3 minute read

UNE BRÈVE HISTOIRE DES MODÈLES

Pas de révolution, mais des progrès constants et continus. C’est sans doute ainsi qu’on peut qualifier l’évolution des modèles, depuis les esquisses développées après la Seconde Guerre mondiale jusqu’aux monstres informatiques d’aujourd’hui.

C’est pour les besoins de la météorologie qu’un premier modèle global de circulation de l’atmosphère est créé à Princeton, aux États-Unis, sous l’autorité de John von Neumann. La première simulation de circulation globale de l’atmosphère est réalisée en 1955, avec les moyens de calculs de l’époque. Dans les années 1960, un modèle simule un climat dans lequel le taux de CO2 aurait doublé. Le premier équivalent français est créé en 1968 au Laboratoire de météorologie dynamique (LMD). En 1979, la première conférence mondiale sur le climat donne un coup d’accélérateur, avec la mise en orbite de plusieurs satellites d’observation. Les premiers modèles restent simples et simulent surtout les cycles glaciaires. Ils permettent malgré tout aux climatologues d’alerter, à la fin des années 1980, sur le risque de réchauffement global. Les années 1990 voient les premières prises en compte des couplages entre l’atmosphère et l’océan. Les modèles intègrent ensuite un nombre croissant d’éléments, de milieux et de cycles (océan, glace, chimie, végétation, carbone…) et tirent profit de l’augmentation fulgurante de la puissance des supercalculateurs : entre le premier acquis par Météo-France en 1992 et ceux dont l’organisme dispose aujourd’hui, la fréquence de calculs a été multipliée par plus de 10 millions ! Les années 2000 consacrent l’ère de l’observation globale de la Terre par satellite, avec une pléiade d’instruments mis en orbite. Mais dans l’ombre, les mathématiques s’améliorent aussi, « notamment dans la façon dont on approxime les équations », commente Éric Blayo. Les modèles physiques, eux, gagnent en précision, en détaillant les phénomènes localisés. Car l’enjeu est aujourd’hui de régionaliser les prévisions. Et pour cela, il faut affiner la physique sur chacun des compartiments du « système Terre ». « On s’est rendu compte, par exemple, que la glace du Groenland fondait beaucoup plus vite que ce qui était prévu il y a quinze ans. En cause, des phénomènes physiques qui n’avaient pas été identifiés : quand vous avez 2 kilomètres d’épaisseur de glace, ça pèse lourd, donc ça échauffe les points les plus bas. Et ça peut suffire à faire fondre la glace à la base. C’est la même chose en Antarctique, sur le socle rocheux : vous avez par endroits des rivières d’eau liquide qui, par entraînement, font fondre la glace beaucoup plus rapidement que ce que prévoyaient les précédents modèles », explique le chercheur. Les climatologues doivent-ils avouer que leurs simulations gardent une part d’incertitude ? Les débats ont été vifs, tant cette incertitude risquait d’être mal comprise du grand public. « Le résultat peut être sont équivalents ou s’ils divergent. Si par exemple quatre simulations sur cinq donnent sensiblement la même valeur, l’indice de fiabilité sera de 4 sur 5. Les nouvelles générations de modèles ne donnent pas, hélas, un éventail de résultats forcément plus réduit que les anciennes. Comment faire mieux ?

Advertisement

UN JUMEAU POUR L’OCÉAN

« Un gros travail a été fait pour définir l’incertitude et voir comment elle se propageait. L’idée était de chercher son point de départ, dû à une mauvaise localisation des particules quand on discrétise les données. Il faut garder cette incertitude, l’ajouter dans les équations comme une forme de perturbation stochastique, redévelopper tout le système d’équations discrétisées et programmer ensuite », explique incertain tout en livrant un message important », rappelle Arthur Vidard. L’incertitude finit par être gérée par les modèles eux-mêmes, qui introduisent à présent des termes aléatoires au cœur même de leurs équations. L’IA remplacerat-elle à terme ces modèles ? « Certains se demandent en effet s’il ne faudrait pas faire apprendre un modèle météo ou climatique à une intelligence artificielle, jeter le modèle et se contenter de prévoir très rapidement grâce à l’IA. On jetterait donc des décennies de recherche. Mais l’IA apporte des solutions alternatives pour donner de meilleurs résultats sur des phénomènes très précis, ponctuels, dans des petits coins de nos modèles qu’on ne sait pas bien décrire actuellement », souligne Éric Blayo. pas à pas Arthur Vidard. Un processus qu’il faut répéter d’un modèle à l’autre, pour garder une représentation fidèle de cette incertitude. « Ce n’est pas tant son amplitude, qui peut aussi être calculée, que sa forme qui nous intéresse », précise le chercheur.

Dans les modèles climatiques, l’océan et l’atmosphère sont divisés en cellules, en mailles, dans lesquelles sont effectués les calculs.

Ces questions resteront au cœur du nouveau projet Mediation (Methodological developments for a robust and efficient digital twin of the ocean), développé par l’équipe-projet Airsea, qui vise à créer un véritable jumeau numérique de l’océan. Il intégrera en particulier l’activité biologique du phytoplancton, dont la chlorophylle influe sur l’absorption des rayons solaires. Sobre en calcul, il aidera les climatologues à faire des simulations robustes et variées, aux incertitudes quantifiées. Peut-être pourrons-nous alors mieux prévoir le futur incertain que nous allons devoir affronter.

This article is from: