Math 55 2nd le exercises 1

Page 1

I. Determine whether the given series is absolutely convergent, conditionally convergent, or divergent. ∞ X (−1)n (2n + 5) √ 1. 3 n7 + 1 n=2

2. 3.

∞ X n=1 ∞ X n=1

1 √ √n ne (−1)n n(ln n)2

II. Determine the interval of convergence and radius of convergence of the following series:

1. 2.

∞ X (−1)n (x − 2)n n=0 ∞ X n=1

3.

(2n)! 3n (x + 2)n √ n+1

4.

∞ X (−1)n (x − 3)n n=1 ∞ X n=0

n ln n (x + 1)n 2n (n2 + 1)

III. Find the derivative and the integral of each of the following power series:

1.

∞ X

x

2n

2.

∞ X n=1

n=0

(−1)n

(x − 1)n n

IV. Find a power series representation of f at a if 1. f (x) =

x , 2+x

2. f (x) = tan−1 x, 3. f (x) = cos x, V. Approximate

√ 3

a=0 a=1

(Hint: Use the Taylor series formula.)

a = π/2

(Hint: Use the Taylor series formula.)

1.01 using the 3rd degree Taylor polynomial at 1 of

√ 3

x.


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.