LAMINATED VENEER LUMBER
THE NEXT STAGE
IN THE NEW TIMBER AGE
02
01 Laminated veneer lumber (LVL) is the least well-known of the glue laminated systems (the others being CLT and glulam) but is arguably the one most likely to take the spotlight by the end of this year. Peter Wilson, architect and founding director of the Mass Timber Academy explains more.
36
w
Before environmentally sensitive and climate change aware readers turn the page at the mention of ‘glue lamination’, we need to have a grown-up discussion about modern adhesives and their use in combination with the principal renewable construction material we have available to us: wood. In parallel with extensive R&D in the manufacture of mass timber, adhesive technology has advanced dramatically in recent years, with MUF and PUR being the most commonly used in laminate systems today. Put simply, these are solvent-free formulations with zero adhesive-related formaldehyde emissions in the finished wood products.
STRUCTURALTIMBERMAGAZINE.CO.UK
Like glulam, LVL is formed from layers of wood in which the grain in every layer runs in the same di-rection. Unlike glulam, however, LVL’s layers are only 3mm thick and are produced by putting a long blade against a rotating log to peel a continuous veneer that is subsequently glued and pressed into boards or beams. There are two advantages to this over CLT or glulam – the resulting LVL products have significantly greater strength than their two mass timber siblings, plus they make far more efficient use of the raw timber (i.e. greater yield from each log than if they were sawn into boards). Some readers may not be aware of LVL projects in the UK, but there are some remarkable examples, not least the five-storey Black & White Building currently being completed in London’s Shoreditch area that is attracting considerable attention from commercial developers. Its prefabricated beech hardwood LVL post and beam structure supports a CLT core and slabs, but the apparent simplicity of this fullyengineered, precision-built timber construction belies its groundbreaking innovation. Sitting on a very tight site and erected at remarkable speed with no major plant and with practically no