16 minute read
5.2 RECOMENDACIONES
from 104938
5.2 RECOMENDACIONES
El Chocó ecuatoriano es un ecosistema que ha perdido la mayoría de sus bosques originales a partir de los años 50, una gran limitante para el presente estudio fue medir la fragmentación de un hábitat que ya ha sufrido alteraciones a su ecosistema original, además alser un análisis a gran escala imposibilita establecer monitoreos de campo in situ para verificar la presencia de animales amenazados en parches de bosque de pequeño tamaño.
Advertisement
El modelado de nicho ecológico busca una aproximación a la distribución de especies, sin embargo, los resultados del presente documento pueden tener sesgos de exactitud debido a la calibración del modelo utilizando un área de movilidad común para todas las especies. Se podrían obtener resultados con una mayor exactitud al establecer áreas de movilidad tomando en consideración características de cada una de las especies para la construcción de cada una de las áreas de movilidad y posterior elaboración del modelo.
Para futuros estudios se debe tomar en consideración metodologías particulares para la selección de atributos de las fuentes de información, es importante que nuevos estudios se enfoquen en el monitoreo, la riqueza y la abundancia de especies de los parches de bosque incluyendo diversos taxones de vertebrados e invertebrados para poder orientar las nuevas acciones de conservación. Es necesario también apoyar las acciones ya emprendidas por entes privados para conservación in situ y aprovechar estos espacios para poder realizar investigación científica que permita cuantificar la importancia de los parches de bosque en este importante ecosistema.
6. REFERENCIAS
Andren, H. (1994). Effects of Habitat Fragmentation on Birds and Mammals in
Landscapes with Different Proportions of Suitable Habitat: A Review. Oikos, 71, 355–366. https://doi.org/10.2307/3545823
Babich-Morrow, C. (2019). Thresholding species distribution models. Recuperado el 19 de
Septiembre, 2019, desde https://babichmorrowc.github.io/post/2019-04-12-sdmthreshold/
Barbier, E. B., y Burgess, J. C. (1996). Economic analysis of deforestation in Mexico.
Environment and Development Economics, 222(11), 1810-1819. https://doi.org/10.1017/s1355770x00000590
Barve, N., Barve, V., Jiménez-Valverde, A., Lira-Noriega, A., Maher, S. P., Peterson, A.
T., … Villalobos, F. (2011). The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecological Modelling. https://doi.org/10.1016/j.ecolmodel.2011.02.011
Batallas Minda, A. P. (2004). La deforestación en el norte de Esmeraldas (Eloy alfaro y
San Lorenzo). Revista de Ciencias Sociales y Humanas, 95–127. Recuperado el 15 de septiembre de 2019, desde https://dialnet.unirioja.es/descarga/articulo/5968248.pdf
Becker, C. G., y Zamudio, K. R. (2011). Tropical amphibian populations experience higher disease risk in natural habitats. Proceedings of the National Academy of Sciences, 108(24), 9893–9898. https://doi.org/10.1073/pnas.1014497108
Blaustein, A. R., y Bancroft, B. A. (2007). Amphibian Population Declines: Evolutionary Considerations. BioScience, 57(5), 437–444. https://doi.org/10.1641/B570517
Blaustein, A. R., Jones, D. K., Urbina, J., Cothran, R. D., Harjoe, C., Mattes, B., …
Relyea, R. (2020). Effects of invasive larval bullfrogs (Rana catesbeiana) on disease transmission, growth and survival in the larvae of native amphibians. Biological
Invasions, 22(5), 1771–1784. https://doi.org/10.1007/s10530-020-02218-4
Boada, C. (2006, April). El choco biogeografico. Ecuador Terra Incógnita N° 40.
Recuperado el 20 de Agosto de 2019 desde http://www.terraecuador.net/revista_40/40_choco.htm
Bowne, D. R., y Bowers, M. A. (2004). Interpatch movements in spatially structured populations: A literature review. Landscape Ecology. https://doi.org/10.1023/B:LAND.0000018357.45262.b9
Brito, D. (2010). Overcoming the Linnean shortfall: Data deficiency and biological survey priorities. Basic and Applied Ecology, 11(8), 709–713. https://doi.org/10.1016/j.baae.2010.09.007
Burgess, J. C. (1993). Timber Production, Timber Trade and Tropical Deforestation. Royal
Swedish Academy of Sciences Timber Production Burgess Source: Ambio
Biodiversity: Ecology Economics Policy, 136-143. https://doi.org/10.1007/sl
Busby, J. R. (1991). BIOCLIM - A Bioclimatic Analysis and Prediction System. In
Margules CR,Austin MP (eds) Nature Conservation: Cost Effective Biological
Surveys and Data Analysis CSIRO, Melbourne, 64-68 Carpenter, G. Gillison A. N. yWinter J, (1993), DOMAIN: a flexible modelling procedure for mapping potential distribution of plants and anials. Biodiversity and Conservation . 2: 667-680
Centro Jambatu. (2019). Anfibios de Ecuador. Recuperado el 17 de Marzo de 2019, desde: http://www.anfibiosecuador.ec/index.php?aw,2
Cisneros-Heredia, D. F., Delia, J., Yánez-Muñoz, M. H., y Ortega-Andrade, H. M. (2010).
Endemic Ecuadorian glassfrog Cochranella mache is Critically Endangered because of habitat loss. Oryx, 44(1), 114–117. https://doi.org/10.1017/S0030605309990640
Coloma Santos, A. (2020). Plan de acción para la conservación de anfibios del Ecuador.
Quito-Ecuador: Proyecto de Conservación de la Biodiversidad de Anfibios ecuatorianos y uso sostenible de sus Recursos Genéticos.
Conservación Internacional. (2019). Chocó Ecuatoriano. Recueprado el 20 de Agosto de 2019, desde: https://conservation.org.ec/choco-ecuatoriano/
Cooper, N., Bielby, J., Thomas, G. H., y Purvis, A. (2008). Macroecology and extinction risk correlates of frogs. Global Ecology and Biogeography, 17(2), 211–221. https://doi.org/10.1111/j.1466-8238.2007.00355.x
Covarrubias, S., González, C., y Gutierrez-Rodríguez, C. (2009). Effects of natural and anthropogenic features on functional connectivity of anurans : a review of landscape genetics studies in temperate , subtropical and tropical species. Journal of Zoology, 1–13. https://doi.org/10.1111/jzo.12851
Curtis, J. T. (1956). The modification of mid-latitude grasslands and forests by man. In
Man’s Role in Changing the Face of the Earth.
Cushman, S. A. (2006). Effects of habitat loss and fragmentation on amphibians: A review and prospectus. Biological Conservation, 128(2), 231–240. https://doi.org/10.1016/j.biocon.2005.09.031
Deacon, R. T. (1995). Assessing the relationship between government policy and deforestation. Journal of Environmental Economics and Management, 28(1), 1-18. https://doi.org/10.1006/jeem.1995.1001
Didham, R. K., Kapos, V., y Ewers, R. M. (2012). Rethinking the conceptual foundations of habitat fragmentation research. Oikos, 121(2), 161–170. https://doi.org/10.1111/j.1600-0706.2011.20273.x
Dinerstein, E., Olson, D. M., Graham, D. J., Webster, A. L., Primm, S. A., Bookbinder, M.
P., y Ledec, G. (1995). Una Evaluación del Estado de Conservación de las Ecoregiones Terrestres de América Latina y el Caribe. Washington, DC, USA: Banco
Mundial. Recuperado el 02 de Junio del2019 desde: http://documentos.bancomundial.org/curated/es/917091468269687252/pdf/14996010s
panish.pdf
Durieux, L., Machado, L. A. T., y Laurent, H. (2003). The impact of deforestation on cloud cover over the Amazon arc of deforestation. Remote Sensing of Environment, 86(1), 132–140. https://doi.org/10.1016/S0034-4257(03)00095-6
Elith, J., H. Graham, C., P. Anderson, R., Dudík, M., Ferrier, S., Guisan, A., … E.
Zimmermann, N. (2006). Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29(2), 129–151. https://doi.org/10.1111/j.2006.0906-7590.04596.x
Fahrig, L. (2003). Effects of Habitat Fragmentation on Biodiversity. Annual Review of
Ecology, Evolution, and Systematics, 34(1), 487–515. https://doi.org/10.1146/annurev.ecolsys.34.011802.132419
Fahrig, L. (2018). Habitat fragmentation : A long and tangled tale. Global Ecology and
Biogeography, 28(1), 33–41. https://doi.org/10.1111/geb.12839
Fahrig, L., Arroyo-Rodríguez, V., Bennett, J. R., Boucher-Lalonde, V., Cazetta, E., Currie,
D. J., … Watling, J. I. (2019). Is habitat fragmentation bad for biodiversity?
Biological Conservation, 203, 179-186. https://doi.org/10.1016/j.biocon.2018.12.026
Finer, M., y Mamani, N. (2019). Conservando el Chocó Ecuatoriano.MAAP: 102.
Recuperado el 20 de mayo de 2019 desde: https://maaproject.org/2019/chocoecuatoriano/
Fletcher, R., y Fortin, M.-J. (2018). Spatial Ecology and Conservation Modeling.
Applications with R. In Spatial Ecology and Conservation Modeling. https://doi.org/10.1007/978-3-030-01989-1
Fletcher, R. J., Didham, R. K., Banks-Leite, C., Barlow, J., Ewers, R. M., Rosindell, J., …
Haddad, N. M. (2018). Is habitat fragmentation good for biodiversity? Biological
Conservation, 226, 9–15. https://doi.org/10.1016/j.biocon.2018.07.022
Gibbs, J. P. (1998). Distribution ofWoodland Amphibians Along a Forest Fragmentation
Gradient. Landscape Ecology, 13(4), 263–268. https://doi.org/10.1023/A:1008056424692
Guerry, A. D., y Hunter, M. L. (2002). Amphibian distributions in a landscape of forests and agriculture: An examination of landscape composition and configuration.
Conservation Biology, 16(3), 745-754. https://doi.org/10.1046/j.15231739.2002.00557.x
Guisan A.,y Zimmerman N.E.(2000) Predictive habitat distribution models in ecology .
Ecological Modelling .157:89-100.
Gullison, R. E., y Losos, E. C. (1993). The Role of Foreign Debt in Deforestation in Latin
America. Conservation Biology, 7(1), 140-147. https://doi.org/10.1046/j.15231739.1993.07010140.x
Hammond, D. S., Rosales, J., y Ouboter, P. E. (2013). Gestión del Impacto de la
Explotación Minera a Cielo Abierto sobre el Agua Dulce en América Latina. BID, 33. Recuperado el 20 de mayo de 2021 desde: http://www.iadb.org/wmsfiles/products/publications/documents/37577832.pdf
Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A., Tyukavina, A., … Townshend, J. R. G. (2013). High-resolution global maps of 21st-century forest cover change. Science. https://doi.org/10.1126/science.1244693
Hansen, M. C., Potapov, P. V, Moore, R., Hancher, M., Turubanova, S. A., y Tyukavina,
A. (2013). High-Resolution Global Maps of. Science, 342, 850–854. https://doi.org/10.1126/science.1244693
Hesselbarth, M. H. K., Sciaini, M., With, K. A., Wiegand, K., y Nowosad, J. (2019). landscapemetrics: an open‐source R tool to calculate landscape metrics. Ecography, 42(10), 1648-1657. https://doi.org/10.1111/ecog.04617
Hidalgo F; Alvarado M; Chipartasi L. (2011). Atlas-tenencia-de-la-tierra-Ecuador1 (Vol. 1, p. 39). Vol. 1, p. 39.
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., y Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of
Climatology, 25(15), 1965–1978. https://doi.org/10.1002/joc.1276
Hijmans, R. J., y Elith, J. (2013). Species distribution modeling with R Introduction.
October, 71. https://doi.org/10.1016/S0550-3213(02)00216-X
Houspanossian, J., Giménez, R., Jobbágy, E., y Nosetto, M. (2017). Surface albedo raise in the South American Chaco: Combined effects of deforestation and agricultural changes. Agricultural and Forest Meteorology, 232, 118-127. https://doi.org/10.1016/j.agrformet.2016.08.015
Howard, S. D., y Bickford, D. P. (2014). Amphibians over the edge: Silent extinction risk of Data Deficient species. Diversity and Distributions, 20(7), 837-846. https://doi.org/10.1111/ddi.12218
Jameson, D. L. (2010). Population Structure and Homing Responses in the Pacific Tree
Frog. Society, 1957(3), 221–228. https://doi.org/10.2307/1439361
Joly, P., Morand, C., y Cohas, A. (2003). Habitat fragmentation and amphibian conservation: building a tool for assessing landscape matrix connectivity. Comptes
Rendus Biologies, 326, 132–139. https://doi.org/10.1016/S1631-0691(03)00050-7
Jongsma, G. F. M., Hedley, R. W., Durães, R., y Karubian, J. (2014). Amphibian Diversity and Species Composition in Relation to Habitat Type and Alteration in the Mache–
Chindul Reserve, Northwest Ecuador. Herpetologica, 70(1), 34–46. https://doi.org/10.1655/HERPETOLOGICA-D-12-00068
Kiesecker, J. M., Blaustein, A. R., y Belden, L. K. (2001). Complex causes of amphibian population declines. Nature, 410(6829), 681–684. https://doi.org/10.1038/35070552
Kolozsvary, M. B., y Swihart, R. K. (1999). Habitat fragmentation and the distribution of
amphibians: patch and landscape correlates in farmland. Canadian Journal of Zoology, 77(8), 1288–1299. https://doi.org/10.1139/z99-102
Lawrence, W. (2019). WHY WE SHOULD SAVE THE LAST TINY SCRAPS OF
NATURE. Recuperado el 25 de marzo de 2019, desde https://ensia.com/voices/ecosystem-remnants-biodiversity-nature/
Lawton, R. O., Nair, U. S., Pielke R.A., S., y Welch, R. M. (2001). Climatic impact of tropical lowland deforestation on nearby montane cloud forests. Science, 294(5542), 584-587. https://doi.org/10.1126/science.1062459
Levins, R. (1970). Extinction. Lecure Notes in Mathematics, 2, 75–107.
Lips, K. R., Diffendorfer, J., Mendelson, J. R., y Sears, M. W. (2008). Riding the wave:
Reconciling the roles of disease and climate change in amphibian declines. PLoS
Biology, 6(3), 0441–0454. https://doi.org/10.1371/journal.pbio.0060072
López Noguera, M. (2015). ACTIVIDAD MINERA EN EL CHOCO BIOGEOGRAFICO Y
SU IMPACTO EN ANFIBIOS (Universidad Militar Nueva Granada). Universidad
Militar Nueva Granada. Recuperado el 15 de noviembre de 2019 desde https://repository.unimilitar.edu.co/bitstream/handle/10654/7474/Mineria en
Choc%F3 Biogeogr%E1fico e impacto en anfibios.pdf;jsessionid=60BA914BD8ADBAAF4AFAA05EE91E3B85?sequence=3
López, S., Sierra, R., y Tirado, M. (2010). Tropical deforestation in the Ecuadorian Chocó:
Logging practices and socio-spatial relationships. Geographical Bulletin - Gamma, 51(1), 3.
Löwenberg-Neto, P. (2014). Neotropical region: a shapefile of Morrone’s (2014) biogeographical regionalisation. Zootaxa, 3802(2), 300. https://doi.org/10.11646/zootaxa.3802.2.12
Lynch, J. D., y Suárez-Mayorga, Á. M. (2004). Anfibios en el Chocó BiogeográficoAnálisis Biogeográfico y Catálogo. In UNAL, ICN, y C. Internacional. (Eds.), Diversidad Biótica IV: El Chocó Biogeográfico/Costa Pacífica. (pp. 633–667).
MacArthur, R. H., y Wilson, E. O. (1967). The theory of island biogeography (Princeton,
Ed.). NJ: Princeton University Press.
MAE, Ministerio del Ambiente del Ecuador. (2013). Sistema de Clasificación de ecosistemas del Ecuador Continental. https://doi.org/10.1017/CBO9781107415324.004
MAE, Ministerio del Ambiente. (2018). Estadísticas del Patrimonio Natural del Ecuador
Continental (Segunda Ed; Subsecretaría de Patrimonio Natural, Coordinación General de Planificación Ambiental y Gestión Estratégica, y Sistema Único de Información
Ambiental, Eds.). Quito-Ecuador: Ministerio del Ambiente.
Marsh, D. M., y Pearman, P. B. (1997). Effects of Habitat Fragmentation on the
Abundance of Two Species of Frogs in an Andean Montane forest. Conservation
Biology, 11(6), 1323–1328. https://doi.org/10.1046/j.1523-1739.1997.95519.x
Mateo, R. G., Felicísimo, Á. M., y Muñoz, J. (2011). Modelos de distribución de especies:
Una revisión sintética. Revista Chilena de Historia Natural, 84, 217–240. https://doi.org/10.4067/S0716-078X2011000200008
McCracken, S. F., y Forstner, M. R. J. (2014). Oil road effects on the anuran community of a high canopy tank bromeliad (Aechmea zebrina) in the upper Amazon Basin,
Ecuador. PLoS ONE, 9(1). https://doi.org/10.1371/journal.pone.0085470
McGarigal, K., y Cushman, S. A. (2002). Comparative evaluation of experimental approaches to the study of habitat fragmentation effects. Ecological
Applications12(2), 335-345. https://doi.org/10.1890/10510761(2002)012[0335:CEOEAT]2.0.CO;2
McGarigal, K., Cushman, S. A., y Ene, E. (2012). FRAGSTATS v4: spatial pattern analysis program for categorial and continuous maps. Fragstats.
McGarigal, K., y Marks, B. J. (1995). FRAGSTATS: spatial pattern analysis program for quantifying landscape structure. In Gen. Tech. Rep. PNW-GTR-351. Portland, OR:
U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. 122 p (Vol. 351). https://doi.org/10.2737/PNW-GTR-351
Menéndez-Guerrero, P. A., y Graham, C. H. (2013). Evaluating multiple causes of amphibian declines of Ecuador using geographical quantitative analyses. Ecography, 36(7), 756-769. https://doi.org/10.1111/j.1600-0587.2012.07877.x
Miaud, C., y Joly, P. (1993). Variation in age structures in a subdivided population of
Triturus cristatus. Canadian Journal of Zoology, 71, 1874–1979. https://doi.org/10.1139/z93-267
Midha, N., y Mathur, P. K. (2010). Assessment of forest fragmentation in the conservation priority Dudhwa landscape, India using FRAGSTATS computed class level metrics.
Journal of the Indian Society of Remote Sensing, 38(3), 487–500. https://doi.org/10.1007/s12524-010-0034-6
Moore, N. W. (1962). The Heaths of Dorset and their Conservation. The Journal of
Ecology, 50(2), 369. https://doi.org/10.2307/2257449
Morrone, J. J. (2014). Biogeographical regionalisation of the neotropical region. In
Zootaxa (Vol. 3782). https://doi.org/10.11646/zootaxa.3782.1.1
Mota-Vargas, C., Luévano, A., Andrade, M., Torres, D., Peniche, A., y Soto, O. (2019).
Una breve introducción a los modelos de nicho ecológico. La Biodiversidad En Un
Mundo Cambiante: Fundamentos Teóricos y Metodológicos Para Su Estudio., 1(December), 43.
Moulatlet, G., Ambriz, E., Guevara, J., Lopez, K., Rodes, M., Guerra, N., … Meneses, P. (2021.). Multi-taxa ecological responses to habitat loss and fragmentation in western amazonia. Acta Amazónica. 51, (3) Jul-Sept : https://doi.org/10.1590/18094392202004532
Myers, N., Mittermeier, R. A., Mittermeier, C. G., Fonseca, G. A. B., y Kent, J. (2000).
Biodiversity hotspots for conservation priorities. Nature, 403(February), 853–858.
Nelson, G. C., Harris, V., y Stone, S. W. (2001). Deforestation, Land Use, and Property
Rights: Empirical Evidence from Darien, Panama. Land Economics, 77, 187–205. https://doi.org/10.2307/3147089
Nieto C., C., Tapia B., C., Paredes, N., Nieto E., M., Añazco R., M., Hidrobo U., G., y Flor
A., E. (2017). La biodiversidad para la agricultura y la alimentación en Ecuador:
Estado actual y proyecciones de su uso sustentable y conservación (resumen del informe nacional). Recuperado el 19 de agosto de 2019 desde http://repositorio.iniap.gob.ec/handle/41000/4772
Noh, J. K., Echeverria, C., Kleemann, J., Koo, H., Cuenca, P., y Fu, C. (2020). Warning about conservation status of forest ecosystems in tropical Andes : National assessment based on IUCN criteria. 1–19. https://doi.org/10.1371/journal.pone.0237877
Ortega-Andrade, H. M., Prieto-Torres, D. A., Gómez-Lora, I., y Lizcano, D. J. (2015).
Ecological and Geographical Analysis of the Distribution of the Mountain Tapir (Tapirus pinchaque) in Ecuador: Importance of Protected Areas in Future Scenarios of
Global Warming. PLOS ONE, 10(3), e0121137. https://doi.org/10.1371/journal.pone.0121137
Ortega-Andrade, M. (com pers). PROTOCOLO Modelos de Nicho Ecológico (p. 36). p. 36.
Ortega Andrade, H. M., Rodes Blanco, M., Cisneros Heredia, D. F., Guerra Arévalo, N.,
Lopez de Vargas-Machuca, K. G., Sánchez-Nivicela, J. C., … Yánez-Muñoz, M. H. (2021). Red List assessment for amphibian species of Ecuador: a multidimensional approachfor their conservation. PLOS ONE 16(5): e0251027. https://doi.org/10.1371/journal.pone.0251027
Osborne, P. E., Alonso, J. C., y Bryant, R. G. (2001). Modelling landscape-scale habitat use using GIS and remote sensing: A case study with great bustards. Journal of
Applied Ecology, 38(2), 458-471. https://doi.org/10.1046/j.1365-2664.2001.00604.x
Pérez, A. (2019). Ecuador: dos comunidades contra la palma aceitera en Esmeraldas. Los pecados de la palma en Latinoamérica Recuperado el 19 de Mayo de 2021, desde : https://es.mongabay.com/2019/10/palma-de-aceite-en-ecuador-afecta-a-doscomunidades/
Perz, S. G. (2002). Population growth and net migration in the Brazilian Legal Amazon, 1970–1996. In Deforestation and land use in the Amazon (pp. 107–129). REcuperado el 29 de Agosto de 2019 desde: https://www.semanticscholar.org/paper/Populationgrowth-and-net-migration-in-the-Legal-Perz-
Ch/5c57b3e3774c70496975f556238d48647e9d8419
Pfaff, A. S. P. (1999). What drives deforestation in the Brazilian Amazon? Evidence from satellite and socioeconomic data. Journal of Environmental Economics and
Management, 37, 26–43. https://doi.org/10.1006/jeem.1998.1056
Phillips, S. J., Anderson, R. P., y Schapire, R. E. (2006). Maximum entropy modeling of
species geographic distributions. Ecological Modelling, 190(3–4), 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026
Pichón, F. J. (1997). Settler Households and Land-Use Patterns in the Amazon Frontier:
Farm-Level Evidence from Ecuador. World Development. https://doi.org/10.1016/S0305-750X(96)00091-5
Pielke, R. A., Adegoke, J., Beltrán-Przekurat, A., Hiemstra, C. A., Lin, J., Nair, U. S., …
Nobis, T. E. (2007). An overview of regional land-use and land-cover impacts on rainfall. Tellus, Series B: Chemical and Physical Meteorology, 59(3), 587–601. https://doi.org/10.1111/j.1600-0889.2007.00251.x
Qiao, H., Soberón, J., y Peterson, A. T. (2015). No silver bullets in correlative ecological niche modelling : insights from testing among many potential algorithms for niche estimation. Methods in Ecology and Evolution, 6(10), 1126–1136. https://doi.org/10.1111/2041-210X.12397
Ray, D. K., Welch, R. M., Lawton, R. O., y Nair, U. S. (2006). Dry season clouds and rainfall in northern Central America: Implications for the Mesoamerican Biological
Corridor. Global and Planetary Change, 54(1–2), 150–162. https://doi.org/10.1016/J.GLOPLACHA.2005.09.004
Ron, S. R., Merino-Viteri, A., y Ortiz, D. A. (2018). Anfibios del Ecuador. Version 2018.0.
Museo de Zoología. Pontificia Universidad Católica del Ecuador website: Anfibios del Ecuador. Version 2018.0. Museo de Zoología, Pontificia Universidad Católica del
Ecuador
Royle, J. A., Chandler, R. B., Yackulic, C., y Nichols, J. D. (2012). Likelihood analysis of species occurrence probability from presence-only data for modelling species distributions. Methods in Ecology and Evolution, 3(3), 545–554. https://doi.org/10.1111/j.2041-210X.2011.00182.x
Ruffell, J., Banks-Leite, C., y Didham, R. K. (2016). Accounting for the causal basis of collinearity when measuring the effects of habitat loss versus habitat fragmentation.
Oikos, 125(1), 117–125. https://doi.org/10.1111/oik.01948
Ruggiero, L. F., Hayward, G. D., y Squires, J. R. (1994). Viability Analysis in Biological
Evaluations: Concepts of Population Viability Analysis, Biological Population, and
Ecological Scale. Conservation Biology. https://doi.org/10.1046/j.15231739.1994.08020364.x
Rybicki, J., Abrego, N., y Ovaskainen, O. (2020, March 1). Habitat fragmentation and species diversity in competitive communities. Ecology Letters, Vol. 23, pp. 506–517.
Blackwell Publishing Ltd. https://doi.org/10.1111/ele.13450
Salaman, P. (1994). SURVEYS AND CONSERVATION OF BIODIVERSITY IN THE
CHOCÓ SOUTH-WEST COLOMBIA. Reino Unido.
Scheele, B. C., Pasmans, F., Skerratt, L. F., Berger, L., Martel, A., Beukema, W., …
Canessa, S. (2019). Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity. Science, 363(6434), 1459–1463.
https://doi.org/10.1126/science.aav0379
Sierra, R. (2001). The role of domestic timber markets in tropical deforestation and forest degradation in Ecuador: Implications for conservation planning and policy.
Ecological Economics, 36(2), 327-340. https://doi.org/10.1016/S09218009(00)00233-0
Sierra, R. (2013). Patrones y factores de deforestación en el Ecuador Continental, 19902010. Y un acercamiento a los próximos 10 años. Conservación Internacional y
Forest Trends.
Sierra, R., Cerón, C., Palacios, Wi., y Valencia., R. (1999). Criterios para la clasificación de la vegetación del Ecuador. In S. R. (Ed.), Propuesta preliminar de un sistema de clasificación de vegetación para el Ecuador continental (pp. 29–54). Quito: Proyecto
INEFAN/GEF-BIRF y EcoCiencia.
Soberon, J., y Peterson, A. T. (2005). Interpretation of Models of Fundamental Ecological
Niches and Species’ Distributional Areas. Biodiversity Informatics, 2, 2005, pp.1-10. https://doi.org/10.17161/bi.v2i0.4
The Wildlife Society. (2017). Habitat Loss y Fragmentation. Recuperado el 21 de Agosto de 2019 desde http://wildlife.org/wp-content/uploads/2017/05/FactSheet-
Fragmentation_FINAL.pdf
UICN, Unión Internacional para la Conservación de la Naturaleza. (2012). Categorías y criterios de la Lista Roja de la UICN Version 3.1 : aprobado en la 51° Reunión del
Consejo de la UICN, Gland Suiza, 9 de Febrero 2000. Recuperado el 28 de
Septiembre de 2019 desde: https://portals.iucn.org/library/node/10316
Villard, M.-A., y Metzger, J. P. (2014). REVIEW: Beyond the fragmentation debate: a conceptual model to predict when habitat configuration really matters. Journal of
Applied Ecology, 51(2), 309–318. https://doi.org/10.1111/1365-2664.12190
Voyles, J., Young, S., Berger, L., Campbell, C., Voyles, W. F., Dinudom, A., … Speare, R. (2009). Pathogenesis of chytridiomycosis, a cause of catastrophic amphibian declines.
Science, 326(5952). https://doi.org/10.1126/science.1176765
Wintle, B. A., Kujala, H., Whitehead, A., Cameron, A., Veloz, S., Kukkala, A., y
Moilanen, A. (2019). Global synthesis of conservation studies reveals the importance of small habitat patches for biodiversity. Proceedings of the National Academy of
Sciences, 116(3), 909–914. https://doi.org/10.1073/pnas.1813051115
7. ANEXOS
7.1 Anexo 1. Script para cálculo de fragmentación de ecosistemas, ejemplo análisis del año 2000.
install.packages("landscapemetrics") library(landscapemetrics) library(raster) library(rgdal)
#cargar datos #Ecosistemasemas del Chocó
BsTc01<-raster("./Ecosistemas/2000/Bosq_SV_tierrbjschoc.tif") BeTc01<-raster("./Ecosistemas/2000/bosq_SVestac_TB.tif") BsTc02<-raster("./Ecosistemas/2000/bosq_inud_llan_intermar.tif") BsTc03<-raster("./Ecosistemas/2000/bosq_inud_llanur_al.tif") HsTc02<-raster("./Ecosistemas/2000/herb_ripario.tif") BsTc04<-raster("./Ecosistemas/2000/Manglar_choco.tif") BePc01<-raster("./Ecosistemas/2000/BosqSVestac_piemont.tif") BsBc01<-raster("./Ecosistemas/2000/Bosque_SV_mont_bajo.tif") intervencion<-raster("./Ecosistemas/2000/intervencion.tif")
#calculo de metricas para Ecosistemasemas
#total Area lsm_l_ta(BsTc01) lsm_l_ta(BeTc01) lsm_l_ta(BsTc02) lsm_l_ta(BsTc03) lsm_l_ta(HsTc02) lsm_l_ta(BsTc04) lsm_l_ta(BePc01) lsm_l_ta(BsBc01) lsm_l_ta(intervencion)
#Total class area
lsm_c_ca(BsTc01, directions=8) lsm_c_ca(BeTc01, directions=8) lsm_c_ca(BsTc02, directions=8) lsm_c_ca(BsTc03, directions=8) lsm_c_ca(HsTc02, directions=8) lsm_c_ca(BsTc04, directions=8) lsm_c_ca(BePc01, directions=8) lsm_c_ca(BsBc01, directions=8)
#Media del Ã-ndice de contiguidad
lsm_c_contig_mn(BsTc01,directions=8) lsm_c_contig_mn(BeTc01,directions=8) lsm_c_contig_mn(BsTc02,directions=8) lsm_c_contig_mn(BsTc03,directions=8) lsm_c_contig_mn(HsTc02,directions=8) lsm_c_contig_mn(BsTc04,directions=8) lsm_c_contig_mn(BePc01,directions=8) lsm_c_contig_mn(BsBc01,directions=8) lsm_c_contig_mn(intervencion,directions=8)
#mean euclidean nearest neighbor
lsm_c_enn_cv(BsTc01,directions=8, verbose=TRUE) lsm_c_enn_cv(BeTc01,directions=8, verbose=TRUE) lsm_c_enn_cv(BsTc02,directions=8, verbose=TRUE) lsm_c_enn_cv(BsTc03,directions=8, verbose=TRUE) lsm_c_enn_cv(HsTc02,directions=8, verbose=TRUE) lsm_c_enn_cv(BsTc04,directions=8, verbose=TRUE) lsm_c_enn_cv(BePc01,directions=8, verbose=TRUE) lsm_c_enn_cv(BsBc01,directions=8, verbose=TRUE) lsm_c_enn_cv(intervencion,directions=8, verbose=TRUE)
#num of patches
lsm_c_np(BsTc01,directions=8) lsm_c_np(BeTc01,directions=8) lsm_c_np(BsTc02,directions=8) lsm_c_np(BsTc03,directions=8) lsm_c_np(HsTc02,directions=8) lsm_c_np(BsTc04,directions=8) lsm_c_np(BePc01,directions=8) lsm_c_np(BsBc01,directions=8) lsm_c_np(intervencion,directions=8)
#tamaño promedio de los parches lsm_l_area_mn(BsTc01, directions=8) lsm_l_area_mn(BeTc01, directions=8) lsm_l_area_mn(BsTc02, directions=8) lsm_l_area_mn (BsTc03, directions=8) lsm_l_area_mn (HsTc02, directions=8) lsm_l_area_mn (BsTc04, directions=8) lsm_l_area_mn (BePc01, directions=8) lsm_l_area_mn (BsBc01, directions=8)
#Desviación estándar del area de los parches
lsm_c_area_sd(BsTc01, directions=8) lsm_c_area_sd(BeTc01, directions=8) lsm_c_area_sd(BsTc02, directions=8) lsm_c_area_sd(BsTc03, directions=8) lsm_c_area_sd(HsTc02, directions=8) lsm_c_area_sd(BsTc04, directions=8) lsm_c_area_sd(BePc01, directions=8) lsm_c_area_sd(BsBc01, directions=8)