Transport Modelling A brief note for urban Transport Course, Universiti Kebangsaan Malaysia
By Riza Atiq Rahmat 2013
Transport modelling Trip Generation
Trip Distribution
Modal Split
Trip Assignment
High density developments generate more trips than low density developments
1
Origin
Destination
Production and attraction
Destination 1
Origin
Destination 2
Destination 2
Trip Distribution
Mode 1
Origin
Modal Split
Origin
Mode 2
Destination
Mode 3
Destination
Trip Assignment
2
Trip Generation Model Home-based
Trips
Non-home-based
To work To go home To school To shopping centre
Business-trip
Percentage of Home-based Trips
City
Percentage
Year
Baghdad
85.8
1980
Johannesburg
84.1
1980
Kuala Lumpur
80.5
1985
High plot ratio zones generate more trips than low plot ratio
3
Percentage of Trip Purposes City
Trip Purposes Work
School
Business
Private
Others
Chicago
37.5
4.0
9.7
41.7
7.1
Detroit
41.6
6.3
8.6
34.0
9.5
Baghdad
34.8
13.0
6.2
38.0
8.0
Johannesburg (Blacks) Johannesburg (Whites) Washington, D.C. Kuala Lumpur
51.3
35.6
2.4
8.2
2.5
30.7
20.4
7.0
35.0
6.9
43.1
9.4
9.6
26.7
11.2
29.2
21.2
6.3
26.5
16.8
Work Trip
4
f (Trip Production) = Household income, household size, Car ownership, number of working person in the household ………….
Socio-economic
f (Trip Attraction) = Land-use characteristic
Ti = 880 + 0.115Aoffice + 0.145Ashoppingc + 0.0367Amanufacturing
Linear Regression Model 5
Y D7 D1
D5 D1
D2
D4
D6 D1
D1
D1
D1
D3 D1
X
The best line – the line that minimise D1 + D2 + D3 + ... + D7
R2 = 1 - maximum correlation between Y and X R2 = 0 - no correlation
t-statistic Regression parameter t = Standard error of the parameter
6
Model development 1. Observe any relationship between parameters Non-linear relationship could be linearised Y = aX
→
log Y = log a + b log X
30 25 Log Y
Y
20
Y = abX
15 10 5 0 0
5
10
1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 0 -0.2 -0.4
15
Log Y = Log a + X Log b 0
5
X
log (Y)
80 Y
Y = aXb
40 20 0 0
5
15
X
100
60
10
10
2.5 2 1.5 1 0.5 0 -0.5 -1 -1.5
15
Log Y = Log a + b Log X
0
0.2
0.4
X
0.6
0.8
1
1.2
log (X)
2
5 4
Y = 1 / (a + bX)
1.5
Y
1/Y
3
1
2 0.5
1 0
1/Y = a + bX
0
0
2
4
6 X
8
10
12
0
5
10
15
X
7
2. Produce Correlation matrix Car ownership Car ownership Household income Number of houses Number of worker Production
Household Number Number of Production income of houses worker
1 0.995135
1
-0.80885
-0.81603
-0.30011
-0.30901 0.240331
-0.81724
-0.82478
1 1
0.98193 0.409236
1
3. Compute each of the parameters of the potential regression equations. 4. Check the following criteria: (a) The model R2. (b) Sign convention (- / +) (c) Reasonable intercept (d) Are the regression parameters statistically significant?
