16 minute read

5.2 RECOMENDACIONES

Next Article
anuros

anuros

5.2 RECOMENDACIONES

El Chocó ecuatoriano es un ecosistema que ha perdido la mayoría de sus bosques originales a partir de los años 50, una gran limitante para el presente estudio fue medir la fragmentación de un hábitat que ya ha sufrido alteraciones a su ecosistema original, además alser un análisis a gran escala imposibilita establecer monitoreos de campo in situ para verificar la presencia de animales amenazados en parches de bosque de pequeño tamaño.

Advertisement

El modelado de nicho ecológico busca una aproximación a la distribución de especies, sin embargo, los resultados del presente documento pueden tener sesgos de exactitud debido a la calibración del modelo utilizando un área de movilidad común para todas las especies. Se podrían obtener resultados con una mayor exactitud al establecer áreas de movilidad tomando en consideración características de cada una de las especies para la construcción de cada una de las áreas de movilidad y posterior elaboración del modelo.

Para futuros estudios se debe tomar en consideración metodologías particulares para la selección de atributos de las fuentes de información, es importante que nuevos estudios se enfoquen en el monitoreo, la riqueza y la abundancia de especies de los parches de bosque incluyendo diversos taxones de vertebrados e invertebrados para poder orientar las nuevas acciones de conservación. Es necesario también apoyar las acciones ya emprendidas por entes privados para conservación in situ y aprovechar estos espacios para poder realizar investigación científica que permita cuantificar la importancia de los parches de bosque en este importante ecosistema.

6. REFERENCIAS

Andren, H. (1994). Effects of Habitat Fragmentation on Birds and Mammals in

Landscapes with Different Proportions of Suitable Habitat: A Review. Oikos, 71, 355–366. https://doi.org/10.2307/3545823

Babich-Morrow, C. (2019). Thresholding species distribution models. Recuperado el 19 de

Septiembre, 2019, desde https://babichmorrowc.github.io/post/2019-04-12-sdmthreshold/

Barbier, E. B., y Burgess, J. C. (1996). Economic analysis of deforestation in Mexico.

Environment and Development Economics, 222(11), 1810-1819. https://doi.org/10.1017/s1355770x00000590

Barve, N., Barve, V., Jiménez-Valverde, A., Lira-Noriega, A., Maher, S. P., Peterson, A.

T., … Villalobos, F. (2011). The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecological Modelling. https://doi.org/10.1016/j.ecolmodel.2011.02.011

Batallas Minda, A. P. (2004). La deforestación en el norte de Esmeraldas (Eloy alfaro y

San Lorenzo). Revista de Ciencias Sociales y Humanas, 95–127. Recuperado el 15 de septiembre de 2019, desde https://dialnet.unirioja.es/descarga/articulo/5968248.pdf

Becker, C. G., y Zamudio, K. R. (2011). Tropical amphibian populations experience higher disease risk in natural habitats. Proceedings of the National Academy of Sciences, 108(24), 9893–9898. https://doi.org/10.1073/pnas.1014497108

Blaustein, A. R., y Bancroft, B. A. (2007). Amphibian Population Declines: Evolutionary Considerations. BioScience, 57(5), 437–444. https://doi.org/10.1641/B570517

Blaustein, A. R., Jones, D. K., Urbina, J., Cothran, R. D., Harjoe, C., Mattes, B., …

Relyea, R. (2020). Effects of invasive larval bullfrogs (Rana catesbeiana) on disease transmission, growth and survival in the larvae of native amphibians. Biological

Invasions, 22(5), 1771–1784. https://doi.org/10.1007/s10530-020-02218-4

Boada, C. (2006, April). El choco biogeografico. Ecuador Terra Incógnita N° 40.

Recuperado el 20 de Agosto de 2019 desde http://www.terraecuador.net/revista_40/40_choco.htm

Bowne, D. R., y Bowers, M. A. (2004). Interpatch movements in spatially structured populations: A literature review. Landscape Ecology. https://doi.org/10.1023/B:LAND.0000018357.45262.b9

Brito, D. (2010). Overcoming the Linnean shortfall: Data deficiency and biological survey priorities. Basic and Applied Ecology, 11(8), 709–713. https://doi.org/10.1016/j.baae.2010.09.007

Burgess, J. C. (1993). Timber Production, Timber Trade and Tropical Deforestation. Royal

Swedish Academy of Sciences Timber Production Burgess Source: Ambio

Biodiversity: Ecology Economics Policy, 136-143. https://doi.org/10.1007/sl

Busby, J. R. (1991). BIOCLIM - A Bioclimatic Analysis and Prediction System. In

Margules CR,Austin MP (eds) Nature Conservation: Cost Effective Biological

Surveys and Data Analysis CSIRO, Melbourne, 64-68 Carpenter, G. Gillison A. N. yWinter J, (1993), DOMAIN: a flexible modelling procedure for mapping potential distribution of plants and anials. Biodiversity and Conservation . 2: 667-680

Centro Jambatu. (2019). Anfibios de Ecuador. Recuperado el 17 de Marzo de 2019, desde: http://www.anfibiosecuador.ec/index.php?aw,2

Cisneros-Heredia, D. F., Delia, J., Yánez-Muñoz, M. H., y Ortega-Andrade, H. M. (2010).

Endemic Ecuadorian glassfrog Cochranella mache is Critically Endangered because of habitat loss. Oryx, 44(1), 114–117. https://doi.org/10.1017/S0030605309990640

Coloma Santos, A. (2020). Plan de acción para la conservación de anfibios del Ecuador.

Quito-Ecuador: Proyecto de Conservación de la Biodiversidad de Anfibios ecuatorianos y uso sostenible de sus Recursos Genéticos.

Conservación Internacional. (2019). Chocó Ecuatoriano. Recueprado el 20 de Agosto de 2019, desde: https://conservation.org.ec/choco-ecuatoriano/

Cooper, N., Bielby, J., Thomas, G. H., y Purvis, A. (2008). Macroecology and extinction risk correlates of frogs. Global Ecology and Biogeography, 17(2), 211–221. https://doi.org/10.1111/j.1466-8238.2007.00355.x

Covarrubias, S., González, C., y Gutierrez-Rodríguez, C. (2009). Effects of natural and anthropogenic features on functional connectivity of anurans : a review of landscape genetics studies in temperate , subtropical and tropical species. Journal of Zoology, 1–13. https://doi.org/10.1111/jzo.12851

Curtis, J. T. (1956). The modification of mid-latitude grasslands and forests by man. In

Man’s Role in Changing the Face of the Earth.

Cushman, S. A. (2006). Effects of habitat loss and fragmentation on amphibians: A review and prospectus. Biological Conservation, 128(2), 231–240. https://doi.org/10.1016/j.biocon.2005.09.031

Deacon, R. T. (1995). Assessing the relationship between government policy and deforestation. Journal of Environmental Economics and Management, 28(1), 1-18. https://doi.org/10.1006/jeem.1995.1001

Didham, R. K., Kapos, V., y Ewers, R. M. (2012). Rethinking the conceptual foundations of habitat fragmentation research. Oikos, 121(2), 161–170. https://doi.org/10.1111/j.1600-0706.2011.20273.x

Dinerstein, E., Olson, D. M., Graham, D. J., Webster, A. L., Primm, S. A., Bookbinder, M.

P., y Ledec, G. (1995). Una Evaluación del Estado de Conservación de las Ecoregiones Terrestres de América Latina y el Caribe. Washington, DC, USA: Banco

Mundial. Recuperado el 02 de Junio del2019 desde: http://documentos.bancomundial.org/curated/es/917091468269687252/pdf/14996010s

panish.pdf

Durieux, L., Machado, L. A. T., y Laurent, H. (2003). The impact of deforestation on cloud cover over the Amazon arc of deforestation. Remote Sensing of Environment, 86(1), 132–140. https://doi.org/10.1016/S0034-4257(03)00095-6

Elith, J., H. Graham, C., P. Anderson, R., Dudík, M., Ferrier, S., Guisan, A., … E.

