Design portfolio 2017 : Sovina Chow

Page 1

Sovina Chow MArch BEnv

2011 - 2016

architecture + design

por tfol i o


2011 - 2016

architecture + design

por t f olio


/ cv address 16 Currajong st, Doncaster East VIC 3109 , Australia

Sovina Chow

/ professional experience APR 2015-JUL 2014

Participated in town house and apartment developments located in Northcote, Balwyn, Kew and Preston. Responsibilities included collaboration with senior Architects, consultants and council to produce planning permit applications and tender drawings. Primarily worked with ArchiCAD, AutoCAD, Photoshop and Artlantis.

email shchowb@gmail.com

MArch BEnv

number +61 434 572 445 web www.issuu.com/shchowb nationality Australia | Hong Kong

APR-JUL 2014

FEB 2013 - DEC 2012

In tern at Archip lu s international limited (Ho ng Kong)

FEB 2014 - DEC 2013

A member of a young and dedicated team working in design competition, shopping centre renovations, interior designs and mix used residential complex developments. Assistant for concept design, visual illustrations and tender drawings. Primarily worked with Rhino 5, Sketchup AutoCAD, Photoshop, illustrator and Vrays.

2012 - DATE

JUN-JUL 2016

MAR-APR 2016

2011-2013

2008-2010

NOV 2016

FEB 2016

| Architectural drawing drafting | Physical Model making | Interior Design | Graphic Design |

M a s t e r o f A rc hi te c ture University of Melbourne

/others

G a l a p a g o s Inte r na ti ona l A rc hi te c ture Studi o Universidad San Francisco de Quito, Ecuador M S D Tr avel l i ng Studi o: ZEMCH w or ks hop Universidade Federal do Parana, Brasil B a c h e l o r of Env i ronm e nts University of Melbourne F i n t o n a G ir l ’s Sc hool Australian Tertiary Admission Rank (ATAR)

2011-2016

U niversity of Melb ourne

MArch. student mentor | BEnv. student mentor | O-week host | Open day host DEC 2014 -JAN 2015

Architects with out fro ntiers Nepal Expeditions | Construction team

2013 -2015

Ro bin Boyd Fo undation | Op en h ouse exhib ition Exhibition volunteer

2009 -2012

Salvation Army Red Shield Ap peal Volunteer

/skills

/ achievements

D rawing

G rap hic

Rhino 5

Photoshop

M S D: T h e si s s how c a s e

AutoCAD

Indesign

Sketchup ArchiCAD

Illustrator

Revit

Artlantis

Analysis

Lan guage

Flow

English

HOT2000 Ecotec

Cantonese

M e l b o u r n e Gl oba l Sc hol a r s Aw a rds University of Melbourne International exchange scholarship UA B B B i - c i ty B i e nni a l 2016

Urbanism & Architectural Bi-City Biennial in Hong Kong and Shenzhen 2011-2013

Freelance

/ education

Exhibition on selected Thesis works 2016

Office assistan t at Victorian E xten sio n D esig n

Responsibilities included construction materials sourcing, presentation material preparation and admin documentation.

interest Graphic Visualization | Drawing | Photography | Travelling | Volunteering | Cooking

2015-2016

Stu dent Architect at Cornetta Par tn er Architec t s

M e l b o u r n e A c c e s s Sc hol a r s hi p University of Melbourne

Grasshopper

Vray

Mandarin


Content 2011 - 2016

selected works

/ 01

WE LIVE | memb ership livin g for millen nials

/ 02

3 3 | Brazil mix income social housin g system

/ 03

G alapag os 2046 | creatin g en demic cities

/ 04

Sh enzh en 2046 | UABB 2016

/ 05

U rb an Co rrid or | Melbourne u nderg ro und trave llat or

/ 06

Atmosfer | h amam for Mar ta

/ 07

Reset Pods | d esig nin g for h eating in th e p ublic dom ain

/ 08

T h e o ne | Sk yscape p ro ject

/ 09

Kelletts st | Ap ar tmen t D evelopmen t

/ 10

Mira mall | Ren ovatio n

/ 11

Bamboo h ouse | Ma Wan cu ltu re centre

/ 12

Nep al E xp editions

/ 13

D rawin gs

Design Thesis

Brazil Travelling studio: ZEMCH workshop 2016 Galapagos International Architecture Studio

Urbanism & Architectural Bi-City Biennale in Hong Kong and Shenzhen

Architectural design studio: Disturbance

Architectural design studio: hamam Landscape studio

Applied construction studio

Professional experiences Professional experiences

Competition

Architects without frontiers

Hand drawings


/ 01 WE

LIVE

membership living for millennials

2016

Design Thesis

This thesis project aims to develop a time based membership housing system: WE LIVE in hoping to response to the changing living needs and lifestyle of Millennials. This project also explores how Melbourne’s housing market can transform into a “share economy” model. A modular in-fill adaptable architecture system were used in response to the above research areas.


Structure system

Share economy

Communities Entertainment ++++++

WE LIVE Membership

BASE MODULE

3x3 MODULE

12m

SITE

Living spaces Sharing spaces Millennial

[M1]

[M2]

[M4]

[M6]

3m x 6m

6m x 6m

6m x 12m

X2

X4

X6

FIX PLUG- IN UNITS

Planning response

PRIVATE SPACES

WE LIVE membership system

[P2]

[P4]

1m x 2m

2m x 2m

BATHROOM [S]

BATHROOM [L]

HEIGHT LIMIT IN

DU

Share holder of WE LIVE

ST

L3

RIA

ST

DU

RIA

L1

IN

[optional]

L RIA

CO

MM

3

ER

ST

DU

+

CIA

L2

IN AL ER L RN TIA GE IDEN S RE

L3

RIA

ST

DU

IN

NE

IG H RE BO SID UR EN HO TIA OD L

E

ED

US

MIX

L RA L NE IA ER ENT ID

G S RE

Weekly Duration

Monthly

Daily

PLANNING ZONES

Yearly

P P No. of people

SHARE

one person

couple

others

families with children

P

Living Spaces

BASE MODULE

3m x 6m

6m x 6m

6m x 12m

X2

X4

X6

3x3 MODULE

Office space

Extra private storage

Childcare

Privet Garden pot

Extra Bike Park

Typology

SHARE

SURROUNDING PROGRAM

3 min

Studio

7 min

Others

WE LIVE membership system: example

6m x 6m [M4]

X4

ENV. RESPONSE

6m x 6m

BB.0

Weekly Duration

Daily

Monthly

Yearly

20-30 MOLLISON ST ABBOTSFORD MELBOURNE

SHARE

SHARE

Hilton & Jeanie 26,25 Young couple Bank manger Planning to have kids with in the next2 years so wanting to save money.

Number of people per household

Characteristics

one person

couple

others

families with children

EMPLOYMENT

TRANSPORT MODE

ACTIVITIES

EATING HABITS

full time part time freelancer un-employ student employers

bike public transport private car

exercises farming social cooking crafts clearning +++++++

cook eat out kitchen community

INCOMES 2 min 8 min

1 min 2 min

ACCESS


[P2]

[P1]

[P4]

[P1]

[P2]

[P4]

2X

[P4]

3x3 MODULE

2m x 2m

1m x 1m

1m x 2m

2m x 2m

1m x 4m

KITCHENETTE [S]

KITCHENETTE [M]

LADDER [S]

LADDER [M]

STAIR [M]

STAIR [L]

Convertible

Adjustable

Versatile

Refitable

Change of task/user

Change of space

Change of performance

Change of use

Scalable

Movable

Change of size

Change of location

FIX PLUG- IN UNITS

3m x 6m

[M2]

[M2]

3m x 6m

[M2]

WALL

FIX WINDOW

OPERABLE WINDOW

3m x 6m

3m x 6m

[M2]

[M2]

DOOR

BALCONY

[M4]

(3m x 3m)X 2

H.0

[M4]

(3m x 3m)X 2

H.1

[M2]

(3m x 3m)X 2

6m x 6m

DD.0

[M3] 3m x 6m+ 3m x 3m

3m x 6m

[M4]

3m x 6m

[M4]

(3m x 3m)X 2

6m x 6m

DD.1

6m x 6m

[M4]

6m x 6m

[M4]

6m x 6m

DD.2

6m x 6m

6m x 6m

[M4]

6m x 6m

[M4]

6m x 6m

[M4]

6m x 6m

GG.0

6m x 6m

CC.2

[M4]

6m x 6m

CC.3

[M4]

6m x 6m

FF. 2

FF.1

[M4]

6m x 6m

CC.1

BB.3

[M4]

6m x 6m

CC.0

BB.2

FF.0

[M4]

[M4]

BB.1

EE.1

H.3

[M4]

[M4]

EE.0

D.3

[M4]

6m x 6m

6m x 6m

BB.0

AA.1

[M2]

H.2

[M4]

3m x 6m

D.2

3m x 6m

[M4]

AA.0

[M2]

C.3

3m x 6m

[M3] 3m x 6m+ 3m x 3m

D.1

3m x 6m

[M2]

B.4

[M4]

3m x 6m

C.2

3m x 6m

3m x 6m

D.0

[M2]

B.3

3m x 6m

[M2]

C.1

3m x 6m

[M2]

A.4

SHADING DEVICES

[M2]

B.2

A.3

3m x 6m

C.0

3m x 6m

[M2]

A.2

[M2]

[M2]

B.1

A.1

[M2]

3m x 6m

B.0

A.0

PRIVATE UNIT

DESIGN PRINCIPLES

KITCHENETTE [XS]

[M2]

1m x 2m

1m x 1m

[M4]

6m x 6m

GG.1





/ 02 33 Brazil mix income social housings system 2016

Br a zi l Tr ave l i n g Studio

This project aims to provide an alternative solution in combating ongoing socioeconomic inequality within Brazil. By implementing an income and functional mix housing system: 33, this would help create a community oriented neighbourhood , affordable, and sustainable housing community.


CURRENT HOUSING ISSUES = INTENSE POLARISATION IN BRAZIL

33 CUSTOMISE HOUSING SYSTEM

BARE SHELL HOUSING OPTIONS

Brazilian intense polarisation has remain as one of the most significant socioeconomic problem of the country. With 10% of the population controlling more than 50% of the National income, this has caused extreme inequality in terms of living standard, social connection and income living among the different income classes.

50 %

51 % National Income

40 % National Income

9%

Population

0.4

0.5

Population

National Income

STAIRS

40 %

Population

BATHROOM

10 %

0.2

0.4

33 = STANDARD $$ BASE MODULE

KITCHEN

0.2

0.5

6 x6 33 X 4 =36 m3 Min Gov. floor area

standard $$ x 4

Max Gov. Subsidies

1.0

HYPOTHESIS

1.5

Central West 72986 Southeast 35740

South 90994

INCREASE IN HOUSE OWNERSHIP FOR CITIZEN

SOCIOECONOMIC GROWTH OF CITIZEN

2.0

BARE SHELL OPTION

FULL FINISH OPTION

NO WALL FINISHES GAS/WATER/DOWN PIPE LESS WINDOW HALF BUILD TOILET

INCLUDES WALL FINISH KITCHEN MORE WINDOW FULL BUILD TOILET

DESIGN CONCEPTS

33 CUSTOMISE HOUSING SYSTEM

TYPE F

FUTURE CUSTOMISATION

33 X 6 2 BED HOUSE: WITH LIVING Upper Class

MIX INCOME TARGET GROUP

Upper Middle Class > $5,100

Middle Class > $2,040

Lower Middle Class > $1,020

Lower Class

> $10,200 Tertiary Study

Tertiary Study

Technical/High School

> High School

Elementary/illiterate

Banker, Investors,

Professional, mangers

Services Sector,

Housemaids, driver,

Cleaners, street sweeper,

Owner, landowner

Politicians

Public Servant

construction workers

unemployed

< $1,020

SIZE GROWTH ENERGY CONSUMPTION FLEXIBILITY











SINGLE MUM/DAD CHILDREN

MIDDLE AGE COUPLES

ELDERLY COUPLES

FMAILY (2 ADULT + 1-3 CHILDREN)

DISABLE

FAMILY (2 ADULT, 4 +CHILDREN)

FAMILY (BATERD WOMEN/BABY)

FAMILY GRANDPARENT

SHORT STAY

Mix users groups



Mix income groups

BARE SHELL



DP



G



DP



G



YOUNG COUPLES



SINGLE ELDERLY



SINGLE





NO. OF HOUSING DURING PHASE

“Minho Casa, Minha Vida” soical housing program, which targeted to provide over 1 million housing in between the 2009-2011 : “Rather than integration, they promote further isolation in terms of Spatial, Social and Economic Increasing housing ownership inequality”3. for citizen does not result in social, economic and environmental equality, but rather further intensify the ongoing Polarisation issues among Brazilian.

Northeast 25879

LIVING / DINNING

33 X 4 =36 m3 Max Gov. Subsidies

North 79937

BEDROOM

6 x6

FULL FINISH



FULL FINISH HOUSING OPTIONS


SITE RESPONSE

MIX PROGRAMS

Due to the extensive slope of the site, micro pilling system are introduce to allow for minimum excavation and use of retaining wall. This system would not only uses less materials but also allows for a quicker construction time. Pilling system would also provide stronger support then footings with less material, in our case, we would like to provide a stronger support for future self building customisation. A standard 6m x 12m structure frame are introduce for easy construction. The modules is a multiple of the 33 grid, which wall and other building element can be easily fit in. This structure would allows for a open plan where the interior can be easily divided up, both flexible and adaptable.

ECONOMICAL

ENVIRONMENTAL

OUTDOOR STRUCTURE

VERTICAL URBAN FARMING

3m

3m

NEWSPAPER STORE

MULTIFUNCTION STUDIO

WASTE REGENERATION HUB

SHARE OFFICE SPACE

MINI LIBRARY

VEGGIE GARDEN

1m

SHOP HOUSE

LOCAL BUSINESS TYPE

RENTAL DOUBLE ROOM

RENTAL SINGLE ROOM

RENTAL BED

3m

GREEN PUBLIC SPACE

PLAYGROUND

Spaces that only have single function or multi function. How can these space be integrated with each other and the opportunities to overlap each other to create a more dynamic living environment Residential would now become the intergration of geen space, economic and socail space.

WORSHIP SPACE

FILL IN STRUCTURE SYSTEM

COMMUNAL LAUNDRY

BASKETBALL COURT

TABLE TENNIS TABLE

PUBLIC FURNITURE

COMMUNAL KITCHEN

OUT DOOR STEP

SOCIAL

1m

1m

1m


optimumA = (pA[2] + pA[3])/2 diffA = abs(optimumA - pA[1]) optimumB = (pB[2] + pB[3])/2

100,

mm = a[0]

35,

30, 7] #Eco-Centric

pAMoney = (pA[0] + pBMoney = (pB[0] + pBProfit)*((100-pB[4])/100)

pAProfit)*((100-pA[4])/100)

pACoef = (pA[1] - pA[2])/(pA[3] - pA[2]) pBCoef = (pB[1] - pB[2])/(pB[3] - pB[2]) relCoef = pBCoef/pACoef

eChangeA = pAProfit/75 eChangeB = pBProfit/75

relProfit = pAProfit*relCoef pBProfit = pB[0] * pBCoef CashFlow = relProfit

[] = [] [] = [] = []

pAProfit = pA[0]*pACoef pAProfit = pA[0]* relProfit = pAProfi pBProfit = pB[0] *

if a[1][5] == 4: ic = a[1] if a[1][5] == 5: ss = a[1]

Galapagos 2046 Galapagos

2016

Galapagos Winter Studio

percentageChangeA = pAProfit/75 percentageChangeB = pBProfit/75

pAProfit = pA[0]*pAC

pA[0] = pA[0] + (CashFlow * distributionAcoef) pB[0] = pB[0] + (CashFlow * distributionBcoef)

#Spent o

ic = a[1]

Money, (pA[1]+percentageChangeA) ,pA[2],pA[3],pA[4],pA[5]] Money, (pB[1]+percentageChangeB) ,pB[2],pB[3],pB[4],pB[5]]

def relation(pA,pB,CashFlow):

gens = 10 CashFlow = 100

diffB = abs(optimumB - pB[1])

moneyA = [] moneyAid = [] moneyB = [] moneyBid = [] CashFlowH = []

distributionAcoef = diffA/(diffA+diffB) distributionBcoef = diffB/(diffA+diffB)

45,

if a[1][5] == 1: fd = a[1] if a[1][5] == 2: mg = a[1] if a[1][5] == 3: mm = a[1]

/ 03 Creating endemic

pA = [pAMoney, (pA[1]+percentageChangeA) ,pA[2],pA[3],pA[4],pA[5]] pB = [pBMoney, (pB[1]+percentageChangeB) ,pB[2],pB[3],pB[4],pB[5]]

0,

ef updatePrinciples(a): if a[0][5] == 1: fd = a[0] if a[0][5] == 2: mg = a[0] if a[0][5] == 3:

ec = [

mm = a[0] if a[0][5] == 4:

(gens): ge(len(rels)): ation(rels[j][0],rels[j][1],CashFlow) datePrinciples(a)

#PRINCIPLES # principle = [ Money , % , Min , Max , Tax , ID] # [0] [1] [2] [3] [4] [5] fd = [ 100, 7, 5, 90, 50, 1] #FlexDapation mg = [ 50, 173, 175, 200, 10, 2] #Multiplying Grounds mm = [ 0, 85, 80, 100, 30, 3] #Mothering Mother Nature ic = [ 0, 91, 90, 100, 30, 4] #Inclusive ss = [ 0, 5, 0, 80, 30, 5] #Self-Suficiency br = [ 0, 35, 20, 100, 30, 6] #Birth/ReBirth

9 urban design parameters were developed with the aim of incorporating the unique environmental identity of Galapagos (i.e. Endemism, Customization) into its urban context. By running parametric simulations with these parameters, two urban interventions were created. These interventions serve as an example on how the island can transform over time to create a more dynamic and unique urban Galapagos.


E N DE M I C F R A M E W OR K URBAN GUIDELINES FOR GALAPAGOS OBSERVATORY PARAMETERS

60

50

70

CONTEXT RESPONSIVE FORM

CUSTOMIZATION USER NEED RESPONSIVE

INCOMPLETE CONSTRUCTION

HOME ADDITION HOME + COMMERCIAL

INACCESSIBLE PUBLIC SPACE

HOME ADDITION HOME + CAFE

QUALITY SPACE IN RIGID FORM

OVER DESIGNED HOUSING BLOCK

ISOLATED FUNCTION "SLICE OF A CAKE"

UNDERDEVELOPED SPACE

ILLEGAL SETTLEMENT ON PUBLIC LAND

WINDOW ACTIVITY

SINGLE FUNCTION x PERMEABLE FORM

80

40

90

30

0

100

(%)

(%)

20

10

10

INCLUSIVE

PRIVATE PUBLIC SPACE COMMUNITY

20

200 (%)

30

190 0

(%)

180

40

170

50

160 60 150

BIRTH-TO-REBIRTH

KNOWLEDGE OR // CONOCIMIENTO O

70 140

TANGIBLE PRINCIPLES

0

(%)

90

120 100 (%)

FLEX-DAPTATION

10

110

100 (%)

90 20 100 (%)

80

30

70

KNOWLEDGE FOR // CONOCIMIENTO PARA ECO-CENTRIC // ECO-CENTRICO

40

MOTHER NATURE 2

50

60

INTANGIBLE PRINCIPLES

ECO-CENTRIC // ECO-CENTRICO

80 130

60

50 70 40

THE MINDSET // ESTADO DE MENTE

80 30

SELF-SUFFICIENCY

90 20

ECO-CENTRIC // ECO-CENTRICO

100 (%)

100

0

10

(%)

(%)

QUALITY PRIVATE SPACE

0

(%)

90

10

80

20 70

60

50

40

30

MULTIPLYING GROUNDS

TYPOLOGY EXPLOITATION // EXPLOTACION DE TIPOLOGIA

RE-CALIBRATE RESOURCES // RE-CALIBRANDO RECURSOS

RE-INTERPRET BOUNDARIES // RE-INTERPRETAR BARRERAS

MOBILITY DISTRIBUTION // DISTRIBUCION DE MOBILIDAD WESTERN INSPIRED GENERIC RESIDENTIAL BLOCK


BIRTH-TO-REBIRTH // FLEX-DAPTATION // MOTHER2 NATURE // SELF-SUFFICIENCY // NACER PARA RENACER FLEX-ADAPTACION MADRE2 NATURALEZA AUTO-SUFICIENTE

KNOWLEDGE OR // CONOCIMIENTO O

ECO-CENTRIC // ECO-CENTRICO

KNOWLEDGE FOR // CONOCIMIENTO PARA

2nd STAGE

3rd STAGE //

START OF CONSTRUCTION

UNCERTAINTY OF EXPANSION

TEMPORARY OCCUPANCY OF INCOMPLETE FLOORS

V IRTH REB TO TH S BIR USIVE ATURE UND 2N INCL ER G GRO TH IN MO IPLY LT N MU IO APT -AD EX FL

E M

M E

TI

M E TI

PROFIT $$

M E TI

E TI M

M E S D N RO U G G

PL YI N LT I

N IO

2022

2028

2034

D A

PT

2016

FL EX -A

FL EX -A

D A

PT

IO

N

M

U

LT I U M

E $ DG Y$ LE NE OW MO KN LE N IB IO NG UCT TA ED XR TA

TI

RE AT U N

2

ER O TH M

PROFIT $$

S D N RO U G G PL YI N

E $ DG Y$ LE NE OW MO LE N IB IO NG UCT TA ED R X TA

PROFIT $$

E SI V LU C IN

PROFIT $$

Y C IE N IC FF U LF

-S

PROFIT $$

TO

PROFIT $$

BI R

TH M E TI

PROFIT $$

RE AT U N

2

ER O TH M

E $ DG Y$ LE NE OW MO KN LE N IB IO NG UCT TA ED XR TA

KN

SE

TI

M E

IRTH REB TO NCY IE TH BIR UFFIC -S LF SE SIVE URE U 2 NAT INCL ER TH DS MO UN RO GG LYIN LTIP MU

RE

V

TH

E TI M

PROFIT $$

E SI V C LU IN

E DG N LE IO $ OW CT Y$ KN EDU NE XR MO TA LE IB G N TA

TI

PROFIT $$

V

IRTH REB TO TH NCY ICIE FF -SU LF VE SE USI ATURE 2N INCL ER ION TH PT MO -ADA EX FL

BIR

R

TI

M E

V IRTH REB TO NCY TH ICIE BIR UFF -S LF SE SIVE DS U UN INCL RO G GN LYIN IO LTIP APT MU -AD EX FL

BI

E

V IRTH REB TO NCY TH ICIE BIR UFF -S LF URE SE 2 NAT DS ER N U TH RO MO GG LYIN N IO LTIP MU DAPT -A EX FL

M

PROFIT $$

Y C IE N IC FF U -S LF SE

INNER CITY SITE AND WATER FRONT SITE

E $ DG Y$ LE NE OW MO LE N IB IO NG UCT TA ED R X TA KN

TI

PROFIT $$

TH R BI

THE TIMELINE OF THE DISTURBANCES’ DEVELOPMENT

E $ DG Y$ LE NE OW MO LE N IB IO NG UCT TA ED XR A T KN

TI M E

PROFIT $$ TH R BI RE

MULTIPLYING GROUNDS // MULTIPLICANDO PISOS

1st STAGE

NCY ICIE FF -SU LF SE SIVE U URE INCL 2 NAT ER DS TH UN MO GRO G LYIN LTIP ION MU APT -AD EX FL

TO

INTANGIBLE PRINCIPLES // PRINCIPIOS INTANGIBLES

TANGIBLE PRINCIPLES // PRINCIPIOS TANGIBLES

INCLUSIVE // INCLUSIVO

GRAPH 1: PROFIT GROWTH OVER TIME

GRAPH 2: PROFIT GAINED FROM TANGIBLE PRINCIPLES

INVOLVING ALL RELATIONSHIPS AMONG THE TANGIBLE PRINCIPLES

PROFIT GAINED = KNOWLEDGE INCREASE = TAX REDUCTION

LAND GROWTH AND EVOLUTION GENERATION 2016 -2046

2040

2046


WATER-FRONT DISTURBANCE

EXISTING CONDITION

I WATER-FRONT DISTURBANCE

STAGE 1

II WATER-FRONT DISTURBANCE

STAGE 2

III WATER-FRONT DISTURBANCE

STAGE 3


IN LAND DISTURBANCE

EXISTING CONDITION

I INNER-CITY DISTURBANCE

STAGE 1

II INNER-CITY DISTURBANCE

STAGE 2

III INNER-CITY DISTURBANCE

STAGE 3


/ 04 Shenzhen 2046 Urbanism & Architectural Bi-City Biennial in Hong Kong and Shenzhen 2016

UA BB

Developed by a team of student from the Melbourne School of Design, this 6.0 x 2.0m sectional collage was created for the UABB 2016 exhibition in response to the theme: ‘Re-living the city’. Using our former studio projects as the material for the collage, we aim to deliver a message on how collection of old ideas can inspire newer inventions in the areas of technology, trade, culture, transportation for future Shenzhen urban living.




/ 05 Urban Corridor Melbourne underground travellator 2015

Studio Disturbance

By implementing a three speed, non-stop travellator transport system allows current constraints such as, long waiting time, limited capacity, entry and exit points and single use of space to be removes from the trainstation based transport system. This project aims to transform the newly proposed Melbourne Metro Rail project from a traditional transport system which purely “transports� into an interactive underground corridor, which serves both as a public transport system and public urban spaces


CURRENT SYSTEM

40 km/hr (city loop)

Metro Proposal Station and Tunnel

"The new Melbourne Metro rail tunnels will unlock the centre of the train system, enabling major improvements in capacity, reliability and frequency of services across our busiest train lines."

Arden

Parkvile

CBD North

CBD South

Domain

Melbourne Metro Rail 40 km/hr (city loop)

The newly proposed Melbourne Metro Rail project aims to provide an alternative in reducing heavy traffic present in the current city loop and to support the growing Melbourne population. However, the proposed new metro line within the project would not solve the fundamental problems present in the current city loop (i.e. overcrowding, long waiting time etc.). Instead, a new system is needed in order for train transport to adapt to the changing demographics of modern Melbourne.

Melbourne Metro will deliver twin

trail tunnels

9 km

nfrom South Kensing-

ton to South Yarra, and

ground station

5 new under-

at Arden, Parkville,

CBD North, CBD South and Domain.

Empty zone

Empty zone

Empty zone

Empty zone

Arden

Parkvile

CBD North

CBD South

Domain

1

2

3

4

5

Arden

Parkvile

CBD North

CBD South

Domain

1

2

3

4

5


CONCEPT DESIGN Convert to travellator Implementing a travellator concept would increase passenger capacity. Number of people that can travel during the same time is no longer limited by the size of a train and station boundaries. No more waiting time for passengers as the travellator is constantly moving. Passengers can get on whenever and wherever they want. This allows full control of their time and movement. The travellator would also provide greater transport coverage for users, as entry and exit points are no longer limited, they can enter the system anywhere along the underground tunnel.

Enter and exit point

Pop up Station on Grattan St

fast

200

me

0m

m

150

dium

slow

0m

min

.200

km 0

1040mm 1200mm

0m

passenger seating

3000mm 1000mm

services shafts

water storage

sand substrate precaste concrete tunnel segment

Entry/ exit points Unit Hospital Outpatient

University underground public library

travelator

Travellator enter and exit types

m

travelator motor shaft

Travelator

pop-up station

ing

/h

16

m

/h

km

km

km

buildings

walk

0m

8

32

m

150

/h

/h

The travellator would also provide opportunities for the tunnel to be occupied by different functional programs, such as medical centers, libraries, urban playgrounds or food markets.


Urban Playground


Food market


/ 06 Human The memiores of Marta

2015

Studio Atmosfer

The unique atmospheric experience of “Human� is created by studying the use of both traditional and modern materials, different lightings, colour and sounds. This bathhouse not only allows users to escape form the pressures of modern city life, at the same time giving a new interpretation to this slowly fading traditional culture of visiting bathhouse.





/ 07 Reset Pods Designing for heating in the public domain

2015

Studio Landscape

Reset pods offer pockets of thermal refuge in the Moorabbin Arts Precinct where extreme weather during summer and winter often prevents the outside space from being used to its full potential as a gathering place. Small landscape interventions are introduced to create a desirable micro climate which enables workers, residents and visitors to utilize the external landscape of the precinct in a comfortable manner.



/ 08 The one Skyscrape project

2015

Applied Construction

A full set of construction drawing were created for this 60 storeys offices skyscrape project.


WA

SCREED

MIN. 2°

WARD

FALL TO

A3.2

2 OF TERPRO

WATER

TLET

AGE OU

DRAIN

PROO

F SCRE

ED M

IN. 2°

FALL

TOWAR

D DR

AINAGE

OUTL

ET

2

220

SCALE 1:50 @A2

320

TYPICAL MECHANICAL FLOOR PLAN

2

1 A3.2

A3.2

A5.2

3 A5.2

1

DETAIL

A5.2

SCALE 1:5 @A2

220 3 A5.2

220

1 A5.2

DETAIL SCALE 1:2 @A2

3

475050

A5.2 900-030

4 A5.2

2 A3.2

3

MECHANICAL FLOOR FACADE SECTION

A3.2

SCALE 1:50 @A2

FACADE/MECHANICAL FLOOR

SUBJECT : ABPL90118 APPLIED CONSTRUCTION

2

MECHANICAL FLOOR FACADE ELEVATION SCALE 1:50 @A2

ASSIGNMENT NO. : 6

A5.2

STUDENTS :

SOVINA CHOW

539019

SCALE : SCALE 1:50@ A2

DETAIL SCALE 1:10 @A2

4 A3.2

FACADE/MECHANICAL

5

DETAIL SCALE 1:1 @A2

A3.2

DETAIL SCALE 1:5 @A2

SUBJECT : ABPL90118 APPLIED CONSTRUCTION

ASSIGNMENT NO. : 5

STUDENTS :

SOVINA CHOW

539019

SCALE : SCALE 1:50@ A2


/ 09 Kelletts st Apartment development

2014

Professional experiences


 

 



    

    

     

 

 

        

  

           

 







        

   

    

 

   



  

 

   



   



 























 





                 

 



      



        

        

 





  

 

   

 

 

 

   

 



  

 

   

    



  

    

  

        







 





   





      



    





  

       





 

 

    













  

  

   

   

    

 

     

 

 



 







 





    





    

    

 













 

  

  

     

 

 

 

 

   





   

   

    

 

    





 





 

 



   

    





  

  







 

  

  

 

     





  





 

  



 

   

  

    

    

   

    

   



   

      

 

 



   



 

  





  





 

    

  







  









 



 

  

    



    



  

  

 









 



  

 



    

 

     

 

 

 

       

  

 



 

   

     

  

   

  





     

 

  

  

  

 

    

 

 

 





    

   





   

    

   

  



  

   











 

  

  

 

 

      

 

 

    

  

 

 

 

  

   







     

  

         

 









 

 





     



           

 

             

  

   

 



    

   

      

   

     





      

     

        

      

















    

   







        

 



         







       



    

      

 

  

    

        



  

   

   

        

    

    

  

  







 

    









  

     

       



 

  

  





  



  

   

    



 

  

    

    





  





      

   

    

   





   

          

    

                                       





  

     

    

    

    

    

       



 

 

          

  









      

      



         



    

 

  

 



  

   







  

  

 

      

  











     

    

          

  

 

 

      

     









  



  

   

     

   

                









  







 

       



     

 



    

    

 











       

  

  

     

 







 





  

    

     



    





  

     





      

    



    





   

         

 



  





  

  

    

 



 

















   

   

   





    

   

  





  

    

     





     

 

    

  



   

    







 



 

     

     

  

  

 







 



  

     

       





   

 





    

 

   



     

      

       

        

  













  













   







 

    





    













 











 

 







   

   

   





  





    

   

 



    

       



 

    

   

 

 

         

      

 

  

      



  

  









 



    

  

   



 

  

 

 









 











   





















 

 

 

  

 

 

 

    

    



      





   











 

 













   













  













  

     

  

 

        

   



  







 

  



     







  





 





 





 



     

 

   



   



 







     

    



    



    

  









   

        

     





  





 

 













 

  



 



 

   

     

 

  





  





 

 







 



 

  

    



 

 

 

    

 



 



 

  

  





 

    

        



    

    

    



  



 

  

  





   

 









 

  





     



       



     

  

       

       

  



      

   





       

 

   

  









 



       

  





 

  

     

  





 





    

     

    

    



  

     

    









     

                











  



    

   

   

    



 

  









  

 

  



  

 





   

  







  

    

 

  

  







 



      

   

    

     

   

 





    



   

    

         



   

 

 







    





  

 





   

   

 

    





  







 

 



   

    

   

 

 

           

      



  

 



 

 





    

  

  



    

  

    

 



  

 

  

 

 

 

 

  

 

    

 



    

   



    

  





  



    

   

  



   

   





 


/ 10 Mira Mall Renovation

2013 -2014

Professional experiences


Mira Mall Renovation 118 Nathan road, Hong Kong

Mira Mall Kimberley Rd Link Bridgn Interior -Bench Design Final design

Mira Mall Kimberley Rd Link Bridgn Interior -Bench Design Tender Drawings


/ 11 Bamboo house Ma Wan culture center

2013

Competition


/ 12 Nepal Expedition Architects without frontiers

2014



/ 13 Sky city Pencil drawing

2016


/ 13 Imagine world Ink drawing

2014


Sovina Chow

shchowb@gmail.com

Th an k yo u



Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.