8
Example zo Car ne ownership 1 1.1
Household Number of income houses 3555 2350
Number of workers 235
Daily production 6655
2
1.2
4303
2587
358
7415
3
1.5
7101
2605
417
7598
4
1.7
9111
2498
512
7412
5
1.8
9502
2788
419
8112
6
1.5
7105
2358
235
6625
7
1.8
10052
1988
265
5730
8
2.1
12513
1058
158
3089
9
2.3
14217
1187
254
3588
10
2.7
19221
825
487
2950
11
1.2
4339
2687
987
8655
12
0.8
1305
2350
857
7546
13
0.7
1198
2879
125
7901
14
1.5
7211
1987
847
6612
15
2.1
12589
897
254
2798
16
0.8
1121
2987
748
9731
17
1.8
9083
1578
547
5012
18
1.9
11041
1278
389
4021
19
1.6
8151
1380
587
4525
20
1.9
11051
1089
457
3605
9
Correlation matrix Car ownership Car ownership Household income Number of houses Number of worker Production
Household Number Number of Production income of houses worker
1 0.995135
1
-0.80885
-0.81603
-0.30011
-0.30901 0.240331
-0.81724
-0.82478
1 1
0.98193 0.409236
1
Commercial area attract trips in the morning and produce trip in the afternoon
10
Output Regression Regression Statistics Multiple R
0.99801829
R Square
0.996040507
Adjusted R Square Standard Error
0.995574685 141.4405503
Observations
20
ANOVA Df Regression
SS 2
MS
85552805.7 42776403
Residual
17 340092.2977 20005.43
Total
19
Coefficients
F
Significance F 2138.24 3.80133E-21
85892898
Standard Error 101.229828
t Stat
P-value
Lower 95% Upper 95%
-1.0056
0.328709 -315.3730381 111.78009
Intercept
-101.796472
X Variable 1
2.719828956 0.045600893
59.6442
3.45E-21 2.623619347 2.8160386
X Variable 2
1.594915849 0.136378382 11.69478
1.49E-09 1.307182213 1.8826495
R2 = 0.9956 → The model is very good
t-test Number for Houses is 59.64, Number of workers is 11.69 and the intercept is -1.0056 at 95% confident limit. t-test at degree of freedom 20 – 2 = 18 is 2.10 → the intercept is not significant. 11
t-Distribution
12
Regression Statistics Multiple R 0.997900286 R Square 0.995804981 Adjusted R 0.940016369 Square Standard 141.4846514 Error Observations 20 ANOVA df Regression Residual Total
SS
MS
F
Significance F 2 85532575.68 42766288 2136.40 3.82911E-21 2 18 360322.3185 20017.91 20 85892898
Coefficients
Intercept X Variable 1 X Variable 2
Standard t Stat P-value Lower 95% Upper 95% Error 0 #N/A #N/A #N/A #N/A #N/A 2.685964254 0.030756216 87.33078 4.13E- 2.621347791 2.7505807 25 1.539715572 0.124882111 12.32935 3.26E- 1.277347791 1.8020834 10
Trip Production = 2.6859 HH + 1.5397 Number of workers
Residential area produces trips in the morning and attracts trips in the afternoon
13
Category analysis Categorising land-use Type of land-use
Daily production
Link house
Morning peak production / hr 1.26
Semi-detached
1.46
16.37
Apartment
1.03
4.87
Low cost house
1.48
7.35
8.16
Source: Kementerian Kerja Raya
14
Trip Distribution Model Tij
Destination O R I G I N
j
1
2
3
n
1 2 3
T11 T21 T31
T12 T22 T32
T13 T23 T33
n
Tn1
Tn2
Tn3
Tnn
Pn
Tij
A1
A2
A3
An
W
i
Tij = Pi j
Tij = Aj i
W = T = Pi = Aj i
j
i
j
15
( T11 + T12 + T13 + T14 + -- + T1n ) + ( T21 + T22 + T23 + T24 + -- + T2n ) + ( T31 + T32 + T33 + T34 + -- + T3n ) + …. + ( Tn1 + Tn2 + Tn3 + Tn4 + -- + Tnn ) = W