Zimmermann, N. (2006). Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29(2), 129–151. https://doi.org/10.1111/j.2006.0906-7590.04596.x

Fahrig, L. (2003). Effects of Habitat Fragmentation on Biodiversity. Annual Review of

Ecology, Evolution, and Systematics, 34(1), 487–515. https://doi.org/10.1146/annurev.ecolsys.34.011802.132419

Fahrig, L. (2018). Habitat fragmentation : A long and tangled tale. Global Ecology and

Biogeography, 28(1), 33–41. https://doi.org/10.1111/geb.12839

Fahrig, L., Arroyo-Rodríguez, V., Bennett, J. R., Boucher-Lalonde, V., Cazetta, E., Currie,

D. J., … Watling, J. I. (2019). Is habitat fragmentation bad for biodiversity?

Biological Conservation, 203, 179-186. https://doi.org/10.1016/j.biocon.2018.12.026

Finer, M., y Mamani, N. (2019). Conservando el Chocó Ecuatoriano.MAAP: 102.

Recuperado el 20 de mayo de 2019 desde: https://maaproject.org/2019/chocoecuatoriano/

Fletcher, R., y Fortin, M.-J. (2018). Spatial Ecology and Conservation Modeling.

Applications with R. In Spatial Ecology and Conservation Modeling. https://doi.org/10.1007/978-3-030-01989-1

Fletcher, R. J., Didham, R. K., Banks-Leite, C., Barlow, J., Ewers, R. M., Rosindell, J., …

Haddad, N. M. (2018). Is habitat fragmentation good for biodiversity? Biological

Conservation, 226, 9–15. https://doi.org/10.1016/j.biocon.2018.07.022

Gibbs, J. P. (1998). Distribution ofWoodland Amphibians Along a Forest Fragmentation

Gradient. Landscape Ecology, 13(4), 263–268. https://doi.org/10.1023/A:1008056424692

Guerry, A. D., y Hunter, M. L. (2002). Amphibian distributions in a landscape of forests and agriculture: An examination of landscape composition and configuration.

Conservation Biology, 16(3), 745-754. https://doi.org/10.1046/j.15231739.2002.00557.x

Guisan A.,y Zimmerman N.E.(2000) Predictive habitat distribution models in ecology .

Ecological Modelling .157:89-100.

Gullison, R. E., y Losos, E. C. (1993). The Role of Foreign Debt in Deforestation in Latin

America. Conservation Biology, 7(1), 140-147. https://doi.org/10.1046/j.15231739.1993.07010140.x

Hammond, D. S., Rosales, J., y Ouboter, P. E. (2013). Gestión del Impacto de la

Explotación Minera a Cielo Abierto sobre el Agua Dulce en América Latina. BID, 33. Recuperado el 20 de mayo de 2021 desde: http://www.iadb.org/wmsfiles/products/publications/documents/37577832.pdf

Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A., Tyukavina, A., … Townshend, J. R. G. (2013). High-resolution global maps of 21st-century forest cover change. Science. https://doi.org/10.1126/science.1244693

Hansen, M. C., Potapov, P. V, Moore, R., Hancher, M., Turubanova, S. A., y Tyukavina,

A. (2013). High-Resolution Global Maps of. Science, 342, 850–854. https://doi.org/10.1126/science.1244693

Hesselbarth, M. H. K., Sciaini, M., With, K. A., Wiegand, K., y Nowosad, J. (2019). landscapemetrics: an open‐source R tool to calculate landscape metrics. Ecography, 42(10), 1648-1657. https://doi.org/10.1111/ecog.04617

Hidalgo F; Alvarado M; Chipartasi L. (2011). Atlas-tenencia-de-la-tierra-Ecuador1 (Vol. 1, p. 39). Vol. 1, p. 39.

Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., y Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of

Climatology, 25(15), 1965–1978. https://doi.org/10.1002/joc.1276

Hijmans, R. J., y Elith, J. (2013). Species distribution modeling with R Introduction.

October, 71. https://doi.org/10.1016/S0550-3213(02)00216-X

Houspanossian, J., Giménez, R., Jobbágy, E., y Nosetto, M. (2017). Surface albedo raise in the South American Chaco: Combined effects of deforestation and agricultural changes. Agricultural and Forest Meteorology, 232, 118-127. https://doi.org/10.1016/j.agrformet.2016.08.015

Howard, S. D., y Bickford, D. P. (2014). Amphibians over the edge: Silent extinction risk of Data Deficient species. Diversity and Distributions, 20(7), 837-846. https://doi.org/10.1111/ddi.12218

Jameson, D. L. (2010). Population Structure and Homing Responses in the Pacific Tree

