3 minute read
Neue Technologien für mRNA-Arzneimittel
from ChemieXtra 6/2023
by SIGWERB GmbH
Die mRNA-Technologie wurde ursprünglich für die Krebstherapie entwickelt und kann gegen viele Krankheiten eingesetzt werden. Das Fraunhofer-Institut für Produktionsanlagen und Konstruktionstechnik IPK erforscht gemeinsam mit Partnern aus Wissenschaft und Wirtschaft, wie mRNA-Therapeutika und andere Medikamente besser produziert und wirksamer angewendet werden können.
Die grosse Herausforderung beim Einsatz von RNA-Molekülen für medizinische Zwecke ist nach wie vor, dass sie sehr schnell enzymatisch abgebaut werden. Das heisst: Ohne einen speziellen Schutz können sie im Körper eines Menschen nicht lange genug bestehen, um an der richtigen Stelle ihre Wirkung zu entfalten. Für die Impfstoffproduktion wurden die mRNA-Moleküle in eine schützende Lipidhülle verkapselt. Derzeit verfügbare Technologien zur Erzeugung solcher Lipidnanopartikel und zur Verkapselung der Moleküle sind jedoch noch in ihrer Effizienz und Stabilität eingeschränkt.
Advertisement
Im Projekt «Zielgerichtete und langfristige Freisetzung von in Chitosan-Nanopartikeln verkapselten Wirkstoffen» arbeiten deshalb die FDX Fluid Dynamix GmbH, die Heppe Medical Chitosan GmbH, die Martin-Luther-Universität Halle-Wittenberg sowie das Fraunhofer IPK an der Erforschung und Optimierung von neuartigen ChitosanPartikeln und Hilfsstoffen, um deren Produktion nachhaltiger, umweltverträglicher und flexibler zu gestalten und deren Wirkstofftransport zu verbessern.
Drug-Delivery-Systeme für kontrollierte lokale Freisetzung
Um die Nanopartikel für den Transport von mRNA-Therapeutika und anderen Wirkstoffen zu stabilisieren, untersuchen die Forscher den Einfluss der Partikelzusammensetzung und der Prozessführung auf die Eigenschaften der Nanopartikel. Auf dieser Basis entwickeln sie neue NanopartikelFormulierungen sowie innovative Verkapselungssysteme, sogenannte Drug-DeliverySysteme (DDS) für eine kontrollierte lokale Freisetzung der Wirkstoffe. Im Ergebnis des Grundlagenforschungsprojekts soll eine Plattformtechnologie entstehen, die es er- möglicht, zielgenau die Partikeleigenschaften sowie die Freisetzungsdauer für einen mRNA-Wirkstoff zu steuern.
«Das wechselseitige Zusammenspiel zwischen Partikeleigenschaften, Wirkstoff sowie Trägersystem ist noch nicht vollständig erforscht. Indem wir die Nanopartikel-Eigenschaften wie Grösse, Ladung und Abbaubarkeit anpassen und eine geeignete biokompatible Trägermatrix identifizieren, wollen wir die Wirksamkeit von mRNA- und anderen Wirkstoffen über einen längeren Zeitraum ermöglichen», sagt Christoph Hein, Abteilungsleiter Mikro produktionstechnik am Fraunhofer IPK. «Auf diese Weise könnten Patientinnen und Patienten eine effektivere Behand lung erhalten.» www.ipk.fraunhofer.de
Die Stabilisierung von RNA-Komplexen und deren lokale und kontrollierte Freisetzung ist essentiell, damit das hohe therapeutische Potenzial von mRNA-Arzneiwirkstoffen zum Beispiel für Tumorbehandlungen, aber auch zur Therapie lokaler Erkrankungen von spezifischen Organen wie Auge oder Innenohr genutzt werden kann. Die angestrebten Forschungsergebnisse des Projekts könnten darüber hinaus helfen, eine mehrfache Applikation der Wirkstoffe zu vermeiden. Das ist bislang, wie mRNAbasierte Impfstoffe gezeigt haben, aus technologischer Sicht nicht möglich.
Untersuchungen der Empa geben Entwarnung
Ist verbranntes Graphen ein Problem?
Forschende der Empa haben Rückstände aus der Verbrennung von Graphen-haltigen Kunststoffen untersucht.
Fazit der Studie: Verbrannte Kompositmaterialien mit Graphen-Nanopartikeln sind bei einer akuten Belastung als unbedenklich einzustufen. Aber wieso?
Andrea Six ¹
Aufgrund seiner aussergewöhnlichen Eigenschaften wird Graphen heute einer Vielzahl von Kunststoffen zugesetzt. So verbessert das Kohlenstoff-basierte Material beispielsweise die Leitfähigkeit und die Stabilität von Verbundstoffen. Wie es um die Gesundheitsrisiken dieser vergleichsweise neuen Kompositmaterialien bestellt ist, untersuchen Forschende der Empa derzeit in mehreren Studien. Die jüngsten Untersuchungen befassen sich mit den Rückständen von Graphen-Nanoplättchen, die nach der Verbrennung der Verbundstoffe in Kehrichtverbrennungsanlagen oder bei einem Brandunfall entstehen können.
Lungenzellen im Test
Da der menschliche Organismus mit Graphen-Partikeln am ehesten über die Atem - wege in Kontakt kommt, nutzten die Forschenden das an der Empa entwickelte 3-D-Lungenmodell mit Zellkulturen für die Toxizitätstests. Das Team von Peter Wick vom Empa-Labor für «Particles-Biology Interactions» in St. Gallen setzten Lungenzellen dabei Rückständen aus der Verbrennung von Kompositmaterialien, die Graphen-Nanoplättchen enthielten, aus. Um die Menge der Graphen-Partikel, denen Menschen dabei typischerweise ausgesetzt sind, möglichst realistisch abschätzen zu können, untersuchte und quantifizierte ein Team um Jing Wang vom «Advanced Analytical Technologies»Labor der Empa die Verbrennungsrückstände der Graphen-Verbundstoffe. Am interdisziplinären Projekt waren zudem Forschende des «Advanced Fibers»-Labors der Empa beteiligt.
Kunststoffharze können schädlich sein
Anhand dieser Daten setzte das Team das 3-D-Lungenmodell realitätsnahen Bedin - gungen aus, so dass Voraussagen zur akuten Toxizität von Graphen-Nanoplättchen nach der Verbrennung getroffen werden konnten. Die Ergebnisse zeigten, dass zwar Verbrennungsrückstände von Kunststoffharzen ohne Graphen bereits bekannte Reaktionen auslösen, die auf ein Gesundheitsrisiko hinweisen. Nach Kontakt mit den Rückständen der Graphen-Nanoplättchen gab es darüber hinaus aber keine Hinweise auf akute Schädigungen der Lungenzellen, wie etwa Entzündungsreaktionen, oxidativer Stress oder das Absterben von Zellen. www.empa.ch
In einer früheren Studie hatten Forschende der Empa bereits zeigen können, dass die Gesundheitsrisiken von GraphenStaub, der durch Abrieb aus Polymerverbundstoffen entsteht, zu vernachlässigen sind. Die Auswirkungen einer anhaltenden Belastung mit Graphen-Nanopartikeln soll nun in langfristigeren Studien untersucht werden.