido incurre en un error cuando cambia de signo o el área de la función no está considerada por el polígono para aproximar el área. Sin embargo, es una buena opción generalizar el método de Newton-Cotes escogiendo otros nodos que no sean los extremos para que la aproximación sea mejor, se requiere que la función a integrar cumpla con ser como lo expresan (4) y (5) de tal forma que podamos convertir la función en un polinomio fácilmente integrable pero esta vez con pesos variables que puedan hacer que el error incurrido sea menor pero tomando únicamente puntos fijos, es decir necesitamos que: ∫
∑
(6)
A diferencia de las fórmulas de Newton-Cotes, con la cuadratura gaussiana buscamos aproximar ∫ de a, donde
donde el integrando sea del tipo , o bien
ó
para algún valor de
cerca
pueden ser infinitos.
Queremos que los nodos que determinen la integral sea exactos, esto significa que:
Educación Abierta y a Distancia * Ciencias Exactas, Ingenierías y Tecnologías
13
Programa Desarrollado Unidad 3. Integración Numérica ∑
(7)
Siempre que esté bien aproximada por un polinomio Esto significa que: ∫
de grado
o menor.
∑
(8)
Para construir la regla general de cuadratura gaussiana empezaremos ejemplificando su funcionamiento con el caso hipotético específico de calcular ∫
con dos nodos
únicamente donde: ∫
(9)
Ya le vamos a pedir que sea un polinomio de grado 3 y exacta (lo que significa que su resultado es un polinomio con raíces en los nodos de la integral) como lo expresa (7).La figura 1 es un bosquejo del área que queremos calcular usando dos nodos únicamente.
Figura 4. Bosquejo de la cuadratura de Gauss con abscisas
y
Una recta tiene una ecuación general de la forma:
Que en nuestro caso es la pendiente determinada por
(
. La ecuación de la recta con estos valores a partir de ((
–
)⁄
–
)⁄
y
es la recta:
)
Educación Abierta y a Distancia * Ciencias Exactas, Ingenierías y Tecnologías
14
Programa Desarrollado Unidad 3. Integración Numérica El área del trapecio es
y se puede deducir a partir de la
figura 5.
Figura 5. Esquema para obtener el área del trapecio
cuando se tienen los datos presentados..
En la expresión (8) aparecen cuatro términos que necesitamos encontrar: los pesos , dentro del intervalo[ ] de tal forma que sean una mejor aproximación de lo que con la regla del trapecio se puede lograr. Como es un polinomio cúbico del tipo podemos distribuir la integral en cada término de en el intervalo y considerando que es exacta para { } entonces quiere decir que podemos pedir que las siguientes condiciones se cumplan. ∫ ∫ ∫ ∫ Entonces esto plantea un sistema de cuatro ecuaciones con cuatro variables que son las siguientes:
Educación Abierta y a Distancia * Ciencias Exactas, Ingenierías y Tecnologías
15
Programa Desarrollado Unidad 3. Integración Numérica Dividiendo
por
obtenemos:
Ya que por definición Por
.
y usando este resultado vemos que:
Más aún, por (10) Sólo falta determinar el valor específico de Usando
.
obtenemos:
A partir de este resultado podemos concluir que:
√
(11)
√
Con (10) y (11) hemos determinado los pesos y nodos donde debemos evaluar la función para aproximar la integral únicamente con dos nodos. Para poder calcular este resultado tuvimos que encontrar una función específica para aproximar . Esta construcción se hizo en el intervalo [ ], para poder trasladar la integración al intervalo [ ] se puede hacer el siguiente cambio de variable. Suponiendo que ya tenemos los de variable:
nodos { }
así como los pesos {
}
y el cambio
Aplicándola en nuestra integral obtenemos: ∫
∫
(
)
Obtenemos la regla de cuadratura siguiente:
Educación Abierta y a Distancia * Ciencias Exactas, Ingenierías y Tecnologías
16
Programa Desarrollado Unidad 3. Integración Numérica ∫
∑
(
)
Concretando: la regla de cuadratura de Gauss para ∫
Donde
(
dentro del intervalo [ precalculados.
)y
(12)
se obtiene por: ∑
(
)
]. Los pesos{
para
nodos espaciados arbitrariamente
} se obtienen de una tabla de valores
En esta unidad trabajaremos únicamente con dos nodos, cuyos pesos ya los conocemos. Si quisiéramos usar más nodos y pesos se puede consultar una preconstruida con 64 nodos y abscisas en la siguiente liga: http://processingjs.nihongoresources.com/bezierinfo/legendre-gauss-values.php o en libros especializados de Cuadratura Numérica. Usualmente estos valores como ya están fijos se encuentran precalculados y almacenados en las bibliotecas de cálculo numérico pero el procedimiento para encontrar más nodos y pesos es el mismo que acabas de estudiar. Ejemplo Utilizando dos nodos aplicaremos la regla de Gauss-Legendre para aproximar: ∫ Su valor real es Entonces, como
y √
.
sus evaluaciones son ( (
√ √
)
)
Actividad 2. Solución de integrales mediante la cuadratura de Gauss En esta actividad practicarás como aproximar numéricamente el valor de una integral usando la cuadratura de Gauss
Educación Abierta y a Distancia * Ciencias Exactas, Ingenierías y Tecnologías
17
Programa Desarrollado Unidad 3. Integración Numérica Instrucciones 1. Descarga el archivo “Act2.Solución de Integrales por GL” 2. Lee el contenido del documento, atendiendo principalmente los tips que se mencionan. 3. Anota en un documento de texto, los resultados de las operaciones realizadas y una brevísima explicación de cada una. 4. Guarda y envía tu documento y el archivo de la función creada con la nomenclatura MANU2_U3_A2_XXYZ. Sustituye las XX por las dos letras de tu primer nombre, la Y por la inicial de tu apellido paterno y la Z por la inicial de tu apellido materno. 5. El peso del archivo no debe exceder los 4 MB. 6. Espera la retroalimentación de tu docente en línea.
Ejemplo Aproximar: ∫
(√ )
Usando la cuadratura de Gauss-Legendre con dos nodos y la expresión (12) para mapear la integración al intervalo deseado. (√ ) y el intervalo es [
Nuestra función a integrar es
].
El peso por el que hay que multiplicar cada polinomio es 1 y los nodos en los que se evalúa la función son
√
y
√
, por lo tanto sustituyendo todo esto en (12)
tenemos que : y
.
Al sustituir los valores y la función en (12) obtenemos que √
]
[
√
que es una aproximación mucho mejor que la obtenida con el
método del trapecio.
Educación Abierta y a Distancia * Ciencias Exactas, Ingenierías y Tecnologías
18
Programa Desarrollado Unidad 3. Integración Numérica Actividad 3. Contraste de métodos. En esta actividad practicarás cómo aproximar numéricamente el valor de una integral usando la cuadratura de Gauss Instrucciones 1. Resuelve ∫
con métodos simbólicos y numéricos.
2. Contrasta los resultados de cada método y la cantidad de pasos que te llevaron a ese resultado. 3. Anota en un documento de texto todos los pormenores y la conclusión de la discusión del punto anterior. Explica en un documento qué método es mejor y por qué.. 4. Guarda y envía tu documento y el archivo de la función creada con la nomenclatura MANU2_U3_A3_XXYZ. Sustituye las XX por las dos letras de tu primer nombre, la Y por la inicial de tu apellido paterno y la Z por la inicial de tu apellido materno. 5. Espera la retroalimentación de tu Facilitador (a).
Autoevaluación Para verificar los conocimientos adquiridos en la unidad, deberás ingresar a la Autoevaluación y responder las preguntas que ahí se te plantean. Instrucciones. Elige la respuesta correcta a la pregunta planteada: 1. Usamos métodos numéricos para resolver integrales cuando a) La integral es muy complicada para determinar su forma simbólica o tiene una cantidad de singularidades finitas b) Tenemos una forma simbólica para calcularla exactamente y queremos comprobar su resultado c) No sabemos la función a integrar d) La integral no está definida 2. Para poder integrar numéricamente las integrales estudiadas requerimos poder expresar la función a integrar … a) como un polinomio de grado ponderado por un conjunto de n pesos más un término de error cuyo grado es b) como una función continua en el mismo intervalo c) como un polinomio de grado no acotado d) como una combinación lineal de funciones trigonométricas
Educación Abierta y a Distancia * Ciencias Exactas, Ingenierías y Tecnologías
19
Programa Desarrollado Unidad 3. Integración Numérica 3. En las fórmulas de Newton-Cotes existe un término comúnmente denominado que representa a) El tamaño del subintervalo en el que está dividido el intervalo de integración [ ] b) El error de integración c) El grado máximo del polinomio con el que aproximamos la función. d) La variable de la función 4. La fórmula de integración del trapecio es: (considera que ): a) ⁄ b) c) d) 5. El método de cuadratura de Gauss revisado hace un mapeo de la función en el intervalo [ ] para después calcular los siguientes cuatro números: a) Dos nodos y dos pesos b) Cuatro nodos c) Cuatro pesos d) Dos nodos, los pesos siempre valen 1. Es necesario comparar tus respuestas, para ello revisa el documento Respuestas_autoevaluación_U3, ubicada en la pestaña material de apoyo de la unidad 3 Retroalimentación 1-3 aciertos. Los conocimientos obtenidos no fueron suficientes, debes revisar nuevamente el contenido de la unidad. 4-5 aciertos. Tienes un conocimiento claro de los conocimientos de la Unidad, sigue adelante.
Evidencia de aprendizaje. Integración Numérica Para desarrollar la evidencia de aprendizaje realiza los siguientes pasos: Instrucciones: 1. Descarga el documento “EA. Integración Numérica”. 2. Resuelve los problemas planteados. 3. Guarda y envía tu documento con la nomenclatura MANU2_U3_EA_XXYZ. Sustituye las XX por las dos letras de tu primer nombre, la Y por la inicial de tu
Educación Abierta y a Distancia * Ciencias Exactas, Ingenierías y Tecnologías
20
Programa Desarrollado Unidad 3. Integración Numérica apellido paterno y la Z por la inicial de tu apellido materno. 4.
El peso del archivo no debe exceder los 4 MB.
5. Espera la retroalimentación de tu Facilitador (a).
Autorreflexiones Al finalizar, consulta el Foro: Preguntas de Autorreflexión para realizar el ejercicio correspondiente y enviarlo a través de la herramienta Autorreflexiones. Recuerda que también se toman en cuenta para la calificación final.
Para saber más Franco, A. (2000) "Integracion Numerica" en "Procedimientos numéricos en lenguaje Java". En línea http://www.sc.ehu.es/sbweb/fisica/cursoJava/numerico/integracion/integracion.htm Negrón, P. "Reglas del Trapezoide y Simpson" en "Notas de Análisis Numérico". En línea: http://mate.uprh.edu/~pnm/notas4061/ "NumericalIntegration" en "Finite Math & Applied Calculus". En línea http://www.zweigmedia.com/RealWorld/integral/numint.html Weisstein, Eric W. "Numerical Integration." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/NumericalIntegration.html Weisstein, Eric W. "Legendre-Gauss Quadrature." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/Legendre-GaussQuadrature.html Wolfram-Alpha.http://www.wolframalpha.com/ Keisan Online Calculator. http://keisan.casio.com/menu/system/000000000980
Bibliografía Burden, R. L. (2011). Análisis numérico, Novena edición. México: Cengage Learning Editores. Chapra, S. C. (2011). Métodos numéricos para ingenieros.México: McGraw-Hill.
Educación Abierta y a Distancia * Ciencias Exactas, Ingenierías y Tecnologías
21
Programa Desarrollado Unidad 3. Integración Numérica Conte, S.D., de Boor, Carl (1974) Análisis Numérico, McGraw-Hill. 2ª ed. México Mathews, J., Fink K. (2007). Numerical methods using MATLAB.4ª ed. Pearson Prentince Hall.
Educación Abierta y a Distancia * Ciencias Exactas, Ingenierías y Tecnologías
22