Unidad 01 - Introducción a las Operaciones Unitarias

Page 1

Introducción a las Operaciones Unitarias Proceso Recibe el nombre de proceso el conjunto de actividades u operaciones industriales que tienden a modificar las propiedades de las materias primas, con el fin de obtener productos que sirvan para cubrir las necesidades de la sociedad. Estas modificaciones que se realizan a las materias primas naturales van encaminadas a la obtención de productos que tengan una mayor aceptación en el mercado, o bien que presenten mayores posibilidades de almacenamiento o transporte.

Transformación y comercialización de productos agrícolas. Por regla general, los productos obtenidos directamente del campo no pueden comercializarse, sino que deben sufrir ciertas transformaciones. Incluso aquellos productos que se puedan utilizar directamente deben ser envasados adecuadamente, teniendo en cuenta las necesidades de mercado. Los productos agrícolas se utilizan, generalmente, para fines alimentarios, por lo que se deben adecuar convenientemente para su uso. En la manipulación de los productos agrícolas uno de los problemas que se presenta es el transporte de los productos desde el campo al consumidor, pues muchos de ellos tienen una vida corta, y debe pensarse en métodos de tratamiento y conservación de dichos productos para su uso posterior. Muchos de estos productos no pueden ser usados directamente para la alimentación, sino que sirven como materia prima para la obtención de alimentos.

Diagrama de flujo. Descripción de algunos procesos alimentarios Los procesos alimentarios suelen esquematizarse mediante los denominados diagramas de flujo. Estos son esquemas de todo el proceso que indican las diferentes etapas de fabricación, así como el flujo de materias o energía involucrados en dicho proceso. Existen distintos tipos de diagramas de flujo, siendo el más utilizado el de bloques o rectángulos. En ellos cada etapa del proceso se representa por un rectángulo o bloque, que tiene entradas y salidas para indicar el sentido del flujo de materiales. Sobre el rectángulo se suele escribir la etapa que representa. Otros tipos de diagramas de flujo son los de equipo y de instrumentación.

Operaciones Unitarias Enológicas – Introducción a las Operaciones Unitarias

1


Régimen estacionario y no estacionario Se entiende que un sistema se encuentra en régimen estacionario cuando todas las variables físicas permanecen constantes e invariables con el tiempo, en cualquier punto del sistema, pero pueden ser distintas de unos puntos a otros.

Operaciones Unitarias Enológicas – Introducción a las Operaciones Unitarias

2


Por el contrario, cuando las variables intensivas características de la operación no solo pueden variar a través del sistema en cada momento, sino que las correspondientes a cada punto de este varían con el tiempo, el régimen se denomina no estacionario. Las variables físicas por considerar pueden ser mecánicas o termodinámicas. Entre las primeras cabe citar el caudal, velocidad, etc., mientras que las termodinámicas son la viscosidad, concentración, temperatura.

Operaciones discontinuas, continuas y semicontinuas En los procesos de la industria, las operaciones llevadas a cabo pueden realizarse de diferentes modos. Se entiende como operación discontinua aquella en la que se carga la materia prima en el aparato, y después de realizarse la transformación requerida se descargan los productos obtenidos. Estas operaciones, llamadas también por cargas o intermitentes, se realizan en una serie sucesiva de etapas: 1. Carga del aparato con las materias primas. 2. Preparación de las condiciones para la transformación. 3. Transformación requerida. 4. Descarga de los productos. 5. Limpieza del aparato. La operación en discontinuo se desarrolla en régimen no estacionario, pues sus propiedades intensivas varían con el tiempo. Las operaciones continuas son aquellas en las que las etapas de carga, transformación y descarga se realizan simultáneamente. La limpieza del aparato se efectúa cada cierto tiempo, dependiendo de la naturaleza de la transformación y de las materias a tratar. Para realizar la limpieza debe pararse la producción. Las operaciones continuas se desarrollan en régimen estacionario, de modo que las variables intensivas características de la operación pueden variar en cada punto del sistema, pero las que se dan en cada punto no varían con el tiempo. En realidad, es difícil que se llegue a un estado de régimen estacionario absoluto, pues puede haber ciertas fluctuaciones inevitables. Un ejemplo de operación en continuo puede ser la rectificación de mezclas de alcohol – agua. En algunos casos es muy difícil llegar a operar en continuo, y solo se llega de un modo aproximado. Esta forma de operar se denomina semicontinua. Puede ocurrir que algunos materiales se carguen en el aparato y permanezcan en el cierto tiempo, de forma discontinua, mientras que otros entran o salen continuamente. De vez en cuando se necesitará descargar aquellos materiales que se vayan acumulando. Así, en la extracción de aceite por disolventes, se carga la harina y se alimenta de forma continua el disolvente; al cabo de cierto tiempo la harina se agota de aceite y debe reemplazarse. Las distintas formas de operar presentan ventajas y desventajas, citándose a continuación las correspondientes a operación en continuo. Ventajas de operación en continuo:

