1
LAS PROBABILIDADES Y EL SENTIDO COMÚN ¿Existen leyes del azar? Nuestro sentido común pareciera decirnos que el azar y las leyes son conceptos contradictorios. Si algo sucede al azar, es porque no hay leyes que lo determinan. ¿Cómo puede hablarse entonces de leyes del azar? Sin embargo, existe una rama de la Matemática que trata sobre las leyes del azar y es la Teoría de Probabilidades. El cálculo de probabilidades nos permite prever algunas eventualidades de origen aleatorio. Cuando hablamos de prever, debemos hacerlo con mucho cuidado, pues no se trata de enunciar una profecía, sino de una cuantificación o medida con respecto a la ocurrencia de un evento. El objetivo de la Teoría de Probabilidades es interpretar y calcular las probabilidades de fenómenos complejos en función de las probabilidades mas sencillas de fenómenos conocidos. Esto último podemos configurarlo intuyendo los eventos por simetría, por ejemplo, el clásico lanzamiento de una moneda. Cuando lanzamos una moneda, suponemos a priori la cualidad simétrica de que ambos lados (cara y sello) tienen igual posibilidad de ocurrir o, para decirlo cuantitativamente, tienen igual probabilidad de ocurrir. Como hay solo dos casos posibles (cara o sello), decimos que hay un caso de dos de que resulte cara y, por supuesto, también un caso de dos de que resulte sello. Esto se puede cuantificar mejor si empleamos esta relación como razón geométrica y decimos: probabilidad de cara es uno entre dos igual a un medio, y probabilidad de sello es uno entre dos igual a un medio, y lo escribimos como:
P cara
1 2
;
P sello
1 2
En virtud de nuestra experiencia, y tomando el termino suceso en la acepción del lenguaje corriente, podemos enunciar lo siguiente: “La probabilidad de un suceso es la razón entre el número de casos esperados y el número de casos posibles”.Así, por ejemplo, lanzamos un dado y esperamos obtener un número impar.Sabemos que un dado tiene tres números impares: 1; 3 y 5, estos son los casos esperados, y sabemos también que tiene seis números: 1; 2; 3; 4; 5 y 6, estos son los casos posibles. Luego, calculamos:
P impar
Profesor: Javier Trigoso T.
3 1 P impar 6 2 Matemática 1