or P1 + P2 + P3 + P4 + P5 + ……. + Pn = W or A1 + A2 + A3 +A4 + A5 + ……….+ An = W
16
Matrix Balancing Production Attraction 560 1250 750 530 1105 430 545 540 450 1200 1040 500 4450 4450
1 2 3 4 5 6
1 2 3 4 157 67 54 68 211 89 72 91 310 132 107 134 153 65 53 66 126 54 43 55 292 124 100 126 1250 530 430 540
5 6 151 63 560 202 84 750 298 124 1105 147 61 545 121 51 450 280 117 1040 1200 500 4450
Production
Attraction
1250 x 1040 / 4450 = 292
1250 x 450 / 4450 = 126 17
Gravity Model m1 m2 F=G
D2
Pi Aj Tij = K f(Rij)
Traffic from one origin is distributed to all possible destinations
18
Gravity Model: Production Constrain
Tij = K j
Pi Aj j
f(Rij)
Tij = Pi 1 Ki = Aj / f(Rij) j
Aj / f(Rij) Tij = Pi Aj / f(Rij) j
19
Gravity Model: Attraction Constrain
1 Kj =
Pi / f(Rij) i
Pi / f(Rij) Tij = Aj
Pi / f(Rij) i
Trips in on attraction are coming from all possible origins
20
Gravity Model : Double Constrain Pi Aj Tij = Ki Kj f(Rij) 1 Ki =
Kj Aj / f(Rij) j
1 Kj =
Ki Pi / f(Rij) i
21
Example Input : Trip Generation Zone Production Attraction 1 2 3 4 5 6 7
1100000 650000 542000 498000 510000 250000 325000 3875000
2600000 250000 210000 320000 210000 135000 150000 3875000
Output 1 : O-D Matrix Destination 1 1 2 3
Origin
738065 436129 363665
2
70968 41935 34968
3
59613 35226 29373
334142 32129 26988 5 342194 32903 27639 6 167742 16129 13548 7 218065 20968 17613 2600000 250000 210000 4
4
90839 53677 44759
5
59613 35226 29373
6
38323 22645 18883
7
42581 1100000 25161 650000 20981 542000
41125 26988 17350 19277 498000 42116 27639 17768 19742 510000 20645 13548 8710 9677 250000 26839 17613 11323 12581 325000 320000 210000 135000 150000 3875000
22
Output 2: Desire Line
Desire lines indicate future transport demand. The lines’ thickness are scaled to the trip interchanges between O-D pairs. The lines are very important to show visually where to propose future transport facilities.
23
Modal Split Model Decision Structure
All Trips Choice
Non-motorised
Motorised trip Choice
Public
Private Choice
Choice
Bus
Rail based
M / Cycle
Car
Use public transport or private car 24
To choose: Walking or ride a vehicle Distance (m) 100 150 200 250 300 350 400 450 500 600 700 800 900 1000
Share of trips by walking 0.95 0.92 0.88 0.83 0.77 0.7 0.61 0.5 0.39 0.27 0.17 0.09 0.06 0.04
Walking or bus 25
1
Share of trips by walking
0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0
200
400
600
800
1000
Distance (m)
Walking or boarding the bus?
26
1 P = 1+De
( Distance)
Calibration: ( 1 – P)/P = D e( Distance) ln [ (1-P)/P ] = ln D + Distance
Y = mX + C
Linear regression analysis
27
Regression Statistics Multiple R 0.989694148 R Square 0.979494507 Adjusted R 0.977785716 Square Standard 0.292947102 Error Observations 14 ANOVA df Regression Residual Total
SS MS 1 49.1916 49.1916 12 1.02981 0.08582 13 50.2215
Coefficients Intercept X Variable 1
Standar t Stat d Error 2.920840037 0.14545 20.0808 -5.722665616 0.23902 -23.9418 4
ln D = 2.920840037 D = 18.5569
F 573.2091
P-value 1.33E-10 1.69E-11
Significance F 1.69E-11
Lower 95%
Upper 95% 2.603922 3.237758 -6.24345 -5.20188
ď Ą = -5.72266562
1 P =
1 + 18.5569 e(-5.72266562 Distance)
28
Stated preference Survey Methods for measuring non-market benefits Recall revealed preference
Guide line
Minimize non-response Personal interviews Pretest for interviewer effects etc. Referendum format Provide adequate background info. Remind of substitute commodities Include & explain non-response option
29
Travel between Bangi and Putrajaya If there is an LRT service between Bangi and Putrajaya If LRT ticket is RM 2.90 for the journey and certain reduction in travel time if a traveller shift from bus to the proposed LRT: Bus fare LRT fare Reduction in % of bus travel time passengers shift to LRT 1 1.60 2.90 0 4.3% 2 1.60 2.90 5 6.9% 3 1.60 2.90 10 10.9% 4 1.60 2.90 15 16.7% 5 1.60 2.90 20 24.9% 6 1.60 2.90 25 35.3% 7 1.60 2.90 30 51.0% 8 1.60 2.90 40 75.0% If reduction in travel time is 20 minutes and the proposed LRT fare as follows: Bus fare LRT fare Reduction in % of bus travel time passengers shift to LRT 1 1.60 2.00 20 26.1% 2 1.60 2.25 20 25.9% 3 1.60 2.50 20 25.8% 4 1.60 2.75 20 25.6% 5 1.60 3.00 20 25.4% 6 1.60 3.25 20 25.3% 7 1.60 3.50 20 25.1% 8 1.60 3.75 20 25.0% 1 P =
1 + D e(ď Ą Cost + ď ˘ Time) 30
(1-P)/P
ln((1-P)/P) Fare
Reduction of differences travel time 3.09790129 1.30 0
1
22.15
2
13.46 2.599770506
1.30
5
3
8.18 2.101639722
1.30
10
4
4.97 1.603508939
1.30
15
5
3.02 1.105378155
1.30
20
6
1.84 0.607247371
1.30
25
7
0.96 -0.040005335
1.30
30
8
0.33 -1.098612289
1.30
40
1
2.83 1.040989873
0.40
20
2
2.86 1.049455984
0.65
20
3
2.88 1.057922096
0.90
20
4
2.90 1.066388207
1.15
20
5
2.93 1.074854319
1.40
20
6
2.95 1.083320431
1.65
20
7
2.98 1.091786542
1.90
20
8
3.00 1.100252654
2.15
20
X1
X2
31
Regression Statistics Multiple R 0.999739 R Square 0.999479 Adjusted R Square 0.999399 Standard Error 0.010826 Observations 16 ANOVA df Regression Residual Total
Intercept X Variable 1 X Variable 2
2 13 15
SS MS F 2.922473 1.46123629 12468.41 0.001524 0.00011720 2.923996
Standard Coefficients Error 1.741845 0.010741 0.145515 0.006679 -0.04766 0.000305
t Stat 162.17302 21.788274 -156.33184
P-value 7.02E-23 1.29E-11 1.13E-22
Significance F 4.57E-22
Lower 95% 1.718641 0.131087 -0.04832
Upper Lower Upper 95% 95.0% 95.0% 1.765048 1.718641 1.765048 0.159943 0.131087 0.159943 -0.047 -0.04832 -0.047
= 0.145515 , = -0.04766 D = eksp(1.741845) = 5.707863.
1 P =
1 + D e( Cost + Time)
32
Travel time value
1 P =
1 + D e( Cost + Time)
Cost and time are two different dimensions
/ is considered a Transformation Factor to convert time into monitory value.
33
Trip Assignment Zone 1
Zone 2
Zone 3 Zone 5
Zone 4
Zone 1 Zone 1
Zone 2
Zone 3
Zone 4
Zone 5
200
150
300
350
250
50
120
180
220
Zone 2
450
Zone 3
550
600
Zone 4
290
310
420
Zone 5
370
410
530
70 610
34
Minimum path tree for zone 1
Zone 1
Zone 2
Zone 3 Zone 5
Zone 4 Minimum path tree from zone 1 to all other zones.
35
Volume = 200+150+300+350= 1000
Zon 1
Zone 2
Volume = 200+150+300= 350 Volume = 200 Volume = 150+300 = 450
Volume = 350
Zone 3
Zone 5 Volume = 300
Zone 4
Volume = 150
36