Operaciones Unitarias Enológicas – Introducción a las Operaciones Unitarias

3


1. Se eliminan las etapas de carga y descarga. 2. Permite automatizar la operación, reduciendo la mano de obra. 3. La composición de los productos es más uniforme. 4. Presenta un mejor aprovechamiento térmico. Desventajas de operación en continuo: 1. Las materias primas deben poseer una composición uniforme para evitar las fluctuaciones de la operación. 2. La puesta en marcha de la operación suele ser costosa, por lo que deben evitarse las paradas. 3. Las fluctuaciones en la demanda de producto lleva consigo el que deba disponerse de cantidades considerables de materias primas y productos en almacén. 4. Debido a la automatización de la operación el equipo es más costoso y delicado. En las puestas en marcha y en las paradas de la operación en continuo, esta transcurre de forma no estacionaria, pero una vez alcanzado el pleno funcionamiento puede considerarse que se ha llegado a régimen estacionario. Aunque esto no es exactamente cierto pues puede haber fluctuaciones muchas veces debidas a las variaciones existentes en la composición de las materias primas y también a modificaciones de agentes externos. Cuando se elige la forma de operación, deberán tenerse en cuenta las ventajas e inconvenientes de cada una de ellas. Sin embargo, cuando se requieran producciones bajas, se trabajará discontinuamente, y en caso de que quieran obtenerse producciones elevadas resulta más rentable operar una instalación en continuo.

Operaciones Unitarias. Clasificación Analizando los diagramas de flujo de los distintos procesos descritos, se observa que algunas de las etapas se repiten en todos ellos. Cada una de estas etapas se denomina Operación Básica o Unitaria, y son comunes a un gran número de procesos industriales. Las operaciones individuales tienen técnicas comunes y se basan en los mismos procesos científicos, esto hace que el estudio de estas operaciones se unifique y el tratamiento de todos los procesos resulte más sencillo. Dentro de las Operaciones Unitarias pueden distinguirse diferentes tipos, dependiendo de la naturaleza de la transformación llevada a cabo, así cabe distinguir etapas físicas, químicas y bioquímicas. a) Etapas físicas: Molienda, Tamizado, Mezcla, Fluidización, Sedimentación, Flotación, Filtración, Rectificación, Absorción, Extracción, Adsorción, Intercambio de calor, Evaporación, Secado, etc. b) Etapas químicas: Refinado, Pelado químico. c) Etapas bioquímicas: Fermentación, Esterilización, Pasteurización, Pelado enzimático. Por tanto, el conjunto de etapas físicas, químicas y bioquímicas que tienen lugar en los procesos de transformación de los productos agrícolas constituyen las denominadas Operaciones Unitarias de las Industrias Alimentarias. La finalidad de las Operaciones Unitarias es la separación de

Operaciones Unitarias Enológicas – Introducción a las Operaciones Unitarias

4


dos o más sustancias presentes en una mezcla, o bien el intercambio de una propiedad debido a un gradiente. La separación se logra mediante un agente separador, que es distinto dependiendo de la propiedad que se transfiera. Según la propiedad transferida, las Operaciones Unitarias se pueden clasificar en distintos grupos, pues los cambios posibles que puede experimentar un cuerpo vienen definidos por la variación que experimenta en su masa, energía o su velocidad. Así, las Operaciones Unitarias se clasifican según el esquema: • Operaciones Unitarias de transferencia de materia. • Operaciones Unitarias de transmisión de calor. • Operaciones Unitarias de transporte de cantidad de movimiento. Además de las Operaciones Unitarias englobadas en cada uno de los apartados mencionados, existen aquellas de transferencia simultanea de calor y materia, y otras Operaciones que no se pueden englobar en ninguno de estos apartados, y que reciben el nombre de complementarias. Todas las Operaciones Unitarias que se engloban en estos apartados se encuentran en procesos físicos, pero se pueden considerar ciertas operaciones que incluyen también reacciones químicas.

Operaciones Unitarias de transporte de cantidad de movimiento En estas operaciones se estudian los procesos en que se ponen en contacto dos fases, cuya velocidad es distinta. Las diferentes operaciones incluidas en este apartado se suelen dividir en tres grandes grupos: Circulación interna de fluidos, circulación externa y movimiento de sólidos en el seno de fluidos. Circulación interna de fluidos: Estudio del movimiento de fluidos por el interior de tuberías. También se incluye el estudio de los aparatos utilizados en la impulsión de los fluidos (bombas, compresores, soplantes y ventiladores) y los mecanismos utilizados en la medición de las propiedades propias de los fluidos (diafragmas, Venturímetros, rotámetros, etc.). Circulación externa de fluidos: El fluido circula por el exterior de un sólido. Se incluyen las operaciones de flujo de fluidos a través de lechos porosos fijos, lechos fluidizados (Fluidización) y transporte neumático. Movimiento de sólidos en el seno de fluidos: Es la base de la separación de un sólido que se halla en el seno de un fluido. Dentro de este tipo de separaciones se incluyen las siguientes operaciones: Sedimentación, Filtración y Ultrafiltración, entre otras.

Operaciones Unitarias de transferencia de materia Estas operaciones están controladas por la difusión de un componente en el seno de una mezcla. A continuación, se realiza una breve exposición de las distintas operaciones incluidas en este grupo. Destilación: Separación de dos o más componentes aprovechando la diferencia de presiones. Absorción: de un componente de una mezcla gaseosa por un líquido, según la solubilidad del gas en el líquido: puede ser con o sin reacción química. El proceso contrario es la desorción.

Operaciones Unitarias Enológicas – Introducción a las Operaciones Unitarias

5


Extracción: Se basa en la disolución de una mezcla (liquida o solida) en un disolvente selectivo. Puede ser: Líquido-Líquido o Sólido-Líquido. Esta última también se la denomina, Lavado, Lixiviación, etc. Adsorción: También denominada Sorción. Consiste en la eliminación de uno o más componentes de un fluido (liquido o gas) por retención en la superficie de un sólido. Intercambio Iónico: Sustitución de uno o varios iones de una disolución por otros del agente intercambiador.

Operaciones Unitarias de transmisión de calor Estas Operaciones están controladas por los gradientes de temperatura. Dependen del mecanismo con que se transfiere el calor, distinguiéndose transmisión de calor por conducción, convección y radiación. Conducción: En medios materiales continuos, el calor fluye en sentido decreciente de temperaturas, y no existe movimiento macroscópico de materia. Convección: El flujo entálpico asociado a un fluido en movimiento se le denomina flujo convectivo de calor. La convección puede ser natural o forzada. Radiación: Transmisión de energía mediante ondas electromagnéticas. No se necesita un medio material para su transmisión. Basados en estos mecanismos de transmisión de calor se estudian los Tratamientos Térmicos (Esterilización y Pasteurización), Evaporación, Intercambiadores de Calor, Hornos, Placas solares, etc.

Operaciones Unitarias de transferencia simultanea de materia – calor En estas operaciones existe a la vez un gradiente de concentración y de temperatura. Humidificación y Deshumidificación: Tienen tres finalidades: Humidificación y deshumidificación de un gas y enfriamiento de líquidos. Cristalización: Formación de partículas solidas cristalinas en el seno de una fase homogénea liquida. Deshidratación: Eliminación de un líquido contenido en el seno de un sólido. La aplicación de calor hace pasar el líquido, contenido en el sólido, a fase vapor. La liofilización se basa en eliminar el líquido, que se encuentra en fase sólida, por sublimación a estado vapor.

Operaciones Unitarias complementarias Existen una serie de operaciones que no se incluyen en esta clasificación, por no basarse en ninguno de los fenómenos de transporte citados anteriormente. Así, dentro de este grupo se incluyen la Trituración, Molienda, Tamizado y Mezclado de sólidos y pastas, etc.

Operaciones Unitarias Enológicas – Introducción a las Operaciones Unitarias

6


Sistemas de unidades. Análisis dimensional y semejanza Sistemas de magnitudes y unidades El valor de cualquier magnitud física se expresa como el producto de dos factores, siendo uno de ellos el valor de la unidad y el otro el número de unidades. Las propiedades físicas de un sistema están relacionadas entre sí mediante una serie de leyes físicas y mecánicas. Algunas magnitudes pueden considerarse como fundamentales y otras como derivadas. Las magnitudes fundamentales varían de un sistema a otro.

Sistemas técnicos de unidades Entre los sistemas técnicos más utilizados se encuentran el métrico y el inglés. En ambos, se toman como magnitudes fundamentales la longitud, la fuerza y el tiempo. Con respecto a la temperatura, la unidad del sistema métrico es el grado centígrado, y la del inglés el Fahrenheit.

Sistemas ingenieriles de unidades En los sistemas ingenieriles se toman cuatro: longitud, tiempo, masa y fuerza.

Sistema Internacional de unidades (SI) Al incorporarse los países anglosajones al sistema métrico decimal, resulto conveniente unificar el uso de los sistemas de unidades. Para ello, se adoptó como sistema internacional el MKS, que paso a denominarse SI. Aunque es un sistema cuya obligatoriedad es reconocida, aun se siguen utilizando otros; pero ya muchas revistas y libros de Ingeniería se editan solo en SI, esto hace que cada vez se vaya imponiendo en mayor medida sobre los otros sistemas de unidades. En la tabla se dan las unidades fundamentales de este sistema, y también algunas suplementarias y derivadas. Operaciones Unitarias Enológicas – Sistemas de Unidades. Análisis Dimensional y Semejanzas

7


A veces, la unidad elegida resulta demasiado grande o demasiado pequeña, por lo que es necesario adoptar prefijos que indiquen los múltiplos y submúltiplos de la unidad fundamental. Generalmente, se aconseja que estos múltiplos o submúltiplos se utilicen en forma de potencias de 103. A continuación, se da una relación de los múltiplos y submúltiplos más utilizados, así como el nombre y símbolo respectivo de cada uno de ellos.

Unidades térmicas Como es sabido, el calor es una forma de energía, de este modo la dimensión de ambos es ML2T2 . Sin embargo, en algunos sistemas se introduce la temperatura como dimensión. En estos casos, la energía calorífica se puede expresar como proporcional al producto de la masa por la temperatura. La constante de proporcionalidad es el calor especifico, que depende del material, y varia de unos a otros. Esto hace que se defina la cantidad de calor en función del material. Se toma como referencia el agua, y el calor especifico resulta la unidad, con lo que: Calor = Masa × Calor especifico × Temperatura Según el sistema de unidades adoptado, la unidad de calor es distinta. Así: • Sistema métrico: Caloría: calor necesario para elevar la temperatura de un gramo de agua de 14,5°C hasta 15,5°C. • Sistemas ingleses:

Operaciones Unitarias Enológicas – Sistemas de Unidades. Análisis Dimensional y Semejanzas

8


Btu (British thermal unit): cantidad de calor necesario para elevar la temperatura de una libra de agua en un grado Fahrenheit (de 60 °F a 61 °F). • Sistema Internacional: – Al ser el calor una forma de energía, su unidad es el julio. – La caloría puede definirse en función del Julio, resultando: 1 caloría = 4,185 julios

Conversión de unidades La conversión de unidades de un sistema a otro se realiza fácilmente si las cantidades se expresan en función de las unidades fundamentales de masa, longitud, tiempo y temperatura. Para la conversión de las distintas unidades se utilizan los llamados factores de conversión. El factor de conversión es el número de unidades de un cierto sistema, contenido en una unidad de la magnitud correspondiente de otro sistema. Los factores de conversión más comunes para las distintas magnitudes se dan en la tabla. En la conversión de unidades debe distinguirse los casos en que se convierte únicamente valores numéricos de aquellos en los que la conversión debe ser de una formula.

Operaciones Unitarias Enológicas – Sistemas de Unidades. Análisis Dimensional y Semejanzas

9


Operaciones Unitarias Enológicas – Sistemas de Unidades. Análisis Dimensional y Semejanzas 10


Teoría de la semejanza Para el diseño y construcción de equipos industriales, existen dos caminos posibles, que pasan por la construcción de modelos. Estos modelos pueden ser matemáticos o empíricos. Al equipo industrial se le denomina prototipo. • Modelos matemáticos: A partir de aspectos teóricos es posible, a veces, diseñar y construir directamente un prototipo, aplicable a escala industrial. En la práctica esto se presenta en contadas ocasiones. • Modelos empíricos: En estos casos se necesita de experimentación en modelos reducidos o maquetas, siguiendo las directrices dadas por el análisis dimensional. A partir de los valores encontrados en el modelo, se calculan los valores del prototipo. Para pasar del modelo al prototipo se deben cumplir una serie de criterios de semejanza. La diferencia primordial entre los dos modelos estriba en que el matemático es aplicable a cualquier escala, mientras que, para la aplicación del modelo empírico se deben cumplir una serie de criterios de semejanza entre el modelo y el prototipo. Este principio de semejanza es aplicable a las distintas magnitudes que engloban el sistema, tales como la geometría, perfil de fuerza, velocidad, temperatura y concentración. Por tanto, los distintos criterios de semejanza serán: • Semejanza geométrica, referida a la proporcionalidad entre las dimensiones del modelo y el prototipo. • Semejanza mecánica, que puede ser estática, cinemática y dinámica, según se refiera a la proporcionalidad entre las deformaciones, velocidades y fuerzas, respectivamente. • Semejanza térmica, si existe proporcionalidad entre las temperaturas. • Semejanza de concentración, referida a la correspondencia de todo proceso químico, que obliga a la proporcionalidad entre las concentraciones y composiciones. La semejanza geométrica es requisito previo para todas las demás. En general, cada una de ellas resulta requisito para todas las siguientes.

Operaciones Unitarias Enológicas – Sistemas de Unidades. Análisis Dimensional y Semejanzas 11


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.