Frog. Society, 1957(3), 221–228. https://doi.org/10.2307/1439361

Joly, P., Morand, C., y Cohas, A. (2003). Habitat fragmentation and amphibian conservation: building a tool for assessing landscape matrix connectivity. Comptes

Rendus Biologies, 326, 132–139. https://doi.org/10.1016/S1631-0691(03)00050-7

Jongsma, G. F. M., Hedley, R. W., Durães, R., y Karubian, J. (2014). Amphibian Diversity and Species Composition in Relation to Habitat Type and Alteration in the Mache–

Chindul Reserve, Northwest Ecuador. Herpetologica, 70(1), 34–46. https://doi.org/10.1655/HERPETOLOGICA-D-12-00068

Kiesecker, J. M., Blaustein, A. R., y Belden, L. K. (2001). Complex causes of amphibian population declines. Nature, 410(6829), 681–684. https://doi.org/10.1038/35070552

Kolozsvary, M. B., y Swihart, R. K. (1999). Habitat fragmentation and the distribution of

amphibians: patch and landscape correlates in farmland. Canadian Journal of Zoology, 77(8), 1288–1299. https://doi.org/10.1139/z99-102

Lawrence, W. (2019). WHY WE SHOULD SAVE THE LAST TINY SCRAPS OF

NATURE. Recuperado el 25 de marzo de 2019, desde https://ensia.com/voices/ecosystem-remnants-biodiversity-nature/

Lawton, R. O., Nair, U. S., Pielke R.A., S., y Welch, R. M. (2001). Climatic impact of tropical lowland deforestation on nearby montane cloud forests. Science, 294(5542), 584-587. https://doi.org/10.1126/science.1062459

Levins, R. (1970). Extinction. Lecure Notes in Mathematics, 2, 75–107.

Lips, K. R., Diffendorfer, J., Mendelson, J. R., y Sears, M. W. (2008). Riding the wave:

Reconciling the roles of disease and climate change in amphibian declines. PLoS

Biology, 6(3), 0441–0454. https://doi.org/10.1371/journal.pbio.0060072

López Noguera, M. (2015). ACTIVIDAD MINERA EN EL CHOCO BIOGEOGRAFICO Y

SU IMPACTO EN ANFIBIOS (Universidad Militar Nueva Granada). Universidad

Militar Nueva Granada. Recuperado el 15 de noviembre de 2019 desde https://repository.unimilitar.edu.co/bitstream/handle/10654/7474/Mineria en

Choc%F3 Biogeogr%E1fico e impacto en anfibios.pdf;jsessionid=60BA914BD8ADBAAF4AFAA05EE91E3B85?sequence=3

López, S., Sierra, R., y Tirado, M. (2010). Tropical deforestation in the Ecuadorian Chocó:

Logging practices and socio-spatial relationships. Geographical Bulletin - Gamma, 51(1), 3.

Löwenberg-Neto, P. (2014). Neotropical region: a shapefile of Morrone’s (2014) biogeographical regionalisation. Zootaxa, 3802(2), 300. https://doi.org/10.11646/zootaxa.3802.2.12

Lynch, J. D., y Suárez-Mayorga, Á. M. (2004). Anfibios en el Chocó BiogeográficoAnálisis Biogeográfico y Catálogo. In UNAL, ICN, y C. Internacional. (Eds.), Diversidad Biótica IV: El Chocó Biogeográfico/Costa Pacífica. (pp. 633–667).

MacArthur, R. H., y Wilson, E. O. (1967). The theory of island biogeography (Princeton,

Ed.). NJ: Princeton University Press.

MAE, Ministerio del Ambiente del Ecuador. (2013). Sistema de Clasificación de ecosistemas del Ecuador Continental. https://doi.org/10.1017/CBO9781107415324.004

MAE, Ministerio del Ambiente. (2018). Estadísticas del Patrimonio Natural del Ecuador

Continental (Segunda Ed; Subsecretaría de Patrimonio Natural, Coordinación General de Planificación Ambiental y Gestión Estratégica, y Sistema Único de Información

Ambiental, Eds.). Quito-Ecuador: Ministerio del Ambiente.

Marsh, D. M., y Pearman, P. B. (1997). Effects of Habitat Fragmentation on the

Abundance of Two Species of Frogs in an Andean Montane forest. Conservation

Biology, 11(6), 1323–1328. https://doi.org/10.1046/j.1523-1739.1997.95519.x

Mateo, R. G., Felicísimo, Á. M., y Muñoz, J. (2011). Modelos de distribución de especies:

Una revisión sintética. Revista Chilena de Historia Natural, 84, 217–240. https://doi.org/10.4067/S0716-078X2011000200008

McCracken, S. F., y Forstner, M. R. J. (2014). Oil road effects on the anuran community of a high canopy tank bromeliad (Aechmea zebrina) in the upper Amazon Basin,

Ecuador. PLoS ONE, 9(1). https://doi.org/10.1371/journal.pone.0085470

McGarigal, K., y Cushman, S. A. (2002). Comparative evaluation of experimental approaches to the study of habitat fragmentation effects. Ecological

Applications12(2), 335-345. https://doi.org/10.1890/10510761(2002)012[0335:CEOEAT]2.0.CO;2

McGarigal, K., Cushman, S. A., y Ene, E. (2012). FRAGSTATS v4: spatial pattern analysis program for categorial and continuous maps. Fragstats.

McGarigal, K., y Marks, B. J. (1995). FRAGSTATS: spatial pattern analysis program for quantifying landscape structure. In Gen. Tech. Rep. PNW-GTR-351. Portland, OR:

U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. 122 p (Vol. 351). https://doi.org/10.2737/PNW-GTR-351

Menéndez-Guerrero, P. A., y Graham, C. H. (2013). Evaluating multiple causes of amphibian declines of Ecuador using geographical quantitative analyses. Ecography, 36(7), 756-769. https://doi.org/10.1111/j.1600-0587.2012.07877.x

Miaud, C., y Joly, P. (1993). Variation in age structures in a subdivided population of

Triturus cristatus. Canadian Journal of Zoology, 71, 1874–1979. https://doi.org/10.1139/z93-267

Midha, N., y Mathur, P. K. (2010). Assessment of forest fragmentation in the conservation priority Dudhwa landscape, India using FRAGSTATS computed class level metrics.

Journal of the Indian Society of Remote Sensing, 38(3), 487–500. https://doi.org/10.1007/s12524-010-0034-6

Moore, N. W. (1962). The Heaths of Dorset and their Conservation. The Journal of

Ecology, 50(2), 369. https://doi.org/10.2307/2257449

Morrone, J. J. (2014). Biogeographical regionalisation of the neotropical region. In

Zootaxa (Vol. 3782). https://doi.org/10.11646/zootaxa.3782.1.1

Mota-Vargas, C., Luévano, A., Andrade, M., Torres, D., Peniche, A., y Soto, O. (2019).

Una breve introducción a los modelos de nicho ecológico. La Biodiversidad En Un

Mundo Cambiante: Fundamentos Teóricos y Metodológicos Para Su Estudio., 1(December), 43.

Moulatlet, G., Ambriz, E., Guevara, J., Lopez, K., Rodes, M., Guerra, N., … Meneses, P. (2021.). Multi-taxa ecological responses to habitat loss and fragmentation in western amazonia. Acta Amazónica. 51, (3) Jul-Sept : https://doi.org/10.1590/18094392202004532

Myers, N., Mittermeier, R. A., Mittermeier, C. G., Fonseca, G. A. B., y Kent, J. (2000).

Biodiversity hotspots for conservation priorities. Nature, 403(February), 853–858.

Nelson, G. C., Harris, V., y Stone, S. W. (2001). Deforestation, Land Use, and Property

Rights: Empirical Evidence from Darien, Panama. Land Economics, 77, 187–205. https://doi.org/10.2307/3147089

Nieto C., C., Tapia B., C., Paredes, N., Nieto E., M., Añazco R., M., Hidrobo U., G., y Flor

A., E. (2017). La biodiversidad para la agricultura y la alimentación en Ecuador:

Estado actual y proyecciones de su uso sustentable y conservación (resumen del informe nacional). Recuperado el 19 de agosto de 2019 desde http://repositorio.iniap.gob.ec/handle/41000/4772

Noh, J. K., Echeverria, C., Kleemann, J., Koo, H., Cuenca, P., y Fu, C. (2020). Warning about conservation status of forest ecosystems in tropical Andes : National assessment based on IUCN criteria. 1–19. https://doi.org/10.1371/journal.pone.0237877

Ortega-Andrade, H. M., Prieto-Torres, D. A., Gómez-Lora, I., y Lizcano, D. J. (2015).

Ecological and Geographical Analysis of the Distribution of the Mountain Tapir (Tapirus pinchaque) in Ecuador: Importance of Protected Areas in Future Scenarios of

Global Warming. PLOS ONE, 10(3), e0121137. https://doi.org/10.1371/journal.pone.0121137

Ortega-Andrade, M. (com pers). PROTOCOLO Modelos de Nicho Ecológico (p. 36). p. 36.

Ortega Andrade, H. M., Rodes Blanco, M., Cisneros Heredia, D. F., Guerra Arévalo, N.,

Lopez de Vargas-Machuca, K. G., Sánchez-Nivicela, J. C., … Yánez-Muñoz, M. H. (2021). Red List assessment for amphibian species of Ecuador: a multidimensional approachfor their conservation. PLOS ONE 16(5): e0251027. https://doi.org/10.1371/journal.pone.0251027

Osborne, P. E., Alonso, J. C., y Bryant, R. G. (2001). Modelling landscape-scale habitat use using GIS and remote sensing: A case study with great bustards. Journal of

Applied Ecology, 38(2), 458-471. https://doi.org/10.1046/j.1365-2664.2001.00604.x

Pérez, A. (2019). Ecuador: dos comunidades contra la palma aceitera en Esmeraldas. Los pecados de la palma en Latinoamérica Recuperado el 19 de Mayo de 2021, desde : https://es.mongabay.com/2019/10/palma-de-aceite-en-ecuador-afecta-a-doscomunidades/

Perz, S. G. (2002). Population growth and net migration in the Brazilian Legal Amazon, 1970–1996. In Deforestation and land use in the Amazon (pp. 107–129). REcuperado el 29 de Agosto de 2019 desde: https://www.semanticscholar.org/paper/Populationgrowth-and-net-migration-in-the-Legal-Perz-

Ch/5c57b3e3774c70496975f556238d48647e9d8419

Pfaff, A. S. P. (1999). What drives deforestation in the Brazilian Amazon? Evidence from satellite and socioeconomic data. Journal of Environmental Economics and

Management, 37, 26–43. https://doi.org/10.1006/jeem.1998.1056

Phillips, S. J., Anderson, R. P., y Schapire, R. E. (2006). Maximum entropy modeling of

species geographic distributions. Ecological Modelling, 190(3–4), 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026

Pichón, F. J. (1997). Settler Households and Land-Use Patterns in the Amazon Frontier:

Farm-Level Evidence from Ecuador. World Development. https://doi.org/10.1016/S0305-750X(96)00091-5

Pielke, R. A., Adegoke, J., Beltrán-Przekurat, A., Hiemstra, C. A., Lin, J., Nair, U. S., …

Nobis, T. E. (2007). An overview of regional land-use and land-cover impacts on rainfall. Tellus, Series B: Chemical and Physical Meteorology, 59(3), 587–601. https://doi.org/10.1111/j.1600-0889.2007.00251.x

Qiao, H., Soberón, J., y Peterson, A. T. (2015). No silver bullets in correlative ecological niche modelling : insights from testing among many potential algorithms for niche estimation. Methods in Ecology and Evolution, 6(10), 1126–1136. https://doi.org/10.1111/2041-210X.12397

Ray, D. K., Welch, R. M., Lawton, R. O., y Nair, U. S. (2006). Dry season clouds and rainfall in northern Central America: Implications for the Mesoamerican Biological

Corridor. Global and Planetary Change, 54(1–2), 150–162. https://doi.org/10.1016/J.GLOPLACHA.2005.09.004

Ron, S. R., Merino-Viteri, A., y Ortiz, D. A. (2018). Anfibios del Ecuador. Version 2018.0.

Museo de Zoología. Pontificia Universidad Católica del Ecuador website: Anfibios del Ecuador. Version 2018.0. Museo de Zoología, Pontificia Universidad Católica del

Ecuador

Royle, J. A., Chandler, R. B., Yackulic, C., y Nichols, J. D. (2012). Likelihood analysis of species occurrence probability from presence-only data for modelling species distributions. Methods in Ecology and Evolution, 3(3), 545–554. https://doi.org/10.1111/j.2041-210X.2011.00182.x

Ruffell, J., Banks-Leite, C., y Didham, R. K. (2016). Accounting for the causal basis of collinearity when measuring the effects of habitat loss versus habitat fragmentation.

Oikos, 125(1), 117–125. https://doi.org/10.1111/oik.01948

Ruggiero, L. F., Hayward, G. D., y Squires, J. R. (1994). Viability Analysis in Biological

Evaluations: Concepts of Population Viability Analysis, Biological Population, and

Ecological Scale. Conservation Biology. https://doi.org/10.1046/j.15231739.1994.08020364.x

Rybicki, J., Abrego, N., y Ovaskainen, O. (2020, March 1). Habitat fragmentation and species diversity in competitive communities. Ecology Letters, Vol. 23, pp. 506–517.

Blackwell Publishing Ltd. https://doi.org/10.1111/ele.13450

Salaman, P. (1994). SURVEYS AND CONSERVATION OF BIODIVERSITY IN THE

CHOCÓ SOUTH-WEST COLOMBIA. Reino Unido.

Scheele, B. C., Pasmans, F., Skerratt, L. F., Berger, L., Martel, A., Beukema, W., …

Canessa, S. (2019). Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity. Science, 363(6434), 1459–1463.

https://doi.org/10.1126/science.aav0379

Sierra, R. (2001). The role of domestic timber markets in tropical deforestation and forest degradation in Ecuador: Implications for conservation planning and policy.

Ecological Economics, 36(2), 327-340. https://doi.org/10.1016/S09218009(00)00233-0

Sierra, R. (2013). Patrones y factores de deforestación en el Ecuador Continental, 19902010. Y un acercamiento a los próximos 10 años. Conservación Internacional y

Forest Trends.

Sierra, R., Cerón, C., Palacios, Wi., y Valencia., R. (1999). Criterios para la clasificación de la vegetación del Ecuador. In S. R. (Ed.), Propuesta preliminar de un sistema de clasificación de vegetación para el Ecuador continental (pp. 29–54). Quito: Proyecto

INEFAN/GEF-BIRF y EcoCiencia.

Soberon, J., y Peterson, A. T. (2005). Interpretation of Models of Fundamental Ecological

Niches and Species’ Distributional Areas. Biodiversity Informatics, 2, 2005, pp.1-10. https://doi.org/10.17161/bi.v2i0.4

The Wildlife Society. (2017). Habitat Loss y Fragmentation. Recuperado el 21 de Agosto de 2019 desde http://wildlife.org/wp-content/uploads/2017/05/FactSheet-

Fragmentation_FINAL.pdf

UICN, Unión Internacional para la Conservación de la Naturaleza. (2012). Categorías y criterios de la Lista Roja de la UICN Version 3.1 : aprobado en la 51° Reunión del

Consejo de la UICN, Gland Suiza, 9 de Febrero 2000. Recuperado el 28 de

Septiembre de 2019 desde: https://portals.iucn.org/library/node/10316

Villard, M.-A., y Metzger, J. P. (2014). REVIEW: Beyond the fragmentation debate: a conceptual model to predict when habitat configuration really matters. Journal of

Applied Ecology, 51(2), 309–318. https://doi.org/10.1111/1365-2664.12190

Voyles, J., Young, S., Berger, L., Campbell, C., Voyles, W. F., Dinudom, A., … Speare, R. (2009). Pathogenesis of chytridiomycosis, a cause of catastrophic amphibian declines.

Science, 326(5952). https://doi.org/10.1126/science.1176765

Wintle, B. A., Kujala, H., Whitehead, A., Cameron, A., Veloz, S., Kukkala, A., y

Moilanen, A. (2019). Global synthesis of conservation studies reveals the importance of small habitat patches for biodiversity. Proceedings of the National Academy of

Sciences, 116(3), 909–914. https://doi.org/10.1073/pnas.1813051115

7. ANEXOS

7.1 Anexo 1. Script para cálculo de fragmentación de ecosistemas, ejemplo análisis del año 2000.

install.packages("landscapemetrics") library(landscapemetrics) library(raster) library(rgdal)

#cargar datos #Ecosistemasemas del Chocó

BsTc01<-raster("./Ecosistemas/2000/Bosq_SV_tierrbjschoc.tif") BeTc01<-raster("./Ecosistemas/2000/bosq_SVestac_TB.tif") BsTc02<-raster("./Ecosistemas/2000/bosq_inud_llan_intermar.tif") BsTc03<-raster("./Ecosistemas/2000/bosq_inud_llanur_al.tif") HsTc02<-raster("./Ecosistemas/2000/herb_ripario.tif") BsTc04<-raster("./Ecosistemas/2000/Manglar_choco.tif") BePc01<-raster("./Ecosistemas/2000/BosqSVestac_piemont.tif") BsBc01<-raster("./Ecosistemas/2000/Bosque_SV_mont_bajo.tif") intervencion<-raster("./Ecosistemas/2000/intervencion.tif")

#calculo de metricas para Ecosistemasemas

#total Area lsm_l_ta(BsTc01) lsm_l_ta(BeTc01) lsm_l_ta(BsTc02) lsm_l_ta(BsTc03) lsm_l_ta(HsTc02) lsm_l_ta(BsTc04) lsm_l_ta(BePc01) lsm_l_ta(BsBc01) lsm_l_ta(intervencion)

#Total class area

lsm_c_ca(BsTc01, directions=8) lsm_c_ca(BeTc01, directions=8) lsm_c_ca(BsTc02, directions=8) lsm_c_ca(BsTc03, directions=8) lsm_c_ca(HsTc02, directions=8) lsm_c_ca(BsTc04, directions=8) lsm_c_ca(BePc01, directions=8) lsm_c_ca(BsBc01, directions=8)

#Media del Ã-ndice de contiguidad

lsm_c_contig_mn(BsTc01,directions=8) lsm_c_contig_mn(BeTc01,directions=8) lsm_c_contig_mn(BsTc02,directions=8) lsm_c_contig_mn(BsTc03,directions=8) lsm_c_contig_mn(HsTc02,directions=8) lsm_c_contig_mn(BsTc04,directions=8) lsm_c_contig_mn(BePc01,directions=8) lsm_c_contig_mn(BsBc01,directions=8) lsm_c_contig_mn(intervencion,directions=8)

#mean euclidean nearest neighbor

lsm_c_enn_cv(BsTc01,directions=8, verbose=TRUE) lsm_c_enn_cv(BeTc01,directions=8, verbose=TRUE) lsm_c_enn_cv(BsTc02,directions=8, verbose=TRUE) lsm_c_enn_cv(BsTc03,directions=8, verbose=TRUE) lsm_c_enn_cv(HsTc02,directions=8, verbose=TRUE) lsm_c_enn_cv(BsTc04,directions=8, verbose=TRUE) lsm_c_enn_cv(BePc01,directions=8, verbose=TRUE) lsm_c_enn_cv(BsBc01,directions=8, verbose=TRUE) lsm_c_enn_cv(intervencion,directions=8, verbose=TRUE)

#num of patches

lsm_c_np(BsTc01,directions=8) lsm_c_np(BeTc01,directions=8) lsm_c_np(BsTc02,directions=8) lsm_c_np(BsTc03,directions=8) lsm_c_np(HsTc02,directions=8) lsm_c_np(BsTc04,directions=8) lsm_c_np(BePc01,directions=8) lsm_c_np(BsBc01,directions=8) lsm_c_np(intervencion,directions=8)

#tamaño promedio de los parches lsm_l_area_mn(BsTc01, directions=8) lsm_l_area_mn(BeTc01, directions=8) lsm_l_area_mn(BsTc02, directions=8) lsm_l_area_mn (BsTc03, directions=8) lsm_l_area_mn (HsTc02, directions=8) lsm_l_area_mn (BsTc04, directions=8) lsm_l_area_mn (BePc01, directions=8) lsm_l_area_mn (BsBc01, directions=8)

#Desviación estándar del area de los parches

lsm_c_area_sd(BsTc01, directions=8) lsm_c_area_sd(BeTc01, directions=8) lsm_c_area_sd(BsTc02, directions=8) lsm_c_area_sd(BsTc03, directions=8) lsm_c_area_sd(HsTc02, directions=8) lsm_c_area_sd(BsTc04, directions=8) lsm_c_area_sd(BePc01, directions=8) lsm_c_area_sd(BsBc01, directions=8)

This article is from: