3s simulacro presencial ii 17conamat

Page 1

El certamen escolar más competitivo del

país

a Parsttraictu ip talento NO DOBLE, NI DETERIORE LA TARJETA ÓPTICA DE RESPUESTAS. EVITE HACER BORRONES.

demue

Simulacro presencial Tercer grado de secundaria CÓDIGO

LEA CUIDADOSAMENTE LAS SIGUIENTES INDICACIONES: • Escribir en la tarjeta óptica con letra imprenta legible sus apellidos, nombre(s) y código. • La tarjeta óptica tiene capacidad para marcar 30 respuestas numeradas en tres columnas y en orden correlativo, del 01 al 10, 11 al 20 y del 21 al 30. Una vez que haya encontrado la solución a determinada pregunta, busque en la tarjeta óptica el número de pregunta y marque con lápiz 2B en el espacio que corresponda a la alternativa elegida. • Todas las marcas deben ser nítidas, para lo cual debe presionar suficientemente el lápiz y llenar el espacio correspondiente.

PUBLICACIÓN DE RESULTADOS Por Internet: El lunes a las 17:00 horas en www.uch.edu.pe

CALIFICACIÓN RESPUESTA

PUNTAJE

CORRECTA

10

INCORRECTA

– 0,5

EN BLANCO

0


Simulacro presencial Tercer grado de secundaria 1. La tasa de descuento de una letra es 18 % y su descuento racional es el 80% del descuento comercial. ¿Cuántos días faltan para su vencimiento? A) 490 C) 480

B) 510 D) 500

2. Se prestó un capital al 7%. Si se hubiese impuesto dos años más al mismo porcentaje, el interés habría sido el 125% del anterior. ¿Por cuánto tiempo se prestó? A) 6 C) 10

B) 8 D) 5

3. En un recipiente, el 10% de agua de mar es salada. ¿Cuántos litros de agua se deben añadir a 80 L de agua de mar, en dicho recipiente, para que el porcentaje de concentración de la sal sea del 4% de la mezcla final? A) 140 C) 40

B) 120 D) 110

4. Isabel lanza doce monedas al aire. ¿Cuál es la probabilidad de que salgan exactamente 3 caras y 9 sellos? Dé como respuesta la suma de términos de la fracción irreductible equivalente a dicha probabilidad. A) 120 C) 136

2

B) 1079 D) 24

5. Miguel desea regalar a su novia María del Carmen un anillo de 18 quilates, cuya masa es de 20 g. Determine la masa de oro puro que se concentra en dicho anillo de compromiso. A) 14 C) 21

B) 22 D) 15

6. Determine el cuadrado perfecto de la forma abab1, luego calcule el valor de a + b. A) 14 C) 4

B) 12 D) 5

7. El promedio de cuatro números enteros positivos es 11, y cuando se les agrupa de tres en tres, dichos promedios son números pares consecutivos. Determine el menor de los cuatro números enteros. A) 12 B) 9 C) 8 D) 2 8. El número positivo a es menor que 1 y el número b es mayor que 2. ¿Cuál de los siguientes números tiene el mayor valor? A) a × b C) a ÷ b

B) b D) a + b


Simulacro presencial

13. Según el gráfico, ABCD es un cuadrado. Si AM=CN, calcule el máximo valor entero de x.

 x + 1 2x + 1 9. Si P  , =  x  3 x − 1

entonces la alternativa correcta es A) P ( x ) =

x +1 . x

B) P ( x ) =

B

C

1+ x . 2+ x

M

1+ x D) P ( x ) = . 4− x

2+ x . C) P ( x ) = 3− x

x

10. En la ecuación cuadrática de incógnita x: x2 - px + 5p = 1, ¿cuál es el mayor valor de p si las raíces son números enteros? A) 20 C) 30

B) 24 D) 35

11. Si los enteros positivos n y k verifican que 1 a 7 + = , k 2 6 entonces el producto kn es A) 6. C) 10.

A

D

A) 44º C) 29º

N

B) 59º D) 35º

14. Se sabe que ABCD; AEFG y HIJK son cuadrados. Calcule la razón de áreas de las regiones cuadrangulares sombreadas.

B) 8. D) 12.

A)

1 2

B)

2 3

B

I

H

G

C

D)

J

F

4 C) 9

12. A partir del gráfico, si 3(AD) = 2(BD), calcule el valor de tanx.

C

K

8 9

A

E

D

15. Según el gráfico, A(ABF)=6 y A(EFC)=8. Si A(BFC) = 3 A(AFE), calcule A(BFC).

x B 30º A

D

F

B

A)

3 6

B)

3 9

C)

3 12

D)

3 8

A

A) 6 C) 12

E

D B) 9 D) 15

3


Tercer grado de secundaria

16. Si el perímetro de la región cuadrada ABCD es a y el perímetro de la región triangular equilátera DEF es b, calcule el área de la región ABF. E B

C

A

D

a( 3a + 4 b ) 12

B)

a( 3a + 4 b ) 24

C)

a( 3a + 4 b ) 48

D)

a( 3a + 4 b ) 96

17. Se muestra un prisma cuadrangular regular ABCD - EFGH, donde AB = 2 y BF = 6. Halle el volumen de dicho prisma regular. C B

D

A

G

C) 3

D) 2 3

19. En la realización de un plano topográfico se demarca un terreno en forma de trapecio con vértice en los puntos A; B; C y D. Si AB = BC, calcule la pendiente del ángulo CDB sabiendo que CD= 10BC; BC//AD y la m DAB = 90º. A)

1 12

B)

C)

1 14

1 D) 15

B) 77 B) 12 D) 24

1 13

20. Un terreno en forma triangular es denotado por los vértices A; B y C. Si la m BCA = 2m BAC y la medida de los lados son cantidades enteras, además, B > 90º; calcule el perímetro mínimo del terreno. A) 75

E

4

B) 3

H

F

A) 8 C) 18

A) 1 F

A)

18. En un determinado instante de tiempo desde un avión que se encuentra a una altura H, se observa la parte más alta y la parte más baja de un edificio de altura h con ángulos de depresión de 45º y 60º, respectivamente. Calcule el valor H . de H−h

C) 79 D) 81


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.