HYBRID CONSTRUCTION
REGENERATIVE HIGH-RISE
‘Regenerative High-Rise’ blends exactly this flexibility and functionality and aims to redefine conventional uses and lifespans of high-rise buildings in cities worldwide. Constructed from a hybrid timber mix, the high-rise shows how tall buildings can be both versatile and green at a time when climate change is a pressing concern and requires a drastic rethink of the built environment. So how does this modular structure work? What are the various uses for this type of building – and perhaps most importantly, how can it be made more accessible?
01 Bethel Teferra, Senior Consultant at Ramboll, illustrates how a modular, sustainable high-rise tower that evolves with a city’s needs could be a future reality and include engineered timber as key component.
44
w
Modular houses may have been around for a while, but modular high-rise with flexibility in function is a relatively new concept. Imagine a high-rise building made up of modular units that can be slotted in-and-out, with spaces for living, working and playing – a building whose functions evolve according to a city’s needs, built with sturdy and sustainable materials and a building that’s adaptable, practical and eco-friendly. Created by Haptic Architects and engineering firm Ramboll, the
STRUCTURALTIMBERMAGAZINE.CO.UK
The high-rise structure aims to find the optimum between two key constraints: flexibility in function and sustainability credentials via the use of timber and other similar offsite production structural elements. To equally satisfy the two constraints is a true balancing act as the requirement for large spacious layouts imposes the need for higher capacity structural elements, whereas sustainability is driven by minimalism. Consequently, the highly loaded tower columns supporting large spans with critical load-path are proposed in recycled steel, sand timber-composite and modular options for frames defined within three-storey ‘villages’. The core-wall (framing the lift shaft) gives the high-rise structural lateral stability, using the Lateral Force Resisting System (LFRS) via a precast and steel-brace solution that provides sufficient lateral-stiffness against building sway, enabling the building to resist environmental loads arising from wind and seismic activity. Being an offsite manufactured solution, the precast central-core provide sufficient stiffness and sustainable solution, given its durability and low-carbon footprint.