Sandscape & Illuminating Clay Launch
Stratify
Fluid
Grooming
Sandscape & Illuminating Clay integrates physical model making with real-time computational analysis. Digital and physical representation are placed within an advanced feedback loop, rather than serving as separate stages within the design process. With this technology the designer can rapidly sculpt and explore complex geometries and also have a precise understanding of the systematic and physical consequences of their geo-spatial configuration. Analysis of the physical model can produce representations of forces that change over time, producing numerical data at accuracies that far surpass the tolerances of most physical models. Users sculpt the topography of a clay/sand landscape model manually while the changing geometry is captured by a ceiling-mounted laser scanner or infrared (IR) light sensing technology. In the computer, the sensing output is transformed into the digital elevation model (DEM) format as well as a series of Geographic Information System (GIS) analysis maps, which are then projected back onto the landscape model. The whole interaction loop happens in near-real-time (approximately one second per cycle). Elevation is displayed on the model using a color map ranging from red to purple. Volume of cut and fill, water flow, land erosion, view shed and solar aspect is also calculated and displayed in real time. Two cross sections are projected beside the model to describe the 3-D geometry of the terrain. A vertical screen or an LCD screen displays a 3-D perspective view of the landscape. Illuminating Clay uses a modified commercially available laser scanner, calibrated with a video projector. The scanner/projector pair is housed inside an aluminum casing at a height of 2m (6.6ft) above the surface of the modeling material. Scanned data is re-sampled into x, y, z coordinates and then converted into GIS format. Sandscape uses a more affordable sensing technology, which includes a box containing 1mm diameter glass beads lit from beneath with an array of 600 highpower IR light emitting diodes (LED). An infrared camera is mounted 2m (6.6ft) above the surface of the beads and captures the intensity of light passing through the volume. The intensity of transmitted light is a function of the depth of the beads and a look-up table can be used to convert surface radiance values into surface elevation values. R&D: SENSEable City Laboratory, Tangible Media Group, MIT Researchers: Hiroshi Ishii, Carlo Ratti, Ben Piper, Yao Wang, Assaf Biderman and Eran Ben-Joseph
176
T Digestive
Translate
